JP7451803B2 - 発光素子および発光装置 - Google Patents

発光素子および発光装置 Download PDF

Info

Publication number
JP7451803B2
JP7451803B2 JP2023076493A JP2023076493A JP7451803B2 JP 7451803 B2 JP7451803 B2 JP 7451803B2 JP 2023076493 A JP2023076493 A JP 2023076493A JP 2023076493 A JP2023076493 A JP 2023076493A JP 7451803 B2 JP7451803 B2 JP 7451803B2
Authority
JP
Japan
Prior art keywords
molecule
light emitting
type host
electron
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023076493A
Other languages
English (en)
Other versions
JP2023099181A (ja
Inventor
舜平 山崎
哲史 瀬尾
信晴 大澤
智子 沼田
英子 吉住
裕史 門間
晴恵 尾坂
邦彦 鈴木
保彦 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2023099181A publication Critical patent/JP2023099181A/ja
Application granted granted Critical
Publication of JP7451803B2 publication Critical patent/JP7451803B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/27Combination of fluorescent and phosphorescent emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer

Description

有機エレクトロルミネッセンス(EL:Electroluminescence)現象
を利用した発光素子(以下、有機EL素子とも記す)に関する。
有機EL素子の研究開発が盛んにおこなわれている(特許文献1、非特許文献1および非
特許文献2参照)。有機EL素子の基本的な構成は、一対の電極間に発光性の有機化合物
を含む層(以下、発光層とも記す)を挟んだものであり、薄型軽量化できる・入力信号に
高速に応答できる・直流低電圧駆動が可能であるなどの特性から、次世代のフラットパネ
ルディスプレイ素子として注目されている。また、このような発光素子を用いたディスプ
レイは、コントラストや画質に優れ、視野角が広いという特徴も有している。さらに、有
機EL素子は面光源であるため、液晶ディスプレイのバックライトや照明等の光源として
の応用も考えられている。
有機EL素子の発光機構は、キャリア注入型である。すなわち、電極間に発光層を挟んで
電圧を印加することにより、電極から注入された電子および正孔が再結合して発光物質が
励起状態となり、その励起状態が基底状態に戻る際に発光する。励起状態には、一重項励
起状態と三重項励起状態がある。また、発光素子におけるその統計的な生成比率は、前者
は後者の3分の1であると考えられている。なお、本明細書では、一重項励起状態(三重
項励起状態)とは、特にことわらない限り、一重項励起状態(三重項励起状態)のうち、
エネルギー準位が最も低いものを指す。
発光性の有機化合物は通常、基底状態が一重項状態である。したがって、一重項励起状態
からの発光は、同じスピン多重度間の電子遷移であるため蛍光と呼ばれる。一方、三重項
励起状態からの発光は、異なるスピン多重度間の電子遷移であるため燐光と呼ばれる。こ
こで、蛍光を発する化合物(以下、蛍光性化合物と記す)は室温において、通常、燐光は
観測されず蛍光のみが観測される。したがって、蛍光性化合物を用いた発光素子における
内部量子効率(注入したキャリアに対して発生するフォトンの割合)の理論的限界は、上
記の一重項励起状態と三重項励起状態の比率を根拠に25%とされている。
一方、燐光を発する化合物(以下、燐光性化合物と記す)を用いれば、内部量子効率は1
00%にまで高めることが理論上は可能となる。つまり、蛍光性化合物に比べて高い発光
効率を得ることが可能になる。このような理由から、高効率な発光素子を実現するために
、燐光性化合物を用いた発光素子の開発が近年盛んにおこなわれている。
特に、その燐光量子効率の高さゆえに、燐光性化合物としてイリジウム等を中心金属とす
る有機金属錯体が注目されており、例えば、特許文献1には、イリジウムを中心金属とす
る有機金属錯体が燐光材料として開示されている。
上述した燐光性化合物を用いて発光素子の発光層を形成する場合、燐光性化合物の濃度消
光や三重項-三重項消滅による消光を抑制するために、他の化合物からなるマトリクス中
に該燐光性化合物が分散するようにして形成することが多い。この時、マトリクスとなる
化合物はホスト、燐光性化合物のようにマトリクス中に分散される化合物はゲストと呼ば
れる。
このような、燐光性化合物をゲストとして用いる発光素子における発光の一般的な素過程
はいくつかあるが、それらについて以下に説明する。
(1)電子及び正孔がゲスト分子において再結合し、ゲスト分子が励起状態となる場合(
直接再結合過程)。
(1-1)ゲスト分子の励起状態が三重項励起状態のときゲスト分子は燐光を発する。
(1-2)ゲスト分子の励起状態が一重項励起状態のとき一重項励起状態のゲスト分子は
三重項励起状態に項間交差し、燐光を発する。
つまり、上記(1)の直接再結合過程においては、ゲスト分子の項間交差効率、及び燐光
量子効率さえ高ければ、高い発光効率が得られることになる。
(2)電子及び正孔がホスト分子において再結合し、ホスト分子が励起状態となる場合(
エネルギー移動過程)。
(2-1)ホスト分子の励起状態が三重項励起状態のとき、ホスト分子の三重項励起状態
のエネルギー準位(T1準位)がゲスト分子のT1準位よりも高い場合、ホスト分子から
ゲスト分子に励起エネルギーが移動し、ゲスト分子が三重項励起状態となる。三重項励起
状態となったゲスト分子は燐光を発する。なお、ゲスト分子の一重項励起状態のエネルギ
ー準位(S1準位)へのエネルギー移動も形式上あり得るが、多くの場合ゲスト分子のS
1準位の方がホスト分子のT1準位よりも高エネルギー側に位置しており、主たるエネル
ギー移動過程になりにくいため、ここでは割愛する。
(2-2)ホスト分子の励起状態が一重項励起状態のとき、ホスト分子の一重項励起状態
のエネルギー準位(S1準位)がゲスト分子のS1準位およびT1準位よりも高い場合、
ホスト分子からゲスト分子に励起エネルギーが移動し、ゲスト分子が一重項励起状態又は
三重項励起状態となる。三重項励起状態となったゲスト分子は燐光を発する。また、一重
項励起状態となったゲスト分子は、三重項励起状態に項間交差し、燐光を発する。
つまり、上記(2)のエネルギー移動過程においては、ホスト分子の三重項励起エネルギ
ー及び一重項励起エネルギーの双方が、いかにゲスト分子に効率良く移動できるかが重要
となる。
このエネルギー移動過程を鑑みれば、ホスト分子からゲスト分子に励起エネルギーが移動
する前に、ホスト分子自体がその励起エネルギーを光又は熱として放出して失活してしま
うと、発光効率が低下することになる。
<エネルギー移動過程>
以下では、分子間のエネルギー移動過程について詳述する。
まず、分子間のエネルギー移動の機構として、以下の2つの機構が提唱されている。ここ
で、励起エネルギーを与える側の分子をホスト分子、励起エネルギーを受け取る側の分子
をゲスト分子と記す。
≪フェルスター機構(双極子-双極子相互作用)≫
フェルスター機構は、エネルギー移動に、分子間の直接的接触を必要としない。ホスト分
子及びゲスト分子間の双極子振動の共鳴現象を通じてエネルギー移動が起こる。双極子振
動の共鳴現象によってホスト分子がゲスト分子にエネルギーを受け渡し、ホスト分子が基
底状態になり、ゲスト分子が励起状態になる。フェルスター機構の速度定数k →g
数式(1)に示す。
Figure 0007451803000001
数式(1)において、νは、振動数を表し、f’(ν)は、ホスト分子の規格化された
発光スペクトル(一重項励起状態からのエネルギー移動を論じる場合は蛍光スペクトル、
三重項励起状態からのエネルギー移動を論じる場合は燐光スペクトル)を表し、ε(ν
)は、ゲスト分子のモル吸光係数を表し、Nは、アボガドロ数を表し、nは、媒体の屈折
率を表し、Rは、ホスト分子とゲスト分子の分子間距離を表し、τは、実測される励起状
態の寿命(蛍光寿命や燐光寿命)を表し、cは、光速を表し、φは、発光量子効率(一重
項励起状態からのエネルギー移動を論じる場合は蛍光量子効率、三重項励起状態からのエ
ネルギー移動を論じる場合は燐光量子効率)を表し、Kは、ホスト分子とゲスト分子の
遷移双極子モーメントの配向を表す係数(0~4)である。なお、ランダム配向の場合は
=2/3である。
≪デクスター機構(電子交換相互作用)≫
デクスター機構は、ホスト分子とゲスト分子が軌道の重なりを生じる接触有効距離に近づ
き、励起状態のホスト分子の電子と基底状態のゲスト分子の電子の交換を通じてエネルギ
ー移動が起こる。デクスター機構の速度定数k →gを数式(2)に示す。
Figure 0007451803000002
数式(2)において、hは、プランク定数であり、Kは、エネルギーの次元を持つ定数で
あり、νは、振動数を表し、f’(ν)は、ホスト分子の規格化された発光スペクトル
(一重項励起状態からのエネルギー移動を論じる場合は蛍光スペクトル、三重項励起状態
からのエネルギー移動を論じる場合は燐光スペクトル)を表し、ε’(ν)は、ゲスト
分子の規格化された吸収スペクトルを表し、Lは、実効分子半径を表し、Rは、ホスト分
子とゲスト分子の分子間距離を表す。
ここで、ホスト分子からゲスト分子へのエネルギー移動効率ΦETは、数式(3)で表さ
れると考えられる。kは、ホスト分子の発光過程(ホスト分子の一重項励起状態からの
エネルギー移動を論じる場合は蛍光、ホスト分子の三重項励起状態からのエネルギー移動
を論じる場合は燐光)の速度定数を表し、kは、非発光過程(熱失活や項間交差)の速
度定数を表し、τは、実測されるホスト分子の励起状態の寿命を表す。
Figure 0007451803000003
まず、数式(3)より、エネルギー移動効率ΦETを高くするためには、エネルギー移動
の速度定数k →gを、他の競合する速度定数k+k(=1/τ)に比べて遙かに
大きくすれば良いことがわかる。そして、そのエネルギー移動の速度定数k →gを大
きくするためには、数式(1)及び数式(2)より、フェルスター機構、デクスター機構
のどちらの機構においても、ホスト分子の発光スペクトル(一重項励起状態からのエネル
ギー移動を論じる場合は蛍光スペクトル、三重項励起状態からのエネルギー移動を論じる
場合は燐光スペクトル)とゲスト分子の吸収スペクトル(通常は、燐光であるので、三重
項励起状態と基底状態とのエネルギー差)との重なりが大きい方が良いことがわかる。
例えば、ホスト分子の三重項励起状態と基底状態とのエネルギー差が、ゲスト分子の三重
項励起状態と基底状態とのエネルギー差と重なるように選択された材料によって、より効
率的にホストからゲストへのエネルギー移動が生じる。
しかしながら、上記のエネルギー移動は、三重項励起状態のゲスト分子から基底状態のホ
スト分子へも全く同様に生じる。そして、ホスト分子の三重項励起状態と基底状態とのエ
ネルギー差が、ゲスト分子の三重項励起状態と基底状態とのエネルギー差と重なるように
選択された材料では、ゲスト分子の三重項励起状態がホスト分子の三重項励起状態にエネ
ルギー移動しやすいということでもある。このことにより、発光効率の低下が生じる。
このような問題に対しては、例えば、非特許文献1に記載されているように、ホスト分子
の三重項励起状態と基底状態とのエネルギー差をゲスト分子の三重項励起状態と基底状態
とのエネルギー差よりも大きくすることで克服することが提案されている。
非特許文献1では、ホスト分子の三重項励起状態と基底状態とのエネルギー差をゲスト分
子のホスト分子の三重項励起状態と基底状態とのエネルギー差より0.3電子ボルト(現
在では、0.15電子ボルトに訂正されている)大きくすることにより、ゲスト分子の三
重項励起状態からホスト分子の三重項励起状態への遷移を生じさせないようにしている。
すなわち、ホスト分子の三重項励起状態と基底状態とのエネルギー差をゲスト分子のホス
ト分子の三重項励起状態と基底状態とのエネルギー差より0.15電子ボルト以上大きく
すると、ゲスト分子の三重項励起状態からホスト分子の三重項励起状態への遷移を十分に
阻止できる。
国際公開第2000/070655号パンフレット
しかしながら、このようにホスト分子とゲスト分子とのエネルギー差が異なるということ
は、上記のフェルスター機構やデクスター機構が起こりにくくなるということを意味し、
そのことによる発光効率の低下が問題となる。本発明の一態様は、このような矛盾を克服
する新しい原理に基づいた発光素子を提供する。
また、上記のように、さまざまな励起過程が存在するが、失活の少ない励起過程は、直接
再結合過程であり、その比率を向上させることが発光効率あるいは外部量子効率の向上に
とって好ましい。本発明の一態様は効率よく直接再結合過程を発生させる方法を関する提
供することを課題とする。また、本発明の一態様は、外部量子効率が高い発光素子を提供
することを課題とする。
本発明の一態様は、燐光性化合物(ゲスト)、第1の有機化合物、及び第2の有機化合物
を含む発光層を一対の電極間に有し、第1の有機化合物及び第2の有機化合物の三重項励
起状態と基底状態のエネルギー差が、ゲストの三重項励起状態と基底状態のエネルギー差
より0.15電子ボルト以上大きいことを特徴とする発光素子である。
上記において、第1の有機化合物、及び第2の有機化合物が、励起錯体を形成する組み合
わせであってもよい。また、第1の有機化合物は電子輸送性が正孔輸送性よりも優れてお
り、第2の有機化合物は正孔輸送性が電子輸送性よりも優れていてもよい。このような特
色を有する場合、第1の有機化合物、及び第2の有機化合物をそれぞれ、n型ホスト、p
型ホストと称する。
また、本発明の一態様は、ゲスト、n型ホスト、p型ホストを含む発光層を一対の電極間
に有し、n型ホストのLUMO(Lowest Unoccupied Molecul
ar Orbital)準位がゲストのLUMO準位よりも0.1電子ボルト以上高いこ
とを特徴とする発光素子である。
なお、ゲストのLUMO準位がn型ホストのLUMO準位より低すぎると電気伝導特性の
上で好ましくない。そのため、n型ホストのLUMO準位EnからゲストのLUMO準位
Eaを差し引いた値、(En-Ea)が0.1電子ボルト以上0.5電子ボルト以下であ
ることが好ましい。
また、本発明の一態様は、ゲスト、n型ホスト、及びp型ホストを含む発光層を一対の電
極間に有し、p型ホストのHOMO(Highest Occupied Molecu
lar Orbital)準位がゲストのHOMO準位よりも0.1電子ボルト以上低い
ことを特徴とする発光素子である。
なお、ゲストのHOMO準位がp型ホストのHOMO準位より高すぎると電気伝導特性の
上で好ましくない。そのため、p型ホストのHOMO準位EpからゲストのHOMO準位
Ebを差し引いた値、(Ep-Eb)が-0.5電子ボルト以上-0.1電子ボルト以下
であることが好ましい。
上記発光素子において、ゲストは、有機金属錯体であることが好ましい。上記発光素子に
おいて、n型ホスト及びp型ホストの少なくとも一方が、蛍光性化合物であってもよい。
本発明の一態様の発光素子は、発光装置、電子機器、及び照明装置に適用することができ
る。
本発明の一態様では、発光層は、n型ホスト分子とp型ホスト分子とゲスト分子を有する
。もちろん、分子は規則正しく配列している必要は無く、規則性が極めて少ない状態であ
ってもよい。特に発光層を50nm以下の薄膜とする場合には、アモルファス状態となる
ことが好ましく、そのために、結晶化しづらい材料の組み合わせを選択することが好まし
い。
また、本発明の一態様は図1(A)に示されるように、基板101上に第1の電極103
、上記の構成を有する発光層102、第2の電極104を重ねて設けた発光素子でもよい
。ここで、第1の電極103は、陽極と陰極の一方であり、第2の電極104は陽極と陰
極の他方である。
また、本発明の一態様は図1(B)に示されるように、第1の電極103、発光層102
、第2の電極104に加えて、第1のキャリアの注入層105、第1のキャリアの輸送層
106、第2のキャリアの注入層107、第2のキャリアの輸送層108を重ねて設けた
発光素子でもよい。ここで、第1のキャリアは電子と正孔の一方であり、第2のキャリア
は電子と正孔の他方である。また、第1の電極が陽極であれば、第1のキャリアは正孔で
あり、第1の電極が陰極であれば、第1のキャリアは電子である。
本発明の一態様では、ホスト(n型ホストおよびp型ホスト)分子の三重項励起状態と基
底状態とのエネルギー差を、ゲスト分子の三重項励起状態と基底状態とのエネルギー差よ
り0.15電子ボルト以上高くすることで、ゲスト分子の三重項励起状態からホスト(n
型ホストおよびp型ホスト)分子の三重項励起状態への遷移を十分に防止することができ
、外部量子効率が高い発光素子を提供することができる。
その一方、フェルスター機構やデクスター機構を使用するエネルギー移動過程に関しては
、n型ホスト分子とp型ホスト分子の励起錯体からゲスト分子にエネルギー移動する過程
を経ることができる。励起錯体は、エネルギーがゲスト分子に移動した段階で、n型ホス
ト分子とp型ホスト分子に分裂し、n型ホスト分子(あるいはp型ホスト分子)の三重項
励起状態と基底状態とのエネルギー差は、ゲスト分子の三重項励起状態と基底状態とのエ
ネルギー差より0.15電子ボルト以上高いので、ゲスト分子の三重項励起状態がn型ホ
スト分子(あるいはp型ホスト分子)の三重項励起状態にエネルギー移動することはない
また、本発明の一態様では、例えば、n型ホスト分子のLUMO準位がゲスト分子のLU
MO準位よりも0.1電子ボルト以上高いことによりn型ホスト分子を伝導してきた電子
は、優先的にゲスト分子のLUMO準位に入る。その結果、ゲスト分子はアニオンとなり
、正孔を誘引し、ゲスト分子において正孔と電子が再結合する。
また、本発明の一態様では、例えば、p型ホスト分子のHOMO準位がゲスト分子のHO
MO準位よりも0.1電子ボルト以上低いことによりp型ホスト分子を伝導してきた正孔
は、優先的にゲスト分子のHOMO準位に入る。その結果、ゲスト分子はカチオンとなり
、電子を誘引し、ゲスト分子において正孔と電子が再結合する。
このようにして、本発明の一態様を用いることにより、効率よくゲスト分子にキャリアを
注入し、直接再結合過程の比率を高めることができる。特に、本発明の一態様では、発光
層にn型ホストとp型ホストを混在して用いているため、電子はn型ホスト分子を伝導し
、正孔はp型ホスト分子を伝導する傾向がある。その結果、ゲスト分子のLUMO準位に
はn型ホスト分子から電子が注入され、また、ゲスト分子のHOMO準位にはp型ホスト
分子から正孔が注入される。
本発明のさまざまな態様を示す図。 本発明の一態様の原理を説明する図。 本発明の一態様の原理を説明する図。 実施例1の発光素子の電流密度-輝度特性を示す図。 実施例1の発光素子の電圧-輝度特性を示す図。 実施例1の発光素子の輝度-電流効率特性を示す図。 実施例1の発光素子の輝度-外部量子効率特性を示す図。 実施例1の発光素子の発光スペクトルを示す図。 実施例1の発光素子の信頼性試験の結果を示す図。 実施例2の発光素子の電流密度-輝度特性を示す図。 実施例2の発光素子の電圧-輝度特性を示す図。 実施例2の発光素子の輝度-電流効率特性を示す図。 実施例2の発光素子の輝度-外部量子効率特性を示す図。 実施例2の発光素子の発光スペクトルを示す図。 実施例2の発光素子の信頼性試験の結果を示す図。
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定さ
れず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し
得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の
記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成において
、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、
その繰り返しの説明は省略する。
(実施の形態1)
本実施の形態では、本発明の一態様の発光素子の原理について図2を用いて説明する。図
2(A)は2つのn型ホスト分子(H_n_1、H_n_2)と1つのゲスト分子(G)
と2つのp型ホスト分子(H_p_1、H_p_2)が直線状に並んでいる場合のこれら
の分子のエネルギー状態を示す。各分子は、それぞれHOMOとLUMOを有する。
ここでは、説明を簡単にするため、n型ホスト分子のLUMO準位Enとゲスト分子のL
UMO準位Eaを等しく、また、p型ホスト分子のHOMO準位Epとゲスト分子のHO
MO準位Ebを等しくしてあるが、そのような場合に限られず、-0.3[電子ボルト]
<Ea-En<+0.3[電子ボルト]、-0.3[電子ボルト])<Eb-Ep<+0
.3[電子ボルト]であればよい。また、n型ホスト分子(あるいはp型ホスト分子)の
LUMO準位とHOMO準位の差はゲスト分子のLUMO準位とHOMO準位の差より0
.5電子ボルト以上大きいことが好ましい。
n型ホスト分子、p型ホスト分子、ゲスト分子のいずれも、基底状態では、HOMOには
2つの電子があり、LUMOには電子が無い。例えば、n型ホスト分子H_n_2とゲス
ト分子Gとp型ホスト分子H_p_2は、HOMOには2つの電子があり、LUMOには
電子が無い状態である。
一方、陽極(図の右側)より正孔が、陰極(図の左側)より電子が注入されたため、n型
ホスト分子H_n_1はLUMOに電子を有し、p型ホスト分子H_p_1はHOMOに
電子が1つしかない(正孔が一つある)状態となっている。すなわち、n型ホスト分子H
_n_1はアニオンであり、p型ホスト分子H_p_1はカチオンである。
電子と正孔は、このようなn型ホスト分子とp型ホスト分子をホッピングしながら伝導す
る。そして、図2(B)に示すように、ゲスト分子のLUMOに電子が、HOMOに正孔
が注入され(直接再結合過程)、ゲスト分子は励起状態(分子内励起子、エキシトン)と
なる。このように、直接励起再結合過程でも、特にn型ホストおよびp型ホストからゲス
トに直接、キャリアが注入される現象を、Guest Coupled with Co
mplementary Hosts(GCCH)という。
ところで、図2でも明らかなように、n型ホスト分子のLUMO準位とHOMO準位の差
およびp型ホスト分子のLUMO準位とHOMO準位の差は、いずれもゲスト分子のLU
MO準位とHOMO準位の差よりかなり大きいので、フェルスター機構やデクスター機構
によって、ゲストの三重項励起状態がn型ホストあるいはp型ホストの三重項励起状態に
移行する確率は十分に小さい。
すなわち、図2(C)に示すように、ゲスト分子Gおよびn型ホスト分子H_n_1の基
底状態(それぞれ、S0_G、S0_H_n_1)を基準としたとき、n型ホスト分子H
_n_1の三重項励起状態のエネルギー準位T1_H_n_1はゲスト分子Gの三重項励
起状態のエネルギー準位T1_GよりもΔEt(≧0.15電子ボルト)だけ高いので、
この間の遷移は常温では起こりにくい。なお、図2(C)でS1_G、S1_H_n_1
は、それぞれ、ゲスト分子G、n型ホスト分子H_n_1の一重項励起状態のエネルギー
準位である。
図2(C)では、n型ホスト分子のエネルギー状態について述べたが、p型ホスト分子で
も、その三重項励起状態のエネルギー準位が、ゲスト分子の三重項励起状態のエネルギー
準位より高ければ同様の効果が得られる。
厳密には、分子のLUMO準位とHOMO準位の差が、その分子の三重項励起状態と基底
状態とのエネルギー差というわけではないが、一定の相関はある。例えば、後述する(ア
セチルアセトナト)ビス(4,6-ジフェニルピリミジナト)イリジウム(III)(略
称:[Ir(dppm)(acac)])はゲストとして用いられるが、そのHOMO
準位とLUMO準位の差は2.58電子ボルトであるのに対し、その三重項励起状態と基
底状態とのエネルギー差は、2.22電子ボルトである。また、n型ホストとして用いら
れる2-[3-(ジベンゾチオフェン-4-イル)フェニル]ジベンゾ[f,h]キノキ
サリン(略称:2mDBTPDBq-II)は、それぞれ、3.10電子ボルト、2.5
4電子ボルトであり、p型ホストとして用いられる4、4’-ジ(1-ナフチル)-4’
’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PC
BNBB)は、ぞれぞれ、3.15電子ボルト、2.40電子ボルトである。
ところで、ゲストとして上記の[Ir(dppm)(acac)]、n型ホストとして
2mDBTPDBq-II、p型ホストとしてPCBNBBを用いた場合、2mDBTP
DBq-IIの三重項励起状態と基底状態とのエネルギー差およびPCBNBBの三重項
励起状態と基底状態とのエネルギー差(光学測定の結果では、ぞれぞれ、2.54電子ボ
ルト、2.40電子ボルト)は、ゲストの三重項励起状態と基底状態とのエネルギー差(
光学測定の結果では、2.22電子ボルト)より0.18電子ボルト以上高いので、ゲス
トの三重項励起状態がホストに移ることはほとんど無い。
また、ゲストとして(ジピバロイルメタナト)ビス(3,5-ジメチル-2-フェニルピ
ラジナト)イリジウム(III)(略称:[Ir(mppr-Me)(dpm)])を
用いることもできる。[Ir(mppr-Me)(dpm)]の三重項励起状態と基底
状態とのエネルギー差は光学測定の結果では、2.24電子ボルトである。
したがって、n型ホストとして2mDBTPDBq-II、p型ホストとしてPCBNB
Bを用いた場合、それらの三重項励起状態と基底状態とのエネルギー差は、[Ir(mp
pr-Me)(dpm)]の三重項励起状態と基底状態とのエネルギー差より0.16
電子ボルト以上高いので、ゲストの三重項励起状態がホストに移ることはほとんど無い。
以上は、ゲストに電子と正孔が注入される直接再結合過程であるが、n型ホスト分子とp
型ホスト分子が励起錯体を形成し、これがゲスト分子にエネルギー移動することにより、
ゲスト分子を励起状態とすることもできる。この場合には、エネルギー移動には、フェル
スター機構やデクスター機構を使用する。
励起錯体(エキサイプレックス、exciplex)は、励起状態における異種分子間の
相互作用によって形成される。励起錯体は、比較的深いLUMO準位をもつ材料と、浅い
HOMO準位をもつ材料間との間で形成しやすいことが一般に知られている。例えば、前
者としてp型ホスト、後者としてn型ホストを用いることができる。
ここで、n型ホストとp型ホストのHOMO準位及びLUMO準位は互いに異なり、n型
ホストのHOMO準位<p型ホストのHOMO準位<n型ホストのLUMO準位<p型ホ
ストのLUMO準位という順で高い。
そして、このn型ホストとp型ホストにより励起錯体が形成された場合、励起錯体のLU
MO準位は、n型ホストに由来し、HOMO準位は、p型ホストに由来する。したがって
、励起錯体のエネルギー差は、n型ホストのエネルギー差、及びp型ホストのエネルギー
差よりも小さくなる。つまり、n型ホストとp型ホストのそれぞれの発光波長に比べて、
励起錯体の発光波長は長波長となる。励起錯体の形成過程は大きく分けて以下の2つの過
程が考えられる。
≪エレクトロプレックス(electroplex)≫
本明細書において、エレクトロプレックスとは、基底状態のn型ホスト及び基底状態のp
型ホストから、直接、励起錯体が形成されることを指す。
前述の通り、フェルスター機構やデクスター機構では、電子及び正孔がホスト中で再結合
した場合、励起状態のホストからゲストに励起エネルギーが移動し、ゲストが励起状態に
至り、発光する。
ここで、ホストからゲストに励起エネルギーが移動する前に、ホスト自体が発光する、又
は励起エネルギーが熱エネルギーとなることで、励起エネルギーの一部を失う。特に、ホ
ストが一重項励起状態である場合は、三重項励起状態である場合に比べて励起寿命が短い
ため、一重項励起子の失活が起こりやすい。励起子の失活は、発光素子の寿命の低下につ
ながる要因の一つである。
一方、本発明の一態様では、n型ホスト及びp型ホストが同じ発光層に存在するので、n
型ホスト分子及びp型ホスト分子がキャリアを持った状態(アニオンおよびカチオン)か
ら、エレクトロプレックスを形成することが多い。そのため、励起寿命の短いn型ホスト
分子の一重項励起子あるいはp型ホスト分子の一重項励起子は形成されにくい。
つまり、個々の分子の一重項励起子を形成することなく、直接、励起錯体を形成する過程
がほとんどである。これにより、上記一重項励起子の失活も抑制することができる。そし
て、生じたエレクトロプレックスからゲストにエネルギー移動をおこなって発光効率が高
い発光素子を得ることができる。
≪励起子による励起錯体の形成≫
もう一つの過程としては、ホストであるn型ホスト分子及びp型ホスト分子の一方が一重
項励起子を形成した後、基底状態の他方と相互作用して励起錯体を形成する素過程が考え
られる。エレクトロプレックスとは異なり、この場合は一旦、n型ホスト分子あるいはp
型ホスト分子の一重項励起子が生成してしまうが、これを速やかに励起錯体に変換できれ
ば、やはり一重項励起子の失活を抑制することができる。なお、上述のように、n型ホス
ト及びp型ホストが同じ発光層に存在する場合には、この過程は起こりにくい。
例えば、n型ホストは電子トラップ性の化合物であり、一方でp型ホストは正孔トラップ
性の化合物である。これら化合物のHOMO準位の差、及びLUMO準位の差が大きい場
合(具体的には差が0.3eV以上)、電子は優先的にn型ホスト分子に入り、正孔は優
先的にp型ホスト分子に入る。この場合、一重項励起子を経て励起錯体が形成される過程
よりも、エレクトロプレックスが形成される過程の方が優先されると考えられる。
ところで、上記のようにして形成された励起錯体からゲスト分子へのエネルギー移動は、
フェルスター機構やデクスター機構によるものであるが、上述のように、これらの機構に
おいては、例えば、ホスト分子の三重項励起状態と基底状態とのエネルギー差とゲスト分
子の三重項励起状態と基底状態とのエネルギー差が小さい方が好ましい。
この場合、励起錯体の三重項励起状態と基底状態とのエネルギー差は、n型ホスト分子の
LUMO準位とp型ホスト分子のHOMO準位の差に相当し、これらがゲスト分子のLU
MO準位とHOMO準位の差と等しいあるいは近い場合には、効率的にエネルギーが移動
し、ゲスト分子を三重項励起状態とすることができ、励起錯体自らは基底状態となる。
ただし、励起錯体は、励起状態でのみ安定であるので、基底状態に戻ると、n型ホスト分
子とp型ホスト分子に分離する。そして、上述のように、これらの三重項励起状態と基底
状態とのエネルギー差は、ゲスト分子の三重項励起状態と基底状態とのエネルギー差より
大きいため、ゲスト分子の三重項励起状態がいずれかのホスト分子にエネルギー移動する
ことは室温では極めて起こりにくい。
(実施の形態2)
本実施の形態では、本発明の一態様の発光素子の原理について図3を用いて説明する。図
3(A)は2つのn型ホスト分子(H_n_1、H_n_2)と1つのゲスト分子(G)
と2つのp型ホスト分子(H_p_1、H_p_2)が直線状に並んでいる場合のこれら
の分子のエネルギーの様子を示す。各分子は、それぞれHOMOとLUMOを有する。
ここでは、n型ホスト分子のLUMO準位Enはゲスト分子のLUMO準位Eaより0.
1電子ボルト以上高く、また、p型ホスト分子のHOMO準位Epはゲスト分子のHOM
O準位Ebより高いとする。また、n型ホスト分子のLUMO準位とHOMO準位の差お
よびp型ホスト分子のLUMO準位とHOMO準位の差は、いずれもゲスト分子のLUM
O準位とHOMO準位の差より0.5電子ボルト以上大きいことが好ましい。
図3(A)に示すように、陽極(図の右側)より正孔が、陰極(図の左側)より電子が注
入されたため、n型ホスト分子H_n_1はLUMOにも電子を有し、p型ホスト分子H
_p_1はHOMOの電子が1つしかない(正孔が一つある)状態となっている。したが
って、n型ホスト分子H_n_1はアニオンであり、p型ホスト分子H_p_1はカチオ
ンである。
電子と正孔は、このようなn型ホスト分子とp型ホスト分子をホッピングしながら伝導す
る。図に示すように、p型ホスト分子のLUMO準位はn型ホスト分子のLUMO準位よ
りも高いので、電子はn型ホスト分子を伝導する。また、n型ホスト分子のHOMO準位
はp型ホスト分子のHOMO準位よりも低いので、正孔はp型ホスト分子を伝導する。
そして、図3(B)に示すように、ゲスト分子のLUMOに電子が注入され、ゲスト分子
はアニオンとなる。ここで、n型ホスト分子のLUMO準位はゲスト分子のLUMO準位
よりも0.1電子ボルト以上高く、もちろん、p型ホスト分子のLUMO準位はさらに高
い。すると、ゲスト分子のLUMOに入った電子は準安定な状態となり、いわば、ゲスト
分子にトラップされた状態となる。
その結果、ゲスト分子は負の電荷を帯びたアニオンとなるので、周囲にある正孔をクーロ
ン相互作用(図中にFと表記)によって誘引する。そのため、図3(C)に示すように、
p型ホスト分子H_p_2にある正孔がゲスト分子Gに注入される。クーロン相互作用は
比較的、遠くまで及ぶため、効率的にゲスト分子内に電子と正孔が集まることとなる。
なお、この際、ゲスト分子GのLUMOにある電子とp型ホスト分子H_p_2のHOM
Oにある正孔と再結合する(すなわち、ゲスト分子GのLUMOにある電子がp型ホスト
分子H_p_2のHOMOに移動する、あるいは、p型ホスト分子H_p_2のHOMO
にある正孔がゲスト分子GのLUMOに移動する)と、その段階で発光が生じる。
また、上記の電子移動が禁制であれば、p型ホスト分子H_p_2のHOMOにある正孔
がゲスト分子GのHOMOに移動し、ゲスト分子Gは励起状態となる。その後、ゲスト分
子Gは基底状態に遷移するが、その過程で発光が生じる。
ゲストにクーロン相互作用により正孔を誘引するには、(p型ホストのHOMO準位)-
(ゲストのHOMO準位)をΔEp、(n型ホストのLUMO準位)-(ゲストのLUM
O準位)をΔEnとするとき、ΔEp<ΔEn+0.2[電子ボルト]、好ましくは、Δ
Ep<ΔEnとするとよい。以上の作用により、ゲスト分子内で正孔と電子が再結合する
上記の過程は、ゲスト分子がアニオンとなったために生じる。もし、ゲスト分子の電荷が
中性であれば、ゲスト分子のHOMO準位はp型ホスト分子のHOMO準位よりも低いの
で正孔がゲスト分子に注入される可能性は低い。
図3は、n型ホスト分子のLUMO準位Enはゲスト分子のLUMO準位Eaより高く、
また、p型ホスト分子のHOMO準位Epはゲスト分子のHOMO準位Ebより高い場合
を示したが、逆にp型ホスト分子のHOMO準位Epがゲスト分子のHOMO準位Ebよ
り0.1電子ボルト以上低く、また、n型ホスト分子のLUMO準位Enがゲスト分子の
LUMO準位Eaより0.1電子ボルト以上低い場合でも同様の原理で、ゲスト分子内で
効率よく正孔と電子が再結合する。この場合は、ゲスト分子のHOMOに正孔が最初に注
入され、そのクーロン相互作用によりゲスト分子に電子が注入される。
なお、n型ホスト分子のLUMO準位Enがゲスト分子のLUMO準位Eaより高く、ま
た、p型ホスト分子のHOMO準位Epがゲスト分子のHOMO準位Ebより低い場合は
、さらに効率的にゲストに電荷を注入し、励起状態とすることができる。その場合は、少
なくともn型ホスト分子のLUMO準位Enがゲスト分子のLUMO準位Eaより0.1
電子ボルト以上高いか、p型ホスト分子のHOMO準位Epがゲスト分子のHOMO準位
Ebより0.1電子ボルト以上低いことが好ましい。
また、アニオンとなったn型ホスト分子とカチオンとなったp型ホスト分子が隣接する場
合、両者が励起錯体状態となることがある。このとき、近くにあるゲスト分子を励起状態
とするには、上述のエネルギー移動過程を経る必要があるが、その場合には、励起錯体の
励起状態と基底状態とのエネルギー差とゲスト分子の三重項励起状態と基底状態とのエネ
ルギー差ができるだけ近い方がよい。
もし、n型ホスト分子のLUMO準位がゲスト分子のLUMO準位よりも0.1電子ボル
トだけ高ければ、p型ホスト分子のHOMO準位がゲスト分子のHOMO準位よりも0.
1電子ボルトだけ低くなるような材料を選択して、励起錯体の励起状態と基底状態とのエ
ネルギー差とゲスト分子の三重項励起状態と基底状態とのエネルギー差ができるだけ等し
くなるようにすればよい。
具体的には、ゲストとして用いられる[Ir(dppm)(acac)]のLUMO準
位、HOMO準位は、ぞれぞれ、-2.98電子ボルト、-5.56電子ボルトであり、
また、n型ホストとして用いられる2mDBTPDBq-IIは、それぞれ、-2.78
電子ボルト、-5.88電子ボルトであり、p型ホストとして用いられるPCBNBBは
、ぞれぞれ、-2.31電子ボルト、-5.46電子ボルトである。
この組み合わせにおいては、ゲストのLUMO準位はn型ホストおよびp型ホストのLU
MO準位より低く、特にn型ホストのLUMO準位より0.2電子ボルト低いため、ゲス
ト分子は電子をトラップしてアニオンとなりやすい。また、ゲスト分子のHOMO準位は
n型ホスト分子のHOMO準位よりは高いものの、p型ホスト分子のHOMO準位よりは
0.1電子ボルト低い。
したがって、図3に示したように、最初にゲストのLUMOに電子が注入され、そのクー
ロン相互作用によりゲストに正孔が注入されることにより、発光することとなる。
また、[Ir(mppr-Me)(dpm)]のLUMO準位は、-2.77電子ボル
トであり、n型ホスト(2mDBTPDBq-II)のLUMO準位(-2.78電子ボ
ルト)とほとんど同じであり、また、[Ir(mppr-Me)(dpm)]のHOM
O準位は-5.50電子ボルトであり、p型ホスト(PCBNBB)のHOMO準位(-
5.43電子ボルト)よりも0.07電子ボルト低い。
これらの数値は[Ir(mppr-Me)(dpm)]が上記のn型ホストやp型ホス
トと一緒に用いられる場合には、電子やホールをトラップする作用が、[Ir(dppm
(acac)]よりも劣っていることを示している。
(実施の形態3)
本実施の形態では、本発明の一態様の発光素子について図1(B)を用いて説明する。図
1(B)は、第1の電極103と第2の電極104との間にEL層110を有する発光素
子を示した図である。図1(B)における発光素子は、第1の電極103の上に順に積層
した第1のキャリアの注入層105、第1のキャリアの輸送層106、発光層102、第
2のキャリアの輸送層108、第2のキャリアの注入層107と、さらにその上に設けら
れた第2の電極104から構成されている。EL層110は発光層102以外に、第1の
キャリアの注入層105、第1のキャリアの輸送層106、第2のキャリアの輸送層10
8、第2のキャリアの注入層107より構成される。なお、EL層110は必ずしもこれ
らの層を全て有する必要は無い。
ここで、第1の電極103は陽極あるいは陰極の一方であり、第2の電極104は陽極あ
るいは陰極の他方である。また、第1のキャリアは正孔あるいは電子の一方であり、第2
のキャリアは正孔あるいは電子の他方である。また、第1の電極が陽極であれば、第1の
キャリアは正孔であり、第1の電極が陰極であれば、第1のキャリアは電子である。また
、第1のキャリアの注入層105、第2のキャリアの注入層107は正孔注入層と電子注
入層のいずれかであり、第1のキャリアの輸送層106、第2のキャリアの輸送層108
は正孔輸送層と電子輸送層のいずれかである。
陽極としては、仕事関数の大きい(具体的には4.0eV以上)金属、合金、導電性化合
物、及びこれらの混合物などを用いることが好ましい。具体的には、例えば、酸化インジ
ウム-酸化スズ(ITO:Indium Tin Oxide)、珪素又は酸化珪素を含
有した酸化インジウム-酸化スズ、酸化インジウム-酸化亜鉛(Indium Zinc
Oxide)、酸化タングステン及び酸化亜鉛を含有した酸化インジウム(IWZO)
等が挙げられる。これらの導電性金属酸化物膜は、通常スパッタリング法により成膜され
るが、ゾル-ゲル法などを応用して作製しても構わない。
例えば、酸化インジウム-酸化亜鉛膜は、酸化インジウムに対し1~20wt%の酸化亜
鉛を加えたターゲットを用いてスパッタリング法により形成することができる。また、I
WZO膜は、酸化インジウムに対し酸化タングステンを0.5~5wt%、酸化亜鉛を0
.1~1wt%含有したターゲットを用いてスパッタリング法により形成することができ
る。この他、グラフェン、金、白金、ニッケル、タングステン、クロム、モリブデン、鉄
、コバルト、銅、パラジウム、又は金属材料の窒化物(例えば、窒化チタン)等が挙げら
れる。
但し、EL層110のうち、陽極に接して形成される層が、後述する有機化合物と電子受
容体(アクセプター)とを混合してなる複合材料を用いて形成される場合には、陽極に用
いる物質は、仕事関数の大小に関わらず、様々な金属、合金、電気伝導性化合物、および
これらの混合物などを用いることができる。例えば、アルミニウム、銀、アルミニウムを
含む合金(例えば、Al-Si)等も用いることもできる。陽極は、例えばスパッタリン
グ法や蒸着法(真空蒸着法を含む)等により形成することができる。
陰極は、仕事関数の小さい(好ましくは3.8eV以下)金属、合金、電気伝導性化合物
、及びこれらの混合物などを用いて形成することが好ましい。具体的には、元素周期表の
第1族または第2族に属する元素、すなわちリチウムやセシウム等のアルカリ金属、およ
びカルシウム、ストロンチウム等のアルカリ土類金属、マグネシウム、およびこれらを含
む合金(例えば、Mg-Ag、Al-Li)、ユーロピウム、イッテルビウム等の希土類
金属およびこれらを含む合金の他、アルミニウムや銀などを用いることができる。
但し、EL層110のうち、陰極に接して形成される層が、後述する有機化合物と電子供
与体(ドナー)とを混合してなる複合材料を用いる場合には、仕事関数の大小に関わらず
、Al、Ag、ITO、珪素若しくは酸化珪素を含有した酸化インジウム-酸化スズ等様
々な導電性材料を用いることができる。なお、陰極を形成する場合には、真空蒸着法やス
パッタリング法を用いることができる。また、銀ペーストなどを用いる場合には、塗布法
やインクジェット法などを用いることができる。
正孔注入層は、正孔注入性の高い物質を含む層である。正孔注入性の高い物質としては、
モリブデン酸化物、チタン酸化物、バナジウム酸化物、レニウム酸化物、ルテニウム酸化
物、クロム酸化物、ジルコニウム酸化物、ハフニウム酸化物、タンタル酸化物、銀酸化物
、タングステン酸化物、マンガン酸化物等の金属酸化物を用いることができる。また、フ
タロシアニン(略称:HPc)、銅(II)フタロシアニン(略称:CuPc)等のフ
タロシアニン系の化合物を用いることができる。
また、低分子の有機化合物である4,4’,4’’-トリス(N,N-ジフェニルアミノ
)トリフェニルアミン(略称:TDATA)、4,4’,4’’-トリス[N-(3-メ
チルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4
,4’-ビス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ビフェニ
ル(略称:DPAB)、4,4’-ビス(N-{4-[N’-(3-メチルフェニル)-
N’-フェニルアミノ]フェニル}-N-フェニルアミノ)ビフェニル(略称:DNTP
D)、1,3,5-トリス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミ
ノ]ベンゼン(略称:DPA3B)、3-[N-(9-フェニルカルバゾール-3-イル
)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA1)、3,
6-ビス[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-
フェニルカルバゾール(略称:PCzPCA2)、3-[N-(1-ナフチル)-N-(
9-フェニルカルバゾール-3-イル)アミノ]-9-フェニルカルバゾール(略称:P
CzPCN1)等の芳香族アミン化合物等を用いることができる。
さらに、高分子化合物(オリゴマー、デンドリマー、ポリマー等)を用いることもできる
。例えば、ポリ(N-ビニルカルバゾール)(略称:PVK)、ポリ(4-ビニルトリフ
ェニルアミン)(略称:PVTPA)、ポリ[N-(4-{N’-[4-(4-ジフェニ
ルアミノ)フェニル]フェニル-N’-フェニルアミノ}フェニル)メタクリルアミド]
(略称:PTPDMA)、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビ
ス(フェニル)ベンジジン](略称:Poly-TPD)などの高分子化合物が挙げられ
る。また、ポリ(3,4-エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)
(PEDOT/PSS)、ポリアニリン/ポリ(スチレンスルホン酸)(PAni/PS
S)等の酸を添加した高分子化合物を用いることができる。
また、正孔注入層として、有機化合物と電子受容体(アクセプター)とを混合してなる複
合材料を用いてもよい。このような複合材料は、電子受容体によって有機化合物に正孔が
発生するため、正孔注入性および正孔輸送性に優れている。この場合、有機化合物として
は、発生した正孔の輸送に優れた材料(正孔輸送性の高い物質)であることが好ましい。
複合材料に用いる有機化合物としては、芳香族アミン化合物、カルバゾール誘導体、芳香
族炭化水素、高分子化合物(オリゴマー、デンドリマー、ポリマー等)など、種々の化合
物を用いることができる。なお、複合材料に用いる有機化合物としては、正孔輸送性の高
い有機化合物であることが好ましい。具体的には、10-6cm/Vs以上の正孔移動
度を有する物質であることが好ましい。但し、電子よりも正孔の輸送性の高い物質であれ
ば、これら以外のものを用いてもよい。以下では、複合材料に用いることのできる有機化
合物を具体的に列挙する。
複合材料に用いることのできる有機化合物としては、例えば、TDATA、MTDATA
、DPAB、DNTPD、DPA3B、PCzPCA1、PCzPCA2、PCzPCN
1、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(略称:
NPBまたはα-NPD)、N,N’-ビス(3-メチルフェニル)-N,N’-ジフェ
ニル-[1,1’-ビフェニル]-4,4’-ジアミン(略称:TPD)、4-フェニル
-4’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:BPAFL
P)等の芳香族アミン化合物や、4,4’-ジ(N-カルバゾリル)ビフェニル(略称:
CBP)、1,3,5-トリス[4-(N-カルバゾリル)フェニル]ベンゼン(略称:
TCPB)、9-[4-(N-カルバゾリル)]フェニル-10-フェニルアントラセン
(略称:CzPA)、9-フェニル-3-[4-(10-フェニル-9-アントリル)フ
ェニル]-9H-カルバゾール(略称:PCzPA)、1,4-ビス[4-(N-カルバ
ゾリル)フェニル]-2,3,5,6-テトラフェニルベンゼン等のカルバゾール誘導体
を用いることができる。
また、2-tert-ブチル-9,10-ジ(2-ナフチル)アントラセン(略称:t-
BuDNA)、2-tert-ブチル-9,10-ジ(1-ナフチル)アントラセン、9
,10-ビス(3,5-ジフェニルフェニル)アントラセン(略称:DPPA)、2-t
ert-ブチル-9,10-ビス(4-フェニルフェニル)アントラセン(略称:t-B
uDBA)、9,10-ジ(2-ナフチル)アントラセン(略称:DNA)、9,10-
ジフェニルアントラセン(略称:DPAnth)、2-tert-ブチルアントラセン(
略称:t-BuAnth)、9,10-ビス(4-メチル-1-ナフチル)アントラセン
(略称:DMNA)、9,10-ビス[2-(1-ナフチル)フェニル]-2-tert
-ブチルアントラセン、9,10-ビス[2-(1-ナフチル)フェニル]アントラセン
、2,3,6,7-テトラメチル-9,10-ジ(1-ナフチル)アントラセン等の芳香
族炭化水素化合物を用いることができる。
さらに、2,3,6,7-テトラメチル-9,10-ジ(2-ナフチル)アントラセン、
9,9’-ビアントリル、10,10’-ジフェニル-9,9’-ビアントリル、10,
10’-ビス(2-フェニルフェニル)-9,9’-ビアントリル、10,10’-ビス
[(2,3,4,5,6-ペンタフェニル)フェニル]-9,9’-ビアントリル、アン
トラセン、テトラセン、ルブレン、ペリレン、2,5,8,11-テトラ(tert-ブ
チル)ペリレン、ペンタセン、コロネン、4,4’-ビス(2,2-ジフェニルビニル)
ビフェニル(略称:DPVBi)、9,10-ビス[4-(2,2-ジフェニルビニル)
フェニル]アントラセン(略称:DPVPA)等の芳香族炭化水素化合物を用いることが
できる。
また、電子受容体としては、7,7,8,8-テトラシアノ-2,3,5,6-テトラフ
ルオロキノジメタン(略称:F-TCNQ)、クロラニル等の有機化合物や、遷移金属
酸化物を挙げることができる。また、元素周期表における第4族乃至第8族に属する金属
の酸化物を挙げることができる。具体的には、酸化バナジウム、酸化ニオブ、酸化タンタ
ル、酸化クロム、酸化モリブデン、酸化タングステン、酸化マンガン、酸化レニウムは電
子受容性が高いため好ましい。中でも特に、酸化モリブデンは大気中でも安定であり、吸
湿性が低く、扱いやすいため好ましい。
なお、上述したPVK、PVTPA、PTPDMA、Poly-TPD等の高分子化合物
と、上述した電子受容体を用いて複合材料を形成し、正孔注入層に用いてもよい。
正孔輸送層は、正孔輸送性の高い物質を含む層である。正孔輸送性の高い物質としては、
NPB、TPD、BPAFLP、4,4’-ビス[N-(9,9-ジメチルフルオレン-
2-イル)-N-フェニルアミノ]ビフェニル(略称:DFLDPBi)、4,4’-ビ
ス[N-(スピロ-9,9’-ビフルオレン-2-イル)-N―フェニルアミノ]ビフェ
ニル(略称:BSPB)などの芳香族アミン化合物を用いることができる。ここに述べた
物質は、主に10-6cm/Vs以上の正孔移動度を有する物質である。但し、電子よ
りも正孔の輸送性の高い物質であれば、これら以外のものを用いてもよい。なお、正孔輸
送性の高い物質を含む層は、単層のものだけでなく、上記物質からなる層が二層以上積層
したものとしてもよい。
また、正孔輸送層には、CBP、CzPA、PCzPAのようなカルバゾール誘導体や、
t-BuDNA、DNA、DPAnthのようなアントラセン誘導体を用いても良い。
また、正孔輸送層には、PVK、PVTPA、PTPDMA、Poly-TPDなどの高
分子化合物を用いることもできる。
発光層102は、発光物質を含む層である。本実施の形態の発光層102は、ゲストとし
て燐光性化合物を有し、ホストとしてn型ホスト及びp型ホストを有する。n型ホスト(
あるいはp型ホスト)は、2種以上用いることができる。
燐光性化合物としては、有機金属錯体が好ましく、イリジウム錯体が特に好ましい。なお
、上述のフェルスター機構によるエネルギー移動を考慮すると、燐光性化合物の最も長波
長側に位置する吸収帯のモル吸光係数は、2000M-1・cm-1以上が好ましく、5
000M-1・cm-1以上が特に好ましい。
このような大きなモル吸光係数を有する化合物としては、例えば、[Ir(mppr-M
e)(dpm)]や、[Ir(dppm)(acac)]などが挙げられる。特に、
[Ir(dppm)(acac)]のように、モル吸光係数が5000M-1・cm
以上に達する材料を用いると、外部量子効率が30%程度に達する発光素子が得られる
n型ホストとしては、例えば、上述の2mDBTPDBq-II以外にも、2-[4-(
3,6-ジフェニル-9H-カルバゾール-9-イル)フェニル]ジベンゾ[f,h]キ
ノキサリン(略称:2CzPDBq-III)、7-[3-(ジベンゾチオフェン-4-
イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:7mDBTPDBq-II)
、及び、6-[3-(ジベンゾチオフェン-4-イル)フェニル]ジベンゾ[f,h]キ
ノキサリン(略称:6mDBTPDBq-II)のような電子を受け取りやすい化合物の
うちいずれか一を用いればよい。
またp型ホストとしては、上述のPCBNBB以外にも、4,4’-ビス[N-(1-ナ
フチル)-N-フェニルアミノ]ビフェニル(略称:NPBまたはα-NPD)、及び、
4-フェニル-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルア
ミン(略称:PCBA1BP)のような正孔を受け取りやすい化合物を用いればよい。た
だし、これらに限定されることなく、例えば、実施の形態1あるいは実施の形態2に示し
たエネルギー準位の関係を満たすn型ホストとp型ホストの組み合わせであればよい。
電子輸送層は、電子輸送性の高い物質を含む層である。電子輸送性の高い物質としては、
Alq、トリス(4-メチル-8-キノリノラト)アルミニウム(略称:Almq
、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(略称:BeBq)、
BAlq、Zn(BOX)、ビス[2-(2-ヒドロキシフェニル)ベンゾチアゾラト
]亜鉛(略称:Zn(BTZ))などの金属錯体が挙げられる。
また、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4
-オキサジアゾール(略称:PBD)、1,3-ビス[5-(p-tert-ブチルフェ
ニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、3
-(4-tert-ブチルフェニル)-4-フェニル-5-(4-ビフェニリル)-1,
2,4-トリアゾール(略称:TAZ)、3-(4-tert-ブチルフェニル)-4-
(4-エチルフェニル)-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称
:p-EtTAZ)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(
略称:BCP)、4,4’-ビス(5-メチルベンゾオキサゾール-2-イル)スチルベ
ン(略称:BzOs)などの複素芳香族化合物も用いることができる。
また、ポリ(2,5-ピリジン-ジイル)(略称:PPy)、ポリ[(9,9-ジヘキシ
ルフルオレン-2,7-ジイル)-co-(ピリジン-3,5-ジイル)](略称:PF
-Py)、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-co-(2,2
’-ビピリジン-6,6’-ジイル)](略称:PF-BPy)のような高分子化合物を
用いることもできる。ここに述べた物質は、主に10-6cm/Vs以上の電子移動度
を有する物質である。なお、正孔よりも電子の輸送性の高い物質であれば、上記以外の物
質を電子輸送層として用いてもよい。
また、電子輸送層は、単層のものだけでなく、上記物質からなる層が二層以上積層したも
のとしてもよい。
電子注入層は、電子注入性の高い物質を含む層である。電子注入層には、リチウム、セシ
ウム、カルシウム、フッ化リチウム、フッ化セシウム、フッ化カルシウム、リチウム酸化
物等のようなアルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることがで
きる。また、フッ化エルビウムのような希土類金属化合物を用いることができる。また、
上述した電子輸送層を構成する物質を用いることもできる。
あるいは、電子注入層に、有機化合物と電子供与体(ドナー)とを混合してなる複合材料
を用いてもよい。このような複合材料は、電子供与体によって有機化合物に電子が発生す
るため、電子注入性および電子輸送性に優れている。この場合、有機化合物としては、発
生した電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述した電子
輸送層を構成する物質(金属錯体や複素芳香族化合物等)を用いることができる。
電子供与体としては、有機化合物に対し電子供与性を示す物質であればよい。具体的には
、アルカリ金属やアルカリ土類金属や希土類金属が好ましく、リチウム、セシウム、マグ
ネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、アルカリ金
属酸化物やアルカリ土類金属酸化物が好ましく、リチウム酸化物、カルシウム酸化物、バ
リウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いること
もできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることも
できる。
なお、上述した正孔注入層、正孔輸送層、発光層102、電子輸送層、電子注入層は、そ
れぞれ、蒸着法(真空蒸着法を含む)、インクジェット法、塗布法等の方法で形成するこ
とができる。
また、図1(C)に示すように、陽極と陰極との間に複数のEL層110a、110bが
積層されていても良い。この場合、EL層110a、110bはそれぞれ少なくとも発光
層を有する。積層された第1のEL層110aと第2のEL層110bとの間には、電荷
発生層111を設けることが好ましい。電荷発生層111は上述の複合材料で形成するこ
とができる。また、電荷発生層111は複合材料からなる層と他の材料からなる層との積
層構造でもよい。
この場合、他の材料からなる層としては、電子供与性物質と電子輸送性の高い物質とを含
む層や、透明導電膜からなる層などを用いることができる。このような構成を有する発光
素子は、エネルギーの移動や消光などの問題が起こり難く、材料の選択の幅が広がること
で高い発光効率と長い寿命とを併せ持つ発光素子とすることが容易である。また、一方の
EL層で燐光発光、他方で蛍光発光を得ることも容易である。この構造は上述のEL層の
構造と組み合わせて用いることができる。
また、それぞれのEL層の発光色を異なるものにすることで、発光素子全体として、所望
の色の発光を得ることができる。例えば、第1のEL層110aの発光色と第2のEL層
110bの発光色を補色の関係になるようにすることで、発光素子全体として白色発光す
る発光素子を得ることも可能である。また、3つ以上のEL層を有する発光素子の場合で
も同様である。
あるいは、図1(D)に示すように、陽極201と陰極209との間に、正孔注入層20
2、正孔輸送層203、発光層204、電子輸送層205、電子注入バッファー層206
、電子リレー層207、及び陰極209と接する複合材料層208を有するEL層210
を形成しても良い。
陰極209と接する複合材料層208を設けることで、特にスパッタリング法を用いて陰
極を形成する際に、EL層210が受けるダメージを低減することができるため、好まし
い。複合材料層208は、前述の、正孔輸送性の高い有機化合物にアクセプター性物質を
含有させた複合材料を用いることもできる。
さらに、電子注入バッファー層206を設けることで、複合材料層208と電子輸送層2
05との間の注入障壁を緩和することができるため、複合材料層208で生じた電子を電
子輸送層205に容易に注入することができる。
電子注入バッファー層206には、アルカリ金属、アルカリ土類金属、希土類金属、およ
びこれらの化合物(アルカリ金属化合物(酸化リチウム等の酸化物、ハロゲン化物、炭酸
リチウムや炭酸セシウム等の炭酸塩を含む)、アルカリ土類金属化合物(酸化物、ハロゲ
ン化物、炭酸塩を含む)、または希土類金属の化合物(酸化物、ハロゲン化物、炭酸塩を
含む))等の電子注入性の高い物質を用いることが可能である。
また、電子注入バッファー層206が、電子輸送性の高い物質とドナー性物質を含んで形
成される場合には、電子輸送性の高い物質に対して質量比で、0.001以上0.1以下
の比率でドナー性物質を添加することが好ましい。電子輸送性の高い物質としては、先に
説明した電子輸送層205の材料と同様の材料を用いて形成することができる。
また、ドナー性物質としては、アルカリ金属、アルカリ土類金属、希土類金属、およびこ
れらの化合物(アルカリ金属化合物(酸化リチウム等の酸化物、ハロゲン化物、炭酸リチ
ウムや炭酸セシウム等の炭酸塩を含む)、アルカリ土類金属化合物(酸化物、ハロゲン化
物、炭酸塩を含む)、または希土類金属の化合物(酸化物、ハロゲン化物、炭酸塩を含む
))の他、テトラチアナフタセン(略称:TTN)、ニッケロセン、デカメチルニッケロ
セン等の有機化合物を用いることもできる。
さらに、電子注入バッファー層206と複合材料層208との間に、電子リレー層207
を形成することが好ましい。電子リレー層207は、必ずしも設ける必要は無いが、電子
輸送性の高い電子リレー層207を設けることで、電子注入バッファー層206へ電子を
速やかに送ることが可能となる。
複合材料層208と電子注入バッファー層206との間に電子リレー層207が挟まれた
構造は、複合材料層208に含まれるアクセプター性物質と、電子注入バッファー層20
6に含まれるドナー性物質とが相互作用を受けにくく、互いの機能を阻害しにくい構造で
ある。したがって、駆動電圧の上昇を防ぐことができる。
電子リレー層207は、電子輸送性の高い物質を含み、該電子輸送性の高い物質のLUM
O準位は、複合材料層208に含まれるアクセプター性物質のLUMO準位と、電子輸送
層205に含まれる電子輸送性の高い物質のLUMO準位との間となるように形成する。
また、電子リレー層207がドナー性物質を含む場合には、当該ドナー性物質のドナー準
位も複合材料層208におけるアクセプター性物質のLUMO準位と、電子輸送層205
に含まれる電子輸送性の高い物質のLUMO準位との間となるようにする。具体的なエネ
ルギー準位の数値としては、電子リレー層207に含まれる電子輸送性の高い物質のLU
MO準位は-5.0eV以上、好ましくは-5.0eV以上-3.0eV以下とするとよ
い。
電子リレー層207に含まれる電子輸送性の高い物質としてはフタロシアニン系の材料又
は金属-酸素結合と芳香族配位子を有する金属錯体を用いることが好ましい。
電子リレー層207に含まれるフタロシアニン系材料としては、具体的にはCuPc、S
nPc(Phthalocyanine tin(II) complex)、ZnPc
(Phthalocyanine zinc complex)、CoPc(Cobal
t(II)phthalocyanine, β-form)、FePc(Phthal
ocyanine Iron)及びPhO-VOPc(Vanadyl 2,9,16,
23-tetraphenoxy-29H,31H-phthalocyanine)の
いずれかを用いることが好ましい。
電子リレー層207に含まれる金属-酸素結合と芳香族配位子を有する金属錯体としては
、金属-酸素の二重結合を有する金属錯体を用いることが好ましい。金属-酸素の二重結
合はアクセプター性(電子を受容しやすい性質)を有するため、電子の移動(授受)がよ
り容易になる。また、金属-酸素の二重結合を有する金属錯体は安定であると考えられる
。したがって、金属-酸素の二重結合を有する金属錯体を用いることにより発光素子を低
電圧でより安定に駆動することが可能になる。
金属-酸素結合と芳香族配位子を有する金属錯体としてはフタロシアニン系材料が好まし
い。具体的には、VOPc(Vanadyl phthalocyanine)、SnO
Pc(Phthalocyanine tin(IV) oxide complex)
及びTiOPc(Phthalocyanine titanium oxide co
mplex)のいずれかは、分子構造的に金属-酸素の二重結合が他の分子に対して作用
しやすく、アクセプター性が高いため好ましい。
なお、上述したフタロシアニン系材料としては、フェノキシ基を有するものが好ましい。
具体的にはPhO-VOPcのような、フェノキシ基を有するフタロシアニン誘導体が好
ましい。フェノキシ基を有するフタロシアニン誘導体は、溶媒に可溶である。そのため、
発光素子を形成する上で扱いやすいという利点を有する。また、溶媒に可溶であるため、
成膜に用いる装置のメンテナンスが容易になるという利点を有する。
電子リレー層207はさらにドナー性物質を含んでいても良い。ドナー性物質としては、
アルカリ金属、アルカリ土類金属、希土類金属及びこれらの化合物(アルカリ金属化合物
(酸化リチウムなどの酸化物、ハロゲン化物、炭酸リチウムや炭酸セシウムなどの炭酸塩
を含む)、アルカリ土類金属化合物(酸化物、ハロゲン化物、炭酸塩を含む)、又は希土
類金属の化合物(酸化物、ハロゲン化物、炭酸塩を含む))の他、テトラチアナフタセン
、ニッケロセン、デカメチルニッケロセンなどの有機化合物を用いることができる。電子
リレー層207にこれらドナー性物質を含ませることによって、電子の移動が容易となり
、発光素子をより低電圧で駆動することが可能になる。
電子リレー層207にドナー性物質を含ませる場合、電子輸送性の高い物質としては上記
した材料の他、複合材料層208に含まれるアクセプター性物質のアクセプター準位より
高いLUMO準位を有する物質を用いることができる。具体的なエネルギー準位としては
、-5.0eV以上、好ましくは-5.0eV以上-3.0eV以下の範囲にLUMO準
位を有する物質を用いることが好ましい。このような物質としては例えば、ペリレン誘導
体や、含窒素縮合芳香族化合物などが挙げられる。なお、含窒素縮合芳香族化合物は、安
定であるため、電子リレー層207を形成する為に用いる材料として、好ましい材料であ
る。
ペリレン誘導体の具体例としては、3,4,9,10-ペリレンテトラカルボン酸二無水
物(略称:PTCDA)、3,4,9,10-ペリレンテトラカルボキシリックビスベン
ゾイミダゾール(略称:PTCBI)、N,N’-ジオクチル-3,4,9,10-ペリ
レンテトラカルボン酸ジイミド(略称:PTCDI-C8H)、N,N’-ジヘキシル-
3,4,9,10-ペリレンテトラカルボン酸ジイミド(略称:Hex PTC)等が挙
げられる。
また、含窒素縮合芳香族化合物の具体例としては、ピラジノ[2,3-f][1,10]
フェナントロリン-2,3-ジカルボニトリル(略称:PPDN)、2,3,6,7,1
0,11-ヘキサシアノ-1,4,5,8,9,12-ヘキサアザトリフェニレン(略称
:HAT(CN))、2,3-ジフェニルピリド[2,3-b]ピラジン(略称:2P
YPR)、2,3-ビス(4-フルオロフェニル)ピリド[2,3-b]ピラジン(略称
:F2PYPR)等が挙げられる。
その他にも、7,7,8,8,-テトラシアノキノジメタン(略称:TCNQ)、1,4
,5,8,-ナフタレンテトラカルボン酸二無水物(略称:NTCDA)、パーフルオロ
ペンタセン、銅ヘキサデカフルオロフタロシアニン(略称:F16CuPc)、N,N’
-ビス(2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-ペンタデカフ
ルオロオクチル)-1,4,5,8-ナフタレンテトラカルボン酸ジイミド(略称:NT
CDI-C8F)、3’,4’-ジブチル-5,5’’-ビス(ジシアノメチレン)-5
,5’’-ジヒドロ-2,2’:5’,2’’-テルチオフェン)(略称:DCMT)、
メタノフラーレン(例えば、[6,6]-フェニルC61酪酸メチルエステル)等を用い
ることができる。
なお、電子リレー層207にドナー性物質を含ませる場合、電子輸送性の高い物質とドナ
ー性物質との共蒸着などの方法によって電子リレー層207を形成すれば良い。
正孔注入層202、正孔輸送層203、発光層204、及び電子輸送層205は前述の材
料を用いてそれぞれ形成すれば良い。以上により、本実施の形態のEL層210を作製す
ることができる。
上述した発光素子は、陽極と陰極との間に生じた電位差により電流が流れ、EL層におい
て正孔と電子とが再結合することにより発光する。そして、この発光は、陽極または陰極
のいずれか一方または両方を通って外部に取り出される。従って、陽極または陰極のいず
れか一方、または両方が可視光に対する透光性を有する電極となる。
なお、陽極と陰極との間に設けられる層の構成は、上記のものに限定されない。発光領域
と金属とが近接することによって生じる消光を防ぐように、陽極及び陰極から離れた部位
に正孔と電子とが再結合する発光領域を設けた構成であれば上記以外のものでもよい。
つまり、層の積層構造については特に限定されず、電子輸送性の高い物質、正孔輸送性の
高い物質、電子注入性の高い物質、正孔注入性の高い物質、バイポーラ性の物質(電子及
び正孔の輸送性の高い物質)、又は正孔ブロック材料等から成る層を、発光層と自由に組
み合わせて構成すればよい。
本実施の形態で示した発光素子を用いて、パッシブマトリクス型の発光装置や、トランジ
スタによって発光素子の駆動が制御されたアクティブマトリクス型の発光装置を作製する
ことができる。また、該発光装置を電子機器又は照明装置等に適用することができる。
本実施例では、本発明の一態様の発光素子について説明する。本実施例で用いた材料の化
学式を以下に示す。
Figure 0007451803000004
以下に、本実施例の発光素子1及び比較発光素子2の作製方法を示す。
(発光素子1)
まず、ガラス基板上に、酸化珪素を含むインジウム錫酸化物(ITSO)をスパッタリン
グ法にて成膜し、陽極として機能する第1の電極を形成した。なお、その膜厚は110n
mとし、電極面積は2mm×2mmとした。
次に、基板上に発光素子を形成するための前処理として、基板表面を水で洗浄し、200
℃で1時間焼成した後、UVオゾン処理を370秒おこなった。
その後、10-4Pa程度まで内部が減圧された真空蒸着装置内の加熱室に基板を導入し
、170℃で30分間の真空焼成をおこなった後、基板を30分程度放冷した。
次に、真空蒸着装置内の蒸着室に基板を導入し、第1の電極が形成された面が下方となる
ように、第1の電極が形成された基板が真空蒸着装置内に設けられた基板ホルダーに固定
された状態で、10-4Pa程度まで減圧した後、第1の電極上に、BPAFLPと酸化
モリブデン(VI)を共蒸着することで、正孔注入層を形成した。その膜厚は、40nm
とし、BPAFLPと酸化モリブデンの比率は、重量比で4:2(=BPAFLP:酸化
モリブデン)となるように調節した。
次に、正孔注入層上に、BPAFLPを20nmの膜厚となるように成膜し、正孔輸送層
を形成した。
さらに、2mDBTPDBq-II、PCBNBB、及び[Ir(mppr-Me)
dpm)]を共蒸着し、正孔輸送層上に発光層を形成した。ここで、2mDBTPDBq
-II、PCBNBB及び[Ir(mppr-Me)(dpm)]の重量比は、0.8
:0.2:0.05(=2mDBTPDBq-II:PCBNBB:[Ir(mppr-
Me)(dpm)])となるように調節した。また、発光層の膜厚は40nmとした。
次に、発光層上に2mDBTPDBq-IIを膜厚10nmとなるよう成膜し、第1の電
子輸送層を形成した。
次に、第1の電子輸送層上にBPhenを膜厚20nmとなるように成膜し、第2の電子
輸送層を形成した。
さらに、第2の電子輸送層上に、フッ化リチウム(LiF)を1nmの膜厚で蒸着し、電
子注入層を形成した。
最後に、陰極として機能する第2の電極として、アルミニウムを200nmの膜厚となる
ように蒸着することで、本実施例の発光素子1を作製した。
(比較発光素子2)
比較発光素子2の発光層は、2mDBTPDBq-II及び[Ir(mppr-Me)
(dpm)]を共蒸着することで形成した。ここで、2mDBTPDBq-II及び[I
r(mppr-Me)(dpm)]の重量比は、1:0.05(=2mDBTPDBq
-II:[Ir(mppr-Me)(dpm)])となるように調節した。また、発光
層の膜厚は40nmとした。発光層以外は、発光素子1と同様に作製した。
なお、上述した蒸着過程において、蒸着は全て抵抗加熱法を用いた。
以上により得られた発光素子1及び比較発光素子2の素子構造を表1に示す。本実施例に
おいては、2mDBTPDBq-IIがn型ホスト、PCBNBBがp型ホスト、[Ir
(mppr-Me)(dpm)]がゲストである。すなわち、発光素子1では、n型ホ
ストとp型ホストが共に発光層内にあるのに対し、比較発光素子2では、p型ホストが発
光層に存在しない。
Figure 0007451803000005
これらの発光素子を、窒素雰囲気のグローブボックス内において、発光素子が大気に曝さ
れないように封止する作業をおこなった後、発光素子の動作特性について測定をおこなっ
た。なお、測定は室温(25℃に保たれた雰囲気)でおこなった。
発光素子1及び比較発光素子2の電流密度-輝度特性を図4に示す。図4において、横軸
は電流密度(mA/cm)を、縦軸は輝度(cd/m)を表す。また、電圧-輝度特
性を図5に示す。図5において、横軸は電圧(V)を、縦軸は輝度(cd/m)を表す
。また、輝度-電流効率特性を図6に示す。図6において、横軸は輝度(cd/m)を
、縦軸は電流効率(cd/A)を表す。また、輝度-外部量子効率特性を図7に示す。図
7において、横軸は、輝度(cd/m)を、縦軸は外部量子効率(%)を示す。
また、発光素子1及び比較発光素子2における輝度1000cd/m付近のときの電圧
(V)、電流密度(mA/cm)、CIE色度座標(x、y)、電流効率(cd/A)
、パワー効率(lm/W)、外部量子効率(%)を表2に示す。
Figure 0007451803000006
また、発光素子1及び比較発光素子2に0.1mAの電流を流した際の発光スペクトルを
、図8に示す。図8において、横軸は波長(nm)、縦軸は発光強度(任意単位)を表す
。また、表2に示す通り、1200cd/mの輝度の時の発光素子1のCIE色度座標
は(x,y)=(0.56,0.44)であり、960cd/mの輝度の時の比較発光
素子2のCIE色度座標は(x,y)=(0.55,0.44)であった。この結果から
、発光素子1及び比較発光素子2は、[Ir(mppr-Me)(dpm)]に由来す
る橙色発光が得られたことがわかった。
表2及び図4乃至図7からわかるように、発光素子1は、比較発光素子2に比べて、電流
効率、パワー効率、外部量子効率がそれぞれ高い値を示した。一般に、発光体からの光を
外部に取り出すに際しては、基板その他と大気との間で全反射がおこり、内部量子効率の
25%乃至30%しか外部に光を取り出せないとされている。
このことを考慮すると、比較発光素子2ではせいぜい、内部量子効率は60%弱であると
推定されるが、発光素子1は内部量子効率が80%程度にまで高まっていると推定できる
。以上の結果から、本発明の一態様を適用することで、外部量子効率の高い素子を実現で
きることが示された。
次に、発光素子1及び比較発光素子2の信頼性試験をおこなった。信頼性試験の結果を図
9に示す。図9において、縦軸は初期輝度を100%とした時の規格化輝度(%)を示し
、横軸は素子の駆動時間(h)を示す。信頼性試験は、初期輝度を5000cd/m
設定し、電流密度一定の条件で発光素子1を駆動した。
比較発光素子2は、120時間後の輝度が、初期輝度の58%であった。また、発光素子
1は、630時間後の輝度が、初期輝度の65%であった。この結果から、発光素子1は
、比較発光素子2に比べて、寿命の長い素子であることがわかった。以上の結果から、本
発明の一態様を適用することで、信頼性の高い素子を実現できることが示された。
本実施例では、本発明の一態様の発光素子について説明する。本実施例で用いた材料の化
学式を以下に示す。なお、先の実施例で用いた材料の化学式は省略する。
Figure 0007451803000007
以下に、本実施例の発光素子3の作製方法を示す。
(発光素子3)
まず、ガラス基板上に、ITSOをスパッタリング法にて成膜し、陽極として機能する第
1の電極を形成した。なお、その膜厚は110nmとし、電極面積は2mm×2mmとし
た。
次に、基板上に発光素子を形成するための前処理として、基板表面を水で洗浄し、200
℃で1時間焼成した後、UVオゾン処理を370秒おこなった。
その後、10-4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着
装置内の加熱室において、170℃で30分間の真空焼成をおこなった後、基板を30分
程度放冷した。
次に、第1の電極が形成された面が下方となるように、第1の電極が形成された基板を真
空蒸着装置内に設けられた基板ホルダーに固定し、10-4Pa程度まで減圧した後、第
1の電極上に、BPAFLPと酸化モリブデン(VI)を共蒸着することで、正孔注入層
を形成した。その膜厚は、40nmとし、BPAFLPと酸化モリブデンの比率は、重量
比で4:2(=BPAFLP:酸化モリブデン)となるように調節した。
次に、正孔注入層上に、BPAFLPを20nmの膜厚となるように成膜し、正孔輸送層
を形成した。
さらに、2mDBTPDBq-II、PCBNBB、及び[Ir(dppm)(aca
c)]を共蒸着し、正孔輸送層上に発光層を形成した。ここで、2mDBTPDBq-I
I、PCBNBB及び[Ir(dppm)(acac)]の重量比は、0.8:0.2
:0.05(=2mDBTPDBq-II:PCBNBB:[Ir(dppm)(ac
ac)])となるように調節した。また、発光層の膜厚は40nmとした。
次に、発光層上に2mDBTPDBq-IIを膜厚10nmとなるよう成膜し、第1の電
子輸送層を形成した。
次に、第1の電子輸送層上に、BPhenを膜厚20nmとなるように成膜し、第2の電
子輸送層を形成した。
さらに、第2の電子輸送層上に、LiFを1nmの膜厚で蒸着し、電子注入層を形成した
最後に、陰極として機能する第2の電極として、アルミニウムを200nmの膜厚となる
ように蒸着することで、本実施例の発光素子3を作製した。
なお、上述した蒸着過程において、蒸着は全て抵抗加熱法を用いた。
以上により得られた発光素子3の素子構造を表3に示す。
Figure 0007451803000008
発光素子3を、窒素雰囲気のグローブボックス内において、発光素子が大気に曝されない
ように封止する作業をおこなった後、発光素子の動作特性について測定をおこなった。な
お、測定は室温(25℃に保たれた雰囲気)でおこなった。
発光素子3の電流密度-輝度特性を図10に示す。図10において、横軸は電流密度(m
A/cm)を、縦軸は輝度(cd/m)を表す。また、電圧-輝度特性を図11に示
す。図11において、横軸は電圧(V)を、縦軸は輝度(cd/m)を表す。また、輝
度-電流効率特性を図12に示す。図12において、横軸は輝度(cd/m)を、縦軸
は電流効率(cd/A)を表す。また、輝度-外部量子効率特性を図13に示す。図13
において、横軸は、輝度(cd/m)を、縦軸は外部量子効率(%)を示す。
また、発光素子3における輝度1100cd/mのときの電圧(V)、電流密度(mA
/cm)、CIE色度座標(x、y)、電流効率(cd/A)、パワー効率(lm/W
)、外部量子効率(%)を表4に示す。
Figure 0007451803000009
また、発光素子3に0.1mAの電流を流した際の発光スペクトルを、図14に示す。図
14において、横軸は波長(nm)、縦軸は発光強度(任意単位)を表す。また、表4に
示す通り、1100cd/mの輝度の時の発光素子3のCIE色度座標は(x,y)=
(0.54,0.46)であった。この結果から、発光素子3は、[Ir(dppm)
(acac)]に由来する橙色発光が得られたことがわかった。
表4及び図10乃至図13からわかるように、発光素子3は、電流効率、パワー効率、外
部量子効率がそれぞれ高い値を示した。特に、1100cd/mの輝度の時の外部量子
効率が28%と極めて高い値を示した。これは内部量子効率に換算すると、90%以上と
なる。以上の結果から、本発明の一態様を適用することで、外部量子効率の高い素子を実
現できることが示された。
次に、発光素子3の信頼性試験をおこなった。信頼性試験の結果を図15に示す。図15
において、縦軸は初期輝度を100%とした時の規格化輝度(%)を示し、横軸は素子の
駆動時間(h)を示す。
信頼性試験は、初期輝度を5000cd/mに設定し、電流密度一定の条件で発光素子
3を駆動した。320時間後の輝度について、発光素子3は、初期輝度の92%を保って
いた。以上の結果から、本発明の一態様を適用することで、信頼性の高い素子を実現でき
ることが示された。
有機材料のT1準位は、その有機材料の薄膜や溶液の光学測定によって決定することもで
きるが、分子軌道計算によっても得られる。例えば、未知の材料のT1準位を見積もるに
は分子軌道計算が使用できる。本実施例では、ゲストとして用いられるIr(dppm)
acac、Ir(mppr-Me)dpm、N型ホストとして用いられる2mDBT
PDBqII、およびP型ホストとして用いられるPCBNBBのT1準位をそれぞれ算
出した。
計算方法は以下の通りである。最初に、それぞれの分子の一重項基底状態(S)と三重
項励起状態(T)における最安定構造を、密度汎関数法(DFT)を用いて計算した。
さらに、SとTの最安定構造において振動解析をおこない、零点補正したエネルギー
を求めた。SとTの零点補正したエネルギーの差から、T1準位を算出した。
N型ホスト分子およびP型ホスト分子の計算では、全ての原子の基底関数として、6-3
11G(それぞれの原子価軌道に三つの短縮関数を用いたtriple split v
alence基底系の基底関数)を用いた。上述の基底関数により、例えば、H原子であ
れば、1s~3sの軌道が考慮され、また、C原子であれば、1s~4s、2p~4pの
軌道が考慮されることになる。さらに、計算精度向上のため、分極基底系として、H原子
にはp関数を、H原子以外にはd関数を加えた。汎関数にはB3LYPを用いて、交換と
相関エネルギーに係る各パラメータの重みを規定した。
ゲスト分子の計算では、Ir原子の基底関数にはLanL2DZを用いた。Ir原子以外
の基底関数には6-311Gを用いた。さらに、計算精度向上のため、分極基底系として
、H原子にはp関数を、H原子以外にはd関数を加えた。汎関数にはB3PW91を用い
て、交換と相関エネルギーに係る各パラメータの重みを規定した。
なお、量子化学計算プログラムとしては、Gaussian09を使用した。計算は、ハ
イパフォーマンスコンピュータ(SGI社製、Altix4700)を用いておこなった
計算によって得られたT1準位は、Ir(dppm)acacは2.13電子ボルト、
Ir(mppr-Me)dpmは2.13電子ボルト、2mDBTPDBqIIは2.
42電子ボルト、PCBNBBは2.31電子ボルトであった。これらの値は、光学測定
で得られたものに近いものであった。
以上の結果より、N型ホストとして用いられる2mDBTPDBqII、およびP型ホス
トとして用いられるPCBNBBのT1準位は、ゲストとして用いられるIr(dppm
acac、Ir(mppr-Me)dpmのT1準位よりも0.15eV以上高い
ことが分かった。そのため、ゲスト分子の三重項励起状態からN型ホスト分子またはP型
ホスト分子の三重項励起状態への遷移を十分に防止することができ、外部量子効率が高い
発光素子を得ることができることが示唆された。
このように光学測定で得られるT1準位と分子軌道計算によって得られるT1準位は非常
に近いものである。したがって、新しい有機化合物を合成せずとも、分子軌道計算をおこ
ない、その有機化合物のT1準位を評価し、その有機化合物が発光効率を高める上で有用
か否かを判定できる。
101 基板
102 発光層
103 第1の電極
104 第2の電極
105 第1のキャリアの注入層
106 第1のキャリアの輸送層
107 第2のキャリアの注入層
108 第2のキャリアの輸送層
110 EL層
110a EL層
110b EL層
111 電荷発生層
201 陽極
202 正孔注入層
203 正孔輸送層
204 発光層
205 電子輸送層
206 電子注入バッファー層
207 電子リレー層
208 複合材料層
209 陰極
210 EL層

Claims (5)

  1. 陽極と陰極との間に、発光層を有し、
    前記発光層は、燐光性化合物と、電子輸送性を有する第1の有機化合物と、正孔輸送性を有する第2の有機化合物と、を含み、
    前記陽極と前記発光層との間に、芳香族アミン化合物またはカルバゾール誘導体である第3の有機化合物と、アクセプターと、を含み、
    前記第1の有機化合物と、前記第2の有機化合物とは、励起錯体を形成する組み合わせであり、
    前記励起錯体の発光スペクトルは、前記燐光性化合物の最も長波長側に位置する吸収帯と重なり、
    前記第2の有機化合物のHOMO準位が前記燐光性化合物のHOMO準位よりも0.1電子ボルト以上低い発光素子。
  2. 陽極と陰極との間に、発光層を有し、
    前記発光層は、燐光性化合物と、電子輸送性を有する第1の有機化合物と、正孔輸送性を有する第2の有機化合物と、を含み、
    前記陽極と前記発光層との間に、芳香族アミン化合物またはカルバゾール誘導体である第3の有機化合物と、アクセプターと、を含み、
    前記第1の有機化合物と、前記第2の有機化合物とは、励起錯体を形成する組み合わせであり、
    前記励起錯体の発光スペクトルは、前記燐光性化合物の最も長波長側に位置する吸収帯と重なり、
    前記第1の有機化合物の三重項励起状態と基底状態のエネルギー差は、前記燐光性化合物の三重項励起状態と基底状態のエネルギー差より0.15電子ボルト以上大きく、
    前記第2の有機化合物の三重項励起状態と基底状態のエネルギー差は、前記燐光性化合物の三重項励起状態と基底状態のエネルギー差より0.15電子ボルト以上大きい発光素子。
  3. 請求項1または請求項2において、
    前記燐光性化合物の最も長波長側に位置する吸収帯のモル吸光係数は、2000 -1・cm-1以上である発光素子。
  4. 請求項1乃至請求項3のいずれか一項において、
    前記燐光性化合物は、有機金属錯体である発光素子。
  5. 請求項1乃至請求項4のいずれか一項に記載の発光素子を有する発光装置。
JP2023076493A 2011-02-28 2023-05-08 発光素子および発光装置 Active JP7451803B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2011042120 2011-02-28
JP2011042122 2011-02-28
JP2011042120 2011-02-28
JP2011042122 2011-02-28
JP2021129470A JP2021182637A (ja) 2011-02-28 2021-08-06 発光素子及び発光装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021129470A Division JP2021182637A (ja) 2011-02-28 2021-08-06 発光素子及び発光装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024033922A Division JP2024063197A (ja) 2011-02-28 2024-03-06 発光素子および発光装置

Publications (2)

Publication Number Publication Date
JP2023099181A JP2023099181A (ja) 2023-07-11
JP7451803B2 true JP7451803B2 (ja) 2024-03-18

Family

ID=46718371

Family Applications (7)

Application Number Title Priority Date Filing Date
JP2012039503A Active JP6050007B2 (ja) 2011-02-28 2012-02-27 発光素子
JP2016227614A Active JP6320494B2 (ja) 2011-02-28 2016-11-24 発光素子、発光装置
JP2018071321A Active JP6608987B2 (ja) 2011-02-28 2018-04-03 発光素子および発光装置
JP2018218423A Active JP6568292B2 (ja) 2011-02-28 2018-11-21 発光素子及び発光装置
JP2019193380A Active JP6928636B2 (ja) 2011-02-28 2019-10-24 発光素子、及び発光装置
JP2021129470A Withdrawn JP2021182637A (ja) 2011-02-28 2021-08-06 発光素子及び発光装置
JP2023076493A Active JP7451803B2 (ja) 2011-02-28 2023-05-08 発光素子および発光装置

Family Applications Before (6)

Application Number Title Priority Date Filing Date
JP2012039503A Active JP6050007B2 (ja) 2011-02-28 2012-02-27 発光素子
JP2016227614A Active JP6320494B2 (ja) 2011-02-28 2016-11-24 発光素子、発光装置
JP2018071321A Active JP6608987B2 (ja) 2011-02-28 2018-04-03 発光素子および発光装置
JP2018218423A Active JP6568292B2 (ja) 2011-02-28 2018-11-21 発光素子及び発光装置
JP2019193380A Active JP6928636B2 (ja) 2011-02-28 2019-10-24 発光素子、及び発光装置
JP2021129470A Withdrawn JP2021182637A (ja) 2011-02-28 2021-08-06 発光素子及び発光装置

Country Status (5)

Country Link
US (5) US9929350B2 (ja)
JP (7) JP6050007B2 (ja)
KR (5) KR102028311B1 (ja)
CN (1) CN102655222B (ja)
TW (5) TWI743606B (ja)

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4565342B2 (ja) * 2006-04-28 2010-10-20 繁男 中尾 家屋等の壁面用ブロック
KR102345510B1 (ko) 2011-02-16 2021-12-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자
KR102136426B1 (ko) 2011-02-16 2020-07-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 엘리먼트
JP2012195572A (ja) 2011-02-28 2012-10-11 Semiconductor Energy Lab Co Ltd 発光層および発光素子
TWI743606B (zh) 2011-02-28 2021-10-21 日商半導體能源研究所股份有限公司 發光元件
KR102112967B1 (ko) 2011-03-23 2020-05-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자
DE112012001504B4 (de) 2011-03-30 2017-09-21 Semiconductor Energy Laboratory Co., Ltd. Lichtemittierendes Element
KR102479832B1 (ko) 2011-04-07 2022-12-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자
WO2012147896A1 (en) 2011-04-29 2012-11-01 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
TWI532822B (zh) 2011-04-29 2016-05-11 半導體能源研究所股份有限公司 利用磷光之發光裝置,電子裝置及照明裝置
JP2013147490A (ja) 2011-12-23 2013-08-01 Semiconductor Energy Lab Co Ltd イリジウム錯体、発光素子、発光装置、電子機器、及び照明装置
KR101803537B1 (ko) 2012-02-09 2017-11-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자
DE112013007607B3 (de) 2012-03-14 2018-02-08 Semiconductor Energy Laboratory Co., Ltd. Licht emittierende Vorrichtung, elektronisches Gerät und Beleuchtungsvorrichtung
DE112013001468T5 (de) 2012-03-14 2014-12-04 Semiconductor Energy Laboratory Co., Ltd. Licht emittierendes Element, Licht emittierende Vorrichtung, Anzeigevorrichtung, elektronisches Gerät und Beleuchtungsvorrichtung
JP2013232629A (ja) 2012-04-06 2013-11-14 Semiconductor Energy Lab Co Ltd 発光素子、発光装置、電子機器、および照明装置
JP6158543B2 (ja) 2012-04-13 2017-07-05 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、および照明装置
JP6158542B2 (ja) 2012-04-13 2017-07-05 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、および照明装置
JP6159037B2 (ja) * 2012-04-20 2017-07-05 株式会社半導体エネルギー研究所 発光素子、照明装置、発光装置、表示装置、電子機器
DE112013002110B4 (de) 2012-04-20 2017-09-07 Semiconductor Energy Laboratory Co., Ltd. Licht emittierendes Element, Licht emittierende Vorrichtung, elektronisches Gerät und Beleuchtungsvorrichtung
JP6076153B2 (ja) 2012-04-20 2017-02-08 株式会社半導体エネルギー研究所 発光素子、発光装置、表示装置、電子機器及び照明装置
WO2013157506A1 (en) 2012-04-20 2013-10-24 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic appliance, and lighting device
US8994013B2 (en) 2012-05-18 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
US8916897B2 (en) 2012-05-31 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
JP6117618B2 (ja) 2012-06-01 2017-04-19 株式会社半導体エネルギー研究所 有機金属錯体、発光素子、発光装置、電子機器、及び照明装置
JP2014043437A (ja) 2012-08-03 2014-03-13 Semiconductor Energy Lab Co Ltd 有機化合物、発光素子、発光装置、電子機器、及び照明装置
KR20230048452A (ko) 2012-08-03 2023-04-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자 장치 및 조명 장치
TWI638472B (zh) 2012-08-03 2018-10-11 日商半導體能源研究所股份有限公司 發光元件
TWI733065B (zh) 2012-08-03 2021-07-11 日商半導體能源研究所股份有限公司 發光元件、發光裝置、顯示裝置、電子裝置及照明設備
KR102137376B1 (ko) 2012-08-03 2020-07-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 표시 장치, 전자 기기, 및 조명 장치
KR102204794B1 (ko) 2012-08-10 2021-01-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 표시 장치, 전자 기기 및 조명 장치
WO2014109274A1 (en) 2013-01-10 2014-07-17 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
KR102178256B1 (ko) * 2013-03-27 2020-11-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
US10043982B2 (en) 2013-04-26 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
WO2014185434A1 (en) 2013-05-16 2014-11-20 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
KR102230139B1 (ko) 2013-05-17 2021-03-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 조명 장치, 발광 장치, 및 전자 기기
CN108299511B (zh) 2013-06-14 2021-03-12 株式会社半导体能源研究所 有机金属铱配合物、发光元件、发光装置以及照明装置
CN103367653B (zh) * 2013-07-10 2016-02-03 上海和辉光电有限公司 倒置型有机发光二极管显示器件及其制备方法
KR102513242B1 (ko) * 2013-08-26 2023-03-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 표시 장치, 조명 장치, 및 전자 기기
KR102327980B1 (ko) 2013-12-02 2021-11-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 모듈, 조명 모듈, 발광 장치, 표시 장치, 전자 기기, 및 조명 장치
KR102523989B1 (ko) 2013-12-02 2023-04-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
TWI742416B (zh) * 2014-02-21 2021-10-11 日商半導體能源研究所股份有限公司 發光元件、發光裝置、電子裝置、及照明裝置
KR20150130224A (ko) 2014-05-13 2015-11-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 표시 장치, 전자 기기, 및 조명 장치
TWI729649B (zh) 2014-05-30 2021-06-01 日商半導體能源研究所股份有限公司 發光元件,發光裝置,電子裝置以及照明裝置
JP2015231018A (ja) * 2014-06-06 2015-12-21 株式会社ジャパンディスプレイ 有機el表示装置
JP6780925B2 (ja) 2014-07-25 2020-11-04 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器及び照明装置
US10741772B2 (en) 2014-08-29 2020-08-11 Samsung Electronics Co., Ltd. Organic light-emitting device
KR102353647B1 (ko) 2014-08-29 2022-01-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 장치, 전자 기기, 및 조명 장치
CN106716668B (zh) 2014-09-30 2020-04-28 株式会社半导体能源研究所 发光元件、显示装置、电子设备以及照明装置
US20160104855A1 (en) 2014-10-10 2016-04-14 Semiconductor Energy Laboratory Co., Ltd. Light-Emitting Element, Display Device, Electronic Device, and Lighting Device
KR101706752B1 (ko) * 2015-02-17 2017-02-27 서울대학교산학협력단 호스트, 인광 도펀트 및 형광 도펀트를 포함하는 유기발광소자
US10062861B2 (en) 2015-02-24 2018-08-28 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US10903440B2 (en) 2015-02-24 2021-01-26 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
TWI704706B (zh) 2015-03-09 2020-09-11 日商半導體能源研究所股份有限公司 發光元件、顯示裝置、電子裝置及照明設置
TWI737594B (zh) 2015-03-09 2021-09-01 日商半導體能源研究所股份有限公司 發光元件,顯示裝置,電子裝置,與照明裝置
JP6697299B2 (ja) 2015-04-01 2020-05-20 株式会社半導体エネルギー研究所 有機金属錯体、発光素子、発光装置、電子機器、および照明装置
DE112016002297T5 (de) 2015-05-21 2018-03-15 Semiconductor Energy Laboratory Co., Ltd. Licht emittierendes Element, Anzeigevorrichtung, elektronisches Gerät und Beleuchtungsvorrichtung
TWI757234B (zh) 2015-05-21 2022-03-11 日商半導體能源研究所股份有限公司 發光元件、顯示裝置、電子裝置、及照明裝置
CN110600635A (zh) 2015-05-29 2019-12-20 株式会社半导体能源研究所 发光元件、发光装置、显示装置、电子设备以及照明装置
KR102330331B1 (ko) 2015-07-17 2021-11-25 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
KR20240047495A (ko) 2015-07-21 2024-04-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 장치, 전자 기기, 및 조명 장치
TWI804457B (zh) 2015-07-23 2023-06-11 日商半導體能源研究所股份有限公司 發光元件,顯示裝置,電子裝置,以及照明裝置
JP6860989B2 (ja) 2015-07-24 2021-04-21 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器および照明装置
KR20240039072A (ko) 2015-08-07 2024-03-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치, 표시 장치, 전자 기기, 및 조명 장치
KR20170038681A (ko) 2015-09-30 2017-04-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 장치, 전자 기기, 및 조명 장치
WO2017055963A1 (en) * 2015-09-30 2017-04-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
DE112016005489T5 (de) 2015-12-01 2018-08-23 Semiconductor Energy Laboratory Co., Ltd. Licht emittierendes Element, Licht emittierende Vorrichtung, elektronisches Gerät und Beleuchtungsvorrichtung
JP6739804B2 (ja) * 2015-12-28 2020-08-12 国立大学法人九州大学 有機エレクトロルミネッセンス素子
US10096658B2 (en) 2016-04-22 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US10756286B2 (en) 2016-05-06 2020-08-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
CN113130808A (zh) 2016-05-06 2021-07-16 株式会社半导体能源研究所 发光元件、显示装置
KR102289388B1 (ko) 2016-05-20 2021-08-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 장치, 전자 기기, 및 조명 장치
KR20180010136A (ko) 2016-07-20 2018-01-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기 화합물, 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
WO2018033820A1 (en) 2016-08-17 2018-02-22 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
CN109791994B (zh) * 2016-09-28 2021-10-01 夏普株式会社 显示装置及其制造方法
WO2018100476A1 (en) 2016-11-30 2018-06-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
EP3553151A4 (en) * 2016-12-06 2019-12-11 Kyushu University, National University Corporation PHOSPHORESCENT SUBSTANCE AND PHOSPHORESCENT ELEMENT
KR102024811B1 (ko) * 2017-08-02 2019-11-14 서울대학교산학협력단 유기 발광 소자
CN111656549A (zh) 2017-11-02 2020-09-11 株式会社半导体能源研究所 发光元件、显示装置、电子设备及照明装置
US11462696B2 (en) 2018-01-19 2022-10-04 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
WO2019171197A1 (ja) 2018-03-07 2019-09-12 株式会社半導体エネルギー研究所 発光素子、表示装置、電子機器、有機化合物及び照明装置
KR20200080882A (ko) * 2018-12-27 2020-07-07 엘지디스플레이 주식회사 유기발광다이오드 및 유기발광표시장치
CN109830612A (zh) * 2019-01-31 2019-05-31 瑞声科技(南京)有限公司 有机电致发光器件
CN113412508A (zh) 2019-02-06 2021-09-17 株式会社半导体能源研究所 发光器件、发光设备、显示装置、电子设备及照明装置
CN114975802B (zh) * 2021-02-25 2023-12-26 京东方科技集团股份有限公司 发光器件、发光基板和发光装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006203172A (ja) 2004-12-22 2006-08-03 Fuji Photo Film Co Ltd 有機電界発光素子
WO2011092939A1 (ja) 2010-01-26 2011-08-04 シャープ株式会社 有機エレクトロルミネッセンス素子、およびその製造方法、ならびに有機エレクトロルミネッセンス表示装置

Family Cites Families (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0785972A (ja) 1993-09-20 1995-03-31 Toshiba Corp 有機el素子
DE19638770A1 (de) * 1996-09-21 1998-03-26 Philips Patentverwaltung Organisches elektrolumineszentes Bauelement mit Exciplex
US6830828B2 (en) 1998-09-14 2004-12-14 The Trustees Of Princeton University Organometallic complexes as phosphorescent emitters in organic LEDs
EP3321954A1 (en) 1999-05-13 2018-05-16 The Trustees of Princeton University Very high efficiency organic light emitting devices based on electrophosphorescence
EP1202608B2 (en) 2000-10-30 2012-02-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Organic light-emitting devices
US6803720B2 (en) 2000-12-15 2004-10-12 Universal Display Corporation Highly stable and efficient OLEDs with a phosphorescent-doped mixed layer architecture
SG138466A1 (en) 2000-12-28 2008-01-28 Semiconductor Energy Lab Luminescent device
TW519770B (en) 2001-01-18 2003-02-01 Semiconductor Energy Lab Light emitting device and manufacturing method thereof
US7199515B2 (en) 2001-06-01 2007-04-03 Semiconductor Energy Laboratory Co., Ltd. Organic light emitting element and light emitting device using the element
ITTO20010692A1 (it) * 2001-07-13 2003-01-13 Consiglio Nazionale Ricerche Dispositivo elettroluminescente organico basato sull'emissione di ecciplessi od elettroplessi e sua realizzazione.
US6863997B2 (en) 2001-12-28 2005-03-08 The Trustees Of Princeton University White light emitting OLEDs from combined monomer and aggregate emission
US6872472B2 (en) 2002-02-15 2005-03-29 Eastman Kodak Company Providing an organic electroluminescent device having stacked electroluminescent units
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
ITBO20020165A1 (it) * 2002-03-29 2003-09-29 Consiglio Nazionale Ricerche Dispositivo elettroluminescente organico con droganti cromofori
TWI314947B (en) 2002-04-24 2009-09-21 Eastman Kodak Compan Organic light emitting diode devices with improved operational stability
EP1551206A4 (en) 2002-10-09 2007-12-05 Idemitsu Kosan Co ORGANIC ELECTROLUMINESCENCE ELEMENT
TWI316827B (en) * 2003-02-27 2009-11-01 Toyota Jidoshokki Kk Organic electroluminescent device
JP4531342B2 (ja) 2003-03-17 2010-08-25 株式会社半導体エネルギー研究所 白色有機発光素子および発光装置
US6936961B2 (en) * 2003-05-13 2005-08-30 Eastman Kodak Company Cascaded organic electroluminescent device having connecting units with N-type and P-type organic layers
JP4484476B2 (ja) * 2003-09-05 2010-06-16 富士フイルム株式会社 有機電界発光素子
US7175922B2 (en) 2003-10-22 2007-02-13 Eastman Kodak Company Aggregate organic light emitting diode devices with improved operational stability
WO2005073338A2 (en) * 2003-12-04 2005-08-11 Massachusetts Institute Of Technology Fluorescent, semi-conductive polymers, and devices comprising them
JP3743005B2 (ja) 2004-01-29 2006-02-08 日本精機株式会社 有機elパネル
JP2008509565A (ja) * 2004-08-13 2008-03-27 ノヴァレッド・アクチエンゲゼルシャフト 発光成分用積層体
US7273663B2 (en) * 2004-08-20 2007-09-25 Eastman Kodak Company White OLED having multiple white electroluminescence units
US7560862B2 (en) * 2004-10-22 2009-07-14 Eastman Kodak Company White OLEDs with a color-compensated electroluminescent unit
JP4362461B2 (ja) * 2004-11-05 2009-11-11 三星モバイルディスプレイ株式會社 有機電界発光素子
US7597967B2 (en) 2004-12-17 2009-10-06 Eastman Kodak Company Phosphorescent OLEDs with exciton blocking layer
US20060134464A1 (en) 2004-12-22 2006-06-22 Fuji Photo Film Co. Ltd Organic electroluminescent element
JP4850521B2 (ja) 2005-02-28 2012-01-11 富士フイルム株式会社 有機電界発光素子
US20060194076A1 (en) 2005-02-28 2006-08-31 Fuji Photo Film Co., Ltd. Organic electroluminescent element
JP4912745B2 (ja) * 2005-05-20 2012-04-11 株式会社半導体エネルギー研究所 発光素子及び発光装置
US8920940B2 (en) 2005-05-20 2014-12-30 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light-emitting device
TWI270573B (en) * 2005-06-15 2007-01-11 Au Optronics Corp Light emission material and organic electroluminescent device using the same
JP2007001895A (ja) 2005-06-22 2007-01-11 Tosoh Corp 燐光ホスト化合物及びそれを用いた有機電界発光素子
JP2007042875A (ja) * 2005-08-03 2007-02-15 Fujifilm Holdings Corp 有機電界発光素子
JP4972728B2 (ja) * 2005-08-30 2012-07-11 日本電信電話株式会社 有機材料層形成方法
US20070090756A1 (en) 2005-10-11 2007-04-26 Fujifilm Corporation Organic electroluminescent element
US20070122657A1 (en) 2005-11-30 2007-05-31 Eastman Kodak Company Electroluminescent device containing a phenanthroline derivative
US20070252516A1 (en) * 2006-04-27 2007-11-01 Eastman Kodak Company Electroluminescent devices including organic EIL layer
US9666826B2 (en) 2005-11-30 2017-05-30 Global Oled Technology Llc Electroluminescent device including an anthracene derivative
US7553558B2 (en) 2005-11-30 2009-06-30 Eastman Kodak Company Electroluminescent device containing an anthracene derivative
CN102633820B (zh) 2005-12-01 2015-01-21 新日铁住金化学株式会社 有机电致发光元件用化合物及有机电致发光元件
EP2004616B1 (en) * 2006-03-21 2014-05-21 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element, light-emitting device, electronic device using the quinoxaline derivative
WO2007127069A1 (en) 2006-04-27 2007-11-08 Eastman Kodak Company Electroluminescent device including an anthracene derivative
US9118020B2 (en) 2006-04-27 2015-08-25 Global Oled Technology Llc Electroluminescent devices including organic eil layer
EP1876658A3 (en) * 2006-07-04 2014-06-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
JP5205584B2 (ja) * 2006-09-06 2013-06-05 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子および表示装置
CN104091899B (zh) 2006-11-30 2017-01-11 株式会社半导体能源研究所 发光装置
JP5238227B2 (ja) * 2006-12-27 2013-07-17 株式会社半導体エネルギー研究所 有機金属錯体および有機金属錯体を用いた発光素子、発光装置、並びに電子機器
TW200908777A (en) 2007-03-23 2009-02-16 Idemitsu Kosan Co Organic el device
JP2008288344A (ja) 2007-05-16 2008-11-27 Nippon Hoso Kyokai <Nhk> 有機el素子
KR101547159B1 (ko) * 2007-05-18 2015-08-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광소자 및 발광소자를 포함하는 전자기기
US8034465B2 (en) 2007-06-20 2011-10-11 Global Oled Technology Llc Phosphorescent oled having double exciton-blocking layers
US8080811B2 (en) * 2007-12-28 2011-12-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing evaporation donor substrate and light-emitting device
US20090191427A1 (en) 2008-01-30 2009-07-30 Liang-Sheng Liao Phosphorescent oled having double hole-blocking layers
EP2091097A3 (en) * 2008-02-13 2013-05-15 Semiconductor Energy Laboratory Co, Ltd. Light-emitting element, light-emitting device, and electronic device
TWI478624B (zh) * 2008-03-27 2015-03-21 Nippon Steel & Sumikin Chem Co Organic electroluminescent elements
JP5325707B2 (ja) * 2008-09-01 2013-10-23 株式会社半導体エネルギー研究所 発光素子
WO2010026859A1 (en) 2008-09-05 2010-03-11 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
JP5306038B2 (ja) 2009-04-24 2013-10-02 ユー・ディー・シー アイルランド リミテッド 有機エレクトロルミネッセンス素子
US8766269B2 (en) 2009-07-02 2014-07-01 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, lighting device, and electronic device
CN102484923B (zh) * 2009-09-04 2016-05-04 株式会社半导体能源研究所 发光元件、发光装置及其制造方法
WO2011042443A1 (en) 2009-10-05 2011-04-14 Thorn Lighting Ltd. Multilayer organic device
KR101352116B1 (ko) 2009-11-24 2014-01-14 엘지디스플레이 주식회사 백색 유기 발광 소자
JP5124785B2 (ja) 2009-12-07 2013-01-23 新日鉄住金化学株式会社 有機発光材料及び有機発光素子
KR102345510B1 (ko) 2011-02-16 2021-12-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자
WO2012111680A1 (en) 2011-02-16 2012-08-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting body, light-emitting layer, and light-emitting device
KR102136426B1 (ko) * 2011-02-16 2020-07-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 엘리먼트
TWI743606B (zh) 2011-02-28 2021-10-21 日商半導體能源研究所股份有限公司 發光元件
JP2012195572A (ja) 2011-02-28 2012-10-11 Semiconductor Energy Lab Co Ltd 発光層および発光素子
KR102112967B1 (ko) 2011-03-23 2020-05-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자
DE112012001504B4 (de) 2011-03-30 2017-09-21 Semiconductor Energy Laboratory Co., Ltd. Lichtemittierendes Element
JP6115075B2 (ja) 2011-10-26 2017-04-19 東ソー株式会社 4−アミノカルバゾール化合物及びその用途
EP2772483B1 (en) 2011-10-26 2017-03-29 Tosoh Corporation 4-aminocarbazole compound and use of same
KR101803537B1 (ko) 2012-02-09 2017-11-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자
KR101419810B1 (ko) 2012-04-10 2014-07-15 서울대학교산학협력단 엑시플렉스를 형성하는 공동 호스트를 포함하는 유기 발광 소자
JP6158542B2 (ja) * 2012-04-13 2017-07-05 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、および照明装置
DE112013002110B4 (de) 2012-04-20 2017-09-07 Semiconductor Energy Laboratory Co., Ltd. Licht emittierendes Element, Licht emittierende Vorrichtung, elektronisches Gerät und Beleuchtungsvorrichtung
WO2013157506A1 (en) * 2012-04-20 2013-10-24 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic appliance, and lighting device
KR20230048452A (ko) * 2012-08-03 2023-04-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자 장치 및 조명 장치
TWI804457B (zh) 2015-07-23 2023-06-11 日商半導體能源研究所股份有限公司 發光元件,顯示裝置,電子裝置,以及照明裝置
JP6714364B2 (ja) 2016-01-14 2020-06-24 国立大学法人九州大学 有機エレクトロルミネッセンス素子、素子群、有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子の発光波長制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006203172A (ja) 2004-12-22 2006-08-03 Fuji Photo Film Co Ltd 有機電界発光素子
WO2011092939A1 (ja) 2010-01-26 2011-08-04 シャープ株式会社 有機エレクトロルミネッセンス素子、およびその製造方法、ならびに有機エレクトロルミネッセンス表示装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Akira Tsuboyama, et al.,Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphorescence and Application to Organic Light-Emitting Diode,J.AM.CHEM.SOC.,2003年,Vol.125,12971-12979
Marina Kondakova, et al.,High-efficiency, low-voltage phosphorescent organic light-emitting diode devices with mixed host,J.APPL.PHYS.,2008年,Vol.104,094501-1~17

Also Published As

Publication number Publication date
JP2021182637A (ja) 2021-11-25
TWI563702B (en) 2016-12-21
KR102093655B1 (ko) 2020-03-27
KR20120100751A (ko) 2012-09-12
JP2012195573A (ja) 2012-10-11
JP2019054270A (ja) 2019-04-04
US20210175429A1 (en) 2021-06-10
KR20220110717A (ko) 2022-08-09
KR20190112696A (ko) 2019-10-07
US20120217487A1 (en) 2012-08-30
TW202220957A (zh) 2022-06-01
JP6050007B2 (ja) 2016-12-21
JP2017063217A (ja) 2017-03-30
JP6320494B2 (ja) 2018-05-09
JP6568292B2 (ja) 2019-08-28
KR102248531B1 (ko) 2021-05-06
TW201707252A (zh) 2017-02-16
JP6928636B2 (ja) 2021-09-01
US10505120B2 (en) 2019-12-10
US10930852B2 (en) 2021-02-23
TWI617064B (zh) 2018-03-01
US20180212154A1 (en) 2018-07-26
JP6608987B2 (ja) 2019-11-20
KR20200033247A (ko) 2020-03-27
JP2020025120A (ja) 2020-02-13
TWI831058B (zh) 2024-02-01
CN102655222A (zh) 2012-09-05
JP2023099181A (ja) 2023-07-11
TW201242132A (en) 2012-10-16
US20200111966A1 (en) 2020-04-09
TW201830748A (zh) 2018-08-16
US20230079236A1 (en) 2023-03-16
TWI680600B (zh) 2019-12-21
TWI743606B (zh) 2021-10-21
US9929350B2 (en) 2018-03-27
KR102028311B1 (ko) 2019-10-07
KR20210049758A (ko) 2021-05-06
US11508912B2 (en) 2022-11-22
CN102655222B (zh) 2016-08-24
JP2018137459A (ja) 2018-08-30
TW202029551A (zh) 2020-08-01

Similar Documents

Publication Publication Date Title
JP7451803B2 (ja) 発光素子および発光装置
JP6935481B2 (ja) 発光素子
JP7308908B2 (ja) 発光装置
JP2024063197A (ja) 発光素子および発光装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240306

R150 Certificate of patent or registration of utility model

Ref document number: 7451803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150