JPH01230779A - 窒化アルミニウムの製造方法 - Google Patents

窒化アルミニウムの製造方法

Info

Publication number
JPH01230779A
JPH01230779A JP5177388A JP5177388A JPH01230779A JP H01230779 A JPH01230779 A JP H01230779A JP 5177388 A JP5177388 A JP 5177388A JP 5177388 A JP5177388 A JP 5177388A JP H01230779 A JPH01230779 A JP H01230779A
Authority
JP
Japan
Prior art keywords
aln
gas
thermal conductivity
atmosphere
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5177388A
Other languages
English (en)
Other versions
JP2679798B2 (ja
Inventor
Tateo Hayashi
林 健郎
Toshiyuki Hirao
平尾 寿之
Tadashi Ohashi
忠 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP5177388A priority Critical patent/JP2679798B2/ja
Publication of JPH01230779A publication Critical patent/JPH01230779A/ja
Application granted granted Critical
Publication of JP2679798B2 publication Critical patent/JP2679798B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は窒化アルミニウムの製造方法に関する。
〔従来の技術〕
窒化アルミニウムは、高熱伝導性を有するセラミックス
として、半導体デバイスの放熱板等として使用されてい
る。
従来、窒化アルミニウムの製造方法としては、例えばA
JI粉末を窒素雰囲気中で700〜1600℃に加熱し
てAlN原料を合成し、このA文N原料に焼結助剤(例
えば3〜5重量%のイツトリア)を添加混合して成形し
、この成形体を1700〜1900℃で焼結してAlN
焼結体とする焼結法が知られている。
しかし、この方法で得られるAlN焼結体は、焼結助剤
の存在により熱伝導性が低下するという問題があった。
また、この方法では原料AlN粉末が空気中の水分など
で酸化され、AJIN中の酸素濃度が高くなりやすく、
熱を伝えるフォノンの伝導が悪くなって、これも熱伝導
率が低下する原因となっていた。
〔発明が解決しようとする課題〕
そこで、反応炉内に基材を設置し、アルミニウム化合物
ガスとアンモニアガスとを供給して600〜1400℃
、0.1〜50kPaの条件で反応させ、上記基材上に
AlNを堆積させるというCVD法による方法が提案さ
れている(例えば、特願昭81−29401号公報)。
この方法では高純度のAlNを合成することができ、焼
結法の場合のように、焼結助剤や酸素による熱伝導率の
低下を防止することができる。しかし、この方法で熱伝
導率をより一層向上させるには、A9.Hの結晶性を向
上させる必要があり、そのために1300℃を超える温
度でAflNを合成しなければならない、そして、この
ような高温でA文Nを合成すると、結晶粒径が大きくな
り、強度が低下するという問題があった。
本発明は上記問題点を解決するためになされたものであ
り、高強度かつ高熱伝導率の窒化アルミニウムを製造し
得る方法を提供することを目的とする。
〔課題を解決するための手段と作用〕
本発明の窒化アルミニウムの製造方法は、反応炉内に基
材を設置し、アルミニウム化合物ガスとNH3ガスとを
供給して 600〜1300℃で反応させ、上記基材上
にAlNを堆積した後、不活性雰囲気又は還元性雰囲気
下にて1500〜2100℃で熱処理することを特徴と
するものである。
本発明において、アルミニウム化合物としてはA交C立
3、AiH3、A文(CH3)3のうち少なくともいず
れか1種が用いられる。
本発明において、CVD法によるアルミニウム化合物ガ
スとNH3ガスとの反応温度を600〜1300℃とし
たのは以下のような理由による。すなわち、反応温度が
600℃未満では反応が充分に進行せず、AIH中にC
fLやHが不純物として取込まれやすくなって熱伝導率
の低下を招く。一方、反応温度が1300℃を超えると
AfLNの結晶粒径が大きくなって強度の低下を招く。
なお、CVD法によるAIHの合成時の圧力は0.1〜
50kPaに設定することが望ましい。
本発明において、CVD法により合成されたAlNの周
囲を不活性雰囲気又は還元性雰囲気にするための具体的
手段としては、N2、Ar、He、H2、CO又はNH
3のうち1種又は2種以上からなる雰囲気ガスを供給す
る方法、又はA!;LNを炭素質粉末で被覆する方法が
挙げられる。
なお、雰囲気ガスを供給する前者の方法では、AIH中
に酸素が取込まれるのを極力防止するために、還元性ガ
ス(例えばH2、Go、NH,)が含まれる雰囲気ガス
を供給することが望ましい。この方法を用いた場合の熱
処理温度を1550〜1900℃としたのは、1550
℃未満ではAuNの結晶性を改善する効果が小さいため
熱伝導率をそれほど向上させることができず、一方19
00℃以下で熱伝導率を向上させる効果が飽和すること
が多く、1800℃を超えても加熱コストが上昇するだ
けで熱伝導率を向上させることができないためである。
なお、熱処理雰囲気として還元性ガスを含むガスではな
く、単なる不活性ガスを用いた場合には、熱処理温度が
1700℃を超えると、A文Nの表面に吸着された水分
や不活性ガス中に含まれる微量の水分や酸素がAuN組
織内に拡散してフォノンの散乱原因となり、熱伝導率が
低下するおそれがあるため、熱処理温度は1550〜1
700℃であることがより望ましい。
ただし、上記のように雰囲気ガスとして還元性ガスを含
むガスを供給した場合、反応炉内に外部の空気が侵入す
ると爆発の危険性があるので、炉の密閉構造を二重にす
るなどの安全対策が必要となる。また、H2やNH3を
含む雰囲気ガスの場合、1800℃を超える処理温度で
はAIHの一部が還元性ガスにより浸蝕(エツチング)
されるおそれがある。
そこで、CVD法により合成されたAlNを炭素質粉末
で被覆する後者の方法を用いれば、還元性ガスを含む雰
囲気ガスを用いる場合のような問題は解消できる。すな
わち、AlNを炭素質粉末で被覆しておけば、還元性ガ
スを用いる必要がないので、反応炉内に外部の空気が侵
入したとしても爆発の危険性はない。しかも、空気が侵
入しても炭素質粉末が酸化されるだけで、A文Nに影響
を与えることはない。また、この方法ではHIP処理(
1000kg/ am 2以上での高圧力下での高温処
理)の適用も可能である。この方法を用いた場合の熱処
理温度を1500〜2100℃としたのは、1500℃
未満ではAuNの結晶性を改善する効果が小さいため熱
伝導率をそれほど向上させることができず、一方210
0℃以下で熱伝導率を向上させる効果が飽和することが
多く、2100℃を超えても加熱コストが上昇するだけ
で熱伝導率を向上させることができないためである。な
お、HIP処理を行わない場合には、熱処理温度が19
00℃を超えると、AlNの表面の一部が分解するおそ
れがある。これに対してHIP処理では1900〜21
00℃の高温においてもAuNの分解は起らない。
以上のような本発明方法によれば、CVD法による合成
温度が600〜1300°Cと比較的低温であるので、
結晶粒径は小さく、しかもその後の熱処理においても結
晶の粒成長を招くことなくミクロな結晶性を改善するこ
とができ、フォノンの散乱が減少する。したがって、高
強度かつ高熱伝導性のAuNを製造することができる。
〔実施例〕
以下、本発明の詳細な説明する。
反応炉内にカーボン基材(メカニカルカーボン社製、 
MC4402)を設置し、反応温度を第1表に示すよう
に 700〜1500℃に設定し、A文C文、(純度9
5%以上)及びN H3(純度99.8%以上)を約1
=1の割合で供給してカーボン基材上に厚さ約3mmの
AlN膜を形成した。なお、反応ガスの供給割合を1:
0.8〜1.4の範囲で変化させても生成するAlN膜
には影響がなかった。得られた各AlN膜をカーボン基
材から分離した後、密度、曲げ強度、結晶粒径、酸素濁
度及び熱伝導率を測定した結果を第1表に示す。
次に、第1図図示の装置、第2図図示の装置、又は第3
図図示のHIP装置により、得られたAJIN膜の熱処
理を行った。
第1図において、石英管1の両端は蓋体2.3で密閉さ
れており、蓋体2には供給管4及測温用ガラス窓5が、
蓋体3には排気管6が取付けられている。上記石英管1
の外周には高周波誘導コイル7が配設され、石英管1内
部には断熱材8を介してカーボンヒーター9が設けられ
ている。このカーボンヒーター9上に、表面にAJIN
lillが形成されたカーボン基材lOが載置される。
そして、炉内を所定温度に設定し、供給管4から例えば
N2ガスやN2+H2ガスを供給してAlN膜11の熱
処理を行う。
第2図において、第1図と異なるのは、カーボンヒータ
ー9上に、カーボンるつぼ12を載置し、その内部で表
面にAlN膜11が形成されたカーボン基材10の周囲
を炭素質粉末13(クレカスフイアA−200)で被覆
した状態にすることだけである。
この場合も、炉内を所定温度に設定し、供給管4から例
えばN2ガスを供給してAfLN膜11の熱処理を行う
第3図において、高圧容器21内の支持台22上にはカ
ーボンるつぼ12が載置され、その内部には表面にAl
N膜11が形成されたカーボン基材10が周囲を炭素質
粉末13で被覆された状態で設置される。上記カーボン
るつぼ12の周囲にはヒーター23が設けられている。
また、高圧容器21の底部には供給管24が連結されガ
スポンベ25及び圧縮器26と接続されている。そして
、高圧容器21内を所定温度に設定し、供給管24から
高圧のN2ガスを供給してA文N膜11の熱処理を行う
まず、第1図図示の装置を用い、900℃、10000
C11200℃、1300℃で合成した各A交N膜を、
N2雰囲気中、1600℃で熱処理した場合の、処理時
間と熱伝導率との関係及び処理時間と曲げ強度との関係
をそれぞれ第4図及び第5図に示す。第4図かられかる
ように、熱伝導率は熱処理開始から1時間程度まで°急
激に向上した後、処理時間ともに徐々に向上するが、2
時間以上熱処理を行っても熱伝導率の変化は小さい。ま
た、第5図かられかるように、処理時間にかかわらず曲
げ強度はほとんど変化しない。なお、図示しないが、雰
囲気(ただし、A r、 He、 H2、CO又はNH
3のうち少なくともいずれか1種)及び熱処理温度が上
記と異なる場合でも、第4図及び第5図と同様の傾向が
認められた。したがって、以下の実験ではいずれも熱処
理時間は2時間とした。
次に、合成されたAlN膜を種々の熱処理条件で熱処理
した。熱処理条件とA見N膜の特性を第2表に示す。な
お、第2表中、熱処理雰囲気については、No2.12
〜14.31.39はN2:H2=(2:1)還元性混
合ガス雰囲気、NoLOlll、36.37はN 2:
 H2=(L:1)還元性混合ガス雰囲気、N。
15.16.28.29はN2ガスに0.1%の02ガ
スを添加した寡聞%(外部から空気が侵入したと想定し
た場合の寡聞%)である。
また、処理温度とA立N膜の熱伝導率との関係、及び処
理温度とAlN膜の曲げ強度との関係を第6図〜第13
図に示す。なお、第6図及び第7図は第1図図示の装置
を用いて1気圧のN2ガスを供給した場合、第8図及び
第9図は第1図図示の装置を用いて1気圧のN 2 :
 H2(1:1) 9合ガスを供給した場合、第10図
及び第11図は第1図図示の装置を用いて1気圧のN 
2 : H2(2:1) 混合ガスを供給した場合、第
12図及び第13図は第2図図示の装置を用いてA文N
膜を炭素質粉末で被覆した状態で1気圧のN2ガスを供
給した場合の結果である。
第  1  表 第6図かられかるように、雰囲気ガスがN2の場合、熱
処理温度が1550℃付近以降で熱伝導率の向上が認め
られるが、熱処理温度が約1700℃を超えると若干熱
伝導率が低下する傾向にある(ただし、未処理の場合よ
りも熱伝導率は向上している)。また、第8図、第10
図及び第12図かられかるように、N2:N2(に1)
還元性混合ガス雰囲気の場合、N2:N2(2:1)還
元性混合ガス雰囲気の場合、又は炭素質粉末で被覆した
状態でN2ガス雰囲気の場合には、はとんどの場合18
00℃まで熱伝導率が向上しつづけ、2000℃でもそ
の熱伝導率が維持される。
また、第7図、第9図、第11図及び第13図から明ら
かなように、CVD法によりA文N膜を形成した後、上
述したいずれの雰囲気で熱処理を施しても、曲げ強度は
劣化しないことがわかる。これに関しては第2表に示す
ように熱処理後も結晶粒は成長していないことからも充
分に予想される結果である。
上記のように、雰囲気の違いにより熱伝導率を向上させ
る効果に違いが生じる原因を究明するために、AuN試
料の一部について、熱処理温度とA文N試料中の酸素濃
度との関係を調べた結果を第14図に、熱処理温度とX
線回折によるAuN(002)ピークの半価幅との関係
を調べた結果を第15図にそれぞれ示す。
第14図かられかるように、N 2: H2(1:1)
還元性混合ガス雰囲気、N 2 : H2(2:1)還
元性混合ガス雰囲気、及び炭素質粉末で被覆した状態で
N2ガス雰囲気の場合には、酸素濃度はあまり変化しな
いが、N2ガス雰囲気の場合には1700°C付近から
酸素濃度が上昇している。
また、第15図かられかるように、N2:N2(1:1
)還元性混合ガス雰囲気の場合には熱処理温度の上昇と
ともに半価幅が減少し結晶性が改善されているのに対し
、N2ガス雰囲気の場合には1700℃付近までは半価
幅が減少して結晶性が改善されているが、1700℃を
超えると再び半価幅が増大して結晶性が悪くなる傾向に
ある。
第6図〜第15図から以下のことがわかる。ナなわち、
N2ガス中で熱処理した場合には1700℃を超える温
度では、未処理の場合よりも熱伝導率は向上するものの
、AuHの表面に吸着された水分やN2中に含まれる微
量の水分や酸素がAlN組織内に拡散し、A文N中の酸
素濃度が増大するとともに結晶性が悪くなってフォノン
の散乱原因となり、若干熱伝導率が低下する。一方、N
2:H2(1:1)還元性混合ガス雰囲気、N2:N2
(2:1)還元性混合ガス雰囲気、及び炭素質粉末で被
覆した状態でN2ガス雰囲気の場合には、高温における
N2ガス又は炭素質粉末の強い還元作用により酸素が還
元除去されるため、フォノンの散乱原因がなくなって熱
処理温度の上昇にともない熱伝導率が向上する。
なお、N2を含む雰囲気の場合、外部から空気が侵入す
ると爆発の危険性があるので、炉の密閉構造を二重にす
るなど空気の侵入に対して安全対策を講じる必要がある
。これはNH3を含む雰囲気でも同様である。また、第
2表のNo151,16(空気が侵入した場合を想定し
た雰囲気)かられかるように、熱伝導率を向上させる効
果は極端に低下する。これに対して、A文Nを炭素質粉
末で被覆した場合には、還元性ガスを含む雰囲気を用い
なくてもよいので、特別な安全対策は不要である。
しかも、82表のNo28.29から明らかなように、
空気が侵入したとしても炭素質粉末が酸化されるだけで
、AlNへの影響はないので、熱伝導率を充分に向上さ
せることができる。
また、第2表かられかるように、N2を含む雰囲気の場
合、1800℃以上の熱処理温度ではN2ガスの強い還
元性によりAIHの表面の一部が浸蝕(エツチング)を
受けるため、重量が減少している。これに対して、炭素
質粉末で被覆した場合には、1900℃でも重量の減少
は全くない、ただし、炭素質粉末で被覆した場合でも、
2000℃では若干重量が減少している。
更に、第2表のNo4.24〜27.33.41かられ
かるように、A文N膜を炭素質粉末で被覆し、1500
kg/am2の圧力でHIP処理を行った場合には、1
900〜2100℃の高温でもAn・Nの分解は起らず
、熱伝導率も向上している。
なお、上記実施例では雰囲気ガスとしてN2ガス又はN
 2− H28合ガスを用いた場合について説明したが
、雰囲気ガスとして他のガスを用いた場合にも上記と同
様な傾向を示すことが確認された。
〔発明の効果〕
以上詳述したように本発明方法によれば、高強度かつ高
熱伝導率の窒化アルミニウムを製造でき、その工業的価
値は極めて大きい。
【図面の簡単な説明】
第1図は本発明方法を実施するための熱処理炉の断面図
、第2図は本発明方法を実施するための他の熱処理炉の
断面図、第3図は本発明方法を実施するためのHIP装
置の断面図、第4図は本発明方法に従いCVD法により
合成されたAJIN膜をN2雰囲気中、1800℃で熱
処理した場合の処理時間と熱伝導率との関係を示す特性
図、第5図は本発明方法に従いCVD法により合成され
たAuN膜をN2雰囲気中、1800℃で熱処理した場
合の処理時間と曲げ強度との関係を示す特性図、第6図
は本発明方法に従いCVD法により合成されたA文N膜
をN2雰囲気中で2時間熱処理した場合の処理温度と熱
伝導率との関係を示す特性図、第7図は本発明方法に従
いCVD法により合成されたA文N膜をN2雰囲気中で
2時間熱処理した場合の処理温度と曲げ強度との関係を
示す特性図、第8図は本発明方法に従いCVD法により
合成されたA文N膜をN 2 : H2(1:1)還元
性混合ガス雰囲気中で2時間熱処理した場合の処理温度
と熱伝導率との関係を示す特性図、第9図は本発明方法
に従いCVD法により合成されたAfLN膜をN 2 
: H2(1:l)還元性混合ガス雰囲気中で2時間熱
処理した場合の処理温度と曲げ強度との関係を示す特性
図、第10図は本発明方法に従いCVD法により合成さ
れたA文N膜をN2:N2(2:1)還元性混合ガス雰
囲気中で2時間熱処理した場合の処理温度と熱伝導率と
の関係を示す特性図、第11図は本発明方法に従いCV
D法により合成されたA文N膜をN 2: H2(2:
1)還元性混合ガス雰囲気中で2時間熱処理した場合の
処理温度と曲げ強度との関係を示す特性図、第12図は
本発明方法に従いCVD法により合成されたAuN膜を
炭素質粉末で被覆しN2ガス雰囲気中で2時間熱処理し
た場合の処理温度と熱伝導率との関係を示す特性図、第
13図は本発明方法に従いCVD法により合成されたA
文N膜を炭素質粉末で被覆しN2ガス雰囲気中で2時間
熱処理した場合の処理温度と曲げ強度との関係を示す特
性図、第14図は本発明方法に従いCVD法により合成
されたAuN膜を種々の雰囲気下にて2時間熱処理した
場合の処理温度とAlN中の酸素1度との関係を示す特
性図、第15図は本発明方法に従いCVD法により合成
されたAuN膜をN2雰囲気中及びN2:N2(1:1
)混合ガス雰囲気中で2時間熱処理した場合の処理温度
とX線回折によるAlN(002)半価幅との関係を示
す特性図である。 l・・・石英管、2.3・・・蓋体、4・・・供給管、
5・・・測温用ガラス窓、6・・・排気管、7・・・高
周波誘導コイル、8・・・断熱材、9・・・カーボンヒ
ーター、10・・・カーボン基材、11・・・AuN膜
、12・・・カーボンるつぼ、13・・・炭素質粉末、
21・・・高圧容器、22・・・支持台、23・・・ヒ
ーター、24・・・供給管、25・・・ガスボンベ、2
6・・・圧縮器。 出願人代理人 弁理士 鈴江武彦 第4図 第5図 第6図 第8図 第11凶 第12図

Claims (3)

    【特許請求の範囲】
  1. (1)反応炉内に基材を設置し、アルミニウム化合物ガ
    スとNH_3ガスとを供給して600〜1300℃で反
    応させ、上記基材上にAlNを堆積した後、不活性雰囲
    気又は還元性雰囲気下にて1500〜2100℃で熱処
    理することを特徴とする窒化アルミニウムの製造方法。
  2. (2)N_2、Ar、He、H_2、CO又はNH_3
    のうち1種又は2種以上からなる雰囲気ガスを供給して
    AlNの周囲を不活性雰囲気又は還元性雰囲気とし、1
    550〜1900℃で熱処理することを特徴とする請求
    項(1)記載の窒化アルミニウムの製造方法。
  3. (3)AlNを炭素質粉末で被覆してAlNの周囲を還
    元性雰囲気とし、1500〜2100℃で熱処理するこ
    とを特徴とする請求項(1)記載の窒化アルミニウムの
    製造方法。
JP5177388A 1987-11-13 1988-03-07 窒化アルミニウムの製造方法 Expired - Lifetime JP2679798B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5177388A JP2679798B2 (ja) 1987-11-13 1988-03-07 窒化アルミニウムの製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28814187 1987-11-13
JP62-288141 1987-11-13
JP5177388A JP2679798B2 (ja) 1987-11-13 1988-03-07 窒化アルミニウムの製造方法

Publications (2)

Publication Number Publication Date
JPH01230779A true JPH01230779A (ja) 1989-09-14
JP2679798B2 JP2679798B2 (ja) 1997-11-19

Family

ID=26392335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5177388A Expired - Lifetime JP2679798B2 (ja) 1987-11-13 1988-03-07 窒化アルミニウムの製造方法

Country Status (1)

Country Link
JP (1) JP2679798B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1000452C2 (en) * 1995-05-30 1996-12-03 Xycarb Ceramics Bv The mfr. of a chuck to hold an object by means of an electrostatic field
US6352944B1 (en) * 1999-02-10 2002-03-05 Micron Technology, Inc. Method of depositing an aluminum nitride comprising layer over a semiconductor substrate
JP2002274818A (ja) * 2001-03-16 2002-09-25 Toyo Aluminium Kk 窒素含有無機化合物の製造方法
JP2006206343A (ja) * 2005-01-25 2006-08-10 Ngk Insulators Ltd AlN単結晶の表面平坦化方法およびAlN単結晶基板の作製方法
JP2010228965A (ja) * 2009-03-27 2010-10-14 Shin-Etsu Chemical Co Ltd 耐蝕性部材

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1000452C2 (en) * 1995-05-30 1996-12-03 Xycarb Ceramics Bv The mfr. of a chuck to hold an object by means of an electrostatic field
US6352944B1 (en) * 1999-02-10 2002-03-05 Micron Technology, Inc. Method of depositing an aluminum nitride comprising layer over a semiconductor substrate
US6376305B1 (en) 1999-02-10 2002-04-23 Micron Technology, Inc. Method of forming DRAM circuitry, DRAM circuitry, method of forming a field emission device, and field emission device
US6773980B2 (en) 1999-02-10 2004-08-10 Micron Technology, Inc. Methods of forming a field emission device
US6835975B2 (en) 1999-02-10 2004-12-28 Micron Technology, Inc. DRAM circuitry having storage capacitors which include capacitor dielectric regions comprising aluminum nitride
US6894306B2 (en) 1999-02-10 2005-05-17 Micron Technology, Inc. Field emission device having a covering comprising aluminum nitride
JP2002274818A (ja) * 2001-03-16 2002-09-25 Toyo Aluminium Kk 窒素含有無機化合物の製造方法
JP4578009B2 (ja) * 2001-03-16 2010-11-10 東洋アルミニウム株式会社 窒素含有無機化合物の製造方法
JP2006206343A (ja) * 2005-01-25 2006-08-10 Ngk Insulators Ltd AlN単結晶の表面平坦化方法およびAlN単結晶基板の作製方法
JP2010228965A (ja) * 2009-03-27 2010-10-14 Shin-Etsu Chemical Co Ltd 耐蝕性部材

Also Published As

Publication number Publication date
JP2679798B2 (ja) 1997-11-19

Similar Documents

Publication Publication Date Title
JPH10291899A (ja) 炭化ケイ素単結晶の製造方法及びその製造装置
JPS6112844B2 (ja)
JPH01230779A (ja) 窒化アルミニウムの製造方法
JPS6111886B2 (ja)
EP0385096B1 (en) Process for producing sinterable crystalline aluminum nitride powder
US4913887A (en) Production of boron nitride
JP2721678B2 (ja) β−炭化珪素成形体及びその製造法
JPH0649640B2 (ja) 窒化アルミニウムイスカの製造方法
JPH02102110A (ja) 窒化アルミニウム超微粒子の表面処理方法
JP2726703B2 (ja) 窒化アルミニウム粉末の製造方法
JP3325344B2 (ja) 窒化アルミニウム粉末の製造方法
JPS59162110A (ja) 微粉末窒化珪素の製造方法
JP2620294B2 (ja) 炭化珪素−黒鉛複合材料及びその製造法
JP2831411B2 (ja) 窒化アルミニウム粉末の製造方法
JPS62100403A (ja) 高純度六方晶窒化硼素微粉末の製造方法
JPS61201608A (ja) 高純度窒化アルミニウム粉末の製造方法
WO1986006360A1 (en) Process for preparing high purity aluminum nitride
JPH0438685B2 (ja)
JP2006103998A (ja) Iii族窒化物多結晶およびその製造方法ならびにiii族窒化物単結晶およびその製造方法
JPH11139814A (ja) 窒化アルミニウムウィスカーの製造方法
JPS6345105A (ja) 窒化アルミニウム微粒子の製造方法
JPH01160812A (ja) 窒化アルミニウム粉体の製造法
JPH01153511A (ja) 窒化アルミニウムの製造方法
JP2001085341A (ja) p型立方晶炭化珪素単結晶薄膜の製造方法
JP2670331B2 (ja) 窒化アルミニウム粉末の製造方法