JP7375420B2 - 回路装置、物理量測定装置、電子機器及び移動体 - Google Patents

回路装置、物理量測定装置、電子機器及び移動体 Download PDF

Info

Publication number
JP7375420B2
JP7375420B2 JP2019176354A JP2019176354A JP7375420B2 JP 7375420 B2 JP7375420 B2 JP 7375420B2 JP 2019176354 A JP2019176354 A JP 2019176354A JP 2019176354 A JP2019176354 A JP 2019176354A JP 7375420 B2 JP7375420 B2 JP 7375420B2
Authority
JP
Japan
Prior art keywords
integration
signal
circuit
period
integral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019176354A
Other languages
English (en)
Other versions
JP2021057647A (ja
Inventor
秀生 羽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2019176354A priority Critical patent/JP7375420B2/ja
Priority to US17/032,394 priority patent/US11897539B2/en
Publication of JP2021057647A publication Critical patent/JP2021057647A/ja
Application granted granted Critical
Publication of JP7375420B2 publication Critical patent/JP7375420B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D11/00Steering non-deflectable wheels; Steering endless tracks or the like
    • B62D11/001Steering non-deflectable wheels; Steering endless tracks or the like control systems
    • B62D11/003Electric or electronic control systems
    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F10/00Apparatus for measuring unknown time intervals by electric means
    • G04F10/005Time-to-digital converters [TDC]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/1235Non-linear conversion not otherwise provided for in subgroups of H03M1/12
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/44Sequential comparisons in series-connected stages with change in value of analogue signal
    • H03M1/442Sequential comparisons in series-connected stages with change in value of analogue signal using switched capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Nonlinear Science (AREA)
  • Analogue/Digital Conversion (AREA)
  • Manipulation Of Pulses (AREA)

Description

本発明は、回路装置、物理量測定装置、電子機器及び移動体等に関する。
第1信号と基準クロック信号の位相差、及び第2信号と基準クロック信号の位相差を検出し、これらの位相差に基づいて、第1信号と第2信号の遷移タイミングの時間差をデジタル値に変換する時間デジタル変換回路が知られている。このような時間デジタル変換回路の従来技術が特許文献1に開示されている。特許文献1の時間デジタル変換回路は、パルス信号生成部と積分処理部とを含む。パルス信号生成部は、第1信号に基づいて、基準クロック信号のパルス幅に対応するパルス幅のパルス信号を生成する。このパルス信号は、第1信号が遷移したときアクティブとなる。積分処理部は、パルス信号がアクティブである積分期間において、基準クロック信号の遷移タイミングで積分極性が切り替わる積分処理を行う。この積分処理の結果が、第1信号と基準クロック信号の位相差を表す。
特開2018-132460号公報
上記のような位相差検出方式の時間デジタル変換回路において、積分期間の開始タイミングは第1信号の遷移タイミングによって決まり、積分極性の切り替わりタイミングは基準クロック信号の遷移タイミングで決まる。第1信号と基準クロック信号の遷移タイミングは任意であるため、積分期間の開始又は終了のタイミングと、積分極性の切り替わりタイミングとが近くなる場合がある。このような場合、正又は負の一方の極性の積分が短時間となるため、積分処理が正確に行われず、計測誤差を生じるおそれがある。
本開示の一態様は、第1信号が遷移したときアクティブになると共に、基準クロック信号の周期より長い所定期間長の第1積分期間においてアクティブである第1積分期間信号を生成する積分期間信号生成回路と、前記第1積分期間において前記基準クロック信号に同期したタイミングで電圧レベルが遷移する第1積分極性切替信号と、前記第1積分期間において前記第1積分極性切替信号の遷移タイミングから前記基準クロック信号の所定クロック数後に電圧レベルが遷移する第2積分極性切替信号と、を生成する極性切替信号生成回路と、前記第1積分期間において前記第1積分極性切替信号の遷移タイミングで積分極性が切り替わる第1積分処理を行う第1積分回路と、前記第1積分期間において前記第2積分極性切替信号の遷移タイミングで積分極性が切り替わる第2積分処理を行う第2積分回路と、を含む回路装置に関係する。
第1信号から生成したパルス信号と基準クロック信号とを用いて積分処理を行う手法を説明する波形図。 図1の手法における位相と積分値の関係を示す特性図。 図1の手法における計測誤差を説明する特性図。 回路装置の第1構成例。 時間計測の手法を説明する波形図。 第1構成例の回路装置の動作を説明する波形図。 第1信号の位相と積分値の関係を示す特性図。 積分値から時間差のデジタル値を求める手法を説明する波形図。 第1信号と基準クロック信号の遷移タイミングの時間差と、積分回路が出力する電圧との関係を示す特性図。 積分期間が基準クロック信号の周期の4倍以上であることを説明する波形図。 積分期間信号生成回路の詳細構成例。 積分期間信号生成回路の動作を説明する波形図。 極性切替信号生成回路の詳細構成例。 極性切替信号生成回路の動作を説明する波形図。 回路装置の第2構成例。 第2構成例の回路装置の動作を説明する波形図。 第3構成例の回路装置の動作を説明する波形図。 第1信号の位相と積分値の関係を示す特性図。 測定回路の詳細構成例。 積分回路の詳細構成例。 積分回路の動作を説明する波形図。 物理量測定装置の構成例。 電子機器の構成例。 移動体の例。
以下、本開示の好適な実施形態について詳細に説明する。なお以下に説明する本実施形態は特許請求の範囲に記載された内容を不当に限定するものではなく、本実施形態で説明される構成の全てが必須構成要件であるとは限らない。
1.第1構成例
まず、従来技術の時間デジタル変換回路における課題を説明する。図1は、従来技術の時間デジタル変換回路の動作を説明する波形図である。
図1には、時間デジタル変換回路が基準クロック信号RFCKと第1信号STAの遷移タイミングの時間差を求める際の波形図を示す。時間デジタル変換回路は、上記時間差を第1信号STAの位相PHDとして検出する。時間デジタル変換回路が第1信号STAと第2信号の時間差を求める場合には、第2信号についても同様に位相を求める。そして、時間デジタル変換回路は、第1信号STAの位相PHDと第2信号の位相から、第1信号STAと第2信号の時間差を求める。図1では、第1信号STAの位相PHDを求める動作について説明する。
図1に示すように、時間デジタル変換回路は第1信号STAの立ち上がりエッジでパルス信号PSTAをローレベルからハイレベルにする。時間デジタル変換回路は、基準クロック信号RFCKのパルス幅THと同じ時間が経過した後にパルス信号PSTAをハイレベルからローレベルにする。このパルス信号は、積分期間を決める信号である。
時間デジタル変換回路は、積分極性を切り替えるためのクロック信号RFCKI及びクロック信号RFCKQを生成する。クロック信号RFCKIの位相は、基準クロック信号RFCKの位相と同じであり、クロック信号RFCKQの位相は、基準クロック信号RFCKの位相から90度だけ遅れている。
時間デジタル変換回路は、パルス信号PSTAとクロック信号RFCKIを用いた第1積分処理と、パルス信号PSTAとRFCKQとを用いた第2積分処理とを行う。時間デジタル変換回路は、チャージポンプ回路を用いて正電流又は負電流を生成し、その電流を積分することで積分値を求める。具体的には、第1積分処理では、チャージポンプ回路は、パルス信号PSTAがハイレベルの期間においてクロック信号RFCKIがハイレベルのとき正の電流CPIを出力し、クロック信号RFCKIがローレベルのとき負の電流CPIを出力する。時間デジタル変換回路は、電流CPIを積分することで積分値PHIを求める。第2積分処理では、チャージポンプ回路は、パルス信号PSTAがハイレベルの期間においてクロック信号RFCKQがハイレベルのとき正の電流CPQを出力し、クロック信号RFCKQがローレベルのとき負の電流CPQを出力する。時間デジタル変換回路は、電流CPQを積分することで積分値PHQを求める。
時間デジタル変換回路は、基準クロック信号RFCKの立ち上がりエッジに対する第1信号STAの立ち上がりエッジの位相PHDを、積分値PHI、PHQから求める。図2は、位相PHDと積分値PHI、PHQの関係を示す特性図である。基準クロック信号RFCKの立ち上がりエッジを位相0度とし、基準クロック信号RFCKの1周期を位相360度とする。図2に示すように、積分値PHIは疑似的なコサイン波となり、積分値PHQは疑似的なサイン波となる。このため、積分値PHI、PHQから位相PHDが決定される。
図3は、上記手法の計測誤差を説明する特性図である。図2の特性図より、|PHI|+|PHQ|は、位相PHDに依存せず一定となる。しかし、図3に示すように、位相0度及び位相90度の付近において、|PHI|+|PHQ|に相当する振幅の誤差が大きくなっている。これは、積分値PHI及びPHQの少なくとも一方において測定精度が低下していることを示す。
例えば図1に示す波形図において、第1信号STAの立ち上がりエッジのすぐ後にクロック信号RFCKQの立ち上がりエッジがある。このため、チャージポンプ回路が負の電流CPQを出力する期間が、短くなっている。このような狭パルスは、例えば消失する、或いは適切に積分されないおそれがあるため、狭パルスの発生によって積分値PHQの誤差が大きくなるおそれがある。
図1の方式では、パルス信号PSTAがハイレベルである積分期間は、第1信号STAの遷移タイミングによって決まる。また、積分極性の切り替わりタイミングは、基準クロック信号RFCKに基づくクロック信号RFCKI、RFCKQの遷移タイミングで決まる。第1信号STAがいつ入力されるかは分からないため、第1信号STAと基準クロック信号RFCKの遷移タイミングの関係を制御することはできない。このため、上記のような狭パルスが発生する場合があり、その狭パルスによって計測誤差を生じるおそれがある。
図4は、本実施形態における回路装置100の第1構成例である。回路装置100は、信号生成回路40と積分処理回路60と測定回路30とを含む。回路装置100は、IC(Integrated Circuit)と呼ばれる集積回路装置である。例えば回路装置100は、半導体プロセスにより製造されるICであり、半導体基板上に回路素子が形成された半導体チップである。
信号生成回路40は、第1信号STAと第2信号STPと基準クロック信号RFCKとに基づいて、積分処理のための信号を生成する。信号生成回路40は、第1積分期間信号生成回路である積分期間信号生成回路41と、第1極性切替信号生成回路である極性切替信号生成回路42と、第2積分期間信号生成回路である積分期間信号生成回路43と、第2極性切替信号生成回路である極性切替信号生成回路44と、を含む。
積分期間信号生成回路41は、第1積分期間信号である信号SINT1を、第1信号STAに基づいて生成する。極性切替信号生成回路42は、第1積分極性切替信号である信号SPH1と第2積分極性切替信号である信号SPH2とを、信号SINT1及び基準クロック信号RFCKに基づいて生成する。積分期間信号生成回路43は、第2積分期間信号である信号SINT2を、第2信号STPに基づいて生成する。極性切替信号生成回路44は、第3積分極性切替信号である信号SPH3と第4積分極性切替信号である信号SPH4とを、信号SINT2及び基準クロック信号RFCKに基づいて生成する。
積分処理回路60は、信号SINT1、SPH1、SPH2、SINT2、SPH3、SPH4に基づく積分処理を行うことで、第1~第4積分値である電圧QA1~QA4を出力する。電圧QA1、QA2は、第1信号STAと基準クロック信号RFCKの遷移タイミングの時間差に対応した位相を示す。電圧QA3、QA4は、第2信号STPと基準クロック信号RFCKの遷移タイミングの時間差に対応した位相を示す。積分処理回路60は、第1積分回路である積分回路61と、第2積分回路である積分回路62と、第3積分回路である積分回路63と、第4積分回路である積分回路64と、を含む。
積分回路61は、信号SINT1、SPH1に基づいて第1積分処理を行い、電圧QA1を出力する。積分回路62は、信号SINT1、SPH2に基づいて第2積分処理を行い、電圧QA2を出力する。積分回路63は、信号SINT2、SPH3に基づいて第3積分処理を行い、電圧QA3を出力する。積分回路64は、信号SINT2、SPH4に基づいて第4積分処理を行い、電圧QA4を出力する。
測定回路30は、電圧QA1~QA4に基づいて、第1信号STAと第2信号STPの遷移タイミングの時間差を示すデジタル値TQを出力する。具体的には、測定回路30は、電圧QA1~QA4の各々をA/D変換し、そのA/D変換値からデジタル値TQを演算する。
図5は、時間計測の手法を説明する波形図である。TIN1は、基準クロック信号RFCKと第1信号STAの遷移タイミングの時間差である。TIN2は、基準クロック信号RFCKと第2信号STPの遷移タイミングの時間差である。TDFは、第1信号STAと第2信号STPの遷移タイミングの時間差である。TCは、基準クロック信号RFCKの周期である。
積分処理回路60が出力する電圧QA1、QA2は、時間差TIN1に対応した位相を表しており、積分処理回路60が出力する電圧QA3、QA4は、時間差TIN2に対応した位相を表している。これらの位相と、既知のパラメーターである周期TCとから、時間差TDF=TIN2-TIN1が求められる。このことに基づいて、測定回路30は、時間差TDFを示すデジタル値TQを電圧QA1~QA4から求めることが可能である。なお、デジタル値TQを演算する詳細な手法については後述する。
第1信号STAと第2信号STPについては、種々の信号を想定できる。例えば、第2信号STPは、第1信号STAが遷移したことに基づいて遷移する。第1信号STAはスタート信号とも呼ばれ、第2信号STPはストップ信号とも呼ばれる。例えば、回路装置100を含む物理量測定装置は、第1信号STAを生成し、その第1信号STAの遷移タイミングで光パルス又は超音波パルスを出射し、測定対象から反射された光パルス又は超音波パルスを受信する。物理量測定装置は、受信した光パルス又は超音波パルスの遷移タイミングで遷移する第2信号STPを生成する。物理量測定装置は、第1信号STAと第2信号STPを回路装置100に入力する。
或いは、第1信号STAの遷移と第2信号STPの遷移は、互いに独立していてもよい。このとき、第1信号STAと第2遷移タイミングの前後関係は問わない。即ち、第2信号STPは第1信号STAより後に遷移してもよいし、第1信号STAより前に遷移してもよい。回路装置100は、例えばPLL回路における位相比較器として用いることが可能である。位相比較器に入力される基準クロック信号が第1信号STAであり、分周器からフィードバックされる分周クロック信号が第2信号STPである。
図6と図7を用いて、回路装置100の詳細な動作を説明する。なお図6、図7では、第1信号STAの位相を示す電圧QA1、QA2を求める動作を例に説明する。
図6は、回路装置100の動作を説明する波形図である。図6に示すように、積分期間信号生成回路41は、第1信号STAの遷移タイミングで信号SINT1を非アクティブからアクティブに遷移させ、積分期間TP1において信号SINT1をアクティブに維持し、信号SINT1を非アクティブにする。ここでは、アクティブをハイレベルとし、非アクティブをローレベルとするが、これに限定されない。遷移タイミングとは、信号レベルが変化するタイミングであり、信号の立ち上がりエッジ又は立ち上がりエッジである。以下、遷移タイミングは立ち上がりエッジであるとする。積分期間TP1は第1積分期間であり、積分期間TP1の長さは、基準クロック信号RFCKの周期TCより長い。後述するように、積分期間TP1の長さは、周期TCの4倍以上である。
第1信号STAの位相の検出範囲RDETは、基準クロック信号RFCKの1周期に相当する。第1信号STAは任意のタイミングで回路装置100に入力される。このため、第1信号STAが遷移したとき、その遷移タイミングが属する基準クロック信号RFCKの周期が、検出範囲RDETとなる。図6では、基準クロック信号RFCKの立ち上がりエッジ間を検出範囲RDETとしたが、基準クロック信号RFCKの立ち上がりエッジ間を検出範囲RDETとしてもよい。
極性切替信号生成回路42は、積分期間TP1において、基準クロック信号RFCKに同期したタイミングで信号SPH1をローレベルからハイレベルに遷移させる。信号SPH1の遷移タイミングは、検出範囲RDETにおける基準クロック信号RFCKの立ち上がりエッジからクロック数PCI後の立ち上がりエッジに同期する。例えば回路装置100は不図示のレジスターを有し、極性切替信号生成回路42は、レジスターに記憶されたクロック数PCIに基づいて信号SPH1の遷移タイミングを制御する。図6の例では、PCI=6である。
信号SPH1の遷移タイミングを、位相の基準、即ち0度とみなしたとする。これは、第1信号STAの遷移タイミングが基準クロック信号RFCKの立ち上がりエッジに一致したとき、第1信号STAの位相を0度とみなすことに相当する。図6の例では、積分期間TP1の長さは、基準クロック信号RFCKの24周期に相当する。この積分期間TP1を位相360度とみなすと、基準クロック信号RFCKの1周期は位相15度に相当する。図6の基準クロック信号RFCKの各パルスには、信号SPH1の遷移タイミングを基準「0」として番号を付しており、番号が1だけ異なると位相が15度だけ異なる。なお、図6では積分期間TP1の長さが基準クロック信号RFCKの周期TCの整数倍であるが、積分期間TP1の長さは周期TCの4倍以上の実数倍であればよい。
極性切替信号生成回路42は、積分期間TP1において、信号SPH1の遷移タイミングから基準クロック信号RFCKのクロック数NCK後に信号SPH2をローレベルからハイレベルに遷移させる。図6の例ではNCK=6であり、信号SPH1と信号SPH2の位相が90度だけ異なる。これは、図7に示すように、位相が90度シフトした2つの積分値が得られることに相当する。後述するように、この2つの積分値を用いることで、積分期間TP1が未知数であっても第1信号STAの位相を決定できる。
積分回路61は、積分期間TP1において信号SPH1の遷移タイミングで積分極性が切り替わる第1積分処理を行う。積分期間TP1は、信号SPH1の遷移タイミングにより期間TPP1と期間TPM1に区画される。TPP1は第1前半期間であり、TPM1は第1後半期間である。積分回路61は、期間TPP1において第1極性で第1積分処理を行い、期間TPM1において、第1極性とは逆極性である第2極性で第1積分処理を行う。ここでは、第1極性を正極性とし、第2極性を負極性とするが、これに限定されない。図20で後述するように、積分回路61は電流生成部と積分部を含む。電流生成部は期間TPP1において正の電流QCP1を出力し、期間TPM1において負の電流QCP1を出力する。積分部は、電流QCP1を電流電圧変換すると共に積分し、積分結果の電圧QA1を出力する。
積分回路62は、積分期間TP1において信号SPH2の遷移タイミングで積分極性が切り替わる第2積分処理を行う。積分期間TP1は、信号SPH2の遷移タイミングにより期間TPP2と期間TPM2に区画される。TPP2は第2前半期間であり、TPM2は第2後半期間である。積分回路62は、期間TPP2において正極性で第2積分処理を行い、期間TPM2において負極性で第2積分処理を行う。積分回路62は電流生成部と積分部を含む。電流生成部は期間TPP2において正の電流QCP2を出力し、期間TPM2において負の電流QCP2を出力する。積分部は、電流QCP2を電流電圧変換すると共に積分し、積分結果の電圧QA2を出力する。
図7は、第1信号STAの位相と積分値の関係を示す特性図である。図7に示すように、積分値を示す電圧QA1、QA2は、位相に対して線形な特性となっている。また積分値の振幅は|QA1|+|QA2|=QA2-QA1であり、位相に対して一定である。電圧QA2は、電圧QA1に対して90度だけ位相がシフトした特性となる。位相の検出範囲RDETは、位相0度を中心とする15度の範囲である。図7には検出範囲RDET外にも電圧QA1、QA2の特性を記載しているが、積分処理回路60が実際に出力する電圧QA1、QA2は、検出範囲RDET内の値をとることになる。
なお、電圧QA3、QA4も上記と同様にして生成される。即ち、積分期間信号生成回路43は、第2信号STPの遷移タイミングで信号SINT2を非アクティブからアクティブに遷移させる。信号SINT2がアクティブである期間は第2積分期間であり、その長さは、基準クロック信号RFCKの周期TCより長い。第2積分期間の長さは、周期TCの4倍以上である。
第2信号STPの位相の検出範囲は、第1信号STAの位相の検出範囲RDETと同様に、基準クロック信号RFCKの1周期に相当する。
極性切替信号生成回路44は、第2積分期間において、基準クロック信号RFCKに同期したタイミングで信号SPH3をローレベルからハイレベルに遷移させる。信号SPH3の遷移タイミングは、検出範囲における基準クロック信号RFCKの立ち上がりエッジからクロック数PCI後の立ち上がりエッジに同期する。
極性切替信号生成回路44は、第2積分期間において、信号SPH3の遷移タイミングから基準クロック信号RFCKのクロック数NCK後に信号SPH4をローレベルからハイレベルに遷移させる。
積分回路63は、第2積分期間において信号SPH3の遷移タイミングで積分極性が切り替わる第3積分処理を行う。第2積分期間は、信号SPH3の遷移タイミングにより第3前半期間と第3後半期間に区画される。積分回路63は、第3前半期間において第1極性で第3積分処理を行い、第3後半期間において第2極性で第3積分処理を行う。積分回路63は、積分結果の電圧QA3を出力する。
積分回路64は、第2積分期間において信号SPH4の遷移タイミングで積分極性が切り替わる第4積分処理を行う。第2積分期間は、信号SPH4の遷移タイミングにより第4前半期間と第4後半期間に区画される。積分回路64は、第4前半期間において正極性で第4積分処理を行い、第4後半期間において負極性で第4積分処理を行う。積分回路64は、積分結果の電圧QA4を出力する。
積分値を示す電圧QA3、QA4は、位相に対して線形な特性となっている。また積分値の振幅は|QA3|+|QA4|=QA4-QA3であり、位相に対して一定である。電圧QA4は、電圧QA3に対して90度だけ位相がシフトした特性となる。位相の検出範囲は、位相0度を中心とする15度の範囲である。
図1~図3で説明した手法では、図2に示すように積分値PHI、PHQが位相に対して線形ではない。即ち、積分値PHIは位相0度で折り返し、積分値PHQは位相-90度と+90度で折り返す。このような折り返しが生じる位相の付近では、図1で説明したように狭パルスが発生するため、図3で説明したように時間計測に誤差が生じる。これは、基準クロック信号RFCKを積分極性の切り替えに用いていることに起因する。即ち、時間デジタル変換回路は、基準クロック信号RFCKの遷移タイミングを制御できないので、積分期間内における積分極性の切り替えタイミングを制御できない。このため、正積分又は負積分の期間が短い狭パルスが発生する。
本実施形態によれば、図4と図6で説明したように、極性切替信号生成回路42が信号SPH1、SPH2を生成し、積分回路61が信号SPH1の遷移タイミングで積分極性を切り替え、積分回路62が信号SPH2の遷移タイミングで積分極性を切り替える。即ち、極性切替信号生成回路42が積分極性の切り替えタイミングを制御するので、積分期間TP1において適切なタイミングで積分極性を切り替えることができる。これにより、正積分及び負積分の期間が適切に確保され、積分処理において狭パルスが発生しないので、時間計測の誤差が低減される。
本実施形態では、図7で説明したように、位相に対して積分値が線形であり、折り返しが発生しない。これは、極性切替信号生成回路42が信号SPH1、SPH2を生成しているためである。即ち、図6に示すように、積分期間において必ず正極性で積分が開始され、負極性の積分に切り替わり、負極性の積分で終了する。位相が変動すると、正極性と負極性の期間の比が線形に変化していくので、積分結果が線形な特性となる。このように折り返しが発生しない積分値において、位相0度付近の検出範囲RDETのみを用いているため、狭パルスの発生を避けることが可能になっている。また、積分値が線形であることで、積分値から位相が一意に決まるため、積分値から時間差のデジタル値を求める演算が簡素化される。
図8は、積分値から時間差のデジタル値を求める手法を説明する波形図である。ここでは、信号SINT1が規定する積分期間をTP1とする。また、積分期間TP1の長さを2×TCとするが、積分期間TP1の長さは4×TC以上であることが望ましい。TCは基準クロック信号RFCKの周期である。
下式(1)に示すように、2×TCに相当する積分期間TP1において、容量値C0のキャパシターに電流I0を積分した電圧をAZ1とする。
AZ1=(I0/C)×(2×TC) ・・・(1)
図9は、第1信号STAと基準クロック信号RFCKの遷移タイミングの時間差TIN1と、積分回路61、62が出力する電圧QA1、QA2との関係を示す特性図である。
図8から、電圧QA1、QA2は下式(2)、(3)のように表される。式変形において上式(1)を用いた。
QA1=(I0/C)×{(TC-TIN1)-(TP1+TIN1-TC)}
=AZ1×{1-TP1/(2×TC)-TIN1/TC} ・・・(2)
QA2=(I0/C)×{(2×TC-TIN1)-(TP1+TIN1-2×TC)}
=AZ1×{2-TP1/(2×TC)-TIN1/TC} ・・・(3)
上式(2)、(3)から下式(4)が求められる。
QA2-QA1=AZ1 ・・・(4)
同様にして、積分回路63、64が出力する電圧QA3、QA4について下式(5)~(7)が求められる。
QA3=AZ2×{1-TP2/(2×TC)-TIN2/TC} ・・・(5)
QA4=AZ2×{2-TP2/(2×TC)-TIN2/TC} ・・・(6)
QA4-QA3=AZ2 ・・・(7)
TP2は、信号SINT2が規定する積分期間である。TIN2は、第2信号STPと基準クロック信号RFCKの遷移タイミングの時間差である。AZ2は、2×TCに相当する積分期間TP2において、容量値C0のキャパシターに電流I0を積分した電圧である。
第1信号STAと第2信号STPの遷移タイミングの時間差TDFは、上式(2)、(5)を用いて下式(8)となる。
TDF=TIN2-TIN1
=TC×(QA3/AZ2-QA1/AZ1)
+(TP2-TP1)/2 ・・・(8)
上式(8)において、基準クロック信号RFCKの周期TCは既知のパラメーターであり、AZ1、AZ2は上式(4)、(7)から求められる。また、TP2=TP1に設定しておくことで、(TP2-TP1)/2の項はゼロとなる。
従って、測定回路30は上式(8)を用いて電圧QA1~QA4から時間差TDFのデジタル値TQを演算できる。なお、デジタル値TQは時間差TDFそのものでなくてもよい。例えば、測定回路30は、上式(8)の(QA3/AZ2-QA1/AZ1)をデジタル値TQとして出力してもよい。この場合、回路装置100の外部装置がデジタル値TQに周期TCを乗算することで時間差TDFを求めてもよい。
図10は、積分期間が基準クロック信号RFCKの周期TCの4倍以上であることを説明する波形図である。図10では信号SINT1が規定する積分期間TP1について説明するが、信号SINT2が規定する積分期間についても同様である。
ケース1は、第1信号STAの遷移タイミングが、検出範囲RDETにおける前側の基準クロック信号RFCKの立ち上がりエッジに近い場合である。ケース2は、第1信号STAの遷移タイミングが、検出範囲RDETにおける後側の基準クロック信号RFCKの立ち上がりエッジに近い場合である。ケース1、2のいずれにおいても、正積分又は負積分の期間が短い狭パルスが発生しないように、積分期間TP1の長さを決定する必要がある。
積分期間TP1の長さを4×TCとする。ケース1の積分期間TP1とケース2の積分期間TP2が重なる期間TNESの長さは、3×TCである。積分極性を切り替える信号SPH1の遷移タイミングは、ケース2の積分期間TP1の立ち上がりエッジに対して、少なくとも1×TCのマージンMGN1を必要とする。積分極性を切り替える信号SPH2の遷移タイミングは、信号SPH1の遷移タイミングに対して少なくとも1×TC離れている必要がある。また信号SPH2の遷移タイミングは、ケース1の積分期間TP1の立ち下がりエッジに対して、少なくとも1×TCのマージンMGN2を必要とする。
以上のことから、期間TNESの長さとして3×TC以上が必要であることが分かる。ケース1の積分期間TP1とケース2の積分期間TP2は、最大でRDET=1×TCだけずれるので、積分期間TP1の長さとして4×TC以上が必要である。
2.詳細構成例
図11は、積分期間信号生成回路の詳細構成例である。ここでは積分期間信号生成回路41を例に説明するが、積分期間信号生成回路43も同様の構成である。積分期間信号生成回路41は、ディレイ回路45と信号出力回路46とを含む。
ディレイ回路45は、第1信号STAを遅延させることでディレイ信号SDLYを出力する。ディレイ信号SDLYは、第1信号STAが遷移してから所定期間の経過後に遷移する信号である。ディレイ回路45は、アンド回路ANとディレイ部DLSとインバーターINVと分周回路DIVとラッチ回路LATとを含む。
アンド回路ANとディレイ部DLSとインバーターINVが形成するループは、発振回路として機能し、クロック信号QDLSを生成する。分周回路DIVは、クロック信号QDLSを分周し、分周クロック信号QDIVを出力する。ラッチ回路LATは、分周クロック信号QDIVに基づいてラッチ動作を行い、ディレイ信号SDLYを出力する。
信号出力回路46は、第1信号STAとディレイ信号SDLYに基づいて信号SINT1を出力する。信号出力回路46は、第1信号STAが遷移したとき信号SINT1を第1電圧レベルから第2電圧レベルに変化させ、ディレイ信号SDLYが遷移したとき信号SINT1を第2電圧レベルから第1電圧レベルに変化させる。信号出力回路46は、ディレイ信号SDLYの論理否定信号と、第1信号STAとが入力されるアンド回路である。
図12は、積分期間信号生成回路41の動作を説明する波形図である。第1信号STAがローレベルからハイレベルに遷移したとき、アンド回路ANとディレイ部DLSとインバーターINVにより構成された発振回路が発振を開始し、クロック信号QDLSの出力を開始する。図12では、分周回路DIVの分周比を1/4としている。この場合、分周回路DIVは、クロック信号QDIVの4個目の立ち上がりエッジで分周クロック信号QDIVをローレベルからハイレベルに遷移させる。ラッチ回路LATは、分周クロック信号QDIVがローレベルからハイレベルに遷移したとき、ハイレベルをラッチすることで、ディレイ信号SDLYをローレベルからハイレベルに遷移させる。
信号出力回路46は、第1信号STAがローレベルからハイレベルに遷移したとき、信号SINT1をローレベルからハイレベルに遷移させ、ディレイ信号SDLYがローレベルからハイレベルに遷移したとき、信号SINT1をハイレベルからローレベルに遷移させる。これにより、所定期間において信号SINT1がハイレベルとなる。この所定期間によって、積分期間TP1が設定される。
図13は、極性切替信号生成回路の詳細構成例である。ここでは極性切替信号生成回路42を例に説明するが、極性切替信号生成回路44も同様の構成である。極性切替信号生成回路42は、検出回路47とカウンター48とデコーダー49とを含む。
図14は、極性切替信号生成回路42の動作を説明する波形図である。検出回路47は、信号SINT1がローレベルからハイレベルに遷移した後において、基準クロック信号RFCKの最初の立ち上がりエッジを検出する。検出回路47は、その立ち上がりエッジを検出したとき、検出信号DETをローレベルからハイレベルに遷移させる。
カウンター48は、検出信号DETの立ち上がりエッジからカウント処理を開始する。カウンター48は、基準クロック信号RFCKのクロック数をカウントし、カウント値CNTを出力する。
デコーダー49は、カウント値CNTをデコードすることで信号SPH1、SPH2を出力する。デコーダー49は、カウント値CNTがクロック数PCIに一致したとき、信号SPH1をローレベルからハイレベルに遷移させる。図14の例ではPCI=6である。デコーダー49は、カウント値CNTがクロック数PCI+NCKに一致したとき、信号SPH2をローレベルからハイレベルに遷移させる。図14の例ではNCK=6である。
3.第2構成例
図15は、回路装置100の第2構成例である。回路装置100は、カウンター110と信号生成回路40と積分処理回路60と測定回路30とを含む。なお、既に説明した構成要素には同一の符号を付し、その構成要素についての説明を適宜に省略する。
カウンター110は、信号SINT1の遷移タイミングから信号SINT2の遷移タイミングまでの期間において、基準クロック信号RFCKに基づいてカウント処理を行う。測定回路30は、カウンター110が出力するカウント値CNQと、積分処理回路60が出力する電圧QA1~QA4とに基づいて、時間差TDFを示すデジタル値TQを求める。
図16は、第2構成例の回路装置100の動作を説明する波形図である。カウンター110は、検出信号DETの立ち上がりエッジからカウント処理を開始する。カウンター110は、基準クロック信号RFCKのクロック数をカウントし、カウント値CNQを出力する。図14で説明したように、信号SINT1がローレベルからハイレベルに遷移した後において、基準クロック信号RFCKの最初の立ち上がりエッジで、検出信号DETがローレベルからハイレベルに遷移する。このため、カウンター110は、信号SINT1の遷移タイミングからカウント処理を行うことになる。
測定回路30は、信号SINT2の遷移タイミングにおけるカウント値CNQを保持する。測定回路30は、保持したカウント値CNQと、電圧QA1~QA4とに基づいて、デジタル値TQを求める。具体的には、測定回路30は下式(9)に基づいて、時間差TDFを示すデジタル値TQを求める。
TDF=TIN2-TIN1+CNQ×TC ・・・(9)
上式(9)におけるCNQは、信号SINT2の遷移タイミングにおけるカウント値CNQである。TIN2-TIN1を求める手法は、上式(1)~(8)で説明した通りである。
以下、TIN2-TIN1の測定をfine測定と呼び、CNQ×TCの測定をcoarse測定と呼ぶ。本実施形態では、図14と図16で説明したように、fine測定とcoarse測定が検出信号DETを起点に開始されている。これにより、基準クロック信号RFCKの同一エッジを基準として、fine測定とcoarse測定が行われることになり、計測誤差が低減される。
具体的には、第1信号STAと基準クロック信号RFCKの遷移タイミングが近い場合、第1信号STAの遷移タイミングが基準クロック信号RFCKの遷移タイミングの前と判定される場合と、後と判定される場合とが生じ得る。fine測定とcoarse測定の制御タイミングが独立したものである場合、例えばfine測定において第1信号STAの遷移タイミングが基準クロック信号RFCKの遷移タイミングの前と判定され、coarse測定において第1信号STAの遷移タイミングが基準クロック信号RFCKの遷移タイミングの後と判定される可能性がある。この場合、基準クロック信号RFCKの1周期分の測定誤差が発生することになる。
本実施形態によれば、基準クロック信号RFCKの同一エッジを基準としてfine測定とcoarse測定が行われるので、上記のような測定誤差が発生しない。本実施形態では、積分極性を切り替える信号SPH1~SPH4を回路装置100の内部で生成しているため、coarse測定において基準とされた基準クロック信号RFCKのエッジと同一のエッジを基準として、fine測定を行うことが可能となっている。
4.第3構成例
図17は、第3構成例の回路装置100の動作を説明する波形図である。信号生成回路40は、信号SINT1と基準クロック信号RFCKに基づいて信号SPH1、SPHB1、SPHC1、SPH2、SPHB2、SPHC2を生成する。信号SPH1、SPHB1、SPHC1、SPH2、SPHB2、SPHC2は、それぞれ位相0度、30度、60度、90度、120度、150度に対応した遷移タイミングで遷移する積分極性切替信号である。
積分処理回路60は、信号SINT1、SPH1に基づいて積分処理を行い、その積分値を示す電圧QA1を出力し、信号SINT1、SPH2に基づいて積分処理を行い、その積分値を示す電圧QA2を出力する。積分処理回路60は、信号SINT1、SPHB1に基づいて積分処理を行い、その積分値を示す電圧QAB1を出力し、信号SINT1、SPHB2に基づいて積分処理を行い、その積分値を示す電圧QAB2を出力する。積分処理回路60は、信号SINT1、SPHC1に基づいて積分処理を行い、その積分値を示す電圧QAC1を出力し、信号SINT1、SPHC2に基づいて積分処理を行い、その積分値を示す電圧QAC2を出力する。
図18は、第1信号STAの位相と積分値の関係を示す特性図である。図18に示すように、電圧QAB1、QAC1、QA2、QAB2、QAC2は、電圧QA1に対して30度ずつ位相がシフトした特性となる。電圧QA1、QAB1、QAC1、QA2、QAB2、QAC2は、位相に対して線形な特性となっている。90度位相がシフトした積分値の振幅の差分はQA2-QA1=QAB2-QAB1=QAC2-QAC1となっている。これらの振幅の差分は、位相に対して一定であり、同一の値である。
以上では、第1信号STAの位相を示す積分値を求める構成及び動作について説明したが、第2信号STPの位相を示す積分値を求める構成及び動作も同様である。
測定回路30は、位相0度及び90度の積分極性切替信号により得られる積分値に基づいて第1デジタル値を求め、位相30度及び120度の積分極性切替信号により得られる積分値に基づいて第2デジタル値を求め、位相60度及び150度の積分極性切替信号により得られる積分値に基づいて第3デジタル値を求める。第1~第3デジタル値の各々は、第1信号STAと第2信号STPの遷移タイミングの時間差TDFを示す。第1信号STAの位相を示す積分値に関しては、位相0度及び90度の積分極性切替信号により得られる積分値は電圧QA1、QA2であり、位相30度及び120度の積分極性切替信号により得られる積分値は電圧QAB1、QAB2であり、位相60度及び150度の積分極性切替信号により得られる積分値は電圧QAC1、QAC2である。但し、これらと同様な、第2信号STPの位相を示す積分値が、デジタル値の演算に用いられる。
本実施形態によれば、位相が30度ずつずれた積分極性切替信号に基づいて積分処理が行われることで、時間差TDFを示す第1~第3のデジタル値が得られる。この第1~第3のデジタル値に基づいて最終的なデジタル値TQが求められることで、計測精度が向上する。
5.測定回路、積分回路
図19は、測定回路30の詳細構成例である。測定回路30は、セレクター31とA/D変換回路32と処理回路33とを含む。
セレクター31には、積分処理回路60から電圧QA1~QA4が入力される。セレクター31は、これらの信号を1つずつ時分割に選択し、その選択した信号を信号MXQとして出力する。A/D変換回路32は、信号MXQとして入力される電圧QA1~QA4を時分割にA/D変換し、その結果をデータADQとして出力する。処理回路33は、データADQに基づいてデジタル信号処理を行い、第1信号STAと第2信号STPの時間差TDFを示すデジタル値TQを求める。デジタル値TQを求める手法は上述した通りである。
図20は、積分回路の詳細構成例である。また図21は、積分回路の動作を説明する波形図である。なお、ここでは積分回路61を例に説明するが、積分回路62~64も同様の構成である。
図20に示すように、積分回路61は、積分信号生成回路GISと電流生成回路IGENと差動積分回路CINTとを含む。
積分信号生成回路GISは、信号SINT1と信号SPH1から積分信号INCKA、INCKBを生成する。図21に示すように、積分信号INCKAは、信号SINT1と信号SPH1の論理反転信号との論理積である。積分信号INCK2は、信号SINT1と信号SPH1の論理積である。
電流生成回路IGENは、積分信号INCKA、INCKBに基づいて電流IP、INを生成し、その電流IP、INを差動積分回路CINTの入力ノードNINP、NINNに供給する。具体的には、積分信号INCKAがハイレベルであり、積分信号INCKBがローレベルである場合には、スイッチ素子SWA1、SWA2がオンになり、スイッチ素子SWB1、SWB2がオフになる。そして、電流源IBBから一定電流値の負電流が電流IPとしてノードNINPに供給され、電流源IBAから一定電流値の正電流が電流INとしてノードNINNに供給され、IP-IN<0となる。一方、積分信号INCKAがローレベルであり、積分信号INCKBがハイレベルである場合には、スイッチ素子SWA1、SWA2がオフになり、スイッチ素子SWB1、SWB2がオンになる。そして、電流源IBAから一定電流値の正電流が電流IPとしてノードNINPに供給され、電流源IBBから一定電流値の負電流が電流INとしてノードNINNに供給され、IP-IN>0となる。
以下、符号NINN、NINPは、ノードNINN、NINPの電圧を指す。差動積分回路CINTは、差動入力された電流IP、INを積分し、その積分値を電圧VOUT、VOUTNとして差動出力する。即ち、電流IP、INにより供給される電荷の積分値を電圧VOUTP、VOUTNに変換する電荷電圧変換を行う。差動積分回路CINTは、負の入力電荷を正の電圧に変換する反転増幅を行う。即ち、積分信号INCKAがハイレベルであり、積分信号INCKBがローレベルである場合、上述のようにIP-IN<0なので、図21に示すように電圧NINN、NINPの差分NINN-NINPが増加する方向に、電圧NINP、NINNが変化する。これが正積分に相当する。一方、積分信号INCKAがローレベルであり、積分信号INCKBがハイレベルである場合、上述のようにIP-IN>0なので、図21に示すように差分NINN-NINPが減少する方向に、電圧NINP、NINNが変化する。これが負積分に相当する。
なお、差動積分回路CINTは制御信号APCK、XAPCKに基づいて積分動作、反転増幅動作を行う。なお、XAPCKは、制御信号APCKの論理反転信号である。具体的には、制御信号APCKがローレベルであるとき、スイッチ素子SWP1~SWP4がオフになり、スイッチ素子SWP5~SWP8がオンになる。この場合、キャパシターCP1、CP2は、アンプ回路AMPに接続されているノードがアンプ回路AMPのコモン電圧に固定され、もう一方のノードが差動入力された電流IP、INの積分値に対応した電圧NINP、NINNになることで積分動作を行う。なお、キャパシターCP3、CP4はコモン電圧VCMでリセットされる。制御信号APCKがハイレベルであるとき、スイッチ素子SWP1~SWP4がオンになり、スイッチ素子SWP5~SWP8がオフになる。この場合、キャパシターCP1~CP4、アンプ回路AMPにより差動の積分回路が構成され、上述の負の入力電荷を正の電圧に変換する反転増幅動作が行われる。
6.物理量測定装置、電子機器、移動体
図22は、回路装置100を含む物理量測定装置400の構成例である。物理量測定装置400は、例えばタイムオブフライトの方式で対象物との距離を物理量として測定する測距装置に利用できる。或いは、物理量測定装置400は、音波を対象物に送信し、その反射波を受信することで対象物との距離を物理量として測定する超音波診断装置に利用できる。これらの例では、第1信号STAと第2信号STPの遷移タイミングの時間差TDFは、対象物との距離を表す。なお、物理量測定装置400により測定される物理量は、時間、距離には限定されず、流量、流速、周波数、速度、加速度、角速度又は角加速度等の種々の物理量が考えられる。
図22に示すように、物理量測定装置400は、回路装置100と振動子10とを含む。物理量測定装置400は、回路装置100及び振動子10が収容されるパッケージを更に含んでもよい。回路装置100は、発振回路20と信号生成回路40と積分処理回路60と測定回路30とを含む。信号生成回路40と積分処理回路60と測定回路30の動作は図1~図21で説明した通りである。
発振回路20は振動子10と電気的に接続される。具体的には、回路装置100は第1接続端子と第2接続端子とを含み、第1接続端子を介して振動子10の一端と発振回路20が接続され、第2接続端子を介して振動子10の他端と発振回路20が接続される。なお、本実施形態における接続は電気的な接続である。電気的な接続とは、電気信号が伝達可能に接続されていることであり、電気信号による情報の伝達が可能となる接続である。電気的な接続は受動素子又は能動素子等を介した接続であってもよい。
発振回路20は、振動子10を発振させ、その発振信号に基づいて基準クロック信号RFCKを生成する。発振回路20としては、例えばピアース型、コルピッツ型、インバーター型又はハートレー型などの種々のタイプの発振回路を用いることができる。
振動子10は、電気的な信号により機械的な振動を発生する素子である。振動子10は、例えば水晶振動片などの振動片により実現できる。例えば振動子10は、カット角がATカットやSCカットなどの厚みすべり振動する水晶振動片などにより実現できる。なお、振動子10は、例えば厚みすべり振動型以外の水晶振動片、或いは水晶以外の材料で形成された圧電振動片などの種々の振動片により実現されてもよい。例えば振動子10として、SAW(Surface Acoustic Wave)共振子や、シリコン基板を用いて形成されたシリコン製振動子としてのMEMS(Micro Electro Mechanical Systems)振動子等を採用してもよい。
図23に、回路装置100を含む電子機器500の構成例を示す。電子機器500は、例えば距離、時間、流速又は流量等の物理量を計測する高精度の計測機器、或いは生体情報を測定する生体情報測定機器、或いは車載機器、或いはロボットなどである。生体情報測定機器は例えば超音波測定装置等である。車載機器は自動運転用の機器等である。
図23に示すように、電子機器500は、回路装置100と、回路装置100からの出力信号に基づく処理を行う処理装置520と、を含む。出力信号は、例えば時間差の測定結果であるデジタル値であってもよいし、或いは、時間差から求められた時間以外の物理量であってもよい。具体的には、電子機器500は、回路装置100を有する物理量測定装置400を含み、処理装置520は、物理量測定装置400が測定した物理量に基づく処理を行う。また電子機器500は、通信インターフェース510と、操作インターフェース530と、表示部540と、メモリー550とを含むことができる。なお電子機器500は図20の構成に限定されず、これらの一部の構成要素を省略したり、他の構成要素を追加するなどの種々の変形実施が可能である。
通信インターフェース510は、外部からデータを受信したり、外部にデータを送信する処理を行う。プロセッサーである処理装置520は、電子機器500の制御処理や、通信インターフェース510を介して送受信されるデータの種々のデジタル処理などを行う。処理装置520の機能は、例えばマイクロコンピューターなどのプロセッサーにより実現できる。操作インターフェース530は、ユーザーが入力操作を行うためのものであり、操作ボタンやタッチパネルディスプレイなどにより実現できる。表示部540は、各種の情報を表示するものであり、液晶や有機ELなどのディスプレイにより実現できる。メモリー550は、データを記憶するものであり、その機能はRAMやROMなどの半導体メモリーにより実現できる。
図24に、回路装置100を含む移動体の例を示す。移動体は、回路装置100と、回路装置100からの出力信号に基づく処理を行う処理装置220と、を含む。出力信号は、例えば時間差の測定結果であるデジタル値であってもよいし、或いは、時間差から求められた時間以外の物理量であってもよい。本実施形態の回路装置100は、例えば、車、飛行機、バイク、自転車、或いは船舶等の種々の移動体に組み込むことができる。移動体は、例えばエンジンやモーター等の駆動機構、ハンドルや舵等の操舵機構、各種の電子機器を備えて、地上や空や海上を移動する機器・装置である。
図24は移動体の具体例としての自動車206を概略的に示している。自動車206には、回路装置100が組み込まれる。具体的には、移動体である自動車206は、制御装置208を含む。制御装置208は、回路装置100を有する物理量測定装置400と、物理量測定装置400が測定した物理量に基づく処理を行う処理装置220と、を含む。制御装置208は、例えば車体207の姿勢に応じてサスペンションの硬軟を制御したり、個々の車輪209のブレーキを制御する。例えば制御装置208により、自動車206の自動運転を実現してもよい。なお回路装置100が組み込まれる機器は、このような制御装置208には限定されず、自動車206等の移動体に設けられるメーターパネル機器やナビゲーション機器などの種々の車載機器に組み込むことが可能である。
以上に説明した本実施形態の回路装置は、積分期間信号生成回路と極性切替信号生成回路と第1積分回路と第2積分回路とを含む。積分期間信号生成回路は、第1積分期間信号を生成する。第1積分期間信号は、第1信号が遷移したときアクティブになると共に、基準クロック信号の周期より長い所定期間長の第1積分期間においてアクティブである。極性切替信号生成回路は、第1積分極性切替信号と第2積分極性切替信号とを生成する。第1積分極性切替信号は、第1積分期間において基準クロック信号に同期したタイミングで電圧レベルが遷移する。第2積分極性切替信号は、第1積分期間において、第1積分極性切替信号の遷移タイミングから基準クロック信号の所定クロック数後に電圧レベルが遷移する。第1積分回路は、第1積分期間において第1積分極性切替信号の遷移タイミングで積分極性が切り替わる第1積分処理を行う。第2積分回路は、第1積分期間において第2積分極性切替信号の遷移タイミングで積分極性が切り替わる第2積分処理を行う。
本実施形態によれば、極性切替信号生成回路が第1積分極性切替信号と第2積分極性切替信号を生成し、第1積分回路が第1積分極性切替信号の遷移タイミングで積分極性を切り替え、第2積分回路が第2積分極性切替信号の遷移タイミングで積分極性を切り替える。即ち、極性切替信号生成回路が積分極性の切り替えタイミングを制御するので、第1積分期間において適切なタイミングで積分極性を切り替えることができる。これにより、正積分及び負積分の期間が適切に確保され、第1、第2積分処理において狭パルスが発生しないので、時間計測の誤差が低減される。
また本実施形態では、回路装置は、第2積分期間信号生成回路と第2極性切替信号生成回路と第3積分回路と第4積分回路と測定回路とを含んでもよい。第2積分期間信号生成回路は、第2積分期間信号を生成してもよい。第2積分期間信号は、第2信号が遷移した後、所定期間長の第2積分期間においてアクティブになってもよい。第2極性切替信号生成回路は、第3積分極性切替信号と第4積分極性切替信号とを生成してもよい。第3積分極性切替信号は、第2信号が遷移した後、第2積分期間において基準クロック信号に同期したタイミングで電圧レベルが遷移してもよい。第4積分極性切替信号は、第3積分極性切替信号の遷移後、第2積分期間において基準クロック信号の所定クロック数後に電圧レベルが遷移してもよい。第3積分回路は、第3積分極性切替信号の遷移タイミングで積分極性が切り替わる第3積分処理を行ってもよい。第4積分回路は、第4積分極性切替信号の遷移タイミングで積分極性が切り替わる第4積分処理を行ってもよい。測定回路は、第1積分処理、第2積分処理、第3積分処理及び第4積分処理の結果に基づいて、第1信号と第2信号の遷移タイミングの時間差に対応するデジタル値を求めてもよい。
このようにすれば、第2極性切替信号生成回路が積分極性の切り替えタイミングを制御するので、第2積分期間において適切なタイミングで積分極性を切り替えることができる。これにより、正積分及び負積分の期間が適切に確保され、第3、第4積分処理において狭パルスが発生しないので、時間計測の誤差が低減される。そして、第1~第4積分処理の結果に基づいて、第1信号と第2信号の遷移タイミングの時間差に対応するデジタル値が求められることで、正確な時間差が計測される。
また本実施形態では、回路装置はカウンターを含んでもよい。カウンターは、第1積分期間信号の遷移タイミングから第2積分期間信号の遷移タイミングまでの期間において、基準クロック信号に基づいてカウント処理を行ってもよい。測定回路は、カウンターのカウント値と、第1積分処理、第2積分処理、第3積分処理及び第4積分処理の結果とに基づいて、デジタル値を求めてもよい。
第1~第4積分処理の結果に基づく時間計測は、基準クロック信号の1周期より短い時間を計測できる。本実施形態によれば、カウンターを設けたことで、そのカウンターが、第1信号と第2信号の遷移タイミングの時間差を基準クロック信号の1周期単位で計測できる。これにより、時間計測のダイナミックレンジを、基準クロック信号の1周期より長いダイナミックレンジに拡張できる。
また本実施形態では、所定期間長は、基準クロック信号の周期の4倍以上であってもよい。
このようにすれば、正積分の期間と負積分の期間を適切に確保することが可能となり、正積分又は負積分の期間が短い狭パルスが発生しない。これにより、時間計測の誤差が低減される。
また本実施形態では、第1積分期間は、第1積分極性切替信号の遷移タイミングにより第1前半期間と第1後半期間に区画されてもよい。第1積分回路は、第1前半期間において第1極性で第1積分処理を行い、第1後半期間において、第1極性とは逆極性である第2極性で第1積分処理を行ってもよい。第2積分期間は、第2積分極性切替信号の遷移タイミングにより第2前半期間と第2後半期間に区画されてもよい。第2積分回路は、第2前半期間において第1極性で第2積分処理を行い、第2後半期間において、第2極性で第2積分処理を行ってもよい。
積分処理が第1極性から始まるときと、積分処理が第2極性から始まるときが混在する場合、その開始時の極性が入れ替わる付近において、積分期間の開始タイミングと積分極性切替信号の遷移タイミングとが近くなる。このため、狭パルスが発生するおそれがある。本実施形態によれば、積分処理は必ず第1極性の積分から始まり、第2極性の積分で終わるので、積分期間の開始タイミングと積分極性切替信号の遷移タイミングとを適切に話すことが可能である。これにより、狭パルスの発生を防ぐことが可能である。
また本実施形態では、積分期間信号生成回路は、ディレイ回路と信号出力回路とを含んでもよい。ディレイ回路は、第1信号が遷移してから所定期間の経過後に遷移するディレイ信号を出力してもよい。信号出力回路は、第1信号が遷移したとき第1積分期間信号を非アクティブからアクティブに変化させ、ディレイ信号が遷移したとき第1積分期間信号をアクティブから非アクティブに変化させてもよい。
このようにすれば、積分期間信号生成回路が、第1信号が遷移したときアクティブになると共に、基準クロック信号の周期より長い所定期間長の第1積分期間においてアクティブである第1積分期間信号を、出力できる。
また本実施形態では、回路装置は発振回路を含んでもよい。発振回路は、振動子に電気的に接続され、振動子を発振させることで基準クロック信号を出力してもよい。
このようにすれば、発振回路が振動子を発振させることで基準クロック信号を生成し、極性切替信号生成回路が、その基準クロック信号に基づいて第1、第2積分極性切替信号を生成できる。
また本実施形態の物理量測定装置は、上記に記載の回路装置と、振動子と、を含む。
また本実施形態の電子機器は、上記のいずれかに記載の回路装置と、回路装置からの出力信号に基づく処理を行う処理装置と、を含む。
また本実施形態の移動体は、上記のいずれかに記載の回路装置と、回路装置からの出力信号に基づく処理を行う処理装置と、を含む。
なお、上記のように本実施形態について詳細に説明したが、本開示の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは当業者には容易に理解できるであろう。従って、このような変形例はすべて本開示の範囲に含まれるものとする。例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また本実施形態及び変形例の全ての組み合わせも、本開示の範囲に含まれる。また回路装置、物理量測定装置、電子機器及び移動体等の構成及び動作等も、本実施形態で説明したものに限定されず、種々の変形実施が可能である。
10…振動子、20…発振回路、30…測定回路、31…セレクター、32…A/D変換回路、33…処理回路、40…信号生成回路、41…積分期間信号生成回路、42…極性切替信号生成回路、43…積分期間信号生成回路、44…極性切替信号生成回路、45…ディレイ回路、46…信号出力回路、47…検出回路、48…カウンター、49…デコーダー、60…積分処理回路、61~64…積分回路、100…回路装置、110…カウンター、206…自動車、207…車体、208…制御装置、209…車輪、220…処理装置、400…物理量測定装置、500…電子機器、510…通信インターフェース、520…処理装置、530…操作インターフェース、540…表示部、550…メモリー、QA1~QA4…電圧、RFCK…基準クロック信号、SDLY…ディレイ信号、SINT1,SINT2…信号、SPH1~SPH4…信号、STA…第1信号、STP…第2信号、TC…周期、TDF…時間差、TP1,TP2…積分期間、TQ…デジタル値

Claims (9)

  1. 第1信号が遷移したときアクティブになると共に、基準クロック信号の周期より長い所定期間長の第1積分期間においてアクティブである第1積分期間信号を生成する積分期間信号生成回路と、
    前記第1積分期間において前記基準クロック信号に同期したタイミングで電圧レベルが遷移する第1積分極性切替信号と、前記第1積分期間において前記第1積分極性切替信号の遷移タイミングから前記基準クロック信号の所定クロック数後に電圧レベルが遷移する第2積分極性切替信号と、を生成する極性切替信号生成回路と、
    前記第1積分期間において前記第1積分極性切替信号の遷移タイミングで積分極性が切り替わる第1積分処理を行う第1積分回路と、
    前記第1積分期間において前記第2積分極性切替信号の遷移タイミングで積分極性が切り替わる第2積分処理を行う第2積分回路と、
    測定回路と、
    を含み、
    前記第1積分期間は、前記第1積分極性切替信号の遷移タイミングにより第1前半期間と第1後半期間に区画され、
    前記第1積分回路は、前記第1前半期間において第1極性で第1一定値を積分する前記第1積分処理を行い、前記第1後半期間において、前記第1極性とは逆極性である第2極性で前記第1一定値を積分する前記第1積分処理を行い、
    前記第1積分期間は、前記第2積分極性切替信号の遷移タイミングにより第2前半期間と第2後半期間に区画され、
    前記第2積分回路は、前記第2前半期間において前記第1極性で第2一定値を積分する前記第2積分処理を行い、前記第2後半期間において、前記第2極性で前記第2一定値を積分する前記第2積分処理を行い、
    前記測定回路は、前記第1積分処理で得られる第1積分値、及び前記第1積分値と前記第2積分処理で得られる第2積分値との差分を用いて、前記第1信号と前記基準クロック信号の遷移タイミングの時間差を求めることを特徴とする回路装置。
  2. 請求項1に記載の回路装置において、
    第2信号が遷移した後、前記所定期間長の第2積分期間においてアクティブになる第2積分期間信号を生成する第2積分期間信号生成回路と、
    前記第2信号が遷移した後、前記第2積分期間において前記基準クロック信号に同期したタイミングで電圧レベルが遷移する第3積分極性切替信号と、前記第3積分極性切替信号の遷移後、前記第2積分期間において前記基準クロック信号の前記所定クロック数後に電圧レベルが遷移する第4積分極性切替信号と、を生成する第2極性切替信号生成回路と、
    前記第3積分極性切替信号の遷移タイミングで積分極性が切り替わる第3積分処理を行う第3積分回路と、
    前記第4積分極性切替信号の遷移タイミングで積分極性が切り替わる第4積分処理を行う第4積分回路と、
    を含み、
    前記測定回路は、
    前記第1積分処理、前記第2積分処理、前記第3積分処理及び前記第4積分処理の結果に基づいて、前記第1信号と前記第2信号の遷移タイミングの時間差に対応するデジタル値を求めることを特徴とする回路装置。
  3. 請求項2に記載の回路装置において、
    前記第1積分期間信号の遷移タイミングから前記第2積分期間信号の遷移タイミングまでの期間において、前記基準クロック信号に基づいてカウント処理を行うカウンターを含み、
    前記測定回路は、前記カウンターのカウント値と、前記第1積分処理、前記第2積分処理、前記第3積分処理及び前記第4積分処理の結果とに基づいて、前記デジタル値を求めることを特徴とする回路装置。
  4. 請求項1乃至3のいずれか一項に記載の回路装置において、
    前記所定期間長は、前記基準クロック信号の周期の4倍以上であることを特徴とする回路装置。
  5. 請求項1乃至のいずれか一項に記載の回路装置において、
    前記積分期間信号生成回路は、
    前記第1信号が遷移してから前記所定期間長の期間の経過後に遷移するディレイ信号を出力するディレイ回路と、
    前記第1信号が遷移したとき前記第1積分期間信号を非アクティブから前記アクティブに変化させ、前記ディレイ信号が遷移したとき前記第1積分期間信号を前記アクティブから前記非アクティブに変化させる信号出力回路と、
    を有することを特徴とする回路装置。
  6. 請求項1乃至のいずれか一項に記載の回路装置において、
    振動子に電気的に接続され、前記振動子を発振させることで前記基準クロック信号を出力する発振回路を含むことを特徴とする回路装置。
  7. 請求項に記載の回路装置と、
    前記振動子と、
    を含むことを特徴とする物理量測定装置。
  8. 請求項1乃至のいずれか一項に記載の回路装置と、
    前記回路装置の出力信号に基づく処理を行う処理装置と、
    を含むことを特徴とする電子機器。
  9. 請求項1乃至のいずれか一項に記載の回路装置と、
    前記回路装置の出力信号に基づく処理を行う処理装置と、
    を含むことを特徴とする移動体。
JP2019176354A 2019-09-27 2019-09-27 回路装置、物理量測定装置、電子機器及び移動体 Active JP7375420B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019176354A JP7375420B2 (ja) 2019-09-27 2019-09-27 回路装置、物理量測定装置、電子機器及び移動体
US17/032,394 US11897539B2 (en) 2019-09-27 2020-09-25 Circuit device, physical quantity measurement device, electronic apparatus, and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019176354A JP7375420B2 (ja) 2019-09-27 2019-09-27 回路装置、物理量測定装置、電子機器及び移動体

Publications (2)

Publication Number Publication Date
JP2021057647A JP2021057647A (ja) 2021-04-08
JP7375420B2 true JP7375420B2 (ja) 2023-11-08

Family

ID=75163592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019176354A Active JP7375420B2 (ja) 2019-09-27 2019-09-27 回路装置、物理量測定装置、電子機器及び移動体

Country Status (2)

Country Link
US (1) US11897539B2 (ja)
JP (1) JP7375420B2 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000227483A (ja) 1999-02-08 2000-08-15 Koden Electronics Co Ltd 時間測定回路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7629915B2 (en) * 2006-05-26 2009-12-08 Realtek Semiconductor Corp. High resolution time-to-digital converter and method thereof
US8022849B2 (en) 2008-04-14 2011-09-20 Qualcomm, Incorporated Phase to digital converter in all digital phase locked loop
US8081013B1 (en) * 2010-07-13 2011-12-20 Amlogic Co., Ltd. Digital phase and frequency detector
JP6351058B2 (ja) 2013-11-28 2018-07-04 株式会社メガチップス タイムデジタルコンバータ及びこれを用いたpll回路
JP6891528B2 (ja) 2017-02-17 2021-06-18 セイコーエプソン株式会社 回路装置、物理量測定装置、電子機器及び移動体
JP6878943B2 (ja) 2017-02-17 2021-06-02 セイコーエプソン株式会社 回路装置、物理量測定装置、電子機器及び移動体

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000227483A (ja) 1999-02-08 2000-08-15 Koden Electronics Co Ltd 時間測定回路

Also Published As

Publication number Publication date
US11897539B2 (en) 2024-02-13
US20210094614A1 (en) 2021-04-01
JP2021057647A (ja) 2021-04-08

Similar Documents

Publication Publication Date Title
US9658065B2 (en) Physical quantity detection circuit, physical quantity detection device, electronic apparatus and moving object
US10401798B2 (en) Time-to-digital converter, circuit device, physical quantity measurement apparatus, electronic apparatus, and vehicle
JP2010190766A (ja) 発振駆動装置、物理量測定装置及び電子機器
JP6671150B2 (ja) 物理量検出回路、電子機器および移動体
JP2018137600A (ja) 回路装置、物理量測定装置、電子機器及び移動体
JP2018056674A (ja) 回路装置、物理量測定装置、電子機器及び移動体
US11201624B2 (en) Circuit device, physical quantity measurement device, electronic apparatus, and vehicle
US10318370B2 (en) Circuit device, physical quantity detection device, oscillator, electronic apparatus, vehicle, and method of detecting failure of master clock signal
US10303125B2 (en) Time-to-digital converter, circuit device, physical quantity measuring device, electronic apparatus, and vehicle
US11320792B2 (en) Circuit device, physical quantity measuring device, electronic apparatus, and vehicle
JP5348408B2 (ja) 物理量検出装置、物理量検出装置の異常診断システム及び物理量検出装置の異常診断方法
JP2018163037A (ja) 回路装置、物理量検出装置、電子機器及び移動体
JP7375420B2 (ja) 回路装置、物理量測定装置、電子機器及び移動体
JP6268461B2 (ja) 半導体装置、物理量センサー、電子機器及び移動体
JP2018056673A (ja) 回路装置、物理量測定装置、電子機器及び移動体
US10677610B2 (en) Circuit device, physical quantity detection device, electronic apparatus, and vehicle
JP2010286371A (ja) 物理量検出装置、物理量検出装置の異常診断システム及び物理量検出装置の異常診断方法
JP6465294B2 (ja) 駆動回路、振動デバイス、電子機器及び移動体
JP2005527425A (ja) 車両の制御装置またはセンサ
JP6671151B2 (ja) 物理量検出回路、電子機器および移動体
JP6429199B2 (ja) 慣性センサ
JP2018056677A (ja) 回路装置、物理量測定装置、電子機器及び移動体
JP5765544B2 (ja) 物理量検出装置、物理量検出装置の異常診断システム及び物理量検出装置の異常診断方法
JP6478034B2 (ja) 角速度検出装置の評価方法、信号処理回路、角速度検出装置、電子機器及び移動体
JP2018056678A (ja) 回路装置、物理量測定装置、電子機器及び移動体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231009

R150 Certificate of patent or registration of utility model

Ref document number: 7375420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150