JP7351156B2 - 回路装置、電気光学装置及び電子機器 - Google Patents

回路装置、電気光学装置及び電子機器 Download PDF

Info

Publication number
JP7351156B2
JP7351156B2 JP2019168935A JP2019168935A JP7351156B2 JP 7351156 B2 JP7351156 B2 JP 7351156B2 JP 2019168935 A JP2019168935 A JP 2019168935A JP 2019168935 A JP2019168935 A JP 2019168935A JP 7351156 B2 JP7351156 B2 JP 7351156B2
Authority
JP
Japan
Prior art keywords
transistor
voltage
transfer gate
circuit
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019168935A
Other languages
English (en)
Other versions
JP2021047265A5 (ja
JP2021047265A (ja
Inventor
晶 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2019168935A priority Critical patent/JP7351156B2/ja
Priority to US17/023,628 priority patent/US11263944B2/en
Publication of JP2021047265A publication Critical patent/JP2021047265A/ja
Publication of JP2021047265A5 publication Critical patent/JP2021047265A5/ja
Application granted granted Critical
Publication of JP7351156B2 publication Critical patent/JP7351156B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/027Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0291Details of output amplifiers or buffers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0219Reducing feedthrough effects in active matrix panels, i.e. voltage changes on the scan electrode influencing the pixel voltage due to capacitive coupling

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electronic Switches (AREA)
  • Liquid Crystal Display Device Control (AREA)

Description

本発明は、回路装置、電気光学装置及び電子機器等に関する。
トランジスターを用いたスイッチにおいて、スイッチがオフになる際にフィードスルーノイズが発生することが知られている。トランジスターのゲート電圧が変化した際に、トランジスターの寄生容量を介してトランジスターのソース又はドレインに対して電荷排出又は電荷注入が発生することで、フィードスルーノイズが発生する。このフィードスルーノイズは、トランジスターを用いたスイッチを含む様々な回路において発生する可能性があり、その回路における信号精度に影響する。
特許文献1には、トランジスターを用いたスイッチを含む表示ドライバーが開示されている。特許文献1の表示ドライバーは、D/A変換回路とアンプ回路とスイッチとキャパシター駆動回路とキャパシター回路とを含む。D/A変換回路は階調データをD/A変換してアンプ回路の入力ノードにD/A変換電圧を出力し、アンプ回路は、D/A変換電圧に基づいて電気光学パネルを駆動する。この駆動の前に、アンプ回路の入力ノードとキャパシター回路との間に設けられたスイッチが所定期間オンになる。そして、キャパシター駆動回路が、階調データに基づく電圧をキャパシター回路へ出力することで、キャパシター回路とアンプ回路の入力ノードの寄生容量との間で電荷再分配が生じる。この電荷再分配によって、アンプ回路の入力ノードがD/A変換電圧付近までアシスト駆動され、その後にD/A変換回路がD/A変換電圧を出力することで、アンプ回路の入力ノードが高速にD/A変換電圧に到達する。
特開2016-90881号公報
トランジスターを用いたスイッチとして、P型トランジスターとN型トランジスターを並列接続したトランスファーゲートが知られている。スイッチがオフになるとき、P型トランジスターのゲート電圧はローレベルからハイレベルとなり、N型トランジスターのゲート電圧はハイレベルからローレベルとなる。このため、両トランジスターのトランジスターサイズ、即ち両トランジスターの寄生容量を揃えておくことで、フィードスルーノイズが打ち消し合うと考えられる。
しかしながら、トランジスターのソース電圧及びドレイン電圧に応じてソース-基板間及びドレイン-基板間の寄生容量が変動し、この変動の特性はP型トランジスターとN型トランジスターで逆になっている。このため、スイッチへの入力電圧が高い場合には、P型トランジスターの寄生容量の方が大きく、スイッチへの入力電圧が低い場合には、N型トランジスターの寄生容量の方が大きくなる。このため、P型トランジスター及びN型トランジスターのフィードスルーノイズが打ち消し合わず、スイッチへの入力電圧が高い場合には電荷注入が生じ、スイッチへの入力電圧が低い場合には電荷排出が生じるという課題がある。
例えば特許文献1では、スイッチの入力電圧は、D/A変換回路が出力するD/A変換電圧とほぼ同じである。D/A変換回路が出力する電圧は階調データに応じて変化するので、その変化に応じてスイッチのフィードスルーノイズも変化する。このようなフィードスルーノイズがアンプ回路の出力に影響し、結果として画素の書き込み電圧に影響を与えることで、表示品質に影響を与える可能性がある。
本開示の一態様は、入力ノードと出力ノードの間に並列接続されるP型トランジスター及びN型トランジスターを有し、前記入力ノードに入力信号が入力され、前記出力ノードに出力信号を出力するトランスファーゲートと、前記トランスファーゲートを制御する制御回路と、を含み、前記制御回路は、前記トランスファーゲートがオフするタイミングにおいて前記入力信号の電圧が第1電圧範囲であるとき、前記N型トランジスターのサイズに対する前記P型トランジスターのサイズの比であるトランジスターサイズ比を第1とし、前記トランスファーゲートがオフするタイミングにおいて前記入力信号の電圧が前記第1電圧範囲より低い第2電圧範囲であるとき、前記トランジスターサイズ比を、前記第1より大きい第2とするように制御する回路装置に関係する。
回路装置の第1構成例。 回路装置の第1構成例の動作を説明する波形図。 P型トランジスターの電圧容量特性と、N型トランジスターの電圧容量特性。 トランスファーゲートから発生するフィードスルーノイズのシミュレーション波形。 スイッチ回路の第1構成例。 スイッチ回路の第1構成例における第1動作例を説明する波形図。 スイッチ回路の第1構成例における第1動作例を説明する波形図。 P型サブトランジスター及びN型サブトランジスターのサイズの例。 スイッチ回路の第1構成例における第2動作例を説明する図。 スイッチ回路の第2構成例。 スイッチ回路の第2構成例における動作を説明する波形図。 回路装置の第2構成例。 回路装置の第3構成例。 判定回路の動作を説明する波形図。 判定回路の動作を説明する波形図。 キャリブレーションの手順を示すフローチャート。 回路装置の第4構成例。 電気光学装置の構成例。 電子機器の構成例
以下、本開示の好適な実施形態について詳細に説明する。なお以下に説明する本実施形態は特許請求の範囲に記載された内容を不当に限定するものではなく、本実施形態で説明される構成の全てが必須構成要件であるとは限らない。
1.回路装置
図1は、スイッチ回路45を含む回路装置100の第1構成例である。回路装置100は、制御回路35とスイッチ回路45と基準電圧生成回路60とD/A変換回路70とアンプ回路80と出力回路85とスイッチSWAMとを含む。スイッチ回路45はトランスファーゲート15を含む。なお、ここではスイッチ回路45を表示ドライバーに用いた例を説明するが、スイッチ回路45の適用対象はこれに限定されない。例えば、後述するサンプルホールド回路にスイッチ回路45を適用できる。
回路装置100は、IC(Integrated Circuit)と呼ばれる集積回路装置である。例えば回路装置100は、半導体プロセスにより製造されるICであり、半導体基板上に回路素子が形成された半導体チップである。
制御回路35は、トランスファーゲート15のオンオフを制御する。また、後述するように制御回路35はスイッチ回路45に対してフィードスルーノイズ低減制御を行う。また制御回路35は、D/A変換回路70と出力回路85に表示データGD[9:0]を出力する。表示データGD[9:0]を入力データとも呼ぶ。ここではD/A変換回路70と出力回路85に同じデータが入力されるものとするが、D/A変換回路70に入力されるデータと出力回路85に入力されるデータとは異なっていてもよい。即ち、D/A変換回路70が出力する電圧と、出力回路85が出力する電圧とが、ほぼ同じになるようなデータとなっていればよい。
出力回路85は、表示データGD[9:0]に基づいて、表示データGD[9:0]に対応したデータ電圧をアンプ回路80の入力ノードに出力する。出力回路85が出力する信号は、トランスファーゲート15の入力ノードNINに対する入力信号であり、その入力信号がトランスファーゲート15を通過してスイッチ回路45の出力ノードNOUTに出力信号として出力される。この出力信号の電圧が、出力回路85がアンプ回路80の入力ノードに出力するデータ電圧に相当する。出力回路85は、キャパシター回路82と、キャパシター駆動回路84とを含む。
キャパシター回路82は、キャパシターCS1~CS10を含む。キャパシター駆動回路84は、駆動回路DS1~DS10を含む。以下、iを1以上10以下の整数とする。
キャパシターCSiの一端は、キャパシター駆動用ノードNDSiに接続され、キャパシターCSiの他端はスイッチ回路45の入力ノードNINに接続される。キャパシターCS1~CS10は、2の累乗で重み付けされた容量値を有している。具体的には、キャパシターCSiの容量値は2(i-1)×CS1である。この式で、CS1はキャパシターCS1の容量値を示している。
駆動回路DSiの入力ノードには、表示データGD[9:0]のビットGD[i]が入力される。駆動回路DSiは、ビットGD[i]が第1論理レベルの場合に第1電圧レベルを出力し、ビットGD[i]が第2論理レベルの場合に第2電圧レベルを出力する。例えば、第1論理レベルはローレベルであり、第2論理レベルはハイレベルであり、第1電圧レベルは低電位側電源VSSの電圧、第2電圧レベルは高電位側電源VDDの電圧である。駆動回路DSiは、入力された論理レベルを駆動回路DSiの出力電圧レベルにレベルシフトするレベルシフターと、そのレベルシフターの出力をバッファリングするバッファー回路とで構成される。
トランスファーゲート15は、入力ノードNINと出力ノードNOUTとの間に並列接続されたP型トランジスター及びN型トランジスターである。トランスファーゲート15がオンした場合には入力ノードNINと出力ノードNOUTが接続される。
基準電圧生成回路60は、階調データの各値に対応する基準電圧を生成する回路である。例えば、10ビットの表示データGD[9:0]に対応して1024階調の基準電圧VR1~VR1024を生成する。
具体的には、基準電圧生成回路60は、高電位側電源VDDと低電位側電源VSSの間に直列接続された抵抗RD1~RF1024を含む。そして、抵抗RD1~RF1024のタップから、電圧分割により得られた基準電圧VR1~VR1024を出力する。VR512はコモン電圧に相当する。アンプ回路80が非反転アンプ回路である場合、負極性駆動期間においてVR1~VR512が用いられ、正極性駆動期間においてVR512~VR1024が用いられる。
D/A変換回路70は、基準電圧VR1~VR1024の中から、表示データGD[9:0]に対応する基準電圧を選択し、選択した基準電圧を電圧AMIとして出力ノードNOUTに出力する。電圧AMIはアンプ回路80の入力電圧である。
具体的には、D/A変換回路70は、基準電圧VR1~VR1024が一端に供給されるスイッチSWD1~SWD1024を含む。スイッチSWD1~SWD1024の他端は共通接続されている。スイッチSWD1~SWD1024のうち、いずれか1つが表示データGD[9:0]に対応してオンになり、そのスイッチに供給される基準電圧が電圧AMIとして出力される。例えば、D/A変換回路70は不図示のデコーダーを有し、デコーダーが表示データGD[9:0]をデコードすることでスイッチSWD1~SWD1024のオンオフ制御信号を生成する。
アンプ回路80は、D/A変換回路70からの電圧AMIを増幅し、その増幅した電圧を、スイッチSWAMを介してデータ電圧出力端子TVQへ出力する。アンプ回路80は、演算増幅器AMVDを含む。
アンプ回路80は、ボルテージフォロア回路である。即ち、演算増幅器AMVDの反転入力端子と出力端子が接続され、演算増幅器AMVDの非反転入力端子にトランスファーゲート15の出力ノードNOUTが接続される。演算増幅器AMVDの非反転入力端子がボルテージフォロア回路の入力となり、そのボルテージフォロアの入力には、D/A変換回路70からの電圧AMIが入力される。なお、アンプ回路80は、図19で後述するような反転増幅回路であってもよい。この場合、アンプ回路80は、コモン電圧を基準にD/A変換回路70の出力電圧を反転するが、後述するスイッチ回路45の構成及び動作はボルテージフォロア回路の場合と同様である。以下、アンプ回路80がボルテージフォロア回路である場合を例に説明する。
スイッチSWAMは、演算増幅器AMVDの出力とデータ電圧出力ノードNVQを接続又は遮断する。スイッチSWAMは、トランジスターで構成される。スイッチSWAMのオンオフ制御信号は、制御回路35から供給される。
図2は、回路装置100の第1構成例の動作を説明する波形図である。図2には、アンプ回路80が1画素に1つのデータ電圧を書き込む際の波形図を示す。
アシスト期間TASにおいて、トランスファーゲート15がオンであり、スイッチSWAMがオフであり、D/A変換回路70のスイッチSWD1~SWD1024がオフである。アンプ回路80の入力ノードには寄生容量があるが、アシスト期間TASにおいて出力回路85が、その寄生容量を充電する。即ち、キャパシター駆動回路84がキャパシター回路82を駆動することで、トランスファーゲート15を介してキャパシター回路82と寄生容量の間で電荷再分配が行われ、その電荷再分配によってアンプ回路80の入力ノードの電圧AMIが、表示データGD[9:0]に対応する電圧に近づく。アシスト期間TASの終了時にトランスファーゲート15がオフになる。
アシスト期間TASの後、駆動期間TDRにおいて、トランスファーゲート15がオフであり、スイッチSWAMがオンであり、D/A変換回路70のスイッチSWD1~SWD1024のいずれかが表示データGD[9:0]に基づいてオンになる。これにより、D/A変換回路70が、表示データGD[9:0]に対応する電圧を出力ノードNOUTに出力し、アンプ回路80が、その電圧をバッファリングしてデータ電圧出力ノードNVQに出力する。
以上のように、D/A変換回路70がD/A変換電圧を出力する前に、出力回路85がアシスト駆動を行うことで、アンプ回路80の入力ノードの電圧がD/A変換電圧とほぼ同じ電圧となる。これにより、D/A変換回路70がD/A変換電圧を出力し始めてからアンプ回路80の入力ノードの電圧AMIが所望の電圧となるまでの時間が短縮されるので、高速な画素駆動が可能となる。
スイッチ回路45が、トランジスターサイズ固定のトランスファーゲートである場合、即ち本実施形態のフィードスルーノイズ低減を行わない場合の課題を説明する。
画素に正確なデータ電圧を書き込むためには、駆動期間TDRの終了時において電圧AMIが正確な電圧となっている必要がある。駆動期間TDRの開始時には、アシスト駆動によってアンプ回路80の入力ノードがほぼ表示データGD[9:0]に対応する電圧となっているが、トランスファーゲートがオフする際のフィードスルーノイズ等によって電圧誤差が生じる。この誤差がある状態から、駆動期間TDRにおいてD/A変換回路70が電圧を収束することによって、アンプ回路80の入力ノードが、表示データGD[9:0]に対応する電圧に漸近する。
しかしながら、表示パネルの高精細化、又は表示の高フレームレート化によって、1画素の駆動期間は短縮される傾向にある。このため、フィードスルーノイズ等による誤差が大きいと駆動期間TDR内に誤差を十分に収束させることができず、表示品質が低下してしまう。また表示の階調表現を高めるために表示データのビット数を増加させた場合、小さな電圧誤差が表示ムラを生じる。例えば、図1では表示データが10ビットであるが、階調表現を高めるために12ビットの表示データを用いたとする。この場合、駆動の電圧振幅を10Vとすると、1階調が2.5mVとなり、数mV程度の電圧誤差が残るだけで表示品質が低下する。
以上のような理由から、アシスト期間TASの終了時においてトランスファーゲートがオフする際のフィードスルーノイズが大きいと、表示品質の低下につながるという課題がある。図3、図4を用いて、トランスファーゲートが発生するフィードスルーノイズについて説明する。
図3に、P型トランジスターの電圧容量特性PCHと、N型トランジスターの電圧容量特性NCHとを示す。横軸は、基板電圧を基準とするソース電圧又はドレイン電圧であり、縦軸は、ソース-基板間又はドレイン-基板間の容量値である。図3において、P型トランジスターとN型トランジスターのサイズは同じである。
N型トランジスターの基板はP型であり、例えばグランド電圧に設定されている。ソース電圧が基板電圧から遠ざかるほど、即ちソース電圧が高くなるほど、基板とソースの間の空乏層が広がる。このため、N型トランジスターの電圧容量特性NCHにおいて、ソース電圧が低いほど容量値が大きくなり、ソース電圧が高いほど容量値が小さくなる。ドレインについても同様である。
P型トランジスターの基板はN型であり、例えば電源電圧に設定されている。ソース電圧が基板電圧から遠ざかるほど、即ちソース電圧が低くなるほど、基板とソースの間の空乏層が広がる。このため、P型トランジスターの電圧容量特性PCHにおいて、ソース電圧が低いほど容量値が小さくなり、ソース電圧が高いほど容量値が大きくなる。ドレインについても同様である。
以上のことから、P型トランジスターとN型トランジスターのサイズが同じであったとしても、P型トランジスターの寄生容量とN型トランジスターの寄生容量には差分CDIFが生じる。この差分CDIFはソース電圧及びドレイン電圧に応じて変化する。このため、P型トランジスターとN型トランジスターを組み合わせたトランスファーゲートにおいて、フィードスルーノイズの影響が電圧に応じて変化する。
具体的には、トランスファーゲートへの入力信号の電圧が電源電圧に近いときには、P型トランジスターの寄生容量の方が大きいので、トランスファーゲートがオフする際にP型トランジスターが出力する正電荷の影響の方が大きくなる。これは、トランスファーゲートの出力ノードから見て電荷注入となる。電荷注入とは、正電荷がノードに注入されることである。一方、トランスファーゲートへの入力信号の電圧がグランド電圧に近いときには、N型トランジスターの寄生容量の方が大きいので、トランスファーゲートがオフする際にN型トランジスターが出力する負電荷の影響の方が大きくなる。これは、トランスファーゲートの出力ノードから見て電荷排出となる。電荷排出とは、正電荷がノードから排出されることである。
図4は、本実施形態のフィードスルーノイズ低減処理を行わない場合において、トランスファーゲートから発生するフィードスルーノイズのシミュレーション波形である。P型トランジスターとN型トランジスターのサイズは同一である。図4には、トランスファーゲートへの入力信号の電圧が12.5V、10V、7.5V、5V、2.5Vのときの出力ノードの信号波形を示す。例えば、図1の表示ドライバーにおいて、7.5Vがコモン電圧であり、7.5V~12.5Vが正極性駆動の電圧であり、7.5V~2.5Vが負極性駆動の電圧である。
以下、トランスファーゲートがオンからオフになるときのフィードスルーノイズに着目する。トランスファーゲートがオンからオフになるとき、P型トランジスターのゲート電圧はローレベルからハイレベルとなるので、P型トランジスターは出力ノードに電荷を注入する。一方、N型トランジスターのゲート電圧はハイレベルからローレベルとなるので、N型トランジスターは出力ノードから電荷を排出する。
入力信号の電圧が12.5V、10V、7.5Vのとき、P型トランジスターの寄生容量がN型トランジスターの寄生容量より大きいため、P型トランジスターが出力ノードに注入する電荷量の方が、N型トランジスターが出力ノードから排出する電荷量よりも多くなる。このため、トランスファーゲート全体として電荷注入となる。入力信号の電圧が5Vのとき、P型トランジスターが出力ノードに注入する電荷量と、N型トランジスターが出力ノードから排出する電荷量とが、ほぼ釣り合うため、フィードスルーノイズは小さくなる。入力信号の電圧が2.5Vのとき、N型トランジスターの寄生容量がP型トランジスターの寄生容量より大きいため、N型トランジスターが出力ノードから排出する電荷量の方が、P型トランジスターが出力ノードに注入する電荷量よりも多くなる。このため、トランスファーゲート全体として電荷排出となる。
なお、図1のような表示ドライバーにおいて、駆動電圧が比較的高い電気光学パネルを駆動する場合には、駆動回路に高耐圧プロセスを用いる。高耐圧プロセスのトランジスターでは、耐圧を高めるために、基板とソース及びドレインとの間の空乏層を広くしてある。このため高耐圧トランジスターは、低耐圧トランジスターに比べて、ソース及びドレインの電圧変化に対する寄生容量の変動が大きい。即ち、高耐圧トランジスターによるトランスファーゲートでは、上記フィードスルーノイズが更に大きくなる。
以上のように、トランスファーゲートにおいて入力信号の電圧に依存したフィードスルーノイズが発生するという課題がある。即ち、入力信号の電圧に応じてフィードスルーノイズの電荷量が変化すると共に、電荷排出と電荷注入が入れ替わるという課題がある。以下、このような課題を解決できる本実施形態について説明する。
2.スイッチ回路の第1構成例
図5は、スイッチ回路45の第1構成例である。スイッチ回路45は、トランスファーゲート15を含む。
トランスファーゲート15は、入力ノードNINと出力ノードNOUTの間に並列接続されるP型トランジスターTGP及びN型トランジスターTGNを有する。即ち、P型トランジスターTGPのソース及びドレインの一方と、N型トランジスターTGNのソース及びドレインの一方が入力ノードNINに接続される。P型トランジスターTGPのソース及びドレインの他方と、N型トランジスターTGNのソース及びドレインの他方が出力ノードNOUTに接続される。トランスファーゲート15の入力ノードNINに入力信号が入力される。トランスファーゲート15がオンのとき、トランスファーゲート15は入力信号を通過させて出力ノードNOUTに出力信号を出力する。
制御回路35は、トランスファーゲート15のトランジスターサイズ比を制御する。トランジスターサイズ比は、N型トランジスターTGNのサイズに対するP型トランジスターTGPのサイズの比である。トランジスターサイズとは、トランジスターのゲートサイズのことである。制御回路35は、トランスファーゲート15がオフするタイミングにおいて入力信号の電圧が第1電圧範囲であるとき、トランジスターサイズ比を第1値にする制御を行う。制御回路35は、トランスファーゲート15がオフするタイミングにおいて入力信号の電圧が第2電圧範囲であるとき、トランジスターサイズ比を第2値にする制御を行う。第2値は第1値より大きい。
第1電圧範囲とは、例えば図4の例において5Vより高い電圧範囲5V~12.5Vである。即ち第1電圧範囲は、トランスファーゲートのP型トランジスターとN型トランジスターが同サイズである場合において、トランスファーゲートがオフする際に出力ノードNOUTに電荷を注入する電圧範囲である。また第2電圧範囲とは、例えば図4の例において5Vより低い電圧範囲5V~2.5Vである。即ち第2電圧範囲は、トランスファーゲートのP型トランジスターとN型トランジスターが同サイズである場合において、トランスファーゲートがオフする際に出力ノードNOUTから電荷を排出する電圧範囲である。なお、第1電圧範囲と第2電圧範囲は任意に設定されてよい。例えば、コモン電圧7.5Vより高い7.5V~12.5Vを第1電圧範囲とし、コモン電圧7.5Vより低い7.5V~2.5Vを第2電圧範囲としてもよい。
制御回路35は、入力信号の電圧が属する電圧範囲を、出力回路85に出力される表示データGD[9:0]に基づいて判断する。出力回路85は、表示データGD[9:0]に対応した電圧をトランスファーゲート15の入力ノードNINに出力するので、制御回路35は、表示データGD[9:0]から入力信号の電圧を判断できる。
本実施形態によれば、入力信号の電圧が第1電圧範囲であるとき、トランジスターサイズ比が第1値に設定される。「トランジスターサイズ比が第1値に設定される」とは、P型トランジスターのサイズ、又はN型トランジスターのサイズ、又はそれら両方が、第1値に対応したサイズに設定されることである。トランジスターサイズ比が、第2値より小さい第1値に設定されることで、N型トランジスターの寄生容量に対するP型トランジスターの寄生容量の比が小さくなる。これは、図3において、高電圧側における寄生容量の差CDIFを縮小させることに相当する。これにより、トランスファーゲート15が出力ノードNOUTに注入する電荷量が減少する。
また本実施形態によれば、入力信号の電圧が第2電圧範囲であるとき、トランジスターサイズ比が第2値に設定される。トランジスターサイズ比が、第1値より大きい第2値に設定されることで、N型トランジスターの寄生容量に対するP型トランジスターの寄生容量の比が大きくなる。これは、図3において、低電圧側における寄生容量の差CDIFを縮小させることに相当する。これにより、トランスファーゲート15が出力ノードNOUTから排出する電荷量が減少する。
以上のように、本実施形態によれば、入力信号の電圧に依存してトランスファーゲート15が出力ノードNOUTに排出又は注入する電荷量を低減できるので、トランスファーゲート15が発生するフィードスルーノイズが、適切に低減される。
第1構成例におけるトランスファーゲート15の詳細構成を説明する。
P型トランジスターTGPは、P型サブトランジスター群であるP型サブトランジスターTGP1~TGPrを含む。rは2以上の整数である。P型サブトランジスターTGP1~TGPrは、入力ノードNINと出力ノードNOUTの間に並列接続される。即ち、P型サブトランジスターTGP1~TGPrのソース及びドレインの一方が入力ノードNINに接続され、他方が出力ノードNOUTに接続される。
N型トランジスターTGNは、N型サブトランジスター群であるN型サブトランジスターTGN1~TGNqを含む。qは2以上の整数である。N型サブトランジスターTGN1~TGNqは、入力ノードNINと出力ノードNOUTの間に並列接続される。即ち、N型サブトランジスターTGN1~TGNqのソース及びドレインの一方が入力ノードNINに接続され、他方が出力ノードNOUTに接続される。
制御回路35は、P型サブトランジスターTGP1~TGPrのゲートに制御信号STGP1~STGPrを出力することで、P型トランジスターTGPのサイズを制御する。即ち、制御回路35は、トランスファーゲート15をオフする際に、P型サブトランジスターTGP1~TGPrのうち1又は複数のP型サブトランジスターをオンからオフにする。即ち、制御回路35は、オンからオフにするP型サブトランジスターの合計トランジスターサイズを制御している。
また制御回路35は、N型サブトランジスターTGN1~TGNqのゲートに制御信号STGN1~STGNqを出力することで、N型トランジスターTGNのサイズを制御する。即ち、制御回路35は、トランスファーゲート15をオフする際に、N型サブトランジスターTGN1~TGNqのうち1又は複数のN型サブトランジスターをオンからオフにする。即ち、制御回路35は、オンからオフにするN型サブトランジスターの合計トランジスターサイズを制御している。
制御回路35は、トランスファーゲート15をオフする際に、オンからオフにするP型サブトランジスターの合計トランジスターサイズと、オンからオフにするN型サブトランジスターの合計トランジスターサイズとの比により、トランジスターサイズ比を制御する。
制御回路35は、フィードスルーノイズ低減制御の設定情報を記憶するレジスター36を含む。設定情報は、P型サブトランジスター群及びN型サブトランジスター群のうちオンオフさせるサブトランジスターを指定する情報である。制御回路35は、レジスター36に記憶された設定情報に基づいてP型サブトランジスターTGP1~TGPrに制御信号STGP1~STGPrを出力し、N型サブトランジスターTGN1~TGNqに制御信号STGN1~STGNqを出力することで、トランジスターサイズ比を制御する。
図6、図7は、スイッチ回路45の第1構成例における第1動作例を説明する波形図である。ここでは第1電圧範囲を7.5V~12.5Vとし、第2電圧範囲を7.5V~2.5Vとし、q=r=2とする。
第1P型サブトランジスターであるP型サブトランジスターTGP1は、第2P型サブトランジスターであるP型サブトランジスターTGP2よりサイズが大きい。例えば、P型サブトランジスターTGP1とTGP2のゲート長は同じであり、P型サブトランジスターTGP1のゲート幅がP型サブトランジスターTGP2のゲート幅より大きい。
第1N型サブトランジスターであるN型サブトランジスターTGN1は、第2N型サブトランジスターであるN型サブトランジスターTGN2よりサイズが大きい。例えば、N型サブトランジスターTGN1とTGN2のゲート長は同じであり、N型サブトランジスターTGN1のゲート幅がN型サブトランジスターTGN2のゲート幅より大きい。例えば、N型サブトランジスターTGN1、TGN2のサイズは、それぞれP型サブトランジスターTGP1、TGP2のサイズと同じである。
図6には、トランスファーゲート15の入力信号の電圧が第1電圧範囲であるときの波形例を示す。制御回路35は、トランスファーゲート15がオフするタイミングにおいて、制御信号STGP1をローレベルからハイレベルにし、制御信号STGN2をハイレベルからローレベルにする。これにより、P型サブトランジスターTGP1及びN型サブトランジスターTGN2がオンからオフになる。P型サブトランジスターTGP2とN型サブトランジスターTGN1のオンオフ状態は変化しない。
図7には、トランスファーゲート15の入力信号の電圧が第2電圧範囲であるときの波形例を示す。制御回路35は、トランスファーゲート15がオフするタイミングにおいて、制御信号STGP2をローレベルからハイレベルにし、制御信号STGN1をハイレベルからローレベルにする。これにより、P型サブトランジスターTGP2及びN型サブトランジスターTGN1がオンからオフになる。P型サブトランジスターTGP1とN型サブトランジスターTGN2のオンオフ状態は変化しない。
本実施形態によれば、第1電圧範囲では、P型サブトランジスター群のうちサイズが小さい方のP型サブトランジスターTGP1と、N型サブトランジスター群のうちサイズが大きい方のN型サブトランジスターTGN2が、オンからオフになる。これにより、トランジスターサイズ比が第1値となる。一方、第2電圧範囲では、P型サブトランジスター群のうちサイズが大きい方のP型サブトランジスターTGP2と、N型サブトランジスター群のうちサイズが小さい方のN型サブトランジスターTGN1が、オンからオフになる。これにより、トランジスターサイズ比が、第1値より大きい第2値となる。
図8は、P型サブトランジスター及びN型サブトランジスターのサイズの例である。ここではq=r=4とする。図8にはトランジスターサイズとしてW/Lを示す。Wはゲート幅であり、Lはゲート長である。ゲート長Lは3.2umで共通なので、以下ではトランジスターサイズをゲート幅Wで説明する。
図8において、P型サブトランジスターTGP1とN型サブトランジスターTGN1のサイズは同一である。同様に、P型サブトランジスターTGP2、TGP3、TGP4とN型サブトランジスターTGN2、TGN3、TGN4のサイズは同一である。以下、P型サブトランジスターのサイズについて説明するが、N型サブトランジスターのサイズも同様である。
図8にはトランジスターサイズの例1~例3を示す。いずれの例においても、P型サブトランジスターTGP1~TGP4のゲート幅の合計は72umである。この合計72unをどのように各P型サブトランジスターに割り振るかが、例1~例3で異なっている。
例1では、サブトランジスターのゲート幅がバイナリーに重み付けされる。但し、サブトランジスターのゲート幅の合計が72umとなるように、各サブトランジスターのゲート幅が調整されているため、完全にバイナリーとはなっていない。具体的には、P型サブトランジスターTGP3のゲート幅は、P型サブトランジスターTGP4のゲート幅の約半分より少し大きい値となっている。同様に、P型サブトランジスターTGP2、TGP1のゲート幅は、P型サブトランジスターTGP3、TGP2のゲート幅の約半分より少し大きい値となっている。
例2では、サブトランジスターのゲート幅が所定ステップずつ異なる。図8では所定ステップは4umである。具体的には、P型サブトランジスターTGP2のゲート幅は、P型サブトランジスターTGP1のゲート幅より4um大きい。同様に、P型サブトランジスターTGP3、TGP4のゲート幅は、P型サブトランジスターTGP2、TGP3のゲート幅より4um大きい。
例3では、サブトランジスターのゲート幅が同一になっている。具体的には、P型サブトランジスターTGP1のゲート幅は18umである。P型サブトランジスターTG2~TG4のゲート幅は、P型サブトランジスターTGP1と同じ18umである。
図9は、スイッチ回路45の第1構成例における第2動作例を説明する図である。図9には、レジスター36に記憶されるレジスター設定値の例を示す。トランジスターサイズは図8の例1に示すサイズであるとする。ここでは第1電圧範囲を10~12.5Vとし、第3電圧範囲を7.5V~10Vとし、第4電圧範囲を5~7.5Vとし、第2電圧範囲を2.5~5Vとする。なお、第3電圧範囲は第1電圧範囲より低く且つ第2電圧範囲より高い電圧範囲であればよく、第4電圧範囲は第3電圧範囲より低く且つ第2電圧範囲より高い電圧範囲であればよい。
レジスター値は、各サブトランジスターに対応したイネーブル信号である。イネーブル信号「1」は、トランスファーゲート15をオンオフさせる際に、サブトランジスターをオンオフさせることを示す。イネーブル信号「0」は、トランスファーゲート15をオンオフさせる際に、サブトランジスターをオンオフさせないことを示す。
第1電圧範囲において、トランスファーゲート15をオンオフさせるときP型サブトランジスターTGP1、TGP3とN型サブトランジスターTGN1~TGN4をオンオフさせる。P型サブトランジスターTGP1、TGP3の合計ゲート幅は26umであり、N型サブトランジスターTGN1~TGN4の合計ゲート幅は72umである。トランジスターサイズ比は、26um/72umである。この例では、26um/72umが第1値である。
第3電圧範囲において、トランスファーゲート15をオンオフさせるときP型サブトランジスターTGP1、TGP4とN型サブトランジスターTGN1~TGN4をオンオフさせる。トランジスターサイズ比は、42um/72umである。この例では、42um/72umが第3値である。
第4電圧範囲において、トランスファーゲート15をオンオフさせるときP型サブトランジスターTGP2~TGP4とN型サブトランジスターTGN1~TGN4をオンオフさせる。トランジスターサイズ比は、66um/72umである。この例では、66um/72umが第4値である。
第2電圧範囲において、トランスファーゲート15をオンオフさせるときP型サブトランジスターTGP1~TGP4とN型サブトランジスターTGN1、TGN2、TGN4をオンオフさせる。トランジスターサイズ比は、72um/52umである。この例では、72um/52umが第2値である。
以上のように、第3電圧範囲に対応するトランジスターサイズ比は、第1電圧範囲に対応するトランジスターサイズ比より大きい。即ち、第3値は第1値より大きい。また、第4電圧範囲に対応するトランジスターサイズ比は、第3電圧範囲に対応するトランジスターサイズ比より大きい。即ち、第4値は第3値より大きい。また、第2電圧範囲に対応するトランジスターサイズ比は、第4電圧範囲に対応するトランジスターサイズ比より大きい。即ち、第2値は第4値より大きい。なお、第1電圧範囲に対応するトランジスターサイズ比は1未満であることが望ましい。また、第2電圧範囲に対応するトランジスターサイズ比は1より大きいことが望ましい。
以上のように、トランスファーゲート15がオフする際にオンからオフになるサブトランジスターを様々に組み合わせることで、入力信号の電圧に依存したフィードスルーノイズを適切に補償できる。具体的には、より高電圧の電圧範囲になるほど、トランスファーゲート15のトランジスターサイズ比が小さくなり、より低電圧の電圧範囲になるほど、トランスファーゲート15のトランジスターサイズ比が大きくなる。これにより、トランスファーゲート15のP型トランジスターの寄生容量と、N型トランジスターの寄生容量を、入力信号の電圧に応じてバランスさせることができる。寄生容量がバランスすることで、フィードスルーノイズが減少する。
3.スイッチ回路の第2構成例
図10は、スイッチ回路45の第2構成例である。スイッチ回路45は、トランスファーゲート15と補助トランスファーゲート16とを含む。トランスファーゲート15の構成は第1構成例と同じである。
補助トランスファーゲート16は、P型補助トランジスターSPとN型補助トランジスターSNとを含む。P型補助トランジスターSP及びN型補助トランジスターSNは、トランスファーゲート15と並列接続される。即ち、P型補助トランジスターSPのソース及びドレインの一方が入力ノードNINに接続され、他方が出力ノードNOUTに接続される。N型補助トランジスターSNのソース及びドレインの一方が入力ノードNINに接続され、他方が出力ノードNOUTに接続される。
補助トランスファーゲート16の合計トランジスターサイズは、トランスファーゲート15の合計トランジスターサイズより小さい。即ち、P型補助トランジスターSPのサイズは、P型サブトランジスターTGP1~TGPrの合計サイズより小さい。N型補助トランジスターSNのサイズは、N型サブトランジスターTGN1~TGNqの合計サイズより小さい。例えば、P型補助トランジスターSPのサイズは、P型サブトランジスターTGP1~TGPrの合計サイズの1/2以下であり、N型補助トランジスターSNのサイズは、N型サブトランジスターTGN1~TGNqの合計サイズの1/2以下である。
制御回路35は、補助トランスファーゲート16を制御する。即ち、制御回路35は、制御信号SSPをP型補助トランジスターSPのゲートに出力することで、P型補助トランジスターSPのオンオフを制御する。制御回路35は、制御信号SSNをN型補助トランジスターSNのゲートに出力することで、N型補助トランジスターSNのオンオフを制御する。
図11は、スイッチ回路45の第2構成例における動作を説明する波形図である。ここではq=r=2とする。図11では、図6で説明した第1電圧範囲におけるトランスファーゲート15の動作を例に、補助トランスファーゲート16の動作を説明する。但し、第2~第4電圧範囲においても、補助トランスファーゲート16の動作は同様である。
制御回路35は、トランスファーゲート15がオンからオフになった後に、補助トランスファーゲート16をオンからオフにする制御を行う。
具体的には、制御回路35は、制御信号STGP1をハイレベルからローレベルにし、制御信号STGN2をローレベルからハイレベルにすることで、P型サブトランジスターTGP1及びN型サブトランジスターTGN2をオフからオンにする。このタイミングにおいて、制御回路35は、制御信号SSPをハイレベルからローレベルにし、制御信号SSNをローレベルからハイレベルにすることで、P型補助トランジスターSP及びN型補助トランジスターSNをオフからオンにする。
次に、制御回路35は、制御信号STGP1をローレベルからハイレベルにし、制御信号STGN2をハイレベルからローレベルにすることで、P型サブトランジスターTGP1及びN型サブトランジスターTGN2をオンからオフにする。このタイミングより後のタイミングにおいて、制御回路35は、制御信号SSPをローレベルからハイレベルにし、制御信号SSNをハイレベルからローレベルにすることで、P型補助トランジスターSP及びN型補助トランジスターSNをオンからオフにする。
トランスファーゲート15がオフになった後に補助トランスファーゲート16がオフになることで、出力ノードNOUTのフィードスルーノイズを、補助トランスファーゲート16を介して入力ノードNINに逃がすことが可能となる。トランスファーゲート15のトランジスターサイズ比が制御されることでフィードスルーノイズが低減されているが、補助トランスファーゲート16を用いることで、更にフィードスルーノイズを低減できる。
また、補助トランスファーゲート16のサイズはトランスファーゲート15のサイズより小さいので、補助トランスファーゲート16が発生するフィードスルーノイズは、トランスファーゲート15が発生するフィードスルーノイズより小さい。このため、補助トランスファーゲート16がオフするとき、フィードスルーノイズの影響は小さい。
図1の回路装置100では、トランスファーゲート15の入力ノードNINにキャパシター回路82が接続されており、トランスファーゲート15の出力ノードNOUTにアンプ回路80の入力ノードが接続されている。キャパシター回路82の容量は、アンプ回路80の入力ノードの寄生容量より大きいため、トランスファーゲート15の入力ノードNINの方がフィードスルーノイズによる影響を受けにくい。本実施形態では、補助トランスファーゲート16を遅れてオフすることで、補助トランスファーゲート16を介してフィードスルーノイズをキャパシター回路82に吸収させることが可能であり、出力ノードNOUTのフィードスルーノイズを効果的に低減できる。
4.回路装置の第2構成例
以上ではスイッチ回路45を表示ドライバーに適用した場合を例に説明したが、スイッチ回路45は種々の回路装置に適用可能である。その一例として、図12に回路装置100の第2構成例を示す。第2構成例では、スイッチ回路45をサンプルホールド回路に適用している。サンプルホールド回路は、例えばA/D変換回路の入力部、或いはスイッチドキャパシターフィルターの入力部に用いられる。
図12に示す回路装置100は、制御回路35とスイッチ回路45と検出回路65とキャパシターCSMPとスイッチSWSMPとを含む。スイッチ回路45はトランスファーゲート15を含む。なお、スイッチ回路45が上記第2構成例の場合、スイッチ回路45は更に補助トランスファーゲート16を含む。
制御回路35は、サンプリング期間においてトランスファーゲート15をオンにし、スイッチSWSMPをオフにする。これにより、トランスファーゲート15の入力ノードNINに入力された入力信号が、トランスファーゲート15の出力ノードNOUTに接続されたキャパシターCSMPにサンプリングされる。制御回路35は、ホールド期間においてトランスファーゲート15をオフにし、スイッチSWSMPをオンにする。これにより、キャパシターCSMPに入力信号がホールドされ、そのホールドされた信号がスイッチSWSMPを介して出力される。
制御回路35は、トランスファーゲート15のトランジスターサイズ比を制御することで、フィードスルーノイズ低減制御を行う。このフィードスルーノイズ低減制御についてはスイッチ回路45の第1、第2構成例で説明した通りである。
検出回路65は、入力ノードNINに入力された入力信号の電圧が属する電圧範囲を検出する。例えば、検出回路65は、入力信号の電圧と、電圧範囲を検出するための基準電圧とを比較するコンパレーターである。制御回路35は、検出回路65が検出した電圧範囲に応じてトランスファーゲート15に制御信号を出力する。トランスファーゲート15は、その制御信号に基づいてスイッチングする。
5.キャリブレーション
フィードスルーノイズ低減のキャリブレーションについて説明する。例えば回路装置100に電源が投入された際の初期化時において、回路装置100がキャリブレーションを実行し、その結果をフィードスルーノイズ低減の設定情報としてレジスター36に記憶させる。
図13は、回路装置100の第3構成例である。回路装置100は、制御回路35とスイッチ回路45と判定回路55とD/A変換回路70とアンプ回路80と出力回路85とスイッチSWAMとスイッチSWMONとを含む。SWMONを判定用スイッチとも呼ぶ。なお図13では基準電圧生成回路60の図示を省略している。なお、既に説明した構成要素には同一の符号を付し、その構成要素についての説明を適宜に省略する。
アンプ回路80は、演算増幅器AMVDにより構成されたボルテージフォロア回路である。スイッチSWMONは、演算増幅器AMVDの出力端子と判定回路55の入力ノードNMINとの間に接続される。スイッチSWMONはトランジスターで構成されたスイッチである。
判定回路55は、演算増幅器AMVDの出力端子に出力されるトランスファーゲート15のフィードスルーノイズを判定する。即ち、トランスファーゲート15が発生したフィードスルーノイズは、演算増幅器AMVDの非反転入力端子から演算増幅器AMVDを通過して演算増幅器AMVDの出力端子に出力される。この出力端子に出力されたフィードスルーノイズは、演算増幅器AMVDの周波数特性等の影響を受けた信号となっている。演算増幅器AMVDの出力側においてフィードスルーノイズの影響を低減できればよいので、判定回路55は、演算増幅器AMVDの出力側においてフィードスルーノイズを判定する。
制御回路35は、判定回路55の判定結果に基づいて、フィードスルーノイズを低減するノイズ低減制御をスイッチ回路45に対して行う。具体的には、制御回路35は、判定結果に基づいてレジスター36にフィードスルーノイズ低減の設定情報を記憶させる。そして、回路装置100の通常動作時、即ち回路装置100が電気光学パネルを駆動するとき、制御回路35は、レジスター36に記憶された設定情報に基づいてトランスファーゲート15に対するフィードスルーノイズ低減制御を行う。フィードスルーノイズ低減制御については図1~図12で説明した通りである。
本実施形態によれば、トランスファーゲート15の入力信号の電圧に応じて変動するフィードスルーノイズを、判定回路55が判定できる。そして、制御回路35が判定結果に基づいてフィードスルーノイズ低減制御を行うことで、トランスファーゲート15の入力信号の電圧に応じて変動するフィードスルーノイズを適切に低減できる。
以下、判定回路55の詳細を説明する。判定回路55は、DCカット用キャパシターであるキャパシターCDCと、バイアス回路56と、第1比較回路であるコンパレーター51と、第2比較回路であるコンパレーター52とを含む。
キャパシターCDCは、判定回路55の入力ノードNMINと判定ノードNMONとの間に設けられる。即ち、キャパシターCDCの一端は入力ノードNMINに接続され、他端は判定ノードNMONに接続される。
バイアス回路56は、判定ノードNMONをバイアス電圧VBIに設定する。バイアス回路56は、バイアス電圧VBIのノードと判定ノードNMONとの間に接続される抵抗RBIを含む。判定ノードNMONには、抵抗RBIを介してバイアス電圧VBIが入力される。
コンパレーター51は、判定ノードNMONの電圧VMONと判定電圧VRAとを比較し、その結果を出力信号QCAとして出力する。判定電圧VRAは第1判定電圧であり、バイアス電圧VBIより所定幅ΔVだけ高い。コンパレーター52は、判定ノードNMONの電圧VMONと判定電圧VRBとを比較し、その結果を出力信号QCBとして出力する。判定電圧VRBは第2判定電圧であり、バイアス電圧VBIより所定幅ΔVだけ低い。2×ΔVは、フィードスルーノイズの許容振幅に相当する電圧幅である。例えばΔV=10mVであるが、これに限定されない。
図14、図15は判定回路55の動作を説明する波形図である。図14、図15に示す電圧VMONの波形は、トランスファーゲート15がオンからオフになったときのフィードスルーノイズの波形である。
図14には、トランスファーゲート15の入力信号の電圧が第1電圧範囲に属するとき、即ち、トランスファーゲート15が出力ノードNOUTに電荷を注入するときの波形を示す。電圧VMONはキャパシターCDCによりDCカットされると共に、バイアス電圧VBIにバイアスされているので、電圧VMONにおけるフィードスルーノイズは、バイアス電圧VBIを中心とするAC成分のみとなる。このAC成分の大きさをコンパレーター51、52により検出する。
図14の例では、電圧VMONが判定電圧VRAを超えた後、判定電圧VRBを下回っている。電圧VMONが判定電圧VRAを超えているときコンパレーター51の出力信号QCAがハイレベルになり、電圧VMONが判定電圧VRBを下回っているときコンパレーター52の出力信号QCBがハイレベルになる。フィードスルーノイズによる電圧VMONの変動は、最初の正方向への変動であり、その後の負方向の変動は演算増幅器AMVDの過渡応答等による変動である。このため、制御回路35は、先にハイレベルとなるコンパレーター51の出力信号QCAに基づいてキャリブレーションを行う。
図15には、トランスファーゲート15の入力信号の電圧が第2電圧範囲に属するとき、即ち、トランスファーゲート15が出力ノードNOUTから電荷を排出するときの波形を示す。
図15の例では、電圧VMONが判定電圧VRBを下回った後、判定電圧VRAを超えている。電圧VMONが判定電圧VRBを下回っているときコンパレーター52の出力信号QCBがハイレベルになり、電圧VMONが判定電圧VRBを超えているときコンパレーター51の出力信号QCAがハイレベルになる。制御回路35は、先にハイレベルとなるコンパレーター52の出力信号QCBに基づいてキャリブレーションを行う。
図16は、キャリブレーションの手順を示すフローチャートである。
ステップS1において、制御回路35はスイッチSWMONをオンにする。ステップS2において、制御回路35はトランスファーゲート15の入力信号の電圧を設定する。即ち、制御回路35は、フィードスルーノイズを測定したい電圧に対応した表示データGD[9:0]をD/A変換回路70と出力回路85に出力する。例えば第1電圧範囲が7.5V~12.5Vであるとき、その中央値である10Vに対応した表示データGD[9:0]を制御回路35が出力する。
ステップS3において、制御回路35は、スイッチ回路45の設定を行う。即ち、制御回路35は、フィードスルーノイズ低減の設定情報をレジスター36に書き込むことで、トランスファーゲート15の動作状態を、ある1つの動作状態に設定する。例えば図5の構成例に本キャリブレーション手法を適用する場合、制御回路35は、P型サブトランジスターTGP1~TGPr及びN型サブトランジスターTGN1~TGNqのうちオンオフさせるトランジスターを指定する。
ステップS4において、判定回路55がフィードスルーノイズを判定する。即ち、制御回路35がD/A変換回路70、出力回路85及びスイッチ回路45を動作させることで、トランスファーゲート15がオフするときのフィードスルーノイズを発生させる。このフィードスルーノイズによる電圧VMONの変動を判定回路55が判定し、その結果である出力信号QCA、QCBを出力する。
ステップS5において、制御回路35は、ステップS4の判定動作で出力信号QCA又はQCBがハイレベルになったか否かを判断する。制御回路35は、出力信号QCA又はQCBがハイレベルになった場合、ステップS3に戻る。ステップS3では、前回の動作状態とは異なる動作状態にトランスファーゲート15を設定する。そして判定回路55が再びステップS4の判定動作を行う。ステップS5において、出力信号QCA又はQCBがハイレベルにならなかった場合、ステップS6において、制御回路35は、そのときのフィードスルーノイズ低減の設定情報をレジスター36に保持させる。
ステップS7において、制御回路35は、全ての電圧範囲についてキャリブレーションを行ったか否かを判断する。キャリブレーションを行っていない電圧範囲がある場合、制御回路35はステップS2に戻り、次の入力信号の電圧を設定し、ステップS3~S6を再び実行する。ステップS7において、全ての電圧範囲についてキャリブレーションを行ったと判断された場合、制御回路35はスイッチSWMONをオフし、キャリブレーションを終了する。
なお、判定回路55を含む回路装置100の構成は図15に限定されず、以下のような種々の変形実施が可能である。
例えば、判定回路55は、演算増幅器AMVDの入力端子に出力されるトランスファーゲート15のフィードスルーノイズを判定してもよい。即ち、スイッチSWMONが、演算増幅器AMVDの入力端子と判定回路55の入力ノードNMINとの間に接続されてもよい。
或いは、アンプ回路80は反転増幅回路であってもよい。反転増幅回路の構成例は図17で説明する。スイッチSWMONは、反転増幅回路であるアンプ回路80の出力ノード又は入力ノードと、判定回路55の入力ノードNMINとの間に接続されてもよい。この場合、アンプ回路80の出力ノードは演算増幅器AMVDの出力端子であり、アンプ回路80の入力ノードはトランスファーゲート15の出力ノードNOUTである。
或いは、図17に示す回路装置100の第4構成例のように、DCカット用キャパシターであるキャパシターCDCが省略され、演算増幅器AMVDの入力端子と判定回路55の入力ノードNMINとの間にスイッチSWMONが接続されてもよい。
具体的には、アンプ回路80は演算増幅器AMVDと抵抗RI、RFとを含む。抵抗RIの一端はトランスファーゲート15の出力ノードNOUTに接続され、他端は演算増幅器AMVDの反転入力端子に接続される。抵抗RFの一端は演算増幅器AMVDの反転入力端子に接続され、他端は演算増幅器AMVDの出力端子に接続される。演算増幅器AMVDの非反転入力端子には基準電圧VCが入力される。基準電圧VCは、電気光学パネルを駆動する際のコモン電圧に相当する。
判定回路55は、コンパレーター51、52を含む。図17では、判定回路55の入力ノードNMINが判定ノードとなる。即ち、コンパレーター51は、入力ノードNMINの電圧VMONと判定電圧VRAとを比較し、コンパレーター51は、入力ノードNMINの電圧VMONと判定電圧VRBとを比較する。演算増幅器AMVDの反転入力端子はバーチャルショートにより基準電圧VCとなる。このため、電圧VMONにおけるフィードスルーノイズは、基準電圧VCを中心とするAC成分のみとなる。このAC成分の大きさをコンパレーター51、52により検出する。
キャリブレーション手法は図13~図16で説明した手法と同様である。即ち、図14、図15においてバイアス電圧VBIを基準電圧VCに置き換えることで、図17における波形図となる。判定電圧VRAは基準電圧VCよりΔVだけ高く、判定電圧VRBは基準電圧VCよりΔVだけ低い。キャリブレーションの手順は図18に示す手順と同様である。
6.電気光学装置、電子機器
図18は、回路装置100を含む電気光学装置350の構成例である。電気光学装置350は、回路装置100、電気光学パネル200を含む。図18における回路装置100は表示ドライバーである。
電気光学パネル200は、例えばアクティブマトリックス型の液晶表示パネルである。例えば回路装置100はフレキシブル基板に実装され、そのフレキシブル基板が電気光学パネル200に接続され、フレキシブル基板に形成された配線によって回路装置100のデータ電圧出力端子と電気光学パネル200のデータ電圧入力端子とが接続される。或いは、回路装置100はリジッド基板に実装され、リジッド基板と電気光学パネル200とがフレキシブル基板により接続され、リジッド基板及びフレキシブル基板に形成された配線によって回路装置100のデータ電圧出力端子と電気光学パネル200のデータ電圧入力端子とが接続されてもよい。
図19は、回路装置100を含む電子機器300の構成例である。電子機器300は、処理装置310、表示コントローラー320、回路装置100、電気光学パネル200、記憶部330、通信部340、操作部360を含む。記憶部330は記憶装置又はメモリーとも呼ぶ。通信部340は通信回路又は通信装置とも呼ぶ。操作部360は操作装置とも呼ぶ。図19では回路装置100が表示ドライバーである場合を例に説明するが、電子機器300が含む回路装置100は表示ドライバーに限定されない。例えば、電子機器400は、図12で説明したサンプルホールド回路を含む回路装置100を含んでもよい。
電子機器300の具体例としては、例えばプロジェクターやヘッドマウントディスプレイ、携帯情報端末、車載装置、携帯型ゲーム端末、情報処理装置等の、表示装置を搭載する種々の電子機器を想定できる。車載装置は、例えばメーターパネル、カーナビゲーションシステム等である。
操作部360は、ユーザーからの種々の操作を受け付けるユーザーインターフェースである。例えば、ボタンやマウスやキーボード、電気光学パネル200に装着されたタッチパネル等である。通信部340は、画像データや制御データの入出力を行うデータインターフェースである。通信部340は、例えば無線LANや近距離無線通信等の無線通信インターフェース、或いは有線LANやUSB等の有線通信インターフェースである。記憶部330は、例えば通信部340から入力されたデータを記憶したり、或いは、処理装置310のワーキングメモリーとして機能したりする。記憶部330は、例えばRAMやROM等のメモリー、或いはHDD等の磁気記憶装置、或いはCDドライブ、DVDドライブ等の光学記憶装置等である。表示コントローラー320は、通信部340から入力された或いは記憶部330に記憶された画像データを処理して回路装置100に転送する。回路装置100は、表示コントローラー320から転送された画像データに基づいて電気光学パネル200に画像を表示させる。処理装置310は、電子機器300の制御処理及び、種々の信号処理等を行う。処理装置310は、例えばCPUやMPU等のプロセッサー、或いはASIC等である。
例えば電子機器300がプロジェクターである場合、電子機器300は更に光源と光学系とを含む。光学系は、例えばレンズ、プリズム、ミラー等である。電気光学パネル200が透過型である場合、光学装置が光源からの光を電気光学パネル200に入射させ、電気光学パネル200を透過した光をスクリーンに投影させる。電気光学パネル200が反射型である場合、光学装置が光源からの光を電気光学パネル200に入射させ、電気光学パネル200から反射された光をスクリーンに投影させる。
以上に説明した本実施形態の回路装置は、トランスファーゲートと制御回路とを含む。トランスファーゲートは、入力ノードと出力ノードの間に並列接続されるP型トランジスター及びN型トランジスターを有する。トランスファーゲートの入力ノードに入力信号が入力され、トランスファーゲートは出力ノードに出力信号を出力する。制御回路は、トランスファーゲートを制御する。制御回路は、トランスファーゲートがオフするタイミングにおいて入力信号の電圧が第1電圧範囲であるとき、N型トランジスターのサイズに対するP型トランジスターのサイズの比であるトランジスターサイズ比を第1値にするように制御する。制御回路は、トランスファーゲートがオフするタイミングにおいて入力信号の電圧が第1電圧範囲より低い第2電圧範囲であるとき、トランジスターサイズ比を、第1値より大きい第2値にするように制御する。
本実施形態によれば、入力信号の電圧が第1電圧範囲であるとき、トランジスターサイズ比が、第2値より小さい第1値に設定されるので、N型トランジスターの寄生容量に対するP型トランジスターの寄生容量の比が小さくなる。これにより、第1電圧範囲においてN型トランジスターとP型トランジスターの寄生容量の差が縮小する。また、入力信号の電圧が第2電圧範囲であるとき、トランジスターサイズ比が、第1値より大きい第2値に設定されるので、N型トランジスターの寄生容量に対するP型トランジスターの寄生容量の比が大きくなる。これにより、第2電圧範囲においてN型トランジスターとP型トランジスターの寄生容量の差が縮小する。以上により、入力信号の電圧に依存してトランスファーゲートが発生するフィードスルーノイズを、入力信号の電圧に応じて適切に低減できる。
また本実施形態では、P型トランジスターは、入力ノードと出力ノードの間に並列接続されるP型サブトランジスター群を有してもよい。N型トランジスターは、入力ノードと出力ノードの間に並列接続されるN型サブトランジスター群を有してもよい。
このようにすれば、制御回路は、P型サブトランジスター群のうちオンオフさせるP型サブトランジスター、及びN型サブトランジスター群のうちオンオフさせるN型サブトランジスターを選択できる。これにより、制御回路が、トランジスターサイズ比を制御できる。
また本実施形態では、制御回路は、P型サブトランジスター群のうちオンからオフにするP型サブトランジスターの合計トランジスターサイズと、N型サブトランジスター群のうちオンからオフにするN型サブトランジスターの合計トランジスターサイズとの比により、トランジスターサイズ比を制御してもよい。
サブトランジスター群のうちオンからオフになるサブトランジスターの寄生容量が、フィードスルーノイズを発生させる。このため、制御回路が、オンからオフにするP型サブトランジスターの合計トランジスターサイズと、N型サブトランジスター群のうちオンからオフにするN型サブトランジスターの合計トランジスターサイズとの比を制御することで、P型サブトランジスターの寄生容量と、N型サブトランジスターの寄生容量とを、バランスさせることが可能である。これにより、フィードスルーノイズが低減される。
また本実施形態では、P型サブトランジスター群は、第1P型サブトランジスターと、第1P型サブトランジスターよりサイズが大きい第2P型サブトランジスターと、を有してもよい。N型サブトランジスター群は、第1N型サブトランジスターと、第1N型サブトランジスターよりサイズが大きい第2N型サブトランジスターと、を有してもよい。制御回路は、トランスファーゲートがオフするタイミングにおいて入力信号の電圧が第1電圧範囲であるとき、第1P型サブトランジスター及び第2N型サブトランジスターをオンからオフにする制御を行ってもよい。制御回路は、トランスファーゲートがオフするタイミングにおいて入力信号の電圧が第2電圧範囲であるとき、第2P型サブトランジスター及び第1N型サブトランジスターをオンからオフにする制御を行ってもよい。
本実施形態によれば、第1電圧範囲では、P型サブトランジスター群のうちサイズが小さい方の第1P型サブトランジスターと、N型サブトランジスター群のうちサイズが大きい方の第2N型サブトランジスターが、オンからオフになる。これにより、トランジスターサイズ比が第1値となる。一方、第2電圧範囲では、P型サブトランジスター群のうちサイズが大きい方の第2P型サブトランジスターと、N型サブトランジスター群のうちサイズが小さい方の第1N型サブトランジスターが、オンからオフになる。これにより、トランジスターサイズ比が、第1値より大きい第2値となる。
また本実施形態では、回路装置は補助トランスファーゲートを含んでもよい。補助トランスファーゲートは、P型補助トランジスター及びN型補助トランジスターを有してもよい。P型補助トランジスター及びN型補助トランジスターは、入力ノードと出力ノードとの間にトランスファーゲートと並列接続されてもよい。制御回路は、トランスファーゲートがオンからオフになった後に、補助トランスファーゲートをオンからオフにする制御を行ってもよい。
このようにすれば、トランスファーゲートがオフになった後に補助トランスファーゲートがオフになることで、出力ノードのフィードスルーノイズを、補助トランスファーゲートを介して入力ノードに逃がすことが可能となる。本実施形態では、トランスファーゲートのトランジスターサイズ比が制御されることでフィードスルーノイズが低減されているが、補助トランスファーゲートを用いることで、更にフィードスルーノイズを低減できる。
また本実施形態では、補助トランスファーゲートの合計トランジスターサイズは、トランスファーゲートの合計トランジスターサイズより小さくてもよい。
このようにすれば、補助トランスファーゲートが発生するフィードスルーノイズは、トランスファーゲートが発生するフィードスルーノイズより小さくなる。このため、補助トランスファーゲートがオフするときのフィードスルーノイズの影響を、小さくできる。
また本実施形態では、制御回路は、トランスファーゲートがオフするタイミングにおいて入力信号の電圧が第1電圧範囲より低く且つ第2電圧範囲より高い第3電圧範囲であるとき、トランジスターサイズ比を、第1値より大きい第3値に設定してもよい。
このようにすれば、制御回路がトランスファーゲートのトランジスターサイズ比を第2値より小さい値に設定する場合において、制御回路がトランジスターサイズ比をより精度よく制御可能である。これにより、各電圧範囲に応じて、P型トランジスターとN型トランジスターの寄生容量を精度良くバランスさせることができ、より適切にフィードスルーノイズが低減される。
また本実施形態では、制御回路は、トランスファーゲートがオフするタイミングにおいて入力信号の電圧が第2電圧範囲より高く且つ第3電圧範囲より低い第4電圧範囲であるとき、トランジスターサイズ比を、第2値より小さい第4値に設定してもよい。
このようにすれば、制御回路がトランスファーゲートのトランジスターサイズ比を第1値より大きい値に設定する場合において、制御回路がトランジスターサイズ比をより精度よく制御可能である。これにより、各電圧範囲に応じて、P型トランジスターとN型トランジスターの寄生容量を精度良くバランスさせることができ、より適切にフィードスルーノイズが低減される。
また本実施形態では、回路装置は、入力データに基づいてトランスファーゲートの入力ノードに入力信号を出力する出力回路を含んでもよい。制御回路は、入力データに基づいて、入力信号の電圧が第1電圧範囲に属するか否か及び入力信号の電圧が第2電圧範囲に属するか否かを判断してもよい。
出力回路が入力データに基づいてトランスファーゲートの入力ノードに入力信号を出力するので、入力データは入力信号の電圧に対応したデータとなっている。これにより、制御回路は、入力データに基づいて、入力信号の電圧が属する電圧範囲を判断できる。
また本実施形態では、回路装置は、D/A変換回路とアンプ回路とを含んでもよい。D/A変換回路は、入力データをD/A変換したD/A変換電圧を、トランスファーゲートの出力ノードに出力してもよい。アンプ回路は、トランスファーゲートの出力ノードの信号が入力されてもよい。
トランスファーゲートが発生するフィードスルーノイズは、アンプ回路が出力する信号の精度に影響を与える。本実施形態によれば、制御回路がフィードスルーノイズ低減制御を行うので、アンプ回路が出力する信号の精度を向上できる。
また本実施形態では、トランスファーゲートがオンであるとき、出力回路が入力信号をトランスファーゲートの入力ノードに出力することで、入力信号に対応した出力信号がトランスファーゲートの出力ノードに出力されてもよい。トランスファーゲートがオンからオフになった後、D/A変換回路がD/A変換電圧をトランスファーゲートの出力ノードに出力してもよい。
トランスファーゲートが発生するフィードスルーノイズは、トランスファーゲートがオフになった後にD/A変換回路によって収束される。しかし、D/A変換回路がD/A変換電圧を出力する期間内にフィードスルーノイズを収束しきれない可能性がある。本実施形態によれば、制御回路がフィードスルーノイズ低減制御を行うので、D/A変換回路がD/A変換電圧を出力する期間内にフィードスルーノイズを許容誤差内まで収束できる。
また本実施形態では、アンプ回路は、電気光学パネルを駆動してもよい。
本実施形態によれば、制御回路がフィードスルーノイズ低減制御を行うことで、アンプ回路が出力する信号の精度を向上できる。これにより、電気光学パネルを駆動するデータ電圧の精度を向上できるので、表示品質が向上する。
また本実施形態の電気光学装置は、上記に記載の回路装置と、電気光学パネルと、を含む。
また本実施形態の電子機器は、上記のいずれかに記載の回路装置を含む。
なお、上記のように本実施形態について詳細に説明したが、本開示の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは当業者には容易に理解できるであろう。従って、このような変形例はすべて本開示の範囲に含まれるものとする。例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また本実施形態及び変形例の全ての組み合わせも、本開示の範囲に含まれる。また回路装置、電気光学装置及び電子機器等の構成及び動作等も、本実施形態で説明したものに限定されず、種々の変形実施が可能である。
15…トランスファーゲート、16…補助トランスファーゲート、35…制御回路、36…レジスター、45…スイッチ回路、51…コンパレーター、52…コンパレーター、55…判定回路、56…バイアス回路、60…基準電圧生成回路、65…検出回路、70…D/A変換回路、80…アンプ回路、82…キャパシター回路、84…キャパシター駆動回路、85…出力回路、100…回路装置、200…電気光学パネル、300…電子機器、310…処理装置、320…表示コントローラー、330…記憶部、340…通信部、350…電気光学装置、360…操作部、400…電子機器、AMVD…演算増幅器、CDC…キャパシター、GD[9:0]…表示データ、NIN…入力ノード、NMON…判定ノード、NOUT…出力ノード、SSN…制御信号、SSP…制御信号、STGN1~STGNq…制御信号、STGP1~STGPr…制御信号、SWMON…スイッチ、TGN…N型トランジスター、TGP…P型トランジスター、TGN1~TGNq…N型サブトランジスター、TGP1~TGPr…P型サブトランジスター、VBI…バイアス電圧、VC…基準電圧、VRA…判定電圧、VRB…判定電圧

Claims (15)

  1. 入力ノードと出力ノードの間に並列接続されるP型トランジスター及びN型トランジスターを有し、前記入力ノードに入力信号が入力され、前記出力ノードに出力信号を出力するトランスファーゲートと、
    前記トランスファーゲートを制御する制御回路と、
    を含み、
    前記制御回路は、
    前記トランスファーゲートがオフするタイミングにおいて前記入力信号の電圧が第1電圧範囲であるとき、前記N型トランジスターのサイズに対する前記P型トランジスターのサイズの比であるトランジスターサイズ比を第1値とし、前記トランスファーゲートがオフするタイミングにおいて前記入力信号の電圧が前記第1電圧範囲より低い第2電圧範囲であるとき、前記トランジスターサイズ比を、前記第1値より大きい第2値とするように制御し、
    前記P型トランジスターは、
    前記入力ノードと前記出力ノードの間に並列接続されるP型サブトランジスター群を有し、
    前記N型トランジスターは、
    前記入力ノードと前記出力ノードの間に並列接続されるN型サブトランジスター群を有し、
    前記P型サブトランジスター群は、
    第1P型サブトランジスターと、
    前記第1P型サブトランジスターよりサイズが大きい第2P型サブトランジスターと、
    を有し、
    前記N型サブトランジスター群は、
    第1N型サブトランジスターと、
    前記第1N型サブトランジスターよりサイズが大きい第2N型サブトランジスターと、
    を有し、
    前記制御回路は、
    前記トランスファーゲートがオフするタイミングにおいて前記入力信号の電圧が前記第1電圧範囲であるとき、前記第1P型サブトランジスター及び前記第2N型サブトランジスターをオンからオフにする制御を行い、前記トランスファーゲートがオフするタイミングにおいて前記入力信号の電圧が前記第2電圧範囲であるとき、前記第2P型サブトランジスター及び前記第1N型サブトランジスターをオンからオフにする制御を行うことを特徴とする回路装置。
  2. 請求項1に記載の回路装置において、
    前記制御回路は、
    前記P型サブトランジスター群のうちオンからオフにするP型サブトランジスターの合計トランジスターサイズと、前記N型サブトランジスター群のうちオンからオフにするN型サブトランジスターの合計トランジスターサイズとの比を制御することで、前記トランジスターサイズ比を制御することを特徴とする回路装置。
  3. 請求項1又は2に記載の回路装置において、
    前記入力ノードと前記出力ノードとの間に前記トランスファーゲートと並列接続されるP型補助トランジスター及びN型補助トランジスターを有する補助トランスファーゲートを含み、
    前記制御回路は、
    前記トランスファーゲートがオンからオフになった後に、前記補助トランスファーゲートをオンからオフにする制御を行うことを特徴とする回路装置。
  4. 請求項3に記載の回路装置において、
    前記補助トランスファーゲートの合計トランジスターサイズは、前記トランスファーゲートの合計トランジスターサイズより小さいことを特徴とする回路装置。
  5. 請求項1乃至4のいずれか一項に記載の回路装置において、
    前記制御回路は、
    前記トランスファーゲートがオフするタイミングにおいて前記入力信号の電圧が前記第1電圧範囲より低く且つ前記第2電圧範囲より高い第3電圧範囲であるとき、前記トランジスターサイズ比を、前記第1値より大きく且つ前記第2値より小さい第3値に設定することを特徴とする回路装置。
  6. 請求項5に記載の回路装置において、
    前記制御回路は、
    前記トランスファーゲートがオフするタイミングにおいて前記入力信号の電圧が前記第2電圧範囲より高く且つ前記第3電圧範囲より低い第4電圧範囲であるとき、前記トランジスターサイズ比を、前記第2値より小さく且つ前記第3値より大きい第4値に設定することを特徴とする回路装置。
  7. 請求項1乃至6のいずれか一項に記載の回路装置において、
    入力データに基づいて前記入力ノードに前記入力信号を出力する出力回路を含み、
    前記制御回路は、
    前記入力データに基づいて、前記入力信号の電圧が前記第1電圧範囲に属するか否か及び前記入力信号の電圧が前記第2電圧範囲に属するか否かを判断することを特徴とする回路装置。
  8. 請求項7に記載の回路装置において、
    前記入力データをD/A変換したD/A変換電圧を、前記出力ノードに出力するD/A変換回路と、
    前記出力ノードの信号が入力されるアンプ回路と、
    を含むことを特徴とする回路装置。
  9. 請求項8に記載の回路装置において、
    前記トランスファーゲートがオンであるとき、前記出力回路が前記入力信号を前記入力ノードに出力することで、前記入力信号に対応した前記出力信号が前記出力ノードに出力され、
    前記トランスファーゲートがオンからオフになった後、前記D/A変換回路が前記D/A変換電圧を前記出力ノードに出力することを特徴とする回路装置。
  10. 請求項8又は9に記載の回路装置において、
    前記アンプ回路は、
    電気光学パネルを駆動することを特徴とする回路装置。
  11. 入力ノードと出力ノードの間に並列接続されるP型トランジスター及びN型トランジスターを有し、前記入力ノードに入力信号が入力され、前記出力ノードに出力信号を出力するトランスファーゲートと、
    前記トランスファーゲートを制御する制御回路と、
    前記入力ノードと前記出力ノードとの間に前記トランスファーゲートと並列接続されるP型補助トランジスター及びN型補助トランジスターを有する補助トランスファーゲートと、
    を含み、
    前記制御回路は、
    前記トランスファーゲートがオフするタイミングにおいて前記入力信号の電圧が第1電圧範囲であるとき、前記N型トランジスターのサイズに対する前記P型トランジスターのサイズの比であるトランジスターサイズ比を第1値とし、前記トランスファーゲートがオフするタイミングにおいて前記入力信号の電圧が前記第1電圧範囲より低い第2電圧範囲であるとき、前記トランジスターサイズ比を、前記第1値より大きい第2値とするように制御し、
    前記制御回路は、
    前記トランスファーゲートがオンからオフになった後に、前記補助トランスファーゲートをオンからオフにする制御を行い、
    前記補助トランスファーゲートの合計トランジスターサイズは、前記トランスファーゲートの合計トランジスターサイズより小さいことを特徴とする回路装置。
  12. 入力ノードと出力ノードの間に並列接続されるP型トランジスター及びN型トランジスターを有し、前記入力ノードに入力信号が入力され、前記出力ノードに出力信号を出力するトランスファーゲートと、
    前記トランスファーゲートを制御する制御回路と、
    を含み、
    前記制御回路は、
    前記トランスファーゲートがオフするタイミングにおいて前記入力信号の電圧が第1電圧範囲であるとき、前記N型トランジスターのサイズに対する前記P型トランジスターのサイズの比であるトランジスターサイズ比を第1値とし、前記トランスファーゲートがオフするタイミングにおいて前記入力信号の電圧が前記第1電圧範囲より低い第2電圧範囲であるとき、前記トランジスターサイズ比を、前記第1値より大きい第2値とするように制御し、
    前記制御回路は、
    前記トランスファーゲートがオフするタイミングにおいて前記入力信号の電圧が前記第1電圧範囲より低く且つ前記第2電圧範囲より高い第3電圧範囲であるとき、前記トランジスターサイズ比を、前記第1値より大きく且つ前記第2値より小さい第3値に設定することを特徴とする回路装置。
  13. 入力ノードと出力ノードの間に並列接続されるP型トランジスター及びN型トランジスターを有し、前記入力ノードに入力信号が入力され、前記出力ノードに出力信号を出力するトランスファーゲートと、
    前記トランスファーゲートを制御する制御回路と、
    入力データに基づいて前記入力ノードに前記入力信号を出力する出力回路と、
    前記入力データをD/A変換したD/A変換電圧を、前記出力ノードに出力するD/A変換回路と、
    前記出力ノードの信号が入力されるアンプ回路と、
    を含み、
    前記制御回路は、
    前記トランスファーゲートがオフするタイミングにおいて前記入力信号の電圧が第1電圧範囲であるとき、前記N型トランジスターのサイズに対する前記P型トランジスターのサイズの比であるトランジスターサイズ比を第1値とし、前記トランスファーゲートがオフするタイミングにおいて前記入力信号の電圧が前記第1電圧範囲より低い第2電圧範囲であるとき、前記トランジスターサイズ比を、前記第1値より大きい第2値とするように制御し、
    前記制御回路は、
    前記入力データに基づいて、前記入力信号の電圧が前記第1電圧範囲に属するか否か及び前記入力信号の電圧が前記第2電圧範囲に属するか否かを判断することを特徴とする回路装置。
  14. 請求項10に記載の回路装置と、
    前記電気光学パネルと、
    を含むことを特徴とする電気光学装置。
  15. 請求項1乃至13のいずれか一項に記載の回路装置を含むことを特徴とする電子機器。
JP2019168935A 2019-09-18 2019-09-18 回路装置、電気光学装置及び電子機器 Active JP7351156B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019168935A JP7351156B2 (ja) 2019-09-18 2019-09-18 回路装置、電気光学装置及び電子機器
US17/023,628 US11263944B2 (en) 2019-09-18 2020-09-17 Circuit device, electro-optical device, and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019168935A JP7351156B2 (ja) 2019-09-18 2019-09-18 回路装置、電気光学装置及び電子機器

Publications (3)

Publication Number Publication Date
JP2021047265A JP2021047265A (ja) 2021-03-25
JP2021047265A5 JP2021047265A5 (ja) 2022-09-26
JP7351156B2 true JP7351156B2 (ja) 2023-09-27

Family

ID=74869733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019168935A Active JP7351156B2 (ja) 2019-09-18 2019-09-18 回路装置、電気光学装置及び電子機器

Country Status (2)

Country Link
US (1) US11263944B2 (ja)
JP (1) JP7351156B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7528558B2 (ja) * 2020-06-25 2024-08-06 セイコーエプソン株式会社 回路装置、電気光学装置及び電子機器
KR20220164841A (ko) * 2021-06-04 2022-12-14 삼성디스플레이 주식회사 표시 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080252358A1 (en) 2007-04-11 2008-10-16 Texas Instruments Incorporated Circuit and method for reducing charge injection and clock feed-through in switched capacitor circuits
JP2017195531A (ja) 2016-04-21 2017-10-26 ローム株式会社 スイッチトキャパシタ回路、δσa/dコンバータ、a/dコンバータ集積回路
US20180026622A1 (en) 2016-07-22 2018-01-25 Micron Technology, Inc. Apparatuses and methods for reducing off state leakage currents
JP6349294B2 (ja) 2015-11-05 2018-06-27 ジビル調査設計株式会社 構造物用点検具

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174518A (ja) 1984-02-20 1985-09-07 Hitachi Ltd Cmosアナログスイツチ
JPS60254903A (ja) 1984-05-31 1985-12-16 Fujitsu Ltd Mosアナログアンプ回路
JPS61214815A (ja) 1985-03-20 1986-09-24 Hitachi Ltd アナログスイツチ
JPH06349294A (ja) * 1993-06-07 1994-12-22 Kawasaki Steel Corp サンプルホールド回路
JPH08335864A (ja) 1995-06-07 1996-12-17 Matsushita Electric Ind Co Ltd Mosアナログスイッチ
KR100278984B1 (ko) * 1998-01-08 2001-01-15 김영환 멀티레벨 출력신호를 갖는 멀티플렉서
EP1199801A1 (en) * 2000-10-19 2002-04-24 STMicroelectronics S.r.l. Circuit for current injection control in analog switches
US6636083B1 (en) * 2001-04-24 2003-10-21 Pacesetter, Inc. Leakage current cancellation technique for low power switched-capacitor circuits
JP3646676B2 (ja) * 2001-07-06 2005-05-11 セイコーエプソン株式会社 チョッパ型コンパレータ
US6911860B1 (en) * 2001-11-09 2005-06-28 Altera Corporation On/off reference voltage switch for multiple I/O standards
JP2006148320A (ja) 2004-11-17 2006-06-08 Denso Corp スイッチドキャパシタフィルタ
JP2008076596A (ja) * 2006-09-20 2008-04-03 Seiko Epson Corp データ線選択回路、データ線駆動回路、電気光学装置および電子機器
US8427415B2 (en) * 2007-02-23 2013-04-23 Seiko Epson Corporation Source driver, electro-optical device, projection-type display device, and electronic instrument
US7843248B1 (en) * 2007-11-01 2010-11-30 Intersil Americas Inc. Analog switch with overcurrent detection
JP2010085817A (ja) * 2008-10-01 2010-04-15 Seiko Epson Corp 電気泳動表示装置および電子機器、電気泳動表示装置の駆動方法
US7940110B2 (en) * 2009-06-04 2011-05-10 Apple Inc. Cascode switching circuit
US7924085B2 (en) * 2009-06-19 2011-04-12 Stmicroelectronics Asia Pacific Pte. Ltd. Negative analog switch design
US8212604B2 (en) * 2009-08-07 2012-07-03 Stmicroelectronics Asia Pacific Pte. Ltd. T switch with high off state isolation
EP2293444B1 (en) * 2009-08-26 2017-08-23 The Alfred E. Mann Foundation for Scientific Research High voltage switch in low voltage process
US9013228B2 (en) * 2011-06-20 2015-04-21 Stmicroelectronics Sa Method for providing a system on chip with power and body bias voltages
US8860497B1 (en) * 2013-07-01 2014-10-14 Nvidia Corporation Oxide stress reduction for a cascode stack circuit
JP6435787B2 (ja) 2014-11-07 2018-12-12 セイコーエプソン株式会社 ドライバー及び電子機器
JP6439393B2 (ja) * 2014-11-07 2018-12-19 セイコーエプソン株式会社 ドライバー及び電子機器
US10469072B2 (en) * 2016-09-26 2019-11-05 Skyworks Solutions, Inc. Stacked auxiliary field-effect transistors with buffers for radio frequency applications
JP6887856B2 (ja) * 2017-04-11 2021-06-16 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置
JP2019056799A (ja) * 2017-09-21 2019-04-11 セイコーエプソン株式会社 表示ドライバー、電気光学装置及び電子機器
US10586605B2 (en) * 2017-11-20 2020-03-10 Rohm Co., Ltd. Sample hold circuit
JP2020155168A (ja) * 2019-03-19 2020-09-24 キオクシア株式会社 半導体記憶装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080252358A1 (en) 2007-04-11 2008-10-16 Texas Instruments Incorporated Circuit and method for reducing charge injection and clock feed-through in switched capacitor circuits
JP6349294B2 (ja) 2015-11-05 2018-06-27 ジビル調査設計株式会社 構造物用点検具
JP2017195531A (ja) 2016-04-21 2017-10-26 ローム株式会社 スイッチトキャパシタ回路、δσa/dコンバータ、a/dコンバータ集積回路
US20180026622A1 (en) 2016-07-22 2018-01-25 Micron Technology, Inc. Apparatuses and methods for reducing off state leakage currents

Also Published As

Publication number Publication date
US20210082332A1 (en) 2021-03-18
US11263944B2 (en) 2022-03-01
JP2021047265A (ja) 2021-03-25

Similar Documents

Publication Publication Date Title
JP2993461B2 (ja) 液晶表示装置の駆動回路
KR100682431B1 (ko) 소스 드라이버, 전기 광학 장치 및 구동 방법
US10878767B2 (en) Display driver, electro-optical device, and electronic apparatus
KR100423684B1 (ko) 액티브 매트릭스 디스플레이 장치의 칼럼 구동 시스템 및 방법
KR101390315B1 (ko) 방전회로를 포함하는 액정표시장치 및 이의 구동방법
US7551111B2 (en) Decoder circuit, driving circuit for display apparatus and display apparatus
JP7351156B2 (ja) 回路装置、電気光学装置及び電子機器
US10832627B2 (en) Display apparatus and source driver thereof and operating method
KR101196711B1 (ko) 레벨 쉬프트 회로 및 이를 탑재한 표시장치
KR20060105490A (ko) 샘플 홀드 회로 및 반도체 장치
US20200013367A1 (en) Display driver, electro-optical device, and electronic apparatus
US9697762B2 (en) Driver and electronic device
CN106652957B (zh) 液晶显示装置及驱动方法
JP7310477B2 (ja) 回路装置、電気光学装置及び電子機器
JP7395900B2 (ja) 回路装置、電気光学装置及び電子機器
JP6737256B2 (ja) 表示ドライバー、電気光学装置及び電子機器
US10644695B1 (en) Source driver
WO2018207697A1 (ja) 表示装置およびその駆動方法
JP2020042179A (ja) 表示ドライバー、電気光学装置、電子機器及び移動体
US11132933B2 (en) Circuit device, electro-optical device, and electronic apparatus
CN112785988B (zh) 一种显示基板、驱动方法、显示面板及显示装置
WO2023176762A1 (ja) 出力回路、表示ドライバ及び表示装置
KR100495805B1 (ko) 게이트온전압발생회로
JP2024134636A (ja) ドライバー、電気光学装置及び電子機器
JP2023144269A (ja) ドライバー、電気光学装置及び電子機器

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220912

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230828

R150 Certificate of patent or registration of utility model

Ref document number: 7351156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150