JPH01211857A - アルカリ蓄電池用ニッケル極 - Google Patents

アルカリ蓄電池用ニッケル極

Info

Publication number
JPH01211857A
JPH01211857A JP63036190A JP3619088A JPH01211857A JP H01211857 A JPH01211857 A JP H01211857A JP 63036190 A JP63036190 A JP 63036190A JP 3619088 A JP3619088 A JP 3619088A JP H01211857 A JPH01211857 A JP H01211857A
Authority
JP
Japan
Prior art keywords
nickel
electrode
active material
reinforcing layer
nickel electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63036190A
Other languages
English (en)
Inventor
Tatsuo Horiba
達雄 堀場
Jinichi Imahashi
甚一 今橋
Masahito Takeuchi
将人 竹内
Yuichi Kamo
友一 加茂
Takao Ogura
孝夫 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP63036190A priority Critical patent/JPH01211857A/ja
Publication of JPH01211857A publication Critical patent/JPH01211857A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 水酸化カリウム水溶液などのアルカリ性電解液を用いる
二次電池、たとえばニッケルーカドミウム電池などに適
用できる発明である。
近年のエレクトロニクスの進歩によるLSI、IC等の
一般電気機器への適用により、高性能化小型化とともに
ポータプル化、コードレス化が進んでいる。そのため、
それらの電源となる電池の需要も増大している。使用さ
れる電池の種類は多様であるが、一般に、可動部を有し
、比較的消費電力の大きいものでは二次電池が主流とな
っている。二次電池の中でも、ニッケルカドミウム電池
などのアルカリ性水溶液を電解液とするアルカリ蓄電池
は軽量であること、エネルギ密度が高いこと、過充電、
過放電に耐えうることなどの点で従来の鉛蓄電池より優
れており、需要の増大が著しい。ニッケルーカドミウム
電池には需要の増大とともに、使いやすさの点から急速
充電化、高容量化などのニーズが高まっている。急速充
電に・対してはニッケル極で発生する酸素ガスをカドミ
ウム極で吸収させる方式で主として改良・が進められて
来た。高容量化に対しては、電池容量がニッケル極支配
であるためニッケル極の高容量化がまず必要である。
従来のニッケル焼結板に活物質を含浸させる焼結式電極
では、焼結板の気孔率が80%程度までしか上げられな
いので、容量密度450mAh/C4程度が上限となる
。そのため、ニッケル焼結板より更に気孔率の高い、気
孔率90〜95%の発泡金属、金属繊維焼結体等に活物
質を充填するペースト式電極が提案されている。(特開
昭60−124368、特開昭59−163754 )
その方法はスポンジ状の発泡ニッケル基体、あるいはフ
ェルト状の合繊維焼結体に、活物質である水酸化ニッケ
ル(Ni (OR) z)導電剤である金属ニッケル粉
末等とをカルボキシメチルセルロース(CMC)水溶液
などの増粘剤でスラリー状にして充填した後、加圧し、
ポリテトラフルオロエチレン(PTFE)のディスバー
ジラン液に浸漬し、乾燥するものである。このペースト
式電極では活物質の充填容量密度の向上が期待できる他
に、従来の焼結式電極が含浸、アルカリ処理、水洗、乾
燥等の工程を数回繰り返すのに比べ製法が簡単になると
いう長所もある。
発明が解決しようとする課題 ニッケル極の高容量密度化をはかるには、ニッケル極中
に占めるニッケル活物質の割合を増加させることと、ニ
ッケル活物質、それ自体の密度を高くすることが必要で
ある。前者の目的を達するためには、電極基体、導電剤
、結着剤の軽量化ないしは使用量の低減をはかればよい
。しかしながら、活物質である水酸化ニッケルには導電
性がないので、電池活物質として有効に作用するために
は導電性を付与する必要がある。例えば前記従来技術で
は金属ニッケル粉末を添加し、その粉末粒子間の点接触
による導電性と発泡金属の骨格によ蚊 り集電機構が確保もでいる。そのため、電極として十分
な性能を得るためには10wt%程度の導電剤添加量が
必要であり、この数値は金属ニッケル以外の導電剤を用
いる場合も、ニッケル活物質を用いる限り、大きく外れ
ることはできないものと考えられる。
基体の重量について見ると、従来のニッケル焼結板では
面密度100mg/cfflのレベルであるのに対し、
前記従来技術になる発泡金属、金属繊維焼結体では50
−60■/c4の値であり、ニッケル焼結板?:+1 に比べ基体の軽量化がばからへることがわかる。
更に高容量化をはかるためには、−flの軽量化が必要
である。
発泡金属、金属繊維焼結体等は直径0.5a1以上の微
細孔が複雑に入り組んだ構造になっており、この中へ活
物質である水酸化ニッケル等を充填するには、流動性の
よいスラリとしなければならない。そのために用いる溶
媒量が増加し、活物質の充填密度が低下することになる
。より高密度の活物質合剤を充填することができれば電
池の高容量化がはかれる。
発泡金属、金属繊維焼結体は強固な骨格を形成しており
、これらを小型電池の渦巻電極とするには充填活物質の
剥離などの問題を生ずる。加撓性のある、より作業性の
良い電極が望まれる。
また、発泡金属、金属繊維焼結体等は、ペースト式カド
ミウム極基板として用いられている穿孔板に比べると高
価な材料である。更に安価な材料の使用が可能であるこ
とが好ましい。
本発明は、上記のような発泡金属、金属繊維焼結体等を
基体とするペースト式ニッケル極の問題点を解決し、よ
り一層の高容量化をはかることを目的とするものである
課題を解決するための手段 本発明は上記の問題点を解決するために、金網、エキス
バンドメタル、金属マット、穿孔板などの構造が簡単な
基体を用い、その上ヘニ・ンケル活物質層を形成し、更
にその活物質層上に電解液透過性の補強層を形成したこ
と特徴とするものである。
上記電解液透過性補強層は、ニッケル極の片面あるいは
両面に形成されているもののいずれも可能である。片面
の場合には、補強層のないもう一方の面は電極基体が表
面あるいは表面近くに存在していることが好ましい。ま
た、上記補強1二・ンケル極中にあって活物質層と不可
分の状態になっているが、この部分が絶縁性であれば対
極との短絡を防止し、かつ電解液を保持するセパレータ
の機能をも有しているので、セパレータとし7作用させ
、別にセパレータ層を設けることなく電池を形成するこ
とも可能である。補強層がかつ保持する機能を高めるた
め、基体と結合させることも可能である。結合させる方
法としては、絶縁層の末端部を長く延ばし、基体と接着
する方法、あるいは基体の前面にわたって接着させる方
法が可能である。
本発明におけるニッケル活物質とは水酸化ニッケル(N
 i (OR) z )あるいはオキシ水酸化ニッケル
(N100H)などのニッケル含水酸化物およびその酸
化生成物を示す。用いうる電極基体としては、金網、エ
キスバンドメタル、穿孔板、マットなどの軽量かつ構造
が簡単な平面的形状のものが適している。材質としては
、強アルカリ性の電解液を用いるので、ニッケルないし
は、表面をニッケルメッキした金属が適している。
ニッケル極表面に形成される補強層の材料は電解液に不
溶性であり、多孔質かつ活物質層保持強度が十分である
ことが必要であり、合成樹脂繊維及びその成形体が適し
ている。たとえば、ポリイミド、ポリオレフィン、アク
リル樹脂、ポリ塩化ビニールなどが使用可能である。ま
た、これらの有機合成樹脂繊維などの他に、アルミナ、
シリカなどの無機繊維も使用できる。さらに導電性の繊
維も使用できる。ニッケル極表面の補強層の活物f1N
保持力を補完する目的で活物質層中に、金属繊維、炭素
繊維などの導電性繊維を混入させる方法も有効である。
活物質ペースト中の結着剤としては、ポリテトラフルオ
ロエチレン(PTFE)などのフッ素樹脂ポリ塩化ビニ
ル、アクリル樹脂などの電解液不溶性の合成樹脂が、活
物質の電極基体への固着強度の点から好ましい。しかし
ポリビニルアルコール(PVA)、、・カルボキシメチ
ルセルロース(CMC) 、メチルセルロース(MC)
などの水溶性結着剤の使用好可能である。
セパレータの基体への接着、方法は、〜接着剤によるも
の、熱溶着による方法な4どがある。
作用 金網、エキスバンドメタルなどの構造が簡単で軽量な基
体を用いることにより、活物質、導電剤などから成るニ
ッケル極活物質合剤を少ない溶媒量でペースト化するこ
とができ、乾燥後の粒子間間隙が少なくなり、ニッケル
極中に占める活物質の相対的な重量及び体積が増加する
。これらの理由により、ニッケル極の高容量密度化が可
能となる。しかし、この場合、基体構造を簡単にしたこ
とにより、従来の発泡金属や金属フェルト基体の場合に
比べ、活物質層の基体への固着強度が弱くなり、円筒型
電池を作製する際の捲回作業時に活物質が脱落しやすく
なる。この問題を解法するのが本発明になる電解液透過
性の補強層をニッケル極表面に設ける技術であり、これ
により強度向上をはかることができ、高容量密度かつ高
強度で捲回容易な可撓性のニッケル極が得られる。また
、この技術を更に進め、上記絶縁層をセパレータとして
用いることにより上記の作用の他にニッケル極の保液性
の向上、電池全体としてのコンパクト化などがはかれる
実施例1 本発明の実施例としてニッケル極Aを作製した。
また比較例としてニッケル極B、Cを作製した。
ニッケル極Aは線径100μ僧の60メツシユニツケル
金網を基体とした。水酸化ニッケル粉末85−t%、金
属ニッケル粉末10wt%、金属コバル)5wt%と、
それらの合計に対して20svt%の水を添加し十分に
混練した。その後、5wt%相当量のPTFEをPTF
E分散液(ダイキン工業製、ポリフロンデイスパージョ
ンD−1)の形で添加し、均一に混練した。得られたペ
ーストをカレンダロールにより電極基体上に展開させた
。得られた成形体を厚さ80μ鎖のポリプロピレン不織
布2枚にはさみ加圧し、活物質層と不繊布との密着性を
十分にした。
80°Cで3時間乾燥後、再度加圧成形し、ニッケルi
Aを得た。ニッケル極Bはニッケル極Aにおいてポリプ
ロピレン不織布を用いない形の電極である。ニッケル極
Cは従来技術によるものである。
基体は発泡ニッケル(住友電気工業■製セルメット、N
α7、気孔率95%)である。これに水酸化ニッケル8
5w t%、金属ニッケル粉末10−t%、金属コバル
ト粉末5wt%から成る混合粉末とその合計重量に対し
33wt%に相当する0、3iyt%のカルボキシメチ
ルセルロース水温液を混合したスラリを充填した。加圧
成形後、3wt%のPTFEディスバージョン液に浸漬
後乾燥し、ニッケル極Cを得た。
得られたニッケルmA、B、Cの断面模式図を第1図の
(C)、(b)、(a)に示す。ニッケル極A(第1図
、(C))では活物fJI中に補強層であるポリプロピ
レン不織布が食いこんで結着強度を強化している。ニッ
ケル極C(第1図、(a))では強固な発泡ニッケル極
の細札内に活物質が保持されている(図中に活物質は示
してない)。
ニッケル極の重量と外寸法から求めた充填容量密度を第
2図に、十分な容量の焼結式カドミウム極とセパレータ
を介して、捲回し、SCタイプの円筒型ニッケルーカド
ミウム電池を形成し、得られた放電容量から求めたニッ
ケル極の活物質利用率を第3図に示す、なお充放電の条
件は0.ICで15時間充電、0.20放電であり、終
止電圧1.0Vとした。第2図より、本発明になる電極
Aは従来技術になる電極Cより約り3%充填容量密度が
高くなっている。活物質利用率の点でも第3図に示すよ
うにAはCと同等以上の値を示している。よって本発明
は、ニッケル極の高容量化に対して有効な技術であるこ
とかが示された。なお、比較例BはAよりも更に高い充
填容量密度を示している。
しかし、この電極は捲回時に活物質層に亀裂が多く発生
し、一部に活物質の脱落を生じ、その結果、活物質利用
率も低くなっており(第3図)、実用的なニッケル極で
はない。捲回時のニッケル極の表面状態の変化観察によ
れば、Cでは亀裂が見られたが、Aではほとんど観察さ
れなかった。従ってAは電極の可撓性の点でも従来技術
になるCよりすぐれていることが示された。
実施例2 活物質層セパレータ上に直接塗布し、セパレータと一体
化したニッケル極形成した。セパレータはポリイミド系
樹脂不繊布で、厚さ0.2In11のものを用い、この
上へ実施例1のニッケル極IAに用イタモのト同一のペ
ーストをカレンダーロールで展開塗布した後、基体をセ
パレータの反対側に押し当て、加圧し、一体化した。な
お用いた基体はニッケルエキスバンドメタルで、WHO
,127mm(7)平板を加工した開口率66%のもの
である。
得られたニッケル極りの断面模式図を第1図(d)に示
す。図より明らかなように活物fJIの一方の面は補強
層4が、他方の面は電極基体2が強度保持材となってい
る。このようなニッケル極であれば基体側にのみセパレ
ータを当てれば短絡の心配はない。焼結式カドミウム極
と組み合わせて捲回し、SCタイプの円筒型ニッケルー
カドミウム極を形成した。この電池のニッケル極活物質
利用率を第3図りに示す、またニッケル極の充填容量密
度を第2図りに示す。これらの結果より本発明になるニ
ッケル極りは、従来技術になるニッケル極Cより約19
%高い充填容量密度を示し、また活物質利用率も同等の
水準を示しており、高容量化ニッケル極として、すぐれ
た性能を有していることがわかる。また、捲回時の活物
′J!tNの亀裂、活物質の脱落も全くなく、可撓性に
富んだニッケル極であることわかった。
実施例3 電極基体に厚さ0.08hns、開口率50%のニッケ
ルメッキ鋼板の穿孔板を用い、この両面に、実施例1と
同一のペーストをカレンダロールで塗布し、更にその両
側に厚さ80μmのポリプロピレン不織布を当て加圧処
理した。乾燥後、不織布の端部を基体にエポキシ樹脂接
着剤で接着し、更に加圧処理して、ニッケル極Eを得た
ニッケル極Eの充填容量密度を第2図のEに、実施例1
と同様にしてSCタイプの電池を形成し求めた活物質利
用率を第3図のE示にそれぞれ示す。両図より、本発明
になるニッケル極Eは、従来技術になるCより約7%高
い充填容量密度を有し、利用率の点でも同等の水準にあ
り、高容量化ニッケル極としてすぐれた性能を有してい
ることがわかった。また、不織布端部をセパレータに接
着することによりニッケル、極端部の強度向上と短絡防
止に役立っているものと思われる。捲回時の観察によれ
ば、ニッケル極端部の活物質の脱落は全く観察されなか
った。
セパレータの基体への接着方法については、実施例3で
示したように末端部で接着する方法をとったが、この他
に面全体で基体と接着のバスを形成するような方法があ
れば、活物質全体の強度の点から好ましい。具体的な形
態を第4図に示す。
発明の効果 本発明によって、従来技術より軽量で簡単な構造の電極
基体を用い、従来技術より大きな充填容量密度と、従来
技術と同等の活物質利用率を有する高容量ニッケル極を
得ることが可能となった。
また、このニッケル極は可撓性でも従来のものより優っ
ており、作業性の上でも優れた電極である。
更に、基体の構造が簡単であるため製造工程も短く、従
来の基体より安価に製造できるという経済性の利点もあ
る。
本発明は、ニッケルーカドミウム電池にその適用の対象
が限定されるものではなく、同様のニッケル活物質を利
用するニッケルー亜鉛、ニッケルー鉄、ニッケルー水素
などの電池に対しても適用される技術である。
【図面の簡単な説明】
第1図は本発明に係わるニッケル極の断面模式図、第2
図はニッケル極の充填容量密度の比較を示す図、第3図
はニッケル極の活物質利用率の比較を示す、第4図は、
補強層が基体と全面で接着されたニッケル極の断面図で
ある。 1:発泡金属基体、2:電極基体、3:活物質層、4:
補強層 代理人  若 林; 吏B 彦  ゛ 第1図 (α) (b) (G) ABCD巳 .2:電槽基体 3:活物質層 4:補強層

Claims (1)

  1. 【特許請求の範囲】 1、カドミウム、亜鉛、鉄、水素などの負極活物質、水
    酸化カリウム、水酸化リチウム、水酸化ナトリウムなど
    のアルカリ性物質の水溶液の電解液、および水酸化ニッ
    ケル、オキシ水酸化ニッケルなどのニッケル活物質の正
    極活物質より成るアルカリ蓄電池において、少なくとも
    一方の面の表面上に電解液透過性の補強層が形成されて
    なることを特徴とするアルカリ蓄電池用ニッケル極。 2、ニッケル極上に形成された補強層が、正極、負極間
    に介在するセパレータの作用も兼ねていることを特徴と
    する特許請求の範囲第1項記載のアルカリ蓄電池用ニッ
    ケル極。 3、ニッケル極上に形成された補強層の少なくとも一部
    が、電極基板に接着されていることを特徴とする特許請
    求の範囲第1項及び第2項記載のアルカリ蓄電池用ニッ
    ケル極。
JP63036190A 1988-02-18 1988-02-18 アルカリ蓄電池用ニッケル極 Pending JPH01211857A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63036190A JPH01211857A (ja) 1988-02-18 1988-02-18 アルカリ蓄電池用ニッケル極

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63036190A JPH01211857A (ja) 1988-02-18 1988-02-18 アルカリ蓄電池用ニッケル極

Publications (1)

Publication Number Publication Date
JPH01211857A true JPH01211857A (ja) 1989-08-25

Family

ID=12462806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63036190A Pending JPH01211857A (ja) 1988-02-18 1988-02-18 アルカリ蓄電池用ニッケル極

Country Status (1)

Country Link
JP (1) JPH01211857A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283901A (ja) * 2000-03-31 2001-10-12 Sanyo Electric Co Ltd アルカリ蓄電池
EP1435673A1 (en) * 2001-09-19 2004-07-07 Kawasaki Jukogyo Kabushiki Kaisha Threedimensional cell, its electrode structure, and method for manufacturing electrode material of threedimensional cell
JP2016126842A (ja) * 2014-12-26 2016-07-11 株式会社日本触媒 電極及びそれを用いて構成される電池

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5784568A (en) * 1980-11-14 1982-05-26 Japan Storage Battery Co Ltd Nickel plate for alkaline storage battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5784568A (en) * 1980-11-14 1982-05-26 Japan Storage Battery Co Ltd Nickel plate for alkaline storage battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283901A (ja) * 2000-03-31 2001-10-12 Sanyo Electric Co Ltd アルカリ蓄電池
EP1435673A1 (en) * 2001-09-19 2004-07-07 Kawasaki Jukogyo Kabushiki Kaisha Threedimensional cell, its electrode structure, and method for manufacturing electrode material of threedimensional cell
EP1435673A4 (en) * 2001-09-19 2006-04-05 Kawasaki Heavy Ind Ltd THREE DIMENSIONAL CELL, ITS ELECTRODE STRUCTURE, AND PROCESS FOR MANUFACTURING THREE DIMENSIONAL CELL ELECTRODE MATERIAL
JP2016126842A (ja) * 2014-12-26 2016-07-11 株式会社日本触媒 電極及びそれを用いて構成される電池

Similar Documents

Publication Publication Date Title
JP5119577B2 (ja) ニッケル水素電池
US5492543A (en) Preparation of electrodes and Ni/MHx electrochemical storage cell
JPS5937667A (ja) 金属酸化物・水素電池
KR100634227B1 (ko) 알칼리 축전지
JPH01211857A (ja) アルカリ蓄電池用ニッケル極
JP4699686B2 (ja) 電気化学素子用集電材及びこれを用いた電池並びにこれを用いた電気二重層キャパシタ
JP3460509B2 (ja) アルカリ蓄電池とその電極の製造法
JP2981538B2 (ja) アルカリ電池用電極
JPS62165862A (ja) アルカリ蓄電池用電極基板の製造方法
JPH03165469A (ja) ニッケル極を備えたアルカリ蓄電池の製造法
JPS6048868B2 (ja) 電極基体の製造法
JP3113534B2 (ja) 非焼結型ニッケル電極およびその製造方法
JP3451888B2 (ja) アルカリ蓄電池とその電極の製造法
JPH10334893A (ja) アルカリ蓄電池とその電極の製造法
JP2558624B2 (ja) ニツケル−水素アルカリ蓄電池
JP3397216B2 (ja) ニッケル極板とその製造方法およびこれを用いたアルカリ蓄電池
JPS5832210Y2 (ja) 円筒形アルカリ蓄電池
JP2981537B2 (ja) アルカリ電池用負極
JPH10334898A (ja) アルカリ蓄電池とその電極およびその製造法
JPH0982334A (ja) 電池用電極基板
JP3555473B2 (ja) アルカリ二次電池用正極の製造方法
JPS63128556A (ja) アルカリ蓄電池用ニツケル陽極及びその製造方法
JPH10334892A (ja) アルカリ蓄電池とその電極の製造法
JPH10334894A (ja) アルカリ蓄電池とその電極の製造法
JPH0132633B2 (ja)