JP7419695B2 - 炭化珪素半導体装置および炭化珪素半導体装置の製造方法 - Google Patents

炭化珪素半導体装置および炭化珪素半導体装置の製造方法 Download PDF

Info

Publication number
JP7419695B2
JP7419695B2 JP2019135544A JP2019135544A JP7419695B2 JP 7419695 B2 JP7419695 B2 JP 7419695B2 JP 2019135544 A JP2019135544 A JP 2019135544A JP 2019135544 A JP2019135544 A JP 2019135544A JP 7419695 B2 JP7419695 B2 JP 7419695B2
Authority
JP
Japan
Prior art keywords
region
epitaxial layer
conductivity type
semiconductor region
type epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019135544A
Other languages
English (en)
Other versions
JP2021019157A (ja
Inventor
智教 水島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2019135544A priority Critical patent/JP7419695B2/ja
Publication of JP2021019157A publication Critical patent/JP2021019157A/ja
Application granted granted Critical
Publication of JP7419695B2 publication Critical patent/JP7419695B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Recrystallisation Techniques (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Thyristors (AREA)

Description

この発明は、炭化珪素半導体装置および炭化珪素半導体装置の製造方法に関する。
従来、炭化珪素(SiC)を半導体材料としたIGBT(Insulated Gate Bipolar Transistor:絶縁ゲート型バイポーラトランジスタ。以下、SiC-IGBTとする)では、耐圧(耐電圧)クラスに応じた厚いエピタキシャル層でドリフト領域が形成される。耐圧とは、素子が誤動作や破壊を起こさない限界の電圧である。従来のSiC-IGBTの構造について、プレーナゲート構造のnチャネル型IGBTを例に説明する。図7は、従来の炭化珪素半導体装置の構造を示す説明図である。
図7の左側に従来のSiC-IGBTの断面構造を示し、右側にn-型ドリフト領域101の深さ方向における少数キャリア(正孔)ライフタイム分布131およびn-型ドリフト領域101の深さ方向におけるオン動作時の少数キャリア濃度分布132を示す。深さ方向とは、半導体基板110の主面と直交する方向(縦方向)である。図7に示す従来の炭化珪素半導体装置は、炭化珪素からなるエピタキシャル層121~123を裏面側から順に積層した積層構造を有する半導体基板110を用いて作製(製造)されたSiC-IGBTである。
半導体基板110は、p+型コレクタ領域112、n-型ドリフト領域101およびp型ベース領域103となる各エピタキシャル層121~123を裏面側から順に積層させた積層構造を有するエピタキシャル基板である。半導体基板110は、p型エピタキシャル層123側の主面をおもて面とし、p+型エピタキシャル層121側の主面を裏面とする。半導体基板110のおもて面側には、一般的なプレーナゲート構造のMOSゲート(金属-酸化膜-半導体からなる絶縁ゲート)が設けられている。
このように素子特性を決める重要な要素であるn-型ドリフト領域101を結晶性の良いn-型エピタキシャル層122で形成可能である。n型キャリア蓄積層(CSL:Carrier Storage Layer)102およびn型フィールドストップ(FS:Field Stop)領域111はそれぞれn-型ドリフト領域101のエミッタ側およびコレクタ側に設けられている。符号103,105~107は、それぞれp型ベース領域、p+型コンタクト領域、ゲート絶縁膜およびゲート電極である。
しかしながら、n-型エピタキシャル層122中には、バンドギャップ中にエネルギー準位(深い準位)を形成し、キャリアライフタイムキラーとなるZ1/2センター等の結晶欠陥が存在する。この結晶欠陥の存在により、n-型ドリフト領域101の少数キャリア(正孔)ライフタイムは深さ方向に一様に短い分布131となっている。少数キャリアライフタイムが一様とは、プロセスのばらつきによって許容される誤差を含む範囲で少数キャリアライフタイムが略同じであることを意味する。
このn-型ドリフト領域101の少数キャリアライフタイム分布131により、従来のSiC-IGBTのオン動作時にp+型コレクタ領域112からn-型ドリフト領域101へ少数キャリアが注入されても、n-型ドリフト領域101の少数キャリア濃度は、コレクタ側132bで高く、コレクタ側(p+型コレクタ領域112側)132bからエミッタ側(n+型エミッタ領域104側)132aへ向かうにしたがって減少し、エミッタ側132aで低い濃度分布132となる。
したがって、従来のSiC-IGBTにおいて低RonA(低オン抵抗)化を図るには、従来のSiC-IGBTのオン動作時にコレクタ側からn-型ドリフト領域101へ大量の少数キャリアが注入される必要がある。SiC-IGBTのオン動作時にn-型ドリフト領域101の少数キャリア濃度を高くして、p+型コレクタ領域112からn-型ドリフト領域101への少数キャリア注入量を増大させるには、n-型ドリフト領域101の少数キャリアライフタイムを長くすればよい。
通常、シリコン(Si)エピタキシャル層の少数キャリアライフタイムは、数ms(ミリ秒)以上である。それに対して、炭化珪素エピタキシャル層の少数キャリアライフタイムは、室温(例えば25℃程度)で1μs(マイクロ秒)以下程度であり、250℃程度でのアニール(熱処理)により伸長したとしても5μs以下程度までしか伸長されない。そこで、炭化珪素エピタキシャル層の少数キャリアライフタイムを長くする方法として、炭化珪素エピタキシャル層に炭素(C)原子をイオン注入(以下、炭素イオン注入とする)する方法が提案されている。
炭化珪素エピタキシャル層の、炭素イオン注入による少数キャリアライフタイムの伸長のメカニズムは、次の通りである。炭化珪素エピタキシャル層の主な結晶欠陥であるZ1/2センターは、炭化珪素エピタキシャル層中の炭素原子の欠損により発生する点欠陥(空孔)である。このため、炭化珪素エピタキシャル層に外部からイオン注入された炭素原子を、アニールにより当該炭化珪素エピタキシャル層の炭素原子の欠損箇所にはめ込んで、炭素原子の欠損により生じた点欠陥を減少させる。これによって、炭化珪素エピタキシャル層の少数キャリアライフタイムが伸長される。
また、従来の炭化珪素半導体装置の製造方法として、炭化珪素エピタキシャル基板の反りを制御するためのイオン注入領域を形成する際に、当該イオン注入に用いる元素を炭素として、炭素をイオン注入した領域において炭化珪素結晶中のライフタイムキラーとなる欠陥を減少させる方法が提案されている(例えば、下記特許文献1(第0045,0092~0097段落)参照。)。下記特許文献1では、エピタキシャル基板の反りを制御するための最適な注入条件を選択するために、エピタキシャル基板の裏面から炭素をイオン注入している。
国際公開第2016/017215号
しかしながら、上述した図7に示す従来のSiC-IGBTにおいて、単純に炭素原子をイオン注入してn-型エピタキシャル層122の少数キャリアライフタイムを伸長させると、n-型ドリフト領域101であるn-型エピタキシャル層122全体の少数キャリアライフタイムが一様に長くなる。この場合、n-型ドリフト領域101内での伝導度変調効果による低オン抵抗化は可能であるが、SiC-IGBTのオン動作時にn-型ドリフト領域101に残留する少数キャリア(以下、残留キャリアとする)が多くなる。これによって、SiC-IGBTのターンオフ動作に残留キャリアによるスイッチング損失が増大するため、低オン抵抗化と低スイッチング損失化とのトレードオフ関係が悪化する。
この発明は、上述した従来技術による問題点を解消するため、低オン抵抗化と低スイッチング損失化とのトレードオフ関係を改善させることができる炭化珪素半導体装置および炭化珪素半導体装置の製造方法を提供することを目的とする。
上述した課題を解決し、目的を達成するため、本発明者は、炭化珪素エピタキシャル層の内部に少数キャリアライフタイムを伸長させる領域(以下、キャリアライフタイム伸長領域とする)を形成するときに、炭化珪素エピタキシャル層へイオン注入した炭素原子を拡散および活性化させるためのアニールのアニール温度またはアニール時間を変更することで、炭化珪素エピタキシャル層の注入面からキャリアライフタイム伸長領域が達する深さを任意に変えることができることを見出した。本発明は、このような知見に基づいてなされたものである。なお、キャリアライフタイム伸長領域が達する深さ範囲とアニール条件(アニール温度、アニール時間)との関係については後述する。
上述した課題を解決し、本発明の目的を達成するため、この発明にかかる炭化珪素半導体装置の製造方法は、次の特徴を有する。まず、炭化珪素からなる半導体基板の第1導電型エピタキシャル層に、前記第1導電型エピタキシャル層の第1主面の全面から炭素原子をイオン注入する第1工程を行う。次に、前記第1工程でイオン注入した前記炭素原子を、熱処理により前記第1導電型エピタキシャル層の第1主面から所定深さまで拡散させるとともに、前記第1導電型エピタキシャル層中の炭素原子欠損箇所に嵌めこんで前記炭素原子欠損を低減させる第2工程を行う。前記第2工程では、前記第1工程でイオン注入した前記炭素原子を拡散させてなる第1領域を、前記熱処理の温度および時間に基づいて前記所定深さを調整して前記第1導電型エピタキシャル層の内部に前記第1主面から前記第1導電型エピタキシャル層の厚さの80%以下の厚さで形成する。前記第1領域の厚さを、前記第1導電型エピタキシャル層の第2主面側の前記第1領域を除く第2領域の厚さよりも厚くする。
また、この発明にかかる炭化珪素半導体装置の製造方法は、上述した発明において、前記第2工程では、前記第1導電型エピタキシャル層のうちの前記第1領域のみ少数キャリアライフタイムを伸長させることを特徴とする。
また、この発明にかかる炭化珪素半導体装置の製造方法は、上述した発明において、前記第2工程では、前記第1領域の少数キャリアライフタイムを、前記第2領域の少数キャリアライフタイムよりも長くすることを特徴とする。
また、この発明にかかる炭化珪素半導体装置の製造方法は、上述した発明において、前記第2工程の後、さらに、前記第1導電型エピタキシャル層の前記第1主面に、第2導電型エピタキシャル層をエピタキシャル成長させる工程を行う。前記第2導電型エピタキシャル層の内部に第1導電型の第1半導体領域と、前記第1半導体領域から離れて深さ方向に前記第2導電型エピタキシャル層を貫通して前記第1領域に接する第1導電型の第2半導体領域と、を選択的に形成し、前記第2導電型エピタキシャル層の前記第1半導体領域および前記第2半導体領域を除く部分を第2導電型の第半導体領域とする工程を行う。前記第1導電型エピタキシャル層の前記第2主面側に第2導電型の第半導体領域を形成し、前記第1導電型エピタキシャル層の、前記第2導電型エピタキシャル層と前記第半導体領域とに挟まれた前記第1領域および前記第2領域を第1導電型の第半導体領域とする工程を行う。前記第半導体領域の、前記第1半導体領域と前記第半導体領域との間の領域に接するゲート絶縁膜を形成する工程を行う。前記ゲート絶縁膜を挟んで前記第半導体領域の反対側に、ゲート電極を形成する工程を行う。前記第1半導体領域および前記第半導体領域に電気的に接続された第1電極を形成する工程を行う。前記第半導体領域に電気的に接続された第2電極を形成する工程を行うことを特徴とする。また、この発明にかかる炭化珪素半導体装置の製造方法は、上述した発明において、前記第2工程の後、さらに、前記第1導電型エピタキシャル層の前記第1主面に、第2導電型エピタキシャル層をエピタキシャル成長させる工程を行う。前記第2導電型エピタキシャル層の内部に第1導電型の第1半導体領域を選択的に形成し、前記第2導電型エピタキシャル層の前記第1半導体領域を除く部分を第2導電型の第2半導体領域とする工程を行う。前記第1導電型エピタキシャル層の前記第2主面側に第2導電型の第3半導体領域を形成し、前記第1導電型エピタキシャル層の、前記第2導電型エピタキシャル層と前記第3半導体領域とに挟まれた前記第1領域および前記第2領域を第1導電型の第4半導体領域とする工程を行う。前記第1半導体領域と前記第2半導体領域とを貫通し、前記第4半導体領域内で終端するトレンチを形成する工程を行う。前記トレンチの内壁に接するゲート絶縁膜を形成する工程を行う。前記ゲート絶縁膜を挟んで前記第2半導体領域の反対側に、ゲート電極を形成する工程を行う。前記第1半導体領域および前記第2半導体領域に電気的に接続された第1電極を形成する工程を行う。前記第3半導体領域に電気的に接続された第2電極を形成する工程を行うことを特徴とする。
また、上述した課題を解決し、本発明の目的を達成するため、この発明にかかる炭化珪素半導体装置は、次の特徴を有する。炭化珪素からなる半導体基板に、第1導電型エピタキシャル層が設けられている。第2導電型エピタキシャル層は、前記半導体基板において、前記第1導電型エピタキシャル層の第1主面に設けられている。前記第2導電型エピタキシャル層の内部に、第1導電型の第1半導体領域が選択的に設けられている。前記第2導電型エピタキシャル層の内部で前記第1半導体領域を除く部分に、第1導電型の第2半導体領域が選択的に設けられている。前記第2半導体領域は、深さ方向に前記第2導電型エピタキシャル層を貫通する。第2導電型の第半導体領域は、前記第2導電型エピタキシャル層のうち、前記第1半導体領域と、前記第2半導体領域と、を除く部分である。前記半導体基板において、前記第1導電型エピタキシャル層の第2主面の表面層に、第2導電型の第半導体領域が設けられている。第1導電型の第半導体領域は、前記半導体基板のうち、前記第2導電型エピタキシャル層と前記第半導体領域とに挟まれた部分である前記第1導電型エピタキシャル層からなる。前記第半導体領域の、前記第1半導体領域と前記第半導体領域との間の領域に接して、ゲート絶縁膜が設けられている。ゲート電極は、前記ゲート絶縁膜を挟んで前記第3半導体領域の反対側に設けられている。第1電極は、前記第1半導体領域および前記第3半導体領域に電気的に接続されている。第2電極は、前記第4半導体領域に電気的に接続されている。前記第5半導体領域は、第1導電型の第1,2領域を有する。前記第1領域は、前記第2半導体領域および前記第3半導体領域に接し、前記第2導電型エピタキシャル層と前記第1導電型エピタキシャル層との界面から、前記第1導電型エピタキシャル層の内部へ所定深さに達する。前記第2領域は、前記第1導電型エピタキシャル層の前記第1領域を除く部分であり、前記第1領域と前記第4半導体領域とに挟まれている。前記第1領域の少数キャリアライフタイムは、前記第2領域の少数キャリアライフタイムよりも長い。前記第1領域の厚さは、前記第1導電型エピタキシャル層の厚さの80%以下で、かつ前記第2領域の厚さよりも厚い。
また、上述した課題を解決し、本発明の目的を達成するため、この発明にかかる炭化珪素半導体装置は、次の特徴を有する。炭化珪素からなる半導体基板に、第1導電型エピタキシャル層が設けられている。第2導電型エピタキシャル層は、前記半導体基板において、前記第1導電型エピタキシャル層の第1主面に設けられている。前記第2導電型エピタキシャル層の内部に、第1導電型の第1半導体領域が選択的に設けられている。第2導電型の第2半導体領域は、前記第2導電型エピタキシャル層のうち、前記第1半導体領域を除く部分である。前記半導体基板において、前記第1導電型エピタキシャル層の第2主面の表面層に、第2導電型の第3半導体領域が設けられている。第1導電型の第4半導体領域は、前記半導体基板のうち、前記第2導電型エピタキシャル層と前記第3半導体領域とに挟まれた部分である前記第1導電型エピタキシャル層からなる。トレンチは、前記第1半導体領域と前記第2半導体領域とを貫通し、前記第4半導体領域内で終端する。ゲート電極は、前記トレンチの内部にゲート絶縁膜を介して設けられている。第1電極は、前記第1半導体領域および前記第2半導体領域に電気的に接続されている。第2電極は、前記第3半導体領域に電気的に接続されている。前記第4半導体領域は、第1導電型の第1,2領域を有する。前記第1領域は、前記第2半導体領域に接し、前記第2導電型エピタキシャル層と前記第1導電型エピタキシャル層との界面から、前記第1導電型エピタキシャル層の内部へ所定深さに達する。前記第2領域は、前記第1導電型エピタキシャル層の前記第1領域を除く部分であり、前記第1領域と前記第3半導体領域とに挟まれている。前記第1領域の少数キャリアライフタイムは、前記第2領域の少数キャリアライフタイムよりも長い。前記第1領域の厚さは、前記第1導電型エピタキシャル層の厚さの80%以下で、かつ前記第2領域の厚さよりも厚い。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記第1領域の炭素原子欠損は、前記第2領域の炭素原子欠損よりも少ないことを特徴とする。
上述した発明によれば、オン動作時、コレクタ側(第3半導体領域側)からドリフト領域(第4半導体領域)へ少数キャリアが注入されたときに、ドリフト領域の少数キャリア濃度を、コレクタ側で低く、エミッタ側で高い濃度分布とすることができる。これによって、オン動作時には、ドリフト領域への少数キャリア注入による伝導度変調によりオン電圧を低下させることができる。かつ、ターンオフ時にはドリフト領域に蓄積されたキャリアを、ドリフト領域へエミッタ側から空乏層が広がる際にスムーズに排出することができる。
本発明にかかる炭化珪素半導体装置および炭化珪素半導体装置の製造方法によれば、ドリフト領域全体の少数キャリアライフタイムを伸長させた場合と比べて、伝導度変調による低オン抵抗化と、ターンオフ時の低スイッチング損失化と、のトレードオフ関係を改善させることができる。
実施の形態にかかる炭化珪素半導体装置の構造を示す断面図である。 実施の形態にかかる炭化珪素半導体装置の構造の別の一例を示す断面図である。 実施の形態にかかる炭化珪素半導体装置の製造途中の状態を示す断面図である。 実施の形態にかかる炭化珪素半導体装置の製造途中の状態を示す断面図である。 実施の形態にかかる炭化珪素半導体装置の製造途中の状態を示す断面図である。 キャリアライフタイム伸長領域の第1深さとアニール条件との関係の一例を示す特性図である。 従来の炭化珪素半導体装置の構造を示す説明図である。
以下に添付図面を参照して、この発明にかかる炭化珪素半導体装置および炭化珪素半導体装置の製造方法の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および-は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。
(実施の形態)
実施の形態にかかる炭化珪素半導体装置の構造について、nチャネル型SiC-IGBTを例に説明する。図1は、実施の形態にかかる炭化珪素半導体装置の構造を示す断面図である。図1では、左側に実施の形態にかかる炭化珪素半導体装置の断面構造を示し、右側にn-型ドリフト領域(第4半導体領域)1の深さ方向における少数キャリア(正孔)ライフタイム分布41およびn-型ドリフト領域1の深さ方向におけるオン動作時の少数キャリア濃度分布42を示す(図2においても同様)。深さ方向とは、半導体基板10の主面と直交する方向である。
また、図1,2では、活性領域のみを図示し、活性領域の周囲を囲むエッジ終端領域を図示省略する。活性領域は、素子(SiC-IGBT)がオン状態のときに電流が流れる領域である。エッジ終端領域は、活性領域と半導体基板10の側面との間の領域であり、半導体基板10のおもて面側の電界を緩和し耐圧(耐電圧)を保持する。耐圧とは、素子が誤動作や破壊を起こさない限界の電圧である。エッジ終端領域には、接合終端拡張(JTE:Junction Termination Extension)構造やフィールドプレートなどの耐圧構造が配置される。
図1に示す実施の形態にかかる炭化珪素半導体装置は、炭化珪素からなる半導体基板(半導体チップ)10を用いて作製(製造)されたプレーナゲート構造のSiC-IGBTである。半導体基板10は、p+型コレクタ領域(第3半導体領域)12、n-型ドリフト領域1およびp型ベース領域(第2半導体領域)3となる炭化珪素からなる各エピタキシャル層21~23を裏面側から順に積層したエピタキシャル基板である。半導体基板10は、p型エピタキシャル層(第2導電型エピタキシャル層)23側の主面をおもて面とし、p+型エピタキシャル層21側の主面を裏面とする。半導体基板10のおもて面側には、一般的なプレーナゲート構造のMOSゲートが設けられている。
-型ドリフト領域1は、n-型エピタキシャル層(第1導電型エピタキシャル層)22全体で構成されている。n-型エピタキシャル層22の内部に、p型エピタキシャル層23に接してn型領域2aが設けられていてもよいし、p+型エピタキシャル層21に接してn型フィールドストップ(FS)領域11が設けられていてもよい。すなわち、n-型ドリフト領域1の、エミッタ側(n+型エミッタ領域4側)およびコレクタ側(p+型コレクタ領域12側)をそれぞれ中央の深さ付近よりも高不純物濃度にしてもよい。
n型領域2aおよびn型FS領域11は、それぞれ半導体基板10の主面に平行な方向に一様な厚さで設けられている。厚さが一様とは、プロセスのばらつきによって許容される誤差を含む範囲で厚さが略同じであることを意味する。n型領域2aは、p型エピタキシャル層23(p型ベース領域3および後述するn型領域2b)に接する。n型領域2aは、SiC-IGBTのオン動作時にp+型コレクタ領域12からn-型ドリフト領域1に注入される少数キャリアを蓄積するキャリア蓄積層(CSL)として機能する。
n型FS領域11は、p+型エピタキシャル層21(p+型コレクタ領域12)に接する。n型FS領域11は、SiC-IGBTのオフ時にp型ベース領域3とn-型ドリフト領域1とのpn接合から伸びる空乏層がp+型コレクタ領域12に達しないように抑制する機能を有する。n型FS領域11を設けた場合、パンチスルー(PT:Punch Through)型のSiC-IGBTとなる。n型FS領域11を設けない場合、ノンパンチスルー(NPT:Non Punch Through)型のSiC-IGBTとなる。図1には、PT型のSiC-IGBTを示す。
また、n-型エピタキシャル層22の内部には、p型エピタキシャル層23とn-型エピタキシャル層22との界面からコレクタ側へ所定深さd1にまで達する厚さt11(=d1)でn-型の第1領域31が設けられている。p型エピタキシャル層23とn-型エピタキシャル層22との界面とは、p型ベース領域3とn-型ドリフト領域1(n型領域2a)との界面である。第1領域31は、後述する第2領域32よりも炭素欠損に起因する欠陥密度が低い。また、第1領域31は、後述する第2領域32よりも少数キャリアライフタイムが長い。
-型エピタキシャル層22の第1領域31を除く部分は、n-型の第2領域32である。第2領域32は、第1領域31のコレクタ側の端部からn-型エピタキシャル層22とp+型エピタキシャル層21との界面までの領域であり、第1領域31とp+型エピタキシャル層21とに挟まれている。n-型エピタキシャル層22とp+型エピタキシャル層21との界面とは、n-型ドリフト領域1(n型FS領域11)とp+型コレクタ領域12との界面である。n-型エピタキシャル層22の少数キャリアライフタイム分布41については後述する。
p型エピタキシャル層23の内部において、半導体基板10のおもて面の表面層には、n+型エミッタ領域4およびp+型コンタクト領域5がそれぞれ選択的に設けられている。p型エピタキシャル層23を深さ方向に貫通してn型領域2aに達するn型領域2bが設けられている。n型領域2bは、隣り合うp型ベース領域3間のJFET(Junction FET)領域であり、n+型エミッタ領域4と離して、かつn+型エミッタ領域4に対してp+型コンタクト領域5と反対側に設けられている。n型領域2bの不純物濃度は、n-型ドリフト領域1の不純物濃度以上である。
p型エピタキシャル層23の、n+型エミッタ領域4、p+型コンタクト領域5およびn型領域2bを除く部分がp型ベース領域3である。p型ベース領域3の、n+型エミッタ領域4とn型領域2bとに挟まれた領域の表面上に、ゲート絶縁膜6を介してゲート電極7が設けられている。ゲート電極7は、ゲート絶縁膜6を介して、n型領域2bの表面上にまで延在していてもよい。これらp型ベース領域3、n+型エミッタ領域4、p+型コンタクト領域5、JFET領域(n型領域2b)、ゲート絶縁膜6およびゲート電極7でプレーナゲート構造のMOSゲートが構成されている。
層間絶縁膜8は、ゲート電極7を覆うように、半導体基板10のおもて面全面に設けられている。エミッタ電極(第1電極)9は、層間絶縁膜8のコンタクトホールを介してn+型エミッタ領域4およびp+型コンタクト領域5に接し、これらの領域に電気的に接続されている。また、エミッタ電極9は、層間絶縁膜8によってゲート電極7と電気的に絶縁されている。p+型コレクタ領域12はp+型エピタキシャル層21全体で構成されている。コレクタ電極(第2電極)13は、半導体基板10の裏面(p+型エピタキシャル層21の表面)の全面に設けられ、p+型コレクタ領域12に電気的に接続されている。
次に、n-型ドリフト領域1であるn-型エピタキシャル層22の深さ方向における少数キャリアライフタイム分布41について説明する。n-型エピタキシャル層22の少数キャリアライフタイムは、エミッタ側の第1領域31で深さ方向に一様に長く、コレクタ側の第2領域32で深さ方向に一様に短い分布41となっている。第1領域31は、後述するようにn-型エピタキシャル層22中へ外部からイオン注入した後述する炭素(C)原子52(図4参照)を拡散させることで、n-型エピタキシャル層22の少数キャリアライフタイムを選択的に伸長させてなるキャリアライフタイム伸長領域である。このため、第1領域31の炭素欠損に起因する欠陥密度は、炭素原子52を拡散させない第2領域32の炭素欠損に起因する欠陥密度よりも低くなっている。
第1領域31の厚さt11は、p型エピタキシャル層23とn-型エピタキシャル層22との界面から、n-型エピタキシャル層22の厚さt10の50%以上程度までの深さであることが好ましい。具体的には、例えば耐圧13kVクラスである場合、n-型エピタキシャル層22の厚さt10は、120μm以上150μm以下程度である。このため、第1領域31の厚さt11は、例えば60μm以上程度であることがよい。また、例えば耐圧20kVクラスである場合、n-型エピタキシャル層22の厚さt10は、200μm以上250μm以下程度である。このため、第1領域31の厚さt11は、例えば100μm以上程度であることがよい。
仮に、第1領域31の厚さt11がp型エピタキシャル層23とn-型エピタキシャル層22との界面からn-型エピタキシャル層22の厚さt10の50%未満の深さであっても、キャリアライフタイム伸長領域である第1領域31を設けたことによる効果は得られるが、その効果は低い。n-型エピタキシャル層22のエミッタ側の浅い表面領域のみ少数キャリアライフタイムを長くすることは、上述したように少数キャリアライフタイムが非常に短い炭化珪素エピタキシャル層で得られる効果の低さから見て意味をなさないため、好ましくない。
また、第1領域31の厚さt11は、p型エピタキシャル層23とn-型エピタキシャル層22との界面からn-型エピタキシャル層22の厚さt10の80%以下程度までの深さであることが好ましい。その理由は、次の通りである。第1領域31の厚さt11を、p型エピタキシャル層23とn-型エピタキシャル層22との界面からn-型エピタキシャル層22の厚さt10の80%を超える程度の深さとした場合、ターンオフ動作時にn-型ドリフト領域1内の残留キャリアによるスイッチング損失が増大する。これによって、低スイッチング損失化と、第1領域31の少数キャリアライフタイムを伸長したことによって得られる低オン抵抗化と、のトレードオフが悪くなるからである。
第2領域32は、n-型エピタキシャル層22の、第1領域31を除く部分である。すなわち、第2領域32の厚さt12は、n-型エピタキシャル層22の厚さt10から第1領域31の厚さt11を減算した厚さである。第2領域32の厚さt12は、第1領域31の厚さt11よりも薄いことが好ましい(t12<t11)。第2領域32の少数キャリアライフタイムは、後述する炭素原子52の拡散および活性化のためのアニール前のn-型エピタキシャル層22と同じ少数キャリアライフタイムであり、伸長されていない。第2領域32の厚さt12とは、第1領域31のコレクタ側の端部からn-型エピタキシャル層22とp+型エピタキシャル層21との界面までの厚さである。
第1,2領域31,32の少数キャリアライフタイムはそれぞれ深さ方向に一様である。少数キャリアライフタイムが一様とは、プロセスのばらつきによって許容される誤差を含む範囲で少数キャリアライフタイムが略同じであることを意味する。すなわち、n-型エピタキシャル層22の少数キャリアライフタイムは、エミッタ側の第1領域31でコレクタ側へ深さ方向に一様に長く、第1領域31と第2領域32との境界で階段状に短くなり、コレクタ側の第2領域32でコレクタ側へ深さ方向に一様に短い分布41となっている。
図2は、実施の形態にかかる炭化珪素半導体装置の構造の別の一例を示す断面図である。図2に示す実施の形態にかかる炭化珪素半導体装置が図1に示す実施の形態にかかる炭化珪素半導体装置と異なる点は、半導体基板10のおもて面側に、プレーナゲート構造のMOSゲートに代えて、一般的なトレンチゲート構造のMOSゲートを設けた点である。トレンチゲート構造のMOSゲートは、p型ベース領域3’、n+型エミッタ領域4’、p+型コンタクト領域5’、トレンチ14、ゲート絶縁膜6’およびゲート電極7’で構成される。
p型エピタキシャル層23の内部において、半導体基板10のおもて面の表面層にn+型エミッタ領域4’およびp+型コンタクト領域5’が選択的に設けられている。p型エピタキシャル層23の、n+型エミッタ領域4’およびp+型コンタクト領域5’を除く部分がp型ベース領域3’である。トレンチ14は、n+型エミッタ領域4’、p型ベース領域3’およびn型領域2aを貫通してn-型ドリフト領域1に達する。ゲート電極7’は、トレンチ14の内部にゲート絶縁膜6’を介して設けられている。エミッタ電極9’は、n+型エミッタ領域4’およびp+型コンタクト領域5’に電気的に接続され、かつ層間絶縁膜8’によってゲート電極7’と電気的に絶縁されている。
プレーナゲート構造のMOSゲートに代えてトレンチゲート構造のMOSゲートを設けた場合においても、n-型エピタキシャル層22の第1,2領域31,32の条件は、図1に示すプレーナゲート構造のSiC-IGBTと同様である。すなわち、p型エピタキシャル層23(p型ベース領域3’)とn-型エピタキシャル層22との界面からコレクタ側へ所定深さd1までがキャリアライフタイム伸長領域となる第1領域31であり、n-型エピタキシャル層22の、第1領域31を除く部分が第2領域32である。n-型エピタキシャル層22の少数キャリア(正孔)ライフタイム分布41は、図1に示す実施の形態にかかる炭化珪素半導体装置と同様である。
このように、図1,2に示す実施の形態にかかる炭化珪素半導体装置において、n-型エピタキシャル層22の少数キャリアライフタイムは、エミッタ側の第1領域31で長く、コレクタ側の第2領域32で短い分布41となっている。このため、SiC-IGBTのオン動作時、p+型コレクタ領域12からn-型ドリフト領域1へ少数キャリア(正孔)が注入されると、n-型エピタキシャル層22で構成されるn-型ドリフト領域1の少数キャリア濃度は、コレクタ側42bで低く、エミッタ側42a側で高い濃度分布42となる。
-型ドリフト領域1をこのような少数キャリア濃度分布42とすることで、ターンオフ時にはn-型ドリフト領域1に蓄積されたキャリアを、n-型ドリフト領域1へエミッタ側42aから空乏層が広がる際にスムーズに排出することができる。これにより、ターンオフ時のスイッチング損失が低減される。図1,2には、n-型ドリフト領域1の少数キャリア濃度分布42がコレクタ側42bよりもエミッタ側42aで高い場合を示すが、n-型ドリフト領域1の少数キャリア濃度分布42が、エミッタ側42aで、後述する炭素原子52(図4参照)の拡散および活性化のためのアニール前のn-型エピタキシャル層22の少数キャリア濃度よりも高くなっていれば、本発明の効果が得られる。
上述した実施の形態にかかる炭化珪素半導体装置においては、p+型エピタキシャル層21に代えて、炭化珪素からなるp+型半導体基板をp+型コレクタ領域12としてもよい。この場合、例えば、p+型コレクタ領域12となるp+型半導体基板を出発基板とし、当該p+型半導体基板上にn-型ドリフト領域1およびp型ベース領域3となる炭化珪素からなるエピタキシャル層22,23を順にエピタキシャル成長させてなる半導体基板10を用いればよい。
また、p+型エピタキシャル層21に代えて、イオン注入により形成したp+型拡散領域をp+型コレクタ領域12としてもよい。この場合、例えば、半導体基板10を、n-型ドリフト領域1およびp型ベース領域3となる炭化珪素からなるエピタキシャル層22,23を裏面側から順に積層したエピタキシャル基板とする。そして、エピタキシャル層22の内部において、半導体基板10の裏面の表面層にp+型コレクタ領域12となるp+型拡散領域を設ければよい。
次に、実施の形態にかかる炭化珪素半導体装置の製造方法について説明する。図3~5は、実施の形態にかかる炭化珪素半導体装置の製造途中の状態を示す断面図である。
まず、図3に示すように、図1のn-型ドリフト領域1となるn-型エピタキシャル層22のみで構成されるn-型エピタキシャル基板51を用意する。n-型エピタキシャル基板51は、n-型エピタキシャル層22と同じ厚さt10を有する。例えば、炭化珪素からなるn型出発基板上にn-型エピタキシャル層22となるn-型炭化珪素層をエピタキシャル成長させた後に、当該n型出発基板を除去することでn-型エピタキシャル基板51を作製可能である。
次に、このn-型エピタキシャル基板51のおもて面から炭素原子52をイオン注入する。n-型エピタキシャル基板51のおもて面の面方位は種々変更可能であるが、n-型エピタキシャル基板51のおもて面からイオン注入された不純物が後述するアニールによって拡散しやすい面方位を選択することが好ましい。具体的には、n-型エピタキシャル基板51のおもて面は、例えば(0001)面、いわゆるSi面であることが好ましい。
炭素原子52の注入量は、特に限定しないが、例えば1×1015/cm2以上1×1017/cm2以下程度であることがよい。炭素原子52の注入量が上記下限値未満である場合、炭素原子52の注入量が少なすぎて本発明の効果が得られないからである。炭素原子52の注入量が上記上限値を超える場合、n-型エピタキシャル基板51が炭素リッチとなることによる悪影響が生じるからである。
次に、図4に示すように、n-型エピタキシャル基板51をアニール(熱処理)して炭素原子52を拡散および活性化させることで、n-型エピタキシャル基板51のおもて面から所定深さd1までの第1領域31でのみ少数キャリアライフタイムを伸長させる。n-型エピタキシャル基板51のおもて面から第1領域31が達する深さd1は、アニール温度またはアニール時間もしくはその両方を調整することで変えることができる。n-型エピタキシャル基板51のおもて面から第1領域31が達する深さd1は、炭素原子52の拡散深さである。
具体的には、このアニールによって、n-型エピタキシャル基板51のおもて面から所定深さd1までの第1領域31の全体に炭素原子52を拡散させ、第1領域31に存在するZ1/2センター等の点欠陥(空孔:炭素原子欠損箇所)に外部から注入した炭素原子52をはめ込んで、第1領域31の点欠陥を減少させる。図4には、n-型エピタキシャル基板51のおもて面から所定深さd1までの第1領域31の全体に炭素原子52を拡散して当該第1領域31の点欠陥を減少させた状態を、n-型エピタキシャル基板51の内部に外部からイオン注入した炭素原子52を図3に図示する位置から移動させて、第1領域31の、第2領域32との界面付近に図示することで示す。
このようにして、エピタキシャル基板51のおもて面から炭素原子52が拡散される所定深さd1と同じ厚さt11で、n-型エピタキシャル基板51のおもて面の表面層にキャリアライフタイム伸長領域である第1領域31を形成する。n-型エピタキシャル基板51の裏面側には、n-型エピタキシャル基板51の厚さt10から、n-型エピタキシャル基板51のおもて面側の第1領域31の厚さt11を減算した厚さt12で第2領域32が残る。
このアニール時、n-型エピタキシャル基板51の裏面側の残部である第2領域32には、炭素原子52は拡散されない。このため、第2領域32は、アニール前のn-型エピタキシャル基板51と同じ少数キャリアライフタイムとなる。第1,2領域31,32の厚さt11,t12の好適な条件は、上述した通りである。アニールによりn-型エピタキシャル基板51のおもて面から第1領域31が達する深さd1とアニール条件(アニール温度、アニール時間)との関係については後述する(図6参照)。
次に、図5に示すように、例えばリン(P)や砒素(As)等のn型不純物のイオン注入により、第1領域31の内部において、n-型エピタキシャル基板51のおもて面の表面層にn型領域2aを形成する。例えばリンや砒素等のn型不純物のイオン注入により、第2領域32の内部において、n-型エピタキシャル基板51の裏面の表面層にn型FS領域11を形成する。n型領域2aおよびn型FS領域11の形成順序を入れ替えてもよい。
次に、n-型エピタキシャル基板51のおもて面上に、p型ベース領域3となる炭化珪素からなるp型エピタキシャル層23をエピタキシャル成長させる。n-型エピタキシャル基板51の裏面上に、p+型コレクタ領域12となる炭化珪素からなるp+型エピタキシャル層21をエピタキシャル成長させる。p型エピタキシャル層23およびp+型エピタキシャル層21の形成順序を入れ替えてもよい。
ここまでの工程で、p+型コレクタ領域12、n-型ドリフト領域1およびp型ベース領域3となる炭化珪素からなる各エピタキシャル層21~23を裏面側から順にエピタキシャル成長させた半導体基板10が作製される。その後、一般的な方法により、半導体基板10のおもて面側にMOSゲート、層間絶縁膜8およびエミッタ電極9を形成し、裏面側にコレクタ電極13を形成することで、図1のSiC-IGBTが完成する。
以上、説明したように、実施の形態によれば、n-型ドリフト領域の少数キャリアライフタイムをエミッタ側で長くし、コレクタ側で短い分布とする。これにより、SiC-IGBTのオン動作時、コレクタ側からn-型ドリフト領域へ少数キャリア(正孔)が注入されると、n-型ドリフト領域の少数キャリア濃度は、コレクタ側で低く、エミッタ側で高い濃度分布となる。これによって、SiC-IGBTのオン動作時には、n-型ドリフト領域への少数キャリア注入による伝導度変調によりオン電圧を低下させることができる。かつ、ターンオフ時にはn-型ドリフト領域に蓄積されたキャリアを、n-型ドリフト領域へエミッタ側から空乏層が広がる際にスムーズに排出することができる。したがって、低オン抵抗化と低スイッチング損失化とのトレードオフ関係を改善させることができる。
また、実施の形態によれば、n-型ドリフト領域となるn-型エピタキシャル層にイオン注入した炭素原子をアニールにより拡散および活性化させる。これにより、当該n-型エピタキシャル層の注入面側の少数キャリアライフタイムを所定の第1深さまで長くしてキャリアライフタイム伸長領域(第1領域)を形成することができる。この際、炭素原子を拡散および活性化させるためのアニールの温度または時間もしくはその両方を調整することで、キャリアライフタイム伸長領域の、n-型エピタキシャル層の注入面からの第1深さを任意に変えることができる。このため、炭素原子のイオン注入およびその後のアニールによって、IGBTのオン動作時に、n-型ドリフト領域の少数キャリア濃度をエミッタ側のみ任意の第1深さで高くした濃度分布とすることができる。
(実施例)
次に、n-型エピタキシャル基板51のおもて面から第1領域31が達する深さd1とアニール条件(アニール温度またはアニール時間)との関係の一例について説明する。図6は、キャリアライフタイム伸長領域の第1深さとアニール条件との関係の一例を示す特性図である。図6の横軸には、少数キャリアライフタイムを伸長させた第1領域31が達する深さd1を示す。深さd1=0[μm]は、n-型エピタキシャル基板51(図3参照)のおもて面であり、図1,2のp型エピタキシャル層23とn-型エピタキシャル層22との界面に相当する。図6の縦軸には、右側および左側にそれぞれ第1領域31の少数キャリアライフタイムおよび炭素濃度を示す。
上述した実施の形態にかかる炭化珪素半導体装置の製造方法にしたがい、n-型エピタキシャル基板51への炭素原子52のイオン注入(図3参照)およびその後のアニール(図4参照)により得られる第1領域31の炭素濃度、n-型エピタキシャル基板51のおもて面から第1領域31が達する深さd1、および、第1領域31の少数キャリアライフタイムをシミュレーションした結果を図6に示す。炭素原子52を活性化および拡散させるためのアニールは、アニール時間を90分間とし、アニール温度を1300℃~1650℃の間で種々変更した。n-型エピタキシャル基板51のおもて面からの炭素原子52の拡散深さは、n-型エピタキシャル基板51のおもて面から第1領域31が達する深さd1である。
図6に示す結果から、n-型エピタキシャル基板51のおもて面から第1領域31が達する深さd1は、炭素原子52を活性化および拡散させるためのアニール温度によって異なることが確認された。図示省略するが、n-型エピタキシャル基板51のおもて面から第1領域31が達する深さd1は、炭素原子52を活性化および拡散させるためのアニール時間によって異なることが確認されている。このため、炭素原子52を活性化および拡散させるためのアニール温度またはアニール時間を変えることで、本発明にかかるSiC-IGBTにおいて、n-型エピタキシャル基板51のおもて面から第1領域31が達する深さd1を任意に変えることができることがわかる。
例えば、第1領域31の少数キャリアライフタイムを伸長させる。n-型エピタキシャル基板51のおもて面の表面層に炭素原子52のイオン注入により形成される不純物領域の厚さは1μm程度である。この場合、図6に示すように、アニール温度およびアニール時間をそれぞれ1300℃および90分間としたときに、n-型エピタキシャル基板51のおもて面から第1領域31が達する深さd1を30μmにすることができる。第1領域31のイオン注入によって打ち込まれた炭素濃度は、第1領域31のエミッタ側の端部(n-型エピタキシャル基板51のおもて面付近)で1×1019/cm3程度であり、第1領域31のコレクタ側の端部で1×1010/cm3以下である。
以上において本発明は本発明の趣旨を逸脱しない範囲で種々変更可能であり、上述した各実施の形態において例えば各部の寸法や不純物濃度等は要求される仕様等に応じて種々設定される。また、本発明は、導電型(n型、p型)を反転させても同様に成り立つ。
以上のように、本発明にかかる炭化珪素半導体装置および炭化珪素半導体装置の製造方法は、インバータなどの電力変換装置や種々の産業用機械などの電源装置などに使用されるパワー半導体装置に有用である。
1 n-型ドリフト領域
2a n型領域(CSL)
2b n型領域(JFET領域)
3,3' p型ベース領域
4,4' n+型エミッタ領域
5,5' p+型コンタクト領域
6,6' ゲート絶縁膜
7,7' ゲート電極
8,8' 層間絶縁膜
9,9' エミッタ電極
10 半導体基板
11 n型FS領域
12 p+型コレクタ領域
13 コレクタ電極
14 トレンチ
21 p+型エピタキシャル層
22 n-型エピタキシャル層
23 p型エピタキシャル層
31 n-型ドリフト領域を構成するn-型エピタキシャル層の第1領域(キャリアライフタイム伸長領域)
32 n-型ドリフト領域を構成するn-型エピタキシャル層の第2領域
41 n-型ドリフト領域の少数キャリアライフタイム分布
42 n-型ドリフト領域の少数キャリア濃度分布
42a n-型ドリフト領域のエミッタ側の少数キャリア濃度
42b n-型ドリフト領域のコレクタ側の少数キャリア濃度
51 n-型エピタキシャル基板
52 n-型エピタキシャル基板にイオン注入した炭素原子
d1 n-型エピタキシャル基板のおもて面から炭素原子が拡散される深さ
t10 n-型ドリフト領域を構成するn-型エピタキシャル層の厚さ
t11 n-型ドリフト領域を構成するn-型エピタキシャル層の第1領域の厚さ
t12 n-型ドリフト領域を構成するn-型エピタキシャル層の第2領域の厚さ

Claims (8)

  1. 炭化珪素からなる半導体基板の第1導電型エピタキシャル層に、前記第1導電型エピタキシャル層の第1主面の全面から炭素原子をイオン注入する第1工程と、
    前記第1工程でイオン注入した前記炭素原子を、熱処理により前記第1導電型エピタキシャル層の前記第1主面から所定深さまで拡散させるとともに、前記第1導電型エピタキシャル層中の炭素原子欠損箇所に嵌めこんで前記炭素原子欠損を低減させる第2工程と、
    を含み、
    前記第2工程では、
    前記第1工程でイオン注入した前記炭素原子を拡散させてなる第1領域を、前記熱処理の温度および時間に基づいて前記所定深さを調整して前記第1導電型エピタキシャル層内部に前記第1主面から前記第1導電型エピタキシャル層の厚さの80%以下の厚さで形成し、
    記第1領域の厚さを、前記第1導電型エピタキシャル層の第2主面側の前記第1領域を除く第2領域の厚さよりも厚くすることを特徴とする炭化珪素半導体装置の製造方法。
  2. 前記第2工程では、前記第1導電型エピタキシャル層のうちの前記第1領域のみ少数キャリアライフタイムを伸長させることを特徴とする請求項1に記載の炭化珪素半導体装置の製造方法。
  3. 前記第2工程では、前記第1領域の少数キャリアライフタイムを、前記第2領域の少数キャリアライフタイムよりも長くすることを特徴とする請求項1または2に記載の炭化珪素半導体装置の製造方法。
  4. 前記第2工程の後、
    前記第1導電型エピタキシャル層の前記第1主面に、第2導電型エピタキシャル層をエピタキシャル成長させる工程と、
    前記第2導電型エピタキシャル層の内部に第1導電型の第1半導体領域と、前記第1半導体領域から離れて深さ方向に前記第2導電型エピタキシャル層を貫通して前記第1領域に接する第1導電型の第2半導体領域と、を選択的に形成し、前記第2導電型エピタキシャル層の前記第1半導体領域および前記第2半導体領域を除く部分を第2導電型の第半導体領域とする工程と、
    前記第1導電型エピタキシャル層の前記第2主面側に第2導電型の第半導体領域を形成し、前記第1導電型エピタキシャル層の、前記第2導電型エピタキシャル層と前記第半導体領域とに挟まれた前記第1領域および前記第2領域を第1導電型の第半導体領域とする工程と、
    前記第半導体領域の、前記第1半導体領域と前記第半導体領域との間の領域に接するゲート絶縁膜を形成する工程と、
    前記ゲート絶縁膜を挟んで前記第半導体領域の反対側に、ゲート電極を形成する工程と、
    前記第1半導体領域および前記第半導体領域に電気的に接続された第1電極を形成する工程と、
    前記第半導体領域に電気的に接続された第2電極を形成する工程と、
    をさらに含むことを特徴とする請求項1~3のいずれか一つに記載の炭化珪素半導体装置の製造方法。
  5. 前記第2工程の後、
    前記第1導電型エピタキシャル層の前記第1主面に、第2導電型エピタキシャル層をエピタキシャル成長させる工程と、
    前記第2導電型エピタキシャル層の内部に第1導電型の第1半導体領域を選択的に形成し、前記第2導電型エピタキシャル層の前記第1半導体領域を除く部分を第2導電型の第2半導体領域とする工程と、
    前記第1導電型エピタキシャル層の前記第2主面側に第2導電型の第3半導体領域を形成し、前記第1導電型エピタキシャル層の、前記第2導電型エピタキシャル層と前記第3半導体領域とに挟まれた前記第1領域および前記第2領域を第1導電型の第4半導体領域とする工程と、
    前記第1半導体領域と前記第2半導体領域とを貫通し、前記第4半導体領域内で終端するトレンチを形成する工程と、
    前記トレンチの内壁に接するゲート絶縁膜を形成する工程と、
    前記ゲート絶縁膜を挟んで前記第2半導体領域の反対側に、ゲート電極を形成する工程と、
    前記第1半導体領域および前記第2半導体領域に電気的に接続された第1電極を形成する工程と、
    前記第3半導体領域に電気的に接続された第2電極を形成する工程と、
    をさらに含むことを特徴とする請求項1~3のいずれか一つに記載の炭化珪素半導体装置の製造方法。
  6. 炭化珪素からなる半導体基板の第1導電型エピタキシャル層と、
    前記半導体基板において、前記第1導電型エピタキシャル層の第1主面に設けられた第2導電型エピタキシャル層と、
    前記第2導電型エピタキシャル層の内部に選択的に設けられた第1導電型の第1半導体領域と、
    前記第2導電型エピタキシャル層の内部で前記第1半導体領域を除く部分に選択的に設けられ、深さ方向に前記第2導電型エピタキシャル層を貫通する第1導電型の第2半導体領域と、
    前記第2導電型エピタキシャル層のうち、前記第1半導体領域と、前記第2半導体領域と、を除く部分である第2導電型の第3半導体領域と、
    前記半導体基板において、前記第1導電型エピタキシャル層の第2主面の表面層に設けられた第2導電型の第4半導体領域と、
    前記半導体基板のうち、前記第2導電型エピタキシャル層と前記第4半導体領域とに挟まれた部分である前記第1導電型エピタキシャル層からなる第1導電型の第5半導体領域と、
    前記第3半導体領域の、前記第1半導体領域と前記第2半導体領域との間の領域に接して設けられたゲート絶縁膜と、
    前記ゲート絶縁膜を挟んで前記第3半導体領域の反対側に設けられたゲート電極と、
    前記第1半導体領域および前記第3半導体領域に電気的に接続された第1電極と、
    前記第4半導体領域に電気的に接続された第2電極と、
    を備え、
    前記第5半導体領域は、
    前記第2半導体領域および前記第3半導体領域に接し、前記第2導電型エピタキシャル層と前記第1導電型エピタキシャル層との界面から、前記第1導電型エピタキシャル層の内部へ所定深さに達する第1導電型の第1領域と、
    前記第1導電型エピタキシャル層の前記第1領域を除く部分であり、前記第1領域と前記第4半導体領域とに挟まれた第1導電型の第2領域と、を有し、
    前記第1領域の少数キャリアライフタイムは、前記第2領域の少数キャリアライフタイムよりも長く、
    前記第1領域の厚さは、前記第1導電型エピタキシャル層の厚さの80%以下で、かつ前記第2領域の厚さよりも厚いことを特徴とする炭化珪素半導体装置。
  7. 炭化珪素からなる半導体基板の第1導電型エピタキシャル層と、
    前記半導体基板において、前記第1導電型エピタキシャル層の第1主面に設けられた第2導電型エピタキシャル層と、
    前記第2導電型エピタキシャル層の内部に選択的に設けられた第1導電型の第1半導体領域と、
    前記第2導電型エピタキシャル層のうち、前記第1半導体領域を除く部分である第2導電型の第2半導体領域と、
    前記半導体基板において、前記第1導電型エピタキシャル層の第2主面の表面層に設けられた第2導電型の第3半導体領域と、
    前記半導体基板のうち、前記第2導電型エピタキシャル層と前記第3半導体領域とに挟まれた部分である前記第1導電型エピタキシャル層からなる第1導電型の第4半導体領域と、
    前記第1半導体領域と前記第2半導体領域とを貫通し、前記第4半導体領域内で終端するトレンチと、
    前記トレンチの内部にゲート絶縁膜を介して設けられたゲート電極と、
    前記第1半導体領域および前記第2半導体領域に電気的に接続された第1電極と、
    前記第3半導体領域に電気的に接続された第2電極と、
    を備え、
    前記第4半導体領域は、
    前記第2半導体領域に接し、前記第2導電型エピタキシャル層と前記第1導電型エピタキシャル層との界面から、前記第1導電型エピタキシャル層の内部へ所定深さに達する第1導電型の第1領域と、
    前記第1導電型エピタキシャル層の前記第1領域を除く部分であり、前記第1領域と前記第3半導体領域とに挟まれた第1導電型の第2領域と、を有し、
    前記第1領域の少数キャリアライフタイムは、前記第2領域の少数キャリアライフタイムよりも長く、
    前記第1領域の厚さは、前記第1導電型エピタキシャル層の厚さの80%以下で、かつ前記第2領域の厚さよりも厚いことを特徴とする炭化珪素半導体装置。
  8. 前記第1領域の炭素原子欠損は、前記第2領域の炭素原子欠損よりも少ないことを特徴とする請求項6または7に記載の炭化珪素半導体装置。
JP2019135544A 2019-07-23 2019-07-23 炭化珪素半導体装置および炭化珪素半導体装置の製造方法 Active JP7419695B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019135544A JP7419695B2 (ja) 2019-07-23 2019-07-23 炭化珪素半導体装置および炭化珪素半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019135544A JP7419695B2 (ja) 2019-07-23 2019-07-23 炭化珪素半導体装置および炭化珪素半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2021019157A JP2021019157A (ja) 2021-02-15
JP7419695B2 true JP7419695B2 (ja) 2024-01-23

Family

ID=74564371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019135544A Active JP7419695B2 (ja) 2019-07-23 2019-07-23 炭化珪素半導体装置および炭化珪素半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP7419695B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011100890A (ja) 2009-11-06 2011-05-19 Kansai Electric Power Co Inc:The SiC結晶成長層の製造方法およびバイポーラ型半導体素子
JP2011109018A (ja) 2009-11-20 2011-06-02 Kansai Electric Power Co Inc:The バイポーラ半導体素子
WO2015129430A1 (ja) 2014-02-28 2015-09-03 三菱電機株式会社 半導体装置および半導体装置の製造方法
JP2018190772A (ja) 2017-04-28 2018-11-29 富士電機株式会社 炭化珪素エピタキシャルウェハ、炭化珪素絶縁ゲート型バイポーラトランジスタ及びこれらの製造方法
WO2021009801A1 (ja) 2019-07-12 2021-01-21 三菱電機株式会社 半導体装置、および、半導体装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011100890A (ja) 2009-11-06 2011-05-19 Kansai Electric Power Co Inc:The SiC結晶成長層の製造方法およびバイポーラ型半導体素子
JP2011109018A (ja) 2009-11-20 2011-06-02 Kansai Electric Power Co Inc:The バイポーラ半導体素子
WO2015129430A1 (ja) 2014-02-28 2015-09-03 三菱電機株式会社 半導体装置および半導体装置の製造方法
JP2018190772A (ja) 2017-04-28 2018-11-29 富士電機株式会社 炭化珪素エピタキシャルウェハ、炭化珪素絶縁ゲート型バイポーラトランジスタ及びこれらの製造方法
WO2021009801A1 (ja) 2019-07-12 2021-01-21 三菱電機株式会社 半導体装置、および、半導体装置の製造方法

Also Published As

Publication number Publication date
JP2021019157A (ja) 2021-02-15

Similar Documents

Publication Publication Date Title
US10707321B2 (en) Power device with multiple field stop layers
KR102000886B1 (ko) 절연 게이트형 스위칭 장치와 그 제조 방법
KR101237345B1 (ko) 실리콘 기판을 필드 스톱층으로 이용하는 전력 반도체 소자및 그 제조 방법
JP7190144B2 (ja) 超接合炭化珪素半導体装置および超接合炭化珪素半導体装置の製造方法
JP6817443B2 (ja) ゲート・トレンチと、埋め込まれた終端構造とを有するパワー半導体デバイス、及び、関連方法
JP5184779B2 (ja) 半導体装置およびその製造方法
EP2293336B1 (en) Semiconductor device
KR100840667B1 (ko) 수평형 디모스 소자 및 그 제조방법
JP2004259934A (ja) 高耐圧電界効果型半導体装置
US20190123144A1 (en) Power device and method for fabricating the same
JP2019003969A (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP5326217B2 (ja) 半導体装置およびその製造方法
JP2001094098A (ja) 炭化珪素半導体装置及びその製造方法
JP4088011B2 (ja) 半導体装置及びその製造方法
JP2006108616A (ja) 逆阻止型絶縁ゲート形半導体装置およびその製造方法
JP4031209B2 (ja) 半導体装置
JP3919591B2 (ja) 半導体装置の製造方法
KR102070959B1 (ko) 파워 소자 및 그 제조방법
CN112397593A (zh) 半导体器件及制造方法
JP2004221370A (ja) 半導体装置
JP7419695B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
WO2000031800A1 (fr) Dispositif a semiconducteur et son procede de fabrication
JP2003101020A (ja) 半導体装置
JP2000260778A (ja) 半導体装置およびその製造方法
US20190115423A1 (en) Insulated gate power devices with reduced carrier injection in termination area

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200423

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231225

R150 Certificate of patent or registration of utility model

Ref document number: 7419695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150