JPH01126228A - 導電性酸化亜鉛微粉末の製造方法 - Google Patents

導電性酸化亜鉛微粉末の製造方法

Info

Publication number
JPH01126228A
JPH01126228A JP28463687A JP28463687A JPH01126228A JP H01126228 A JPH01126228 A JP H01126228A JP 28463687 A JP28463687 A JP 28463687A JP 28463687 A JP28463687 A JP 28463687A JP H01126228 A JPH01126228 A JP H01126228A
Authority
JP
Japan
Prior art keywords
zinc oxide
fine powder
weight
parts
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28463687A
Other languages
English (en)
Other versions
JP2583536B2 (ja
Inventor
Nobuyoshi Kawamoto
河本 信義
Kenichi Yasuda
謙一 安田
Tatsuo Yazaki
矢崎 達雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAKUSUI CHEM IND Ltd
Original Assignee
HAKUSUI CHEM IND Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAKUSUI CHEM IND Ltd filed Critical HAKUSUI CHEM IND Ltd
Priority to JP62284636A priority Critical patent/JP2583536B2/ja
Publication of JPH01126228A publication Critical patent/JPH01126228A/ja
Application granted granted Critical
Publication of JP2583536B2 publication Critical patent/JP2583536B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Conductive Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、導電性付与成分として作用すると共に、平均
粒子径が0.10μm以下であワて乾燥膜に透明性を与
えることができ、しかも分散性の優れた導電性酸化亜鉛
微粉末の製造方法に関するものである。
[従来の技術] 導電性酸化亜鉛は、静電記録紙、通電感熱記録紙、放電
破壊記録紙、電子写真紙等の如き様々の情報産業記録紙
や塗料、接着剤、インキ、各種樹脂等における導電性顔
料や帯電防止成分、更には電子写真用現像剤などとして
広汎な用途を有しており、殊にこの粉末は白色であって
他の着色剤により容易に着色し得るという特徴も有して
いるところから、工業的にも広く活用されている。
ところで導電性酸化亜鉛は、非導電性酸化亜鉛を酸化ア
ルミニウム等によって賦活化することにより得られるが
、単に非導電性酸化亜鉛と酸化アルミニウムを混合し加
熱処理するだけで良導電性のものが得られるとは限らず
、処理条件によって導電率はかなり変わってくるので、
導電率の向上を目的として様々の提案がなされている。
たとえば特公昭55−19896号公報や同55−19
897号公報には、非導電性酸化亜鉛とアルミニウム化
合物を固定炭素の存在下で加熱処理する方法が開示され
、また特開昭55−162477号公報には、酸化亜鉛
を宥機アルミニウム化合物等と共に湿式処理した後乾燥
、粉砕し、最後に非酸化性雰囲気下で焼成する方法、等
が開示されている。これらの方法は、導電性付与という
本来の目的からすればいずれも優れた方法として評価さ
れるが、反面粒径が大きいため透明導電膜形成用の素材
としては適性を欠く。また特開昭56−69266号公
報には、水溶性亜鉛塩とAl2O3やSnO,等の生成
源となる水溶性金属塩から炭酸アルカリを用いて共沈さ
せ、次いで非酸化性雰囲気下で焼成することにより微粉
末状の導電性酸化亜鉛を製造する方法が開示されている
。しかしながらこの方法はZnC1,等の塩を用いた場
合の01イオン等の除去が煩雑で手数を要するばかりで
なく、粒径はせいぜい1〜1.3μm程度であって透明
導電膜用としての要求特性を満たすものとは言えない。
本出願人はこの様な状況の下で、透明導電膜用としての
特性を満たす粒度構成の導電性酸化亜鉛微粉末の製法を
確立すべくかねてより研究を行なっているが、かかる研
究の一環として先に特開昭58−161923号公報に
記載の方法を開発した。この方法は、酸化亜鉛を、賦活
剤として作用するアルミニウム塩および侵食剤(崩壊剤
)として作用する炭酸アンモニウム等との共存下に水分
散系で処理し、脱水、乾燥後SOO〜1000’eで焼
成するものであり、この方法によると、酸化亜鉛崩壊剤
の作用によって酸化亜鉛は多孔質化すると共に微細化し
、賦活剤との混合も緻密且つ均一に行なわれるところか
ら、従来の導電性酸化亜鉛に較べるとかなり粒子径の小
さいものを得ることができる。しかしながらこの方法に
しても得られる導電性酸化亜鉛の粒径は、BET法によ
り求められる比表面積径で0.15μm程度が限度であ
り、透明導電膜用としての特性を完全に満たすものとは
言えない。
即ち顔料充填系で透明性を得る為の手段としては、顔料
の粒子径を可視光線よりも小さくするか、あるいは塗料
等ではビヒクル成分である樹脂と゛の屈折率の差をでき
るだけ小さくすることが必要とされており、顔料自体の
特性としては粒子径を比表面積径(以下、特記しない限
りBET法により求められる値を意味する)で0.10
am以下とすることにより透明性付与の目的は達成され
るが、現在のところその様な微細粒度構成の導電性酸化
亜鉛は得られていない。
この様なところから、透明性の要求される導電性粉末と
しては、0.10μm以下の比表面積径の微粉末として
得ることのできるSnO2系導電粉末やT n20.系
導電粉末が常用されているが、いずれも非常に高価であ
って経済性や汎用性に問題があり、しかも前者は青味を
帯びているばかりでなく塗膜中に混在させたときに紫外
線等の作用で更に着色し易いといった問題がある。
[発明が解決しようとする問題点] 本発明はこの様な事情に着目してなされたものであって
、その目的は、工業的に安価に入手し得る酸化亜鉛を主
原料として、微細且つ安定で導電性及び分散性に優れし
かも被膜に透明性を与えることのできる様な導電性酸化
亜鉛微粉末の製造方法を提供しようとするものである。
[問題点を解決するための手段] 上記の目的を達成することのできた本発明に係る製造方
法の構成は、 [!]非導電性酸化亜鉛=100重量部、[II]水溶
性乃至水分散性アルミニウム化合物二酸化アルミニウム
換算で0.1〜 10重量部、 [■■]炭酸アンモニウム、重炭酸アンモニウム、硝酸
、アンモニウムおよび尿素よ りなる群から選択されるtm以上の化 合物:5〜100重量部 の三成分を、比表面積径が0.10μm以下である無機
質微粉末の存在下に水分散系で攪拌処理し、脱水後非酸
化性雰囲気下に600℃以下の温度で加熱処理するとこ
ろに要旨を有するものである。
[作用] 本発明に係る製造方法は、前記特開昭58−16192
3号公報に開示した様に、[I]ラフランス法アメリカ
法等によって製造された酸化亜鉛を、[II]水溶性乃
至水分散性(以下単に水溶性ということがある)アルミ
ニウム化合物および[1■]炭酸アンモニウム、重炭酸
アンモニウム、硝酸アンモニウム、尿素よりなる群から
選択される侵食剤(崩壊剤)の1f!又は2種以上の共
存下に水分散系で攪拌処理し、脱水後加熱処理する方法
を基本とするものであり、この方法をより詳細に説明す
ると次の通りである。
即ちフランス法等によって得られる非導電性酸化亜鉛[
Hの粒度構成は一般に0.2〜0.8μm程度であり、
X線回折によると六方晶系の回・折面を示すが、この非
導電性酸化亜鉛[I]を炭酸アンモニウム等の崩壊剤[
III ]と共に水分散系で処理すると六方晶系の結晶
構造がくずれ、比表面積径にして0.01μm程度以下
の微粒子となる。この微粒子状酸化亜鉛はもはや六方晶
系の回折特性を示さず、非晶質状のものとなる。このも
のは非常に微細で表面活性の高いものであり、この存在
系に導電性賦活剤としてアルミニウム化合物(1)[I
]]を共存させておくとこれらが粒子表面に付着し、そ
の後の乾燥乃至焼成工程でアルミニウムの一部が酸化亜
鉛の結晶格子内へ取り込まれ、全体として導電性を示す
様になるものと考えられている。
そして上記の様な目的で使用される崩壊剤[III ]
としては炭酸アンモニウム、重炭酸アンモニウム、硝酸
アンモニウムから選択されるアンモニウム塩、あるいは
加温することによりアンモニアを生成する尿素が挙げら
れ、これらは濾過、乾燥乃至加熱処理工程で除去される
ので、最終製品の導電性等には殆んど影響を与えない、
該崩壊剤[III ]の上記添加目的を有効に達成する
ための添加量は、酸化亜鉛100重量部に対して5〜1
00重量部、より好ましくは10〜501i量部であり
、5重量部未満では結晶の崩壊が不十分で微細化の目的
が達成されず、またそれらの結晶崩壊作用は100重量
部で飽和するのでそれ以上の添加は全く無駄である。
尚上記崩壊剤のうち炭酸アンモニウムや重炭酸アンモニ
ウムは、水分散系にアンモニアと炭酸ガスを吹込むこと
によってその場で生成させることもできる。
また導電性賦活剤として用いられる水溶性アルミニウム
化合物[II]は、前述の如く酸化亜鉛に導電性を付与
する為のものであり、水系で微細な酸化亜鉛に万遍無く
均一に分布し得る様、たとえば蟻酸塩、酢酸塩、ハロゲ
ン化物、水酸化物、硫酸塩、硝酸塩の様な水溶性乃至水
分散性のものが選択して使用される。そしてこれらの水
溶性アルミニウム化合物のうち水酸化物を除くものは、
処理系内へ添加される前記炭酸アンモニウム等の一部に
より中和され、水酸化物を生成して酸化亜鉛スラリー内
へ均一に混入し、また水酸化物を用いた場合はそれ自身
が微細な粒状物として水系内へ均一に分布し、その後の
乾燥・焼成工程で酸化アルミニウムとなって酸化亜鉛微
粉末中へ万遍無く分布して導電性を与える。最終製品に
満足のいく 、導電性を付与する為には、アルミニウム
化合物を酸化アルミニウム換算で酸化亜鉛100重量部
に対し0.1〜1〇−置部、より好ましくは0.5〜5
重量部添加しなければならず、0.11i量部未満では
導電性不足となり、一方101i量部を超えても導電性
はそれ以上改善されず、場合によっては最終の焼成粉末
が着色したり顔料としての特性に悪影響が表われること
がある。
ところで先の公開公報に開示した方法では、上記の[I
]非導電性酸化亜鉛、[!■]水分散性アルミニウム化
合物(賦活剤)及び[III ]炭酸アルミニウム等の
崩壊剤の三者を、水分散系で常温〜100℃程度(但し
崩壊剤として尿素を用いた場合は分解促進のため80〜
100℃に加温)で30分〜90分程度攪拌処理し、脱
水、乾燥後非酸化性雰囲気下に600〜1000℃程度
で焼成を行なって導電性酸化亜鉛微粉末を得るものであ
り、崩壊剤の添加効果が有効に発揮される結果、従来の
導電性酸化亜鉛粉末に比べると微細なものを得ることが
できる。
しかしその後更に研究を進めるうち、上記の方法では崩
壊剤により折角微細化した酸化亜鉛が最終の乾燥乃至焼
成工程で再び凝集若しくは焼結するため、結局のところ
焼成物の粒径は原料として用いた非導電性酸化亜鉛粉末
の粒径(0,2〜0.8μm)付近まで戻り、透明性を
発揮し得る様な粒度構成のものを得ることはできなかっ
た。
即ち透明性を確保し得る粉末の粒径は前述の如く可視光
線の波長よりも小さい0.10μm程度以下のものであ
るから、こうした要求を満たすには、乾燥・焼成時の凝
集もしくは焼結を阻止する必要がある。
そこで上記の様な観点から更に研究を重ねた結果、[I
]非導電性酸化亜鉛、[II ]賦活剤(水溶性アルミ
ニウム化合物)及び[III ]崩壊剤の三成分を水分
散系で攪拌処理する際に、該水分散系に比表面積径が0
.10μm以下である無機質微粉末を共存せしめ、且つ
脱水後の熱処理温度を600℃以下に抑えてやれば、脱
水・乾燥乃至熱処理時における導電性酸化亜鉛微粒子同
士の凝集が阻止され、0.10μm以下の非常に微細な
ものとなることが明らかとなった。
無機質微粉末の共存によって酸化亜鉛粒子の凝集が阻止
される理由については完全に解明し得た訳ではないが、
無機質微粉末が酸化亜鉛粒子の間に介在することによっ
て酸化亜鉛粒子同士の凝集付着が抑えられ、加熱処理温
度を600を以下に抑えたことによる効果とも相まって
粒成長が抑制されたものと推定している。こうした凝集
防止効果を発揮する無機質微粉末の具体例としてはシリ
カ、アルミナ、チタニア等の酸化物微粉末や各種珪酸塩
微粉末等が挙げられ、たとえばコロイダルシリカやアル
ミナゾルの様に粒径が小さいものほど優れた凝集阻止効
果を発揮する。尚こられの無機質微粉末自身の体積抵抗
率は1010Ωcm以上であって導電性に良い影響を及
ぼし携る様なものではなく、しかも600℃以下の温度
では酸化亜鉛と反応して導電性を高めるといった作用も
有しておらず、これらは専ら凝集防止剤としての機能を
果たすものである。該無機質微粉末の添加効果は、特に
コロイダルシリカの様に粒径の非常に小さいものであれ
ば掻く微量で発揮されるので明確な下限値を定めること
はできないが、市販のコロイダルシリカを基準にすれば
、酸化亜鉛1o。
重量部に対して0.05重要部以上、より好ましくは0
、)重量部以上添加することにより目的を果たすことが
できる。一方、無機質微粉末の添加量が多過ぎると導電
性に悪影響が現われてくるので、添加量は酸化亜鉛10
0重量部に対して1011量部以下、より好ましくは5
重量部以下に抑えるべきである。
また仮に適量の無機質微粉末を添加した場合であっても
、加熱処理温度が600℃を超えると酸化亜鉛微粒子同
士の融着等によって二次凝集が起こって粒子が粗大化す
るので、加熱処理は600℃以下で行なわれなければな
らない。加熱処理温度の下限は特に規定していないが、
完全乾燥乃至焼成という本来の目的を果たすためには2
00℃以上、より確実なのは300℃以上である。
尚該加熱処理のもう一つの重要な役割りは、賦活剤添加
による導電性を発現させるところにあり、その為には加
熱処理を非酸化性雰囲気(具体的には水素、窒素、アン
モニア等のガス雰囲気)で行なわれなければならず、酸
化性雰囲気で加熱処理を行なったのではたとえ適量の賦
活剤を添加したとしても導電性を与えることはできない
以下実施例を挙げて本発明を具体的に説明するが、本発
明はもとより下記の実施例によって制限を受けるもので
はない。
[実施例] 下記第1表に示す原料配合量に準じて、所定量の崩壊剤
を500ccの水に溶解し、別に水50cCに賦活剤を
溶解した溶液を上記崩壊剤含有水溶液に加えて混合する
。この混合液を別途調製したフランス法亜鉛華(平均比
表面積径口0.3μm)100gの水200cc分散液
に投入し、60〜90℃に昇温した後所定量の無機質微
粉末を加えて同温度で1時間攪拌する。攪拌終了後濾過
・水洗し、乾燥後、水素、窒素またはアンモニアガス雰
囲気中200〜900tで30分〜2時間加熱処理し、
導電性の酸化亜鉛微粉末を得た。
第理条件等を第1表に、また得られた酸化亜鉛微粉末の
比表面積径等を第2表に夫々−括して示す°。
尚第1表に示した各配合原料の詳細、並びに第2表に示
した比表面積等の測定法は下記の通りである。
(崩壊剤) 重炭酸アンモニウム:8産化学社製、工業用炭酸アンモ
ニウム:和光紬薬社製、試薬1級尿 素    :米用
薬品社製、試薬1級硝酸アンモニウム:米用薬品社製、
試薬1級(賦活剤) 硫酸アルミニウム:米用薬品社製、 A 1 * (S O4)s・18H20塩化アルミニ
ウム:米用薬品社製、 AlCl3  ・6H20 硝酸アンモニウム:産出化学社製、 AI  (NOs)s・9Ha  O (無機質微粉末) アエロ、ジル200 :日本アエロジル社製、i02 比表面積200m”7g 比表面積径0.03μm アエロジルP25:日本アエロジル社製、Tie。
比表面積50m”7g 比表面積径 0.03μm アエロジルC:日本アエロジル社製、 Al2O。
比表面積xoom”7g 比表面積径 0.02μm ニップシールVN−3:日本シリカ社製、StO。
比表面積200m”7g 比表面積径 0.015μm アルミナゾル−200:8産化学社製、Altosとし
て10% 平均粒径10mμ スノーテックス−0:8産化学社製、 5102として20% 粒径10〜20mμ ラポナイトRD:日本シリカ社製、合成ナトリウム・マ
グネシウム・ リチウム 珪酸塩(S t 02  : 59.5%、MgO:2
7.3%、 Li2O:0.8%、 Na、O:3.8%、 構造本口8.1%)、 比表面積2フOm”1g 比表面積径 約0.01μm (体積抵抗率) 加熱処理を終えた各試料粉末10gを、内面にテフロン
加工を施した内径25m■の内筒へ装入して100にg
/cm2に加圧しく充填率20%)、横河電気製作所製
の3223型テスターで体積抵抗率(Ωc m’)を測
定した。
(比表面積径) 柴田化学機械社製の迅速面積測定装置5A−1000を
用いて各供試粉末の比表面積C5g:m’/g)を測定
し、該測定値と供試粉末の真比重(p:ZnOでは5.
6)より次式によって比表面積径(d:μm)を求めた
d=− ρXSg (分散性) 供試粉末20gを水300cc中に投入してホモジナイ
ザーにより均一に分散し、これを300ccの沈降管に
入れて静置し24時間後における上方清澄部の体積(c
m2)を測定し、塗料等に配合した場合の分散性を評価
した。
第2表 第1.2表からも明らかである様に、本発明の規定要件
を満たす実施例(No、1〜5.8〜20)で得た導電
性酸化亜鉛粉末の比表面積径は何れも0.10μm以下
であって非常に微細なものであり、分散性も良好である
これに対し実験No、6.7は、崩壊剤や無機質微粉末
の配合量等は適正であるものの、加熱処理条件が600
℃を超える比較例であり、加熱処理工程で微粉末同士の
凝集もしくは融着が起こり粗粒化している。また加熱処
理温度が高くなるほど粗粒化の進行は著しくなる傾向が
端的に表われている。
また実験No、21.22は凝集防止用の無機質微粉末
の添加を省略した比較例であり、何れの場合も導電性酸
化亜鉛微粉末の比表面積径は目標値の0.10μmを超
えている。
参考例 上記実験No、3で得た導電性酸化亜鉛微粉末(比表面
積径: 0.024μm)と市販の導電性酸化亜鉛粉末
(比表面積径:0.3μm)を、夫々アクジル樹脂系被
膜形成組成物(三菱レーヨン社製商品名:LR−472
)中に固形分換算で40重量%となる様に添加し、ホモ
ジサイザーで十分に混合した後ポリエステルフィルム上
に塗布した(膜厚:約10μm)、乾燥後被膜の表面抵
抗および透明性を比較したところ、表面抵抗は何れも1
08Ωcmで差は認められなかったが、透明性について
は、市販品を用いたものは白色不透明であるのに対し、
実験No、3の導電性酸化亜鉛微粉末を用いたものは透
明であった。
[発明の効果] 本発明は以上の様に構成されており、酸化亜鉛結晶崩壊
剤の作用による微細化および無機質微粉末の併用と加熱
処理温度の特定による凝集防止効果の相加的乃至相乗的
作用によって、比表面積径が0.10μm以下と非常に
微細で被膜に透明性を与えることができ、且つ分散性の
優れた導電性酸化亜鉛粉末を安価に提供し得ることにな
った。
従ってこの導電性酸化亜鉛微粉末は、クリーン・ルーム
、自動車や車輌等の窓、ブラウン管などの静電防止膜、
コンピュータをはじめとする様々の電子機器、CRTデ
イスプレー等の各種タッチパネル、ELパネル、液晶セ
ル等の表面に形成される静電防止膜への導電性付与成分
として活用し得るほか、透明静電記録紙の如き様々の情
報産業記録紙や磁気テープ等の導電性付与材、電子写真
用現像材、帯電防止材、更には塗料、プラスチック、接
着剤、インキ、繊維等への導電性もしくは帯電防止性付
与成分として利用することができる。
昭和63年 2月15日

Claims (7)

    【特許請求の範囲】
  1. (1) [ I ]非導電性酸化亜鉛:100重量部、 [II]水溶性乃至水分散性アルミニウム化合物:酸化ア
    ルミニウム換算で0.1〜 10重量部、 [III]炭酸アンモニウム、重炭酸アンモニウム、硝酸
    アンモニウムおよび尿素より なる群から選択される1種以上の化合 物:5〜100重量部 の三成分を、BET法により測定される比表面積径が0
    .10μm以下である無機質微粉末の存在下に水分散系
    で攪拌処理し、脱水後非酸化性雰囲気下に600℃以下
    の温度で加熱処理することを特徴とする導電性酸化亜鉛
    微粉末の製造方法。
  2. (2)炭酸アンモニウムおよび/または重炭酸アンモニ
    ウムは、アンモニアを含む水分散系に炭酸ガスを吹込む
    ことによって生成させたものである特許請求の範囲第1
    項に記載の製造方法。
  3. (3)水分散系での攪拌処理を常温乃至100℃の温度
    で行なう特許請求の範囲第1項または第2項に記載の製
    造方法。
  4. (4)アルミニウム化合物が、蟻酸塩、酢酸塩、ハロゲ
    ン化物、水酸化物、硫酸塩、硝酸塩よりなる群から選択
    される1種以上である特許請求の範囲第1項〜第3項の
    いずれかに記載の製造方法。
  5. (5)無機質微粉末がシリカ、アルミナ、チタニアおよ
    び珪酸塩類から選択された1種以上の微粉末である特許
    請求の範囲第1項〜第4項のいずれかに記載の製造方法
  6. (6)無機質微粉末を酸化亜鉛100重量部に対し0.
    05〜10重量部存在させる特許請求の範囲第1項〜第
    5項のいずれかに記載の製造方法。
  7. (7)加熱処理を窒素、アンモニアもしくは水素雰囲気
    下で行なう特許請求の範囲第1項〜第6項のいずれかに
    記載の製造方法。
JP62284636A 1987-11-11 1987-11-11 導電性酸化亜鉛微粉末の製造方法 Expired - Lifetime JP2583536B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62284636A JP2583536B2 (ja) 1987-11-11 1987-11-11 導電性酸化亜鉛微粉末の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62284636A JP2583536B2 (ja) 1987-11-11 1987-11-11 導電性酸化亜鉛微粉末の製造方法

Publications (2)

Publication Number Publication Date
JPH01126228A true JPH01126228A (ja) 1989-05-18
JP2583536B2 JP2583536B2 (ja) 1997-02-19

Family

ID=17681038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62284636A Expired - Lifetime JP2583536B2 (ja) 1987-11-11 1987-11-11 導電性酸化亜鉛微粉末の製造方法

Country Status (1)

Country Link
JP (1) JP2583536B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5560871A (en) * 1992-11-09 1996-10-01 Mitsui Mining & Smelting Co., Ltd. Method for preparing electrically-conductive zinc oxide
US7150953B2 (en) 2002-09-12 2006-12-19 Canon Kabushiki Kaisha Developer
JP2007008805A (ja) * 2005-06-02 2007-01-18 Shiseido Co Ltd 崩壊性酸化亜鉛粉体の製造方法
JP2007008804A (ja) * 2005-06-02 2007-01-18 Shiseido Co Ltd 崩壊性酸化亜鉛粉体、その製造方法及びこれを配合した化粧料

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54161598A (en) * 1978-06-12 1979-12-21 Honshu Kemikaru Kk Manufacture of electrically conductive zinc oxide
JPS6186421A (ja) * 1984-10-05 1986-05-01 Sumitomo Alum Smelt Co Ltd 白色導電性粉末の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54161598A (en) * 1978-06-12 1979-12-21 Honshu Kemikaru Kk Manufacture of electrically conductive zinc oxide
JPS6186421A (ja) * 1984-10-05 1986-05-01 Sumitomo Alum Smelt Co Ltd 白色導電性粉末の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5560871A (en) * 1992-11-09 1996-10-01 Mitsui Mining & Smelting Co., Ltd. Method for preparing electrically-conductive zinc oxide
US7150953B2 (en) 2002-09-12 2006-12-19 Canon Kabushiki Kaisha Developer
JP2007008805A (ja) * 2005-06-02 2007-01-18 Shiseido Co Ltd 崩壊性酸化亜鉛粉体の製造方法
JP2007008804A (ja) * 2005-06-02 2007-01-18 Shiseido Co Ltd 崩壊性酸化亜鉛粉体、その製造方法及びこれを配合した化粧料

Also Published As

Publication number Publication date
JP2583536B2 (ja) 1997-02-19

Similar Documents

Publication Publication Date Title
JP3221132B2 (ja) 導電性粒子及びその製造法
TWI523813B (zh) 氧化錫粒子及其製造方法
US5906679A (en) Coating compositions employing zinc antimonate anhydride particles
US5861112A (en) Electro-conductive oxide particle and processes for its production
EP0921099B1 (en) ITO fine powder and method for preparing the same
DE102004008943A1 (de) Verfahren zur Herstellung eines α-Aluminiumoxidpulvers
JPH08501764A (ja) 導電性材料及び方法
JPH0617231B2 (ja) 針状導電性酸化チタン及びその製造方法
JPH0323220A (ja) 白色導電性酸化亜鉛の製造方法
JPH01126228A (ja) 導電性酸化亜鉛微粉末の製造方法
JP3646818B2 (ja) オキシ炭酸ビスマス粉末およびその製造方法
JPH05254830A (ja) 分散性に優れた希土類酸化物微粉体及びその製造方法
JPS6411572B2 (ja)
JPS59223231A (ja) 疎水性ルチル型微粒子酸化チタンの製造法
US5494652A (en) Method for preparing particles of metal oxide (tin oxide)
JPS6241171B2 (ja)
JPH05139703A (ja) 微粒子状含水金属酸化物およびその製造方法
JPH0360429A (ja) 酸化亜鉛系導電性粉末
JPH1111947A (ja) アンチモンドープ酸化錫粉末の製造方法とこれを含む塗料
JPH0426514A (ja) 板状導電性酸化亜鉛の製造方法
US5766512A (en) Zinc antimonate anhydride and method for producing same
JP2767484B2 (ja) 微粒子状金属酸化物の製造方法
JP3515625B2 (ja) 針状導電性酸化錫微粉末およびその製造方法
JP2644707B2 (ja) 金属微粒子又は金属酸化物微粒子を含有するセラミックスの製造方法
JPS61219720A (ja) 微粒子状マグネトプランバイト型フエライトの製造法

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term