JP7447431B2 - 単結晶成長方法 - Google Patents

単結晶成長方法 Download PDF

Info

Publication number
JP7447431B2
JP7447431B2 JP2019197405A JP2019197405A JP7447431B2 JP 7447431 B2 JP7447431 B2 JP 7447431B2 JP 2019197405 A JP2019197405 A JP 2019197405A JP 2019197405 A JP2019197405 A JP 2019197405A JP 7447431 B2 JP7447431 B2 JP 7447431B2
Authority
JP
Japan
Prior art keywords
single crystal
crystal growth
radial direction
crucible
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019197405A
Other languages
English (en)
Other versions
JP2021070601A (ja
Inventor
陽平 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2019197405A priority Critical patent/JP7447431B2/ja
Publication of JP2021070601A publication Critical patent/JP2021070601A/ja
Application granted granted Critical
Publication of JP7447431B2 publication Critical patent/JP7447431B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、単結晶成長方法に関する。
炭化珪素(SiC)は、シリコン(Si)に比べて絶縁破壊電界が1桁大きく、バンドギャップが3倍大きい。また、炭化珪素(SiC)は、シリコン(Si)に比べて熱伝導率が3倍程度高い等の特性を有する。そのため炭化珪素(SiC)は、パワーデバイス、高周波デバイス、高温動作デバイス等への応用が期待されている。このため、近年、上記のような半導体デバイスにSiCエピタキシャルウェハが用いられるようになっている。
SiCエピタキシャルウェハは、SiC単結晶基板上に化学的気相成長法(Chemical Vapor Deposition:CVD)によってSiC半導体デバイスの活性領域となるSiCエピタキシャル膜を成長させることによって製造される。
SiC単結晶基板は、SiC単結晶を切り出して作製する。このSiC単結晶は、一般に昇華法によって得ることができる。昇華法は、黒鉛製の坩堝内に配置した台座にSiC単結晶からなる種結晶を配置し、坩堝を加熱することで坩堝内の原料粉末から昇華した昇華ガスを種結晶に供給し、種結晶をより大きなSiC単結晶へ成長させる方法である。
長尺のSiC単結晶は、多くのSiC単結晶基板を切り出すことができ、生産効率に優れる。そのため、SiC単結晶の長尺化の要望が高まっている。例えば、特許文献1には、種結晶を引き上げながら結晶成長を行うことで、炭化珪素単結晶を長尺化させることが記載されている。また特許文献1には、台座の裏面にザグリを設けることで、長尺成長を行う際にも、結晶成長面近傍における等温面の形状を凸に保つことができ、単結晶の凸面成長を維持できることが記載されている。
特開2013-227167号公報
単結晶は、結晶成長面近傍における等温面の形状に沿って成長する。単結晶を長尺化する際に、単結晶の凸面成長を維持しようとすると、単結晶の種結晶側における等温面も凸になる。単結晶の種結晶側における等温面が凸になると、種結晶側に応力が集中し、基底面転位(BPD)の原因となる。
本発明は上記問題に鑑みてなされたものであり、長尺の単結晶成長を行っても欠陥が発生しにくい単結晶成長方法を提供することを目的とする。
本発明は、上記課題を解決するため、以下の手段を提供する。
(1)第1の態様にかかる単結晶成長方法は、原料から昇華したガスを種結晶の表面で再結晶化させることで単結晶が成長する昇華法を用いた単結晶成長方法であって、前記単結晶が10mm以上成長した結晶成長過程において、前記単結晶のテイルの径方向の温度差を、前記単結晶のヘッドの径方向の温度差より小さくし、前記テイルは、前記単結晶の前記種結晶と接する前記単結晶の底面であり、前記ヘッドは、前記単結晶の内部において、結晶成長面の前記底面に最も近い位置を通り前記底面と平行な面である。
(2)上記態様にかかる単結晶成長方法の前記結晶成長過程の単結晶内において、任意の2つの等温面のうち前記結晶成長面側の等温面を前記底面側の等温面より大きく湾曲させてもよい。
(3)上記態様にかかる単結晶成長方法において、前記テイルの径方向の温度差が15度以下であってもよい。
(4)上記態様にかかる単結晶成長方法において、前記ヘッドの径方向の温度差が15度以下であってもよい。
上記態様にかかる単結晶成長方法によれば、長尺の単結晶成長を行っても欠陥が発生しにくい。
本実施形態に係る単結晶成長方法の結晶成長過程の状態を説明するための断面図である。 本実施形態に係る単結晶成長方法の結晶成長過程における温度分布を示す模式図である。 本実施形態に係る単結晶成長方法を実現するための具体的な一例を説明するための模式図である。 実施例1にかかる単結晶成長装置の結晶成長過程の温度分布をシミュレーションで求めた結果。
以下、本実施形態にかかる単結晶成長方法について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材質、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
(単結晶成長方法)
本実施形態に係る単結晶成長方法は、昇華法を用いた単結晶成長方法である。昇華法は、原料から昇華したガスを種結晶の表面で再結晶化することで単結晶を成長させる方法である。例えば、内部に結晶成長空間を有する坩堝の底部に原料を充填し、蓋に種結晶を設置し、坩堝を加熱する。加熱された原料は、種結晶に向って昇華し、種結晶表面で再結晶化する。再結晶化により種結晶表面に単結晶が成長する。
図1は、本実施形態に係る単結晶成長方法の結晶成長過程の状態を説明するための断面図である。図1は、種結晶1上に単結晶2が成長した状態を示す。以下、種結晶1の設置面と平行な一方向をx方向、種結晶1の設置面と平行でx方向と直交する方向をy方向、xy方向と直交する方向をz方向と称する。また種結晶1をz方向から平面視した際の中心から広がる方向を径方向と称する。図1には、種結晶1の中心を通り、z方向に延びる中心軸cを示す。
種結晶1は、例えば、原料と対向する位置に設置される。種結晶1はSiCである。単結晶2は、種結晶1の原料と対向する面に成長する。
単結晶2はSiCである。単結晶2の種結晶1との界面を底面2a、底面2aと反対側の面を結晶成長面2b、底面2aと結晶成長面2bとを繋ぐ面を側面2sと称する。結晶成長面2bは、原料から昇華した昇華ガスが再結晶化する面である。底面2a及び結晶成長面2bと側面2sとの境界は、単結晶2に接する接面のz方向に対する傾きの変化量が極大となる部分である。
単結晶2は、種結晶1から-z方向に成長する。単結晶2の成長初期の部分はテイル、成長後期の部分はヘッドと呼ばれる場合がある。以下、本明細書において、単結晶2の底面2aをテイル2tと称する。また単結晶2の内部にあり、結晶成長面2bの最も+z方向の位置を通りxy平面と平行な面をヘッド2hと称する。図1に示すように、単結晶2が-z方向に凸に成長する場合、結晶成長面2bと側面2sとの境界を通りxy平面と平行な面がヘッド2hとなる。
本実施形態に係る単結晶成長方法は、単結晶が10mm以上成長した結晶成長過程において、テイル2tの径方向の温度差を、ヘッド2hの径方向の温度差より小さくする。
単結晶2の成長量は、中心軸cにおける結晶成長面2bと底面2aとの距離である。テイル2tの径方向の温度差は、テイル2tの中心tcにおける温度Ttcとテイル2tの端部teにおける温度Tteとの温度差である。テイル2tの中心tcは、中心軸cとテイル2tとの交点である。テイル2tの端部teは、底面2aと側面2sとの境界である。ヘッド2hの径方向の温度差は、ヘッド2hの中心hcにおける温度Thcとヘッド2hの端部heにおける温度Theとの温度差である。ヘッド2hの中心hcは、中心軸cとヘッド2hとの交点である。ヘッド2hの端部heは、ヘッド2hと側面2sとの境界である。
結晶成長過程において、テイル2tの径方向の温度差は、好ましくは15度以下であり、より好ましくは8度以下である。また結晶成長過程において、ヘッド2hの径方向の温度差は、好ましくは15度以下であり、より好ましくは8度以下である。
またテイル2tの径方向の温度差(Ttc-Tte)の絶対値は、好ましくはヘッド2hの径方向の温度差(Thc-The)の絶対値の4分の3以下であり、より好ましくは2分の1以下である。
また図2は、本実施形態に係る単結晶成長方法の結晶成長過程における温度分布を示す模式図である。図2は、結晶成長過程における等温面Is1、…Ism-1、Is、…Is(m及びnは自然数)を示す。隣接する等温面Is1、…Ism-1、Is、…Isの温度間隔は任意である。等温面Isは、等温面Ism-1より結晶成長面2bの近くにあり、等温面Ism-1より高温である。
図2に示すように、結晶成長過程において、結晶成長面2b側の等温面を底面2a側の等温面より大きく湾曲させてもよい。すなわち、等温面Isの湾曲量を等温面Ism-1の湾曲量より大きくしてもよい。等温面の湾曲量は、等温面と中心軸cとが交差する位置と等温面と側面2sとが交差する位置とのz方向の距離で表される。
次いで、単結晶が10mm以上成長した結晶成長過程において、テイル2tの径方向の温度差を、ヘッド2hの径方向の温度差より小さくする方法について説明する。テイル2tの径方向の温度差をヘッド2hの径方向の温度差より小さくするためには、例えば、以下の3つの条件を満たすようにする。
第1条件は、結晶成長面2bの径方向に温度差を与えることである。例えば、結晶成長面2bへの輻射量を径方向に変えると、結晶成長面2bの径方向に温度差が生じる。また結晶成長面2bの近傍から逃げる熱量を径方向に変えても、結晶成長面2bの径方向に温度差が生じる。結晶成長面2bの近傍において径方向の温度差が生じると、ヘッド2hの径方向に温度差が生じる。例えば、結晶成長面2bの中心軸c近傍の輻射量を端部近傍の輻射量より多くすると、等温面が-z方向に凸となる。結晶成長面2b近傍の等温面が-z方向に凸になると、単結晶2も-z方向に凸に成長する。
第2条件は、単結晶2の径方向の熱の移動を小さくすることである。例えば、単結晶2の径方向の熱の移動を、単結晶2の底面2a側における熱の移動より小さくする。単結晶2の径方向の熱の移動を抑制することで、熱は径方向に広がらずに、単結晶2の底面2a側に伝わる。
第3条件は、単結晶2の底面2aから逃げる熱を径方向に均熱化することである。底面2aから逃げる熱を径方向に均熱化すると、底面2a(テイル2t)近傍の等温面がフラットになる。
上記のように、単結晶2の結晶成長面2bの近傍で径方向に温度差を与え(すなわち、第1条件を満たし)、熱の伝わる方向を制御し(すなわち、第2条件を満たし)、底面2aの近傍の径方向の温度差を小さくする(すなわち、第3条件を満たす)と、テイル2tの径方向の温度差がヘッド2hの径方向の温度差より小さくなる。
図3は、本実施形態に係る単結晶成長方法の具体的な一例を説明するための模式図である。図3に示す結晶成長装置100は、坩堝10とヒータ20とコイル30とを備える。図3では、原料G、種結晶1、種結晶1上に結晶成長した単結晶2を同時に図示している。
坩堝10は、内部に単結晶2を結晶成長させる結晶成長空間Kを有する柱状体である。坩堝10は、例えば、円柱状である。坩堝10は、z方向に分離可能であり、原料G及び種結晶1を内部に設置できる。坩堝10は、単結晶2を成長する際の高温に耐えることができる材料からなる。坩堝10は、例えば、黒鉛である。坩堝10の底部に原料Gを充填し、坩堝10の上部の結晶設置部11に種結晶1が設置される。原料Gから昇華した原料ガスが、種結晶1の表面で再結晶化し、単結晶2が結晶成長する。
ヒータ20は、坩堝10の外側に設置される。ヒータ20は、例えば、坩堝10の周囲を囲む。ヒータ20の外側にはコイル30が設置される。ヒータ20は、例えば、z方向に延びる円筒状である。ヒータ20のz方向の長さは、例えば、坩堝10のz方向の長さより大きい。ヒータ20は、z方向に移動できる。
ヒータ20は、コイル30が生じる磁界を受け、誘導加熱される。発熱したヒータ20からの輻射は、坩堝10を加熱する。坩堝10は、ヒータ20を介して間接加熱される。ヒータ20は、例えば、黒鉛、TaC、TaC被覆された黒鉛等からなる。
ヒータ20の内面20Aは、坩堝10の外側面10Sに面する。図3に示すヒータ20の内面20Aは、第1領域20A1と第2領域20A2とに区分される。第1領域20A1は、坩堝10の外側面10Sに近接する。第2領域20A2は、坩堝10の外側面10Sから一定の距離だけ離れている。ヒータ20は、第1領域20A1と第2領域20A2との間に段差Spを有する。
第2領域20A2は、第1領域20A1より坩堝10の外側面10Sから離れている。第2領域20A2と坩堝10の外側面10Sとの距離は、第1領域20A1と坩堝10の外側面10Sとの距離の2倍以上が好ましく、4倍以上がより好ましい。第1領域20A1と坩堝10の外側面10Sとの距離は、例えば、0.1mm以上50mm以下であり、1mm以上20mm以下とすることが好ましく、5mm以上15mm以下とすることがより好ましい。また第2領域20A2と坩堝10の外側面10Sとの距離は、例えば、10mm以上200mm以下であり、20mm以上150mm以下とすることが好ましく、30mm以上100mm以下とすることがより好ましい。
第1領域20A1と第2領域20A2とは、z方向の異なる位置に形成される。第1領域20A1は、例えば、坩堝10の上方を囲む。第1領域20A1は、例えば、結晶成長する単結晶2の周囲を囲む。第2領域20A2は、例えば、坩堝10の下方を囲む。第2領域20A2は、例えば、坩堝10の原料Gが充填される原料設置領域の周囲を囲む。第2領域20A2は、例えば、ヒータ20のz方向の高さ中心より原料設置領域側に形成される。
コイル30は、ヒータ20の外側に設置される。コイル30は、坩堝10及びヒータ20の周囲を巻回している。コイル30に電流を流すと、コイル30の内側に磁界が発生する。発生した磁界は、ヒータ20内に誘導電流を生み出す。ヒータ20は誘導電流により発熱し、誘導加熱される。コイル30は、例えば、シングルコイルであり、連続する一つの配線からなる。
上記の結晶成長装置100を用いて、以下のような条件で結晶成長を行うと、テイル2tの径方向の温度差がヘッド2hの径方向の温度差より小さくなる。
まず種結晶1の径方向の大きさを、例えば、坩堝10の内側上面の大きさと略同一とする。略同一とは、大きさの差が10%以内であることを示す。種結晶1が坩堝10の内側上面の全面に亘って存在することで、単結晶2からのz方向への熱の逃げが径方向に略一定となり、第3条件が満たされる。
次に、第1領域20A1の-z方向の下端を、単結晶2の結晶成長面2bの端部より+z方向の位置に設定する。第1領域20A1の-z方向の下端の位置は、ヒータ20をz方向に上下することで、成長過程においても自由に変えることができる。
第1領域20A1が単結晶2の周囲を囲むことで、単結晶2からの径方向への熱輻射が抑制される。SiC単結晶が成長する高温域では、熱は熱伝導よりも熱輻射により伝わる。そのため、径方向への熱輻射が抑制されると、単結晶2の径方向の熱の移動が小さくなり、第2条件が満たされる。
また第1領域20A1の-z方向の下端を単結晶2の結晶成長面2bの端部より+z方向の位置にすると、第1条件が満たされる。坩堝10におけるヒータ20の段差Spより下部の領域は、熱輻射により外側から内側に向かう熱の移動が生じるため、高温となる。そして、高温となった坩堝10の内壁からの輻射によって結晶成長面2bは外周ほど高温となるため、第1条件が満たされる。
すなわち、上記の結晶成長装置100を用いることで、テイル2tの径方向の温度差がヘッド2hの径方向の温度差より小さくできる。また、第1領域20A1の-z方向の下端の位置を制御することで、等温面の湾曲量及び径方向の温度差を自由に設計できる。また種結晶1と原料Gとの間に遮蔽板を設け、単結晶2が受ける輻射量を径方向に変えてもよい。
本実施形態に係る単結晶成長方法によれば、単結晶2の種結晶1側における等温面をフラットにすることができる。単結晶2の種結晶1側における等温面がフラットになると、種結晶1側に応力が集中することを抑制し、基底面転位(BPD)の発生を抑制できる。
(実施例1)
図4は、実施例1にかかる単結晶成長装置の結晶成長過程の温度分布をシミュレーションで求めた結果である。シミュレーションにはSTR社製のVirtual Reactorを用いた。当該シミュレーションは、炉内の温度分布のシミュレーションに広く用いられているものであり、実際の実験結果と高い相関を有することが確認されている。シミュレーションは、二次元軸対象のモデルで計算した。
図4に示すように、坩堝10の内側上面にSiCの単結晶2を配置し、その周囲にヒータ20の第1領域20A1を配置した。坩堝10の上面の厚みは一定とした。第1領域20A1の-z方向の下端は、単結晶2の結晶成長面2bの端部より6mmだけ+z方向の位置に設定した。
図4に示すように、単結晶2の結晶成長面2bの近傍の等温面の湾曲量は、単結晶2の底面2aの近傍の等温面の湾曲量より大きかった。したがって、単結晶のテイルの径方向の温度差は、ヘッドの径方向の温度差より小さくなった。
単結晶2を30mm成長させた時点におけるテイルの径方向の温度差は2.13℃であり、ヘッドの径方向の温度差は3.16℃であった。また単結晶2を60mm成長させた時点におけるテイルの径方向の温度差は-0.14℃であり、ヘッドの径方向の温度差は3.25℃であった。
1 種結晶、2 単結晶、2a 底面、2b 結晶成長面、2h ヘッド、2s 側面、2t テイル、10 坩堝、10S 外側面、11 結晶設置部、20 ヒータ、20A 内面、20A1 第1領域、20A2 第2領域、30 コイル、100 結晶成長装置、G 原料、K 結晶成長空間、Sp 段差、hc、tc 中心、he、te 端部、Is1、…Ism-1、Is、…Is 等温面

Claims (4)

  1. ヒータを用いて坩堝内の原料から昇華したガスを種結晶の表面で再結晶化させることで単結晶が成長する昇華法を用いた単結晶成長方法であって、
    前記単結晶が10mm以上成長した結晶成長過程において、
    前記単結晶のテイルの径方向の温度差を、前記単結晶のヘッドの径方向の温度差より小さくし、
    前記テイルは、前記単結晶の前記種結晶と接する前記単結晶の底面であり、
    前記ヘッドは、前記単結晶の内部において、結晶成長面の前記底面に最も近い位置を通り前記底面と平行な面であり、
    前記ヒータは、前記坩堝の上方を囲む第1領域と、前記第1領域との間に段差が形成され、前記坩堝の原料設置領域の周囲を囲む第2領域と、を有し、
    前記第2領域と前記坩堝の外側面との距離は、前記第1領域と前記外側面との距離よりも大きく、
    前記第1領域の下端を、前記ヘッドよりも上方に設定する、単結晶成長方法。
  2. 前記結晶成長過程の単結晶内において、任意の2つの等温面のうち前記結晶成長面側の等温面を前記底面側の等温面より大きく湾曲させる、請求項1に記載の単結晶成長方法。
  3. 前記テイルの径方向の温度差が15度以下である、請求項1又は2に記載の単結晶成長方法。
  4. 前記ヘッドの径方向の温度差が15度以下である、請求項1から3のいずれか一項に記載の単結晶成長方法。
JP2019197405A 2019-10-30 2019-10-30 単結晶成長方法 Active JP7447431B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019197405A JP7447431B2 (ja) 2019-10-30 2019-10-30 単結晶成長方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019197405A JP7447431B2 (ja) 2019-10-30 2019-10-30 単結晶成長方法

Publications (2)

Publication Number Publication Date
JP2021070601A JP2021070601A (ja) 2021-05-06
JP7447431B2 true JP7447431B2 (ja) 2024-03-12

Family

ID=75712524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019197405A Active JP7447431B2 (ja) 2019-10-30 2019-10-30 単結晶成長方法

Country Status (1)

Country Link
JP (1) JP7447431B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003523918A (ja) 2000-02-15 2003-08-12 ザ フォックス グループ,インコーポレイティド 低欠陥密度炭化ケイ素を成長させる方法及び装置、並びに得られる物質
JP2007314358A (ja) 2006-05-23 2007-12-06 Bridgestone Corp 炭化ケイ素単結晶の製造装置及びその製造方法
JP2011219287A (ja) 2010-04-06 2011-11-04 Nippon Steel Corp 炭化珪素単結晶インゴットの製造方法及び炭化珪素単結晶インゴット
WO2013031856A1 (ja) 2011-08-29 2013-03-07 新日鐵住金株式会社 炭化珪素単結晶基板及びその製造方法
JP2014185055A (ja) 2013-03-22 2014-10-02 Sumitomo Electric Ind Ltd インゴット、炭化珪素基板およびインゴットの製造方法
JP2017206408A (ja) 2016-05-18 2017-11-24 住友電気工業株式会社 炭化珪素単結晶の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110012173A (ko) * 2009-07-30 2011-02-09 네오세미테크 주식회사 두 개의 발열체를 이용한 대구경 탄화규소 단결정 성장 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003523918A (ja) 2000-02-15 2003-08-12 ザ フォックス グループ,インコーポレイティド 低欠陥密度炭化ケイ素を成長させる方法及び装置、並びに得られる物質
JP2007314358A (ja) 2006-05-23 2007-12-06 Bridgestone Corp 炭化ケイ素単結晶の製造装置及びその製造方法
JP2011219287A (ja) 2010-04-06 2011-11-04 Nippon Steel Corp 炭化珪素単結晶インゴットの製造方法及び炭化珪素単結晶インゴット
WO2013031856A1 (ja) 2011-08-29 2013-03-07 新日鐵住金株式会社 炭化珪素単結晶基板及びその製造方法
JP2014185055A (ja) 2013-03-22 2014-10-02 Sumitomo Electric Ind Ltd インゴット、炭化珪素基板およびインゴットの製造方法
JP2017206408A (ja) 2016-05-18 2017-11-24 住友電気工業株式会社 炭化珪素単結晶の製造方法

Also Published As

Publication number Publication date
JP2021070601A (ja) 2021-05-06

Similar Documents

Publication Publication Date Title
EP1252364B1 (en) Apparatus and method for epitaxially processing a substrate
JP4388538B2 (ja) 炭化珪素単結晶製造装置
CN110408988B (zh) SiC单晶生长装置和SiC单晶的生长方法
JP6111873B2 (ja) 炭化珪素単結晶インゴットの製造方法
JP7018816B2 (ja) 坩堝及びSiC単結晶成長装置
JP7217627B2 (ja) SiC単結晶の製造装置及びSiC単結晶製造用の構造体
JP7447431B2 (ja) 単結晶成長方法
JP7392440B2 (ja) 結晶成長装置
JP2015093806A (ja) 炭化珪素基板の製造装置および製造方法
JP7186534B2 (ja) 結晶成長装置
JP7400450B2 (ja) SiC単結晶製造装置およびSiC単結晶の製造方法
JP7347173B2 (ja) 結晶成長装置
JP7452276B2 (ja) 単結晶製造装置及びSiC単結晶の製造方法
JP7434802B2 (ja) 結晶成長装置及び結晶成長方法
JP2013075789A (ja) 化合物半導体単結晶の製造装置および製造方法
JP2021066638A (ja) 結晶成長装置及び結晶成長方法
JP7242989B2 (ja) SiC単結晶製造装置
KR101886271B1 (ko) 잉곳 제조 장치 및 잉곳 제조 방법
WO2022004703A1 (ja) SiC結晶の製造方法
JP2020093974A (ja) 結晶成長装置及び坩堝
Chen et al. Diameter enlargement of SiC bulk single crystals based on simulation and experiment
TW202323604A (zh) 調整碳化矽單晶成長熱場之方法
KR20130074705A (ko) 단결정 성장 장치 및 단결정 성장 방법

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200629

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220921

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20230131

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230201

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20230307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240212

R151 Written notification of patent or utility model registration

Ref document number: 7447431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151