JPH01160859A - 複合型酸化物超電導体 - Google Patents

複合型酸化物超電導体

Info

Publication number
JPH01160859A
JPH01160859A JP62320734A JP32073487A JPH01160859A JP H01160859 A JPH01160859 A JP H01160859A JP 62320734 A JP62320734 A JP 62320734A JP 32073487 A JP32073487 A JP 32073487A JP H01160859 A JPH01160859 A JP H01160859A
Authority
JP
Japan
Prior art keywords
oxide superconductor
component
powder
superconductor
give
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62320734A
Other languages
English (en)
Inventor
Tomohisa Yamashita
知久 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62320734A priority Critical patent/JPH01160859A/ja
Publication of JPH01160859A publication Critical patent/JPH01160859A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 [発明の目的1 〈産業上の利用分野) 本発明は、結晶の配向性に優れ、かつ2次元性の高い複
合型酸化物超電導体に関する。
(従来の技術) 近年、Ba−La−Cu−0系の層状ペロブスカイト型
の酸化物が高い臨界温度を有する可能性のあることが発
表されて以来、各所で酸化物超電導体の研究が行われて
いる(1.Phys、B Condensed Mat
ter64、189−193(1986))。その中で
もY−Ba−Cu−0系で代表される酸素欠陥を有する
欠陥ペロブスカイト型((LnBa2 CLI307−
5 Hδは酸素欠陥を表わし通常1以下、Lnは、Y 
、La、 Sc、 Nd、 Sm、 Eu、 Gd。
Dy、 No、Er、 Tm1YbおよびLuから選ば
れた少なくとも1種の元素、Baの一部はSrなどで置
換可能。)の酸化物超電導体は、臨界温度が90に以上
と液体窒素の沸点以上の高い温度を示すため非常に有望
な材料として注目されている(Phys、 Rev、 
Lett。
Vol、58 No、9,908−910)。
このような酸化物超電導体は、結晶性の酸化物であって
、焼結体やその粉末として得られるため、これらを各種
超電導装置として利用する場合、その焼結体や基板上に
薄膜として形成したものを使用することが試みられてい
る。また、この酸化物超電導体は、結晶の0面に沿って
超電導電流が流れるという性質を有しているため、電流
密度を高めるためには結晶を一定方向に配列させること
が必要とされている。
ところで、酸化物超電導体の焼結体を得る際に、酸化物
超電導体粉末を単に焼結させただけでは多結晶体となり
、結晶の配列方向がランダムであることや、超電導電流
の電流経路が3次元的になることなどから、臨界電流密
度が不十分なものとなってしまう。
一方、酸化物超電導体薄膜は、その形成方法やその条件
を適切に選択することにより、単結晶体や結晶の配向性
に優れたものを得ることができ、臨界電流密度の高いも
のも得られているが、流せる電流の絶対値的には小さく
、またその形状から適用範囲が限られている。
(発明が解決しようとする問題点) 上述したように、酸化物超電導体の焼結体は、臨界電流
密度が低いという問題があり、また酸化物超電導体の薄
膜は、臨界電流密度を高めることができる半面、流せる
電流の絶対値が小さく、適用範囲も限定されるという問
題がある。
そこで、結晶の配向性に優れるとともに、薄膜と同様に
2次元性が高く、かつ複数の電流経路を有しているバル
ク状の酸化物超電導体を得ることができれば、各種用途
への応用が可能となり、非常に有効である。
本発明は、このような従来の事情に対処するためになさ
れたもので、結晶の0面を配向させることにより臨界電
流密度のような超電導特性を向上させ、かつ2次元性の
高い積層構造を有する複合型酸化物超電導体を提供する
ことを目的とする。
[発明の構成1 (問題点を解決するための手段と作用)本発明の複合型
酸化物超電導体は、 一般式:MX2 (Mは遷移金属を、Xはカルコゲン元素を示す。
以下同じ。)で表される層状構造を有する化合物の層間
に、ペロブスカイト型構造を有する酸化物超電導体が存
在していることを特徴としている。
酸化物超電導体としては多数のものが知られているが、
臨界温度の高い、希土類元素含有のペロブスカイト型の
酸化物超電導体を用いることが実用上好ましい。ここで
いう希土類元素を含有しペロブスカイト型構造を有す、
る酸化物超電導体は、超電導状態を実用できるものであ
ればよく、LnBa  Cu  O(LnはY 、 Y
b、 Tm、 Er、  Dy、 Ho、2 3 7−
δ La、 5CSNd、 Sm1Eu、 Gdなどの希土
類元素から選ばれた少なくとも1種を、δは酸素欠陥を
表し通常1以下の数を表し、Ba一部はSrやCaなと
で、Cuの一部はTi、 V 1cr、 Hn、 Fe
、旧、Znなどで置換可能。〉などの酸素欠陥を有する
欠陥ペロブスカイト型、5r−La−Cu−0系などの
層状ペロブスカイト型などの広義にペロブスカイト型を
有する酸化物が例示される。また、希土類元素も広義の
定義とし、S(YおよびLa系を含むものとする。代表
的な系としてはY−Ba−Cu−0系のほかに、YをY
b、丁m、Er、 Dy5Ho、 Euなどの希土類元
素で置換した系、5c−Ba−Cu−0系、5r−La
−C1−0系、さらにはSrをBaやCaなどで置換し
た系などが挙げられる。
このような酸化物超電導体は、たとえば以下のようにし
て製造される。
まず、Y、 Ba、 Cuなどの構成元素を十分混合す
る。混合の際には、Y203、BaCO3,CuOなど
の酸化物や炭酸塩を原料として用いることができるほか
、他の焼成後酸化物に転化するfI4′fa塩、水酸化
物などの化合物を用いてもよい。さらには、共沈法など
で得たシュウ酸塩などを用いてもよい。
Y−Ba−Cu−0系酸化物超電導体を構成する元素は
、基本的に化学ω論比の組成となるように混合するが、
多少製造条件などとの関係でずれていても差支えない。
たとえば、Y 1+nolに対しBa 2mol、Cu
3IIlOIが標準組成であるが、実用上はy 11O
+に対して、Ba 2±0.6Illol 、Cu a
±0.4mo I程度のずれは問題ない。
次いで、前述の原料を充分に混合した後、800℃〜9
80℃程度の温度条件で仮焼して結晶化させる。この後
、必要に応じて酸素含有雰囲気中、好ましくは酸素雰囲
気中で熱処理するか、または同様な雰囲気中で300℃
程度まで徐冷することにより、酸素欠陥δに酸素が導入
され超電導特性を向上させることができる。この熱処理
は、通常300℃〜100℃程度で行う。
本発明に使用される層状構造を有する化合物は、T1、
Zr、 Hf、 V 1Nb、 Ta、 Cr1No、
誓などの遷移金属・Hと、S 、 Se、 Teなどの
カルコゲン元素・Xとからなる 一般式:MX2 で表される化合物である。この層状化合物・MX2は、
層状の結晶構造を有しており、この層間はファンデルワ
ールス力によって結合されているため、容易に居間に他
の原子、分子、あるいは結晶を挿入させることが可能で
ある。
このような層状化合物・MX2は、遷移金属粉末とカル
コゲン元素粉末とを所定の比率で混合し、この混合粉末
を1x io’ 1111118!1〜IX io’ 
mn+Hg程度の減圧下で、900℃〜950℃程度の
温度により焼成することにより得られる。
本発明の複合型酸化物超電導体は、たとえば以下のよう
にして製造される。
まず、前述したような酸化物超電導体の焼結体をボール
ミル、サンドグラインダ、その他公知の手段により粉砕
する。この粉砕は、平均粒径が1μm以下となるように
行うことが好ましい。酸化物超電導体粉末の粒径があま
り大きいと、層状化合物・MX2の層間への酸化物超電
導体結晶の導入が不十分となるためである。一方、層状
化合物・MX2も同様にして粉砕して、粉末を作製する
そして、酸化物超電導体粉末と層状化合物・MX2粉末
とを任意のモル比で、好ましくは1: 1〜1;5のモ
ル比で混合し、次いでこの混合物を、あるいはこの混合
粉末をたとえばプレス成形法などによって所定形状に成
形した成形体を、900℃〜950℃程度で焼成する。
この焼成により、層状化合物・MX2は平面的に粒成長
を起こし、この層状化合物・MX2の粒成長と同時に酸
化物超電導体の結晶が層間に取込まれ、この層状化合物
・MX2と酸化物超電導体とは格子定数が近似している
ため、層状化合物・MX2の層間に酸化物超電導体層が
形成される。またこの際に、酸化物超電導体の結晶は、
その0面が層状化合物・MX2の各層に沿って取込まれ
る。したがって、0面の配向性に優れたものとなる。
そして、この焼成温度と焼成時間を適切に設定すること
により、層状化合物・MX2層と酸化物超電導体層が平
面的に多層積層された構造となる。
この酸化物超電導体層の厚さは、酸化物超電導体層が層
状化合物・MX2のファンデルワールスギャップ間に導
入されるため、12人〜60人程度となり、2次元性が
高く、かつ複数層積層された構造となり、超電導電流の
平面的な電流経路が複数形成されるため、酸化物超電導
体薄膜と同様な性質を有す為とともに、流せる電流の絶
対値も向上する。
次に、この焼成物を酸素を充分に供給することが可能な
雰囲気中で300℃〜700℃程度の温度でアニールを
行うか、あるいは焼成温度から300℃程度まで同様な
雰囲気中で徐冷する。この際に、層状化合物・MX2と
酸化物超電導体の酸素拡散係数は近似しているため、層
間の酸化物超電導体へ充分に酸素を供給することができ
る。これにより、酸素欠陥δへの酸素導入が行え、超電
導特性が向上する。
本発明の複合型酸化物超電導体の使用形態としては、板
状などの各種形状の部材や基板上に積層したものなどで
ある。
(実施例) 次に、本発明の実施例について説明する。
実施例 まず、粒径2〜5um (7) Y203粉末、BaC
03粉末およびCuO粉末を、Y203 0.5mol
、BaC032mol 、CuO3molとなるように
所定囚評量し、これを充分混合した後、大気中900’
Cで48時間焼成して反応させ、この焼成物をさらに酸
素中で100℃で24時間焼成して反応させ、酸素空位
に酸素を導入した後、ボールミルを用いて粉砕し、分級
して、平均粒径1μmのY−Ba−Cu−0系酸化物超
電導体粉末を得た。
一方、Ta粉末とS粉末とをモル比で1;2となるよう
に混合し、この混合粉末を石英管に封入してIX 10
−’ liiHg程度に減圧した後、900℃で8時間
焼成して反応させ、この焼成物をボールミルを用いて粉
砕し、分級して、平均粒径5μmの丁aS 2粉末を得
た。
次に、このY−Ba−Cu−0系酸化物超電導体粉末と
TaS2粉末とをモル比で1= 2となるように混合し
、この混合粉末を大気中、950℃、48時間の条件で
焼成し、次いで常温まで酸素ガスを供給しながら2℃/
分で徐冷して、10mmx 8mmx 3+++n+の
板状の複合型酸化物超電導体を得た。
このようにして得た複合型酸化物超電導体の断面構造を
電子顕微鏡により調べたところ、厚さ20人〜100人
のTa82層間に厚さ12人〜24人の酸化物超電導体
層が積層形成され、多層構造を有していた。また、この
複合型酸化物超電導体の超電導特性を測定したところ、
臨界温度90℃、臨界電流密度1x 10’ A/cぜ
とそれぞれ良好な値が得られた。
[発明の効果] 以上説明したように本発明の複合酸化物超電導体は、層
状化合物・MX2のファンデルワールス力で結合してい
る居間に、この層に沿って酸化物超電導体が配向されつ
つ存在しているため、酸化物超電導体の薄膜と同様に2
次元性に優れているとともに、結晶の0面が配向してい
ることから優れた臨界電流密度を有しており、かつ多層
構造を有していることから流せる電流の絶対値にも優れ
ている。したがって、超電導特性に優れた超電導体装置
として各種用途に応用が可能である。
出願人      株式会社 東芝 代理人 弁理士  須 山 佐 −

Claims (5)

    【特許請求の範囲】
  1. (1)一般式:MX_2 (Mは遷移金属を、Xはカルコゲン元素を示す。)で表
    される層状構造を有する化合物の層間に、ペロブスカイ
    ト型構造を有する酸化物超電導体が存在していることを
    特徴とする複合型酸化物超電導体。
  2. (2)前記層状構造を有する化合物層と前記ペロブスカ
    イト型構造を有する酸化物超電導体層とが、平面的な多
    層積層構造を有していることを特徴とする特許請求の範
    囲第1項記載の複合型酸化物超電導体。
  3. (3)前記酸化物超電導体は、希土類元素を含有するペ
    ロブスカイト型の酸化物超電導体であることを特徴とす
    る特許請求の範囲第1項または第2項記載の複合型酸化
    物超電導体。
  4. (4)前記酸化物超電導体は、希土類元素、Baおよび
    Cuを原子比で実質的に1:2:3の割合で含有するこ
    とを特徴とする特許請求の範囲第1項または第2項記載
    の複合型酸化物超電導体。
  5. (5)前記酸化物超電導体は、LnBa_2Cu_3O
    _7_−_δ(Lnは希土類元素から選ばれた少なくと
    も1種の元素を、δは酸素欠陥を表す。)で示される酸
    素欠陥型ペロブスカイト構造を有する酸化物超電導体で
    あることを特徴とする特許請求の範囲第1項または第2
    項記載の複合型酸化物超電導体。
JP62320734A 1987-12-18 1987-12-18 複合型酸化物超電導体 Pending JPH01160859A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62320734A JPH01160859A (ja) 1987-12-18 1987-12-18 複合型酸化物超電導体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62320734A JPH01160859A (ja) 1987-12-18 1987-12-18 複合型酸化物超電導体

Publications (1)

Publication Number Publication Date
JPH01160859A true JPH01160859A (ja) 1989-06-23

Family

ID=18124711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62320734A Pending JPH01160859A (ja) 1987-12-18 1987-12-18 複合型酸化物超電導体

Country Status (1)

Country Link
JP (1) JPH01160859A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112978795A (zh) * 2021-03-02 2021-06-18 绍兴文理学院 一种BaZrS3纳米晶的制备方法及应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112978795A (zh) * 2021-03-02 2021-06-18 绍兴文理学院 一种BaZrS3纳米晶的制备方法及应用
CN112978795B (zh) * 2021-03-02 2022-04-29 绍兴文理学院 一种BaZrS3纳米晶的制备方法及应用

Similar Documents

Publication Publication Date Title
US6602588B1 (en) Superconducting structure including mixed rare earth barium-copper compositions
EP0510806B1 (en) Metal oxide material
US5049541A (en) Process for preparing superconductor
JPH01160859A (ja) 複合型酸化物超電導体
JP2950422B2 (ja) 金属酸化物材料
JPH06219736A (ja) 超電導体
JP2975608B2 (ja) 絶縁性組成物
JPH04170318A (ja) 層状銅酸化物
JPH1125771A (ja) 酸化物超電導テープ材とその製造方法
JP3219563B2 (ja) 金属酸化物とその製造方法
EP0463506B1 (en) Oxide superconductor and its manufacturing method
US5384088A (en) Oxide superconductive material of T1 (thallium) and Pb (lead) system and method for manufacturing the same
JP2573256B2 (ja) 超電導体部材の製造方法
JP2597578B2 (ja) 超電導体の製造方法
JPH01164780A (ja) 酸化物超電導体の改質方法
JP3257000B2 (ja) 銅酸化物超電導体及びその製造方法
US20030022795A1 (en) Thin film Hg-based superconductors, thermoelectric materials and methods of fabrication thereof
JP2544761B2 (ja) 超電導薄膜の作製方法
JPH01246173A (ja) 酸化物超電導体及びその製法
JPH01157455A (ja) 酸化物超電導焼結体の製造方法
JPH054819A (ja) 導電性酸化物
JPS63279519A (ja) 超電導体装置
JPH01157480A (ja) 酸化物超電導体の改質方法
JPH01164725A (ja) 電子デバイス用酸化物超電導薄膜
JPH01157453A (ja) 酸化物超電導体の製造方法