JP7343271B2 - 半導体素子、および半導体素子の製造方法 - Google Patents

半導体素子、および半導体素子の製造方法 Download PDF

Info

Publication number
JP7343271B2
JP7343271B2 JP2018208591A JP2018208591A JP7343271B2 JP 7343271 B2 JP7343271 B2 JP 7343271B2 JP 2018208591 A JP2018208591 A JP 2018208591A JP 2018208591 A JP2018208591 A JP 2018208591A JP 7343271 B2 JP7343271 B2 JP 7343271B2
Authority
JP
Japan
Prior art keywords
thickness direction
main surface
passivation film
semiconductor device
recesses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018208591A
Other languages
English (en)
Other versions
JP2020077680A (ja
Inventor
基治 芳我
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2018208591A priority Critical patent/JP7343271B2/ja
Priority to US16/670,413 priority patent/US11094601B2/en
Publication of JP2020077680A publication Critical patent/JP2020077680A/ja
Application granted granted Critical
Publication of JP7343271B2 publication Critical patent/JP7343271B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/32Additional lead-in metallisation on a device or substrate, e.g. additional pads or pad portions, lines in the scribe line, sacrificed conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Dicing (AREA)
  • Laser Beam Processing (AREA)

Description

本発明は、半導体素子と、当該半導体素子の製造方法とに関する。
半導体素子の製造において、ボンディングワイヤが接続される電極とは別に、試験電極が設けられることがある。試験電極は、半導体層に構成された回路の導通状態を確認するために設けられる。特許文献1には、試験電極(特許文献1ではテストパッド)が設けられた半導体素子の一例が開示されている。
試験電極は、半導体素子が搭載された半導体装置において不要となる。このため、半導体素子の個片化(ダイシング)工程において、試験電極が分断されることがある。この場合において、一般的なダイシングブレードにより半導体素子の個片化を行うと、試験電極の分断に伴い半導体素子にチッピングが発生することが懸念される。
このため、試験電極の分断に伴い半導体素子にチッピングが発生することを回避するため、レーザ照射により半導体素子を個片化することがある。しかし、レーザ照射により与えられる半導体素子の熱影響集中が過多となり、半導体素子の曲げ強度(抗折強度)が低下するという問題がある。半導体素子の曲げ強度が低下すると、半導体装置の製造においてリードフレームなどに半導体素子をダイボンディングにより搭載させる際、半導体素子が割れるおそれがある。
特開平9-22929号公報
本発明は上記事情に鑑み、試験電極の分断に伴う損傷を回避しつつ、曲げ強度の低下を抑制することが可能な半導体素子、およびその製造方法を提供することをその課題とする。
本発明の第1の側面によれば、厚さ方向を向く主面と、前記主面に対して直交する方向を向き、かつ前記主面につながる第1側面と、を有する素子本体と、前記主面の上に配置され、かつ前記主面と前記第1側面との境界に隣接する試験電極と、を備え、前記素子本体には、前記境界を跨ぎ、かつ前記主面および前記第1側面の双方から凹む複数の陥入部が設けられ、複数の前記陥入部は、前記境界に沿って配列されていることを特徴とする半導体素子が提供される。
本発明の実施において好ましくは、前記主面を覆うパッシベーション膜をさらに備え、前記パッシベーション膜には、前記パッシベーション膜の外縁から内方に向けて凹み、かつ前記パッシベーション膜を前記厚さ方向に貫通する複数の凹部が設けられ、前記厚さ方向に沿って視て、複数の前記凹部は、複数の前記陥入部に個別に重なっている。
本発明の実施において好ましくは、前記厚さ方向に沿って視て、複数の前記凹部は、複数の前記陥入部を個別に包含している。
本発明の実施において好ましくは、前記素子本体は、前記主面とは反対側を向く裏面と、前記裏面に対して直交する方向を向き、かつ前記裏面につながる第2側面と、を有し、前記厚さ方向に沿って視て、前記第2側面は、前記第1側面よりも外方に位置する領域を含む。
本発明の実施において好ましくは、前記素子本体は、前記第1側面と前記第2側面とにつながる中間面を有し、前記厚さ方向に沿って視て、前記中間面は、枠状である。
本発明の実施において好ましくは、前記素子本体は、前記第1側面と前記第2側面とにつながる中間面を有し、前記厚さ方向に沿って視て、前記中間面は、前記厚さ方向に対して直交する方向に互いに離間した一対の領域を含む。
本発明の実施において好ましくは、前記中間面は、粗面である。
本発明の実施において好ましくは、前記中間面は、前記素子本体の内方に向けて凹状である。
本発明の実施において好ましくは、前記陥入部の前記厚さ方向に対して直交する方向に沿った断面積は、前記主面から前記裏面にかけて徐々に小である。
本発明の実施において好ましくは、前記陥入部には、前記素子本体の欠片が付着している。
本発明の実施において好ましくは、前記試験電極は、前記厚さ方向に対して直交する方向と、前記素子本体の外方と、の双方を向く端面を有し、前記端面は、露出している。
本発明の実施において好ましくは、前記素子本体は、前記裏面を有する半導体基板と、前記主面を有し、かつ前記半導体基板に積層された機能層と、を含み、前記試験電極は、前記機能層に導通し、前記半導体基板および前記機能層は、それぞれ前記第1側面の一部を有する。
本発明の実施において好ましくは、複数の前記陥入部は、前記半導体基板の内部に到達している。
本発明の実施において好ましくは、前記主面の上に配置され、かつ前記パッシベーション膜に囲まれるとともに、前記機能層に導通する複数の電極と、前記パッシベーション膜を覆い、かつ複数の前記電極の周囲に位置する表面保護膜と、をさらに備える。
本発明の第2の側面によれば、厚さ方向を向く主面を有する素子連続体の上に試験電極を形成する工程と、前記主面から厚さ方向に凹み、かつ前記厚さ方向に対して直交する第1方向に延びる溝を、前記試験電極を分断しつつ前記素子連続体に形成する工程と、前記溝にダイシングブレードを前記厚さ方向に向けて挿入させることにより、前記第1方向に沿って前記素子連続体を切断する工程と、を備え、前記溝を形成する工程は、前記厚さ方向に沿って視て、前記第1方向に所定の間隔で配列された複数の第1円状領域と、前記第1方向に所定の間隔で配列され、かつ前記厚さ方向および前記第1方向の双方に対して直交する第2方向に複数の前記第1円状領域から離間した複数の第2円状領域と、の各々に第1レーザを照射することにより、複数の前記第1円状領域および複数の前記第2円状領域に重なる前記素子連続体の一部および前記試験電極を除去する第1除去工程と、前記厚さ方向に沿って視て、前記第1方向に延び、かつ複数の前記第1円状領域と複数の前記第2円状領域との相互につながる帯状領域に第2レーザを照射することにより、前記帯状領域に重なる前記素子連続体の一部および前記試験電極を除去する第2除去工程と、を含むことを特徴とする半導体素子の製造方法が提供される。
本発明の実施において好ましくは、前記第1レーザの前記第2方向における照射寸法は、前記第2レーザの前記第2方向における照射寸法よりも小である。
本発明の実施において好ましくは、前記第1レーザの出力は、前記第2レーザの出力よりも小である。
本発明の実施において好ましくは、複数の前記第1円状領域の各々の大きさはいずれも等しく、かつ複数の前記第2円状領域の各々の大きさはいずれも等しい。
本発明にかかる半導体素子、およびその製造方法によれば、試験電極の分断に伴う損傷を回避しつつ、曲げ強度の低下を抑制することが可能となる。
本発明のその他の特徴および利点は、添付図面に基づき以下に行う詳細な説明によって、より明らかとなろう。
本発明の第1実施形態にかかる半導体素子の平面図である。 図1に示す半導体素子の正面図である。 図1に示す半導体素子の右側面図である。 図1のIV-IV線に沿う断面図である。 図1のV-V線に沿う断面図である。 図1に示す半導体素子の部分拡大斜視図である。 図1に示す半導体素子の部分拡大平面図である。 図7のVIII-VIII線に沿う断面図である。 図8のIX-IX線に沿う断面図である。 図8のX-X線に沿う断面図である。 図1に示す半導体素子の製造工程を説明する断面図である。 図1に示す半導体素子の製造工程を説明する断面図である。 図1に示す半導体素子の製造工程を説明する断面図である。 図1に示す半導体素子の製造工程を説明する部分拡大平面図である。 図14のXV-XV線に沿う断面図である。 図1に示す半導体素子の製造工程を説明する部分拡大平面図である。 図16のXVII-XVII線に沿う断面図である。 図1に示す半導体素子の製造工程を説明する断面図である。 本発明の第2実施形態にかかる半導体素子の平面図である。 図19に示す半導体素子の正面図である。 図19に示す半導体素子の右側面図である。 図19のXXII-XXII線に沿う断面図である。 図19のXXIII-XXIII線に沿う断面図である。
本発明を実施するための形態(以下「実施形態」という。)について、添付図面に基づいて説明する。
〔第1実施形態〕
図1~図10に基づき、本発明の第1実施形態にかかる半導体素子A10について説明する。これらの図に示す半導体素子A10は、素子本体10、パッシベーション膜21、複数の電極31、複数の試験電極32、および表面保護膜41を備える。
半導体素子A10の説明においては、便宜上、素子本体10の厚さ方向zを「厚さ方向z」と呼ぶ。厚さ方向zに対して直交する方向を「第1方向x」と呼ぶ。厚さ方向zおよび第1方向xの双方に対して直交する方向を「第2方向y」と呼ぶ。
素子本体10は、図1に示すように、厚さ方向zに沿って視て矩形状である。図2~図5に示すように、素子本体10は、主面10A、裏面10B、第1側面10C、第2側面10Dおよび中間面10Eを有する。主面10Aは、厚さ方向zを向く。裏面10Bは、主面10Aとは反対側を向く。第1側面10Cは、厚さ方向zに対して直交する方向(第1方向xおよび第2方向y)を向き、かつ主面10Aにつながっている。半導体素子A10が示す例においては、第1側面10Cは、第1方向xを向く一対の領域と、第2方向yを向く一対の領域とを含む。図8に示すように、第1側面10Cは、粗面である。第2側面10Dは、厚さ方向zに対して直交する方向を向き、かつ裏面10Bにつながっている。第2側面10Dは、第1方向xを向く一対の領域と、第2方向yを向く一対の領域とを含む。
図2~図5に示すとおり、中間面10Eは、第1側面10Cと第2側面10Dとにつながっている。図1に示すように、半導体素子A10においては、厚さ方向zに沿って視て、中間面10Eは、主面10Aおよび第1側面10Cを囲む枠状である。これにより、厚さ方向zに沿って視て、第2側面10Dに含まれる4つの領域は、いずれも第1側面10Cよりも外方に位置する。図8に示すとおり、中間面10Eは、粗面である。また、中間面10Eは、素子本体10の内方に向けて凹状である。
図4および図5に示すように、素子本体10は、半導体基板11および機能層12を含む。半導体基板11は、機能層12を支持している。半導体基板11の構成材料は、たとえばノンドープのシリコン(Si)である。半導体基板11は、裏面10B、第2側面10Dおよび中間面10Eと、第1側面10Cの一部とを有する。
図4および図5に示すように、機能層12は、半導体基板11に積層されている。機能層12は、半導体層、層間絶縁膜および配線層(いずれも図示略)を含む。半導体層は、半導体基板11に接している。半導体層には、p型半導体およびn型半導体により形成された複数のトランジスタなどからなる回路が構成されている。半導体層は、エピタキシャル成長により形成される。層間絶縁膜は、半導体層に積層されている。層間絶縁膜は、酸化ケイ素(SiO2)膜、および窒化ケイ素(Si34)膜の少なくともいずれかから構成される。層間絶縁膜は、プラズマCVD(Chemical Vapor Deposition)などにより形成される。配線層は、層間絶縁膜を厚さ方向zに貫通するように半導体層の上に配置されている。配線層は、半導体層に導通している。配線層の構成材料は、たとえばアルミニウム(Al)、銅(Cu)、チタン(Ti)、タングステン(W)およびタンタル(Ta)を含む金属材料群から選択された1つ、または複数の金属である。図6に示すように、機能層12は、主面10Aと、第1側面10Cの一部とを有する。
パッシベーション膜21は、図4および図5に示すように、素子本体10の主面10Aを覆っている。パッシベーション膜21は、電気絶縁性を有する。パッシベーション膜21は、たとえば窒化ケイ素膜から構成される。
図1~図8に示すように、素子本体10には、複数の陥入部13が設けられている。複数の陥入部13は、素子本体10の主面10Aと第1側面10Cとの境界10Fを跨いでいる。複数の陥入部13は、主面10Aおよび第1側面10Cの双方から凹んでいる。複数の陥入部13は、境界10Fに沿って配列されている。半導体素子A10においては、複数の陥入部13は、境界10Fの四辺に沿って配列されている。このため、厚さ方向zに沿って視て、複数の陥入部13は、主面10Aを枠状に囲んでいる。
図4~図6に示すように、複数の陥入部13は、機能層12を厚さ方向zに貫通し、かつ半導体基板11の内部に到達している。図8に示すように、複数の陥入部13の各々には、素子本体10の欠片131が付着している。欠片131は、シリコンなどの半導体材料を主成分としている。図9および図10に示すように、陥入部13の厚さ方向zに対して直交する方向に沿った断面積は、素子本体10の主面10Aから裏面10Bにかけて徐々に小である。
図1~図7に示すように、パッシベーション膜21には、複数の凹部211が設けられている。複数の凹部211は、パッシベーション膜21の外縁から内方に向けて凹んでいる。複数の凹部211は、パッシベーション膜21を厚さ方向zに貫通している。厚さ方向zに沿って視て、複数の凹部211は、複数の陥入部13に個別に重なっている。半導体素子A10においては、厚さ方向zに沿って視て、複数の凹部211は、複数の陥入部13を個別に包含している。
複数の電極31は、図4および図5に示すように、素子本体10の主面10Aの上に配置されている。複数の電極31は、パッシベーション膜21に囲まれている。複数の電極31は、機能層12に導通している。電極31の構成材料は、たとえばアルミニウムを含む。半導体素子A10を備えるパッケージにおいて、電極31にはボンディングワイヤが接続される。
複数の試験電極32は、図4および図5に示すように、素子本体10の主面10Aの上に配置されている。図6および図7に示すように、複数の試験電極32は、主面10Aと、素子本体10の第1側面10Cとの境界10Fに隣接している。複数の試験電極32は、機能層12に導通している。試験電極32の構成材料は、たとえばアルミニウムを含む。試験電極32は、半導体素子A10の製造において、機能層12の導通状態を確認するために利用される。
複数の試験電極32の各々は、図6~図8に示すように、厚さ方向zに対して直交する方向(半導体素子A10では第1方向x)と、素子本体10の外方との双方を向く端面32Aを有する。厚さ方向zに沿って視て、端面32Aは、素子本体10の主面10Aと第1側面10Cとの境界10Fに位置する。端面32Aは、露出している。端面32Aの厚さ方向zに対して直交する方向の両端に、一対の陥入部13が位置する。複数の試験電極32は、端面32Aを除き、パッシベーション膜21と複数の陥入部13とにより囲まれている。
表面保護膜41は、図4および図5に示すように、パッシベーション膜21を覆っている。表面保護膜41は、複数の電極31および複数の試験電極32の周囲に位置する。表面保護膜41は、電気絶縁性を有する。表面保護膜41の構成材料は、ポリイミドを含む。表面保護膜41には、複数の開口411が設けられている。複数の開口411の各々から、複数の電極31および複数の試験電極32のいずれかが露出している。
次に、図11~図18に基づき、半導体素子A10の製造方法について説明する。なお、これらの図のうち、図11~図13と、図18との断面位置は、図4の断面位置と同一である。
まず、図11に示すように、素子連続体81の上に複数の電極31および複数の試験電極32を形成する。素子連続体81は、半導体素子A10の素子本体10が厚さ方向zに対して直交する方向に複数連なったものである。素子連続体81は、半導体基板811および機能層812を含む。半導体基板811は、たとえばシリコンウエハである。半導体基板811が、半導体素子A10の半導体基板11に相当する。機能層812は、半導体基板811に積層されている。機能層812が、半導体素子A10の機能層12に相当する。素子連続体81は、厚さ方向zにおいて互いに反対側を向く主面81Aおよび裏面81Bを有する。半導体基板811は、裏面81Bを有する。機能層812は、主面81Aを有する。複数の電極31および複数の試験電極32は、電解めっきにより主面81Aの上に形成される。
次いで、図12に示すように、素子連続体81の主面81Aを覆うパッシベーション膜82を形成する。パッシベーション膜82が、半導体素子A10のパッシベーション膜21に相当する。パッシベーション膜82は、複数の電極31および複数の試験電極32の表面がパッシベーション膜82から露出するように形成される。パッシベーション膜82は、たとえばプラズマCVDにより形成される。
次いで、図13に示すように、パッシベーション膜82を覆う表面保護膜83を形成する。表面保護膜83が、半導体素子A10の表面保護膜41に相当する。表面保護膜83は、たとえば、スピンコータを用いた塗布により形成される。この際、表面保護膜83には、厚さ方向zに貫通する複数の開口831が設けられる。複数の開口831の各々から、複数の電極31および複数の試験電極32のいずれかが露出する。
次いで、図14~図17に示すように、素子連続体81の主面81Aから厚さ方向zに凹む複数の溝86を、試験電極32を分断しつつ素子連続体81に形成する。複数の溝86は、厚さ方向zに対して直交する方向に延びている。半導体素子A10の製造においては、複数の溝86は、第1方向xおよび第2方向yのそれぞれに延びるように形成される。このため、厚さ方向zに沿って視て、複数の溝86は、第1方向xおよび第2方向yに沿った碁盤目状に形成される。半導体素子A10の製造方法においては、第1方向xに延びる溝86の形成方法を例に説明する。
溝86を形成する工程は、第1除去工程および第2除去工程を含む。先に第1除去工程を行い、その後、第2除去工程を行うことによって、溝86が形成される。
図14および図15に基づき、溝86の形成にかかる第1除去工程について説明する。図15に示すように、第1除去工程では、複数の第1円状領域84Aと、複数の第2円状領域84Bとの各々に第1レーザ84を照射させる。これにより、厚さ方向zに沿って視て、複数の第1円状領域84Aおよび複数の第2円状領域84Bに重なる素子連続体81、パッシベーション膜82および表面保護膜83のそれぞれ一部が除去される。素子連続体81の一部が除去されることにより、素子連続体81には、主面81Aから厚さ方向zに凹む複数の陥入部813が形成される。パッシベーション膜82の一部が除去されることにより、パッシベーション膜82には、厚さ方向zに沿って視て複数の陥入部813を個別に包含する複数の貫通部821が形成される。さらにこれらの除去にあわせて、厚さ方向zに沿って視て、複数の第1円状領域84Aおよび複数の第2円状領域84Bに重なる試験電極32の一部も除去される。
図14に示すように、複数の第1円状領域84Aは、厚さ方向zに沿って視て第1方向xに所定の間隔Gで配置されている。複数の第2円状領域84Bは、厚さ方向zに沿って視て第1方向xに所定の間隔Gで配置されている。複数の第2円状領域84Bは、第2方向yに複数の第1円状領域84Aから離間している。複数の第2円状領域84Bの第1方向xの中心位置は、複数の第1円状領域84Aの第1方向xの中心位置に等しい。複数の第1円状領域84Aの各々の大きさはいずれも等しく、かつ複数の第2円状領域84Bの各々の大きさはいずれも等しい。複数の第1円状領域84Aおよび複数の第2円状領域84Bの各々の直径は、たとえば8.75μmとされている。
第1レーザ84の照射にあたっては、表面保護膜83の上にメタルマスク(図示略)を配置する。当該メタルマスクには、厚さ方向zに貫通し、かつ第2方向yにおいて互いに離間した一対の円状開口が設けられている。一方の円状開口が第1円状領域84Aに相当し、他方の円状開口が第2円状領域84Bに相当する。第1除去工程においては、一対の当該円状開口にそれぞれ第1レーザ84を照射させる。その後、当該メタルマスクを第1方向xに間隔Gで移動させる。この操作を繰り返すことにより、複数の第1円状領域84Aと、複数の第2円状領域84Bとの各々に第1レーザ84が照射されることとなる。図15に示すように、第1レーザ84の第2方向yにおける照射寸法L1は、複数の第1円状領域84Aおよび複数の第2円状領域84Bの各々の直径よりも僅かに小(約7μm)とされている。また、第1レーザ84の出力は、たとえば1.8Wとされている。
第1除去工程において、第1レーザ84は、パッシベーション膜82および表面保護膜83を透過しつつ、素子連続体81を溶融させる。これにより、複数の陥入部813が素子連続体81に形成される。この際、溶融した素子連続体81の蒸気圧が上昇することにより、厚さ方向zに沿って視て複数の陥入部813に重なるパッシベーション膜82および表面保護膜83がはじけ飛ぶ。これにより、複数の貫通部821がパッシベーション膜82に形成される。なお、図8に示す素子本体10の欠片131は、溶融した素子連続体81が冷却されて再結晶化したものである。
図16および図17に基づき、溝86の形成にかかる第2除去工程について説明する。図17に示すように、第2除去工程では、帯状領域85Aに第2レーザ85を照射させる。これにより、厚さ方向zに沿って視て、帯状領域85Aに重なる素子連続体81、パッシベーション膜82および表面保護膜83のそれぞれ一部ずつが除去される。この際、厚さ方向zに沿って視て、帯状領域85Aに重なる複数の陥入部813の部分が除去される。さらにこれらの除去にあわせて、厚さ方向zに沿って視て、帯状領域85Aの重なる試験電極32の一部も除去される。
図16に示すように、帯状領域85Aは、厚さ方向zに沿って視て第1方向xに延びている。帯状領域85Aは、厚さ方向zに沿って視て複数の第1円状領域84Aと複数の第2円状領域84Bとの相互につながっている。帯状領域85Aの幅(第2方向yにおける寸法)は、たとえば50μmとされている。
第2レーザ85の照射にあたっては、表面保護膜83の上にメタルマスク(図示略)を配置する。当該メタルマスクには、厚さ方向zに貫通し、かつ第2方向yに延びるスリットが設けられている。当該スリットにおいては、たとえば、第1方向xにおける寸法が8μm、かつ第2方向yにおける寸法が50μmである。第2除去工程においては、当該帯状開口の第2方向yの両端が第1円状領域84Aと第2円状領域84Bに重なるように当該メタルマスクを配置した上で、当該帯状開口に第2レーザ85を照射させる。その後、当該メタルマスクを第1方向xに移動させる。この際、隣り合う2つの当該帯状開口が第1方向xにおいて互いに重なるようにする。この操作を繰り返すことにより、第1方向xにおいて一連につながった複数の当該帯状開口に第2レーザ85が照射されることとなる。すなわち、第1方向xにおいて一連につながった複数の当該帯状開口が、帯状領域85Aに相当する。図17に示すように、第2レーザ85の第2方向yにおける照射寸法L2は、帯状領域85Aの幅よりも僅かに小(約44μm)とされている。よって、第1レーザ84の第2方向yにおける照射寸法L1は、照射寸法L2よりも小である。また、第2レーザ85の出力は、たとえば3Wとされている。このため、第1レーザ84の出力は、第2レーザ85の出力よりも小である。
第2除去工程において、第2レーザ85は、パッシベーション膜82および表面保護膜83を透過しつつ、素子連続体81を溶融させる。これにより、素子連続体81には、試験電極32を分断しつつ溝86が形成される。この際、溶融した素子連続体81の蒸気圧が上昇することにより、厚さ方向zに沿って視て溝86に重なるパッシベーション膜82および表面保護膜83がはじけ飛ぶ。また、残存した複数の陥入部813の一部は、半導体素子A10の複数の陥入部13となる。あわせて、残存した複数の貫通部821の一部は、半導体素子A10の複数の凹部211となる。なお、半導体素子A10の素子本体10の第1側面10Cおよび中間面10Eは、残存した溝86の一部である。
なお、第2方向yに延びる溝86の形成についても、先述した第1除去工程および第2除去工程により形成することができる。
最後に、図18に示すように、第1方向xに延びる複数の溝86にダイシングブレード87を厚さ方向zに向けて挿入させることにより、第1方向xに沿って素子連続体81を切断する。本工程では、第2方向yに延びる複数の溝86にもダイシングブレード87を厚さ方向zに向けて挿入させることにより、第2方向yに沿って素子連続体81を切断する。これにより、素子連続体81は、複数の個片に分割される。なお、半導体素子A10の素子本体10の第2側面10Dは、ダイシングブレード87による切断面である。
次に、半導体素子A10、および半導体素子A10の製造方法の作用効果について説明する。
半導体素子A10は、主面10A、および主面10Aにつながる第1側面10Cを有する素子本体10を備える。素子本体10には、主面10Aと第1側面10Cとの境界10Fを跨ぎ、かつ主面10Aおよび第1側面10Cの双方から凹む複数の陥入部13が設けられている。複数の陥入部13は、境界10Fに沿って配列されている。半導体素子A10の製造にかかる溝86を形成するための第1除去工程において、第1レーザ84により素子連続体81に設けられた複数の陥入部813の痕跡の一部が、複数の陥入部13である。これにより、第1レーザ84により素子本体10に与えられる熱影響集中が緩和された状態となり、半導体素子A10の曲げ強度の低下を抑制することができる。
さらに、半導体素子A10の製造にかかる溝86を形成するための第2除去工程において、複数の陥入部13(複数の陥入部813)が第2レーザ85により素子連続体81および試験電極32を除去する際のミシン目の働きをする。これにより、第2レーザ85の出力を抑えることができるため、第2レーザ85により素子本体10に与えられる熱影響集中を緩和することができる。あわせて、素子本体10にチッピングが発生することなく試験電極32が第2レーザ85により確実に分断されたものとなる。したがって、半導体素子A10によれば、試験電極32の分断に伴う半導体素子A10の損傷を回避しつつ、半導体素子A10の曲げ強度の低下を抑制することが可能となる。
半導体素子A10は、素子本体10の主面10Aを覆うパッシベーション膜21を備える。パッシベーション膜21には、パッシベーション膜21の外縁から内方に向けて凹み、かつパッシベーション膜21を厚さ方向zに貫通する複数の凹部211が設けられている。厚さ方向zに沿って視て、複数の凹部211は、複数の陥入部13に個別に重なっている。複数の凹部211は、半導体素子A10の製造にかかる溝86を形成するための第1除去工程において、第1レーザ84によりパッシベーション膜82に設けられた複数の貫通部821の痕跡の一部である。これにより、複数の凹部211が複数の陥入部13に隣接するため、半導体素子A10において必要な領域にパッシベーション膜21が設けられた構成となる。さらに、厚さ方向zに沿って視て、複数の凹部211が、複数の陥入部13を個別に包含していることが好ましい。これにより、複数の凹部211が複数の陥入部13に、より隣接した構成となる。
素子本体10は、裏面10Bにつながる第2側面10Dを有する。厚さ方向zに沿って視て、第2側面10Dは、第1側面10Cよりも外方に位置する領域を含む。第2側面10Dは、半導体素子A10の製造において、溝86にダイシングブレード87を厚さ方向zに挿入させることにより、素子連続体81を切断する工程により現れる切断面である。これにより、ダイシングブレード87が試験電極32に接触することなく素子連続体81が切断されたものとなる。
陥入部13の厚さ方向zに対して直交する方向に沿った断面積は、素子本体10の主面10Aから裏面10Bにかけて徐々に小である。これにより、陥入部13の形成に伴い素子本体10に与えられる熱影響集中が、より緩和された状態となる。
複数の陥入部13は、素子本体10の半導体基板11の内部に到達している。これにより、半導体素子A10の製造にかかる溝86を形成するための第2除去工程において、第2レーザ85の出力をより抑えることができる。
半導体素子A10の製造では、試験電極32を分断しつつ素子連続体81に溝86を形成する工程と、溝86にダイシングブレード87を厚さ方向zに向けて挿入させることにより、素子連続体81を切断する工程とを備える。これにより、ダイシングブレード87により素子連続体81を切断する際、ダイシングブレード87が試験電極32に接触しないため、半導体素子A10の素子本体10にチッピングが発生することを防止できる。
半導体素子A10の製造にかかる溝86を形成する工程は、第1除去工程および第2除去工程を含む。第1除去工程では、複数の第1円状領域84Aと、複数の第2円状領域84Bとの各々に第1レーザ84を照射する。第2除去工程では、帯状領域85Aに第2レーザ85を照射する。本工程を採ることにより、半導体素子A10の素子本体10に与えられる熱影響集中を緩和しつつ、試験電極32を確実に分断することができる。
第1レーザ84の出力は、第2レーザ85の出力よりも小である。これにより、半導体素子A10の素子本体10を構成する機能層12への熱影響を抑制できる。また、溝86を形成するための第1除去工程において、複数の第1円状領域84Aの各々の大きさはいずれも等しく、かつ複数の第2円状領域84Bの各々の大きさはいずれも等しい。これにより、第1レーザ84により素子本体10に与えられる熱影響集中に偏りが生じることを防止できる。
〔第2実施形態〕
図20~図30に基づき、本発明の第2実施形態にかかる半導体素子A20について説明する。これらの図において、先述した半導体素子A10と同一または類似の要素には同一の符号を付して、重複する説明を省略する。
半導体素子A10は、素子本体10の構成と、複数の陥入部13の構成とが、先述した半導体素子A10と異なる。
図19、図21および図22に示すように、素子本体10の第1側面10Cは、第2方向yを向く一対の領域のみ含む。素子本体10の第2側面10Dは、第2方向yを向く一対の領域のみを含む。厚さ方向zに沿って視て、第2側面10Dの一対の領域は、第1側面10Cの一対の領域よりも外方に位置する。素子本体10の中間面10Eは、第1側面10Cの一対の領域と、第2側面10Dの一対の領域とにつながっている。このため、図1に示すように、半導体素子A20においては、厚さ方向zに沿って視て、厚さ方向zに対して直交する方向(第2方向y)互いに離間した一対の領域を含む。
図19、図20および図23に示すように、素子本体10は、第3側面10Gを有する。第3側面10Gは、主面10Aと裏面10Bの双方につながっている。第3側面10Gは、第1方向xを向く一対の領域を含む。第3側面10Gの各々の領域は、第2方向yの両端において第1側面10C、第2側面10Dおよび中間面10Eのそれぞれ一対の領域につながっている。
図19および図21に示すように、複数の陥入部13は、素子本体10の主面10Aと、第1側面10Cの一対の領域との境界10Fを跨いでいる。半導体素子A20においては、複数の陥入部13は、第2方向yに互いに離間した境界10Fの二辺に沿って配列されている。
半導体素子A20の製造方法においては、第1方向xに延びる複数の溝86を素子連続体81に形成するものの、第2方向yに延びる複数の溝86は素子連続体81に形成しない。このため、素子連続体81を複数の個片に分割する際は、第1方向xの切断においては溝86にダイシングブレード87を挿入させるものの、第2方向yの切断においてはダイシングブレード87を素子連続体81に直接的に接触させる。これは、半導体素子A20において、素子本体10の主面10Aと第3側面10Gとの境界に試験電極32が隣接していないためである。このため、半導体素子A20の素子本体10の第3側面10Gは、第2側面10Dと同じくダイシングブレード87による切断面である。
次に、半導体素子A20の作用効果について説明する。
半導体素子A20は、主面10A、および主面10Aにつながる第1側面10Cを有する素子本体10を備える。素子本体10には、主面10Aと第1側面10Cとの境界10Fを跨ぎ、かつ主面10Aおよび第1側面10Cの双方から凹む複数の陥入部13が設けられている。複数の陥入部13は、境界10Fに沿って配列されている。したがって、半導体素子A20によっても、試験電極32の分断に伴う半導体素子A20の損傷を回避しつつ、半導体素子A20の曲げ強度の低下を抑制することが可能となる。
本発明は、先述した実施形態に限定されるものではない。本発明の各部の具体的な構成は、種々に設計変更自在である。
A10,A20:半導体素子
10:素子本体
10A:主面
10B:裏面
10C:第1側面
10D:第2側面
10E:中間面
10F:境界
10G:第3側面
11:半導体基板
12:機能層
13:陥入部
131:欠片
21:パッシベーション膜
211:凹部
31:電極
32:試験電極
32A:端面
41:表面保護膜
411:開口
81:素子連続体
81A:主面
81B:裏面
82:パッシベーション膜
821:貫通部
83:表面保護膜
831:開口
84:第1レーザ
84A:第1円状領域
84B:第2円状領域
85:第2レーザ
85A:帯状領域
86:溝
87:ダイシングブレード
G:間隔
L1,L2:照射寸法
z:厚さ方向
x:第1方向
y:第2方向

Claims (15)

  1. 厚さ方向を向く主面と、前記厚さ方向に対して直交する方向を向き、かつ前記主面につながる第1側面と、を有する素子本体と、
    前記主面の上に配置され、かつ前記主面と前記第1側面との境界に隣接する試験電極と
    前記主面を覆うパッシベーション膜と、を備え、
    前記素子本体には、前記境界を跨ぎ、かつ前記主面および前記第1側面の双方から凹む複数の陥入部が設けられており
    前記複数の陥入部は、前記境界に沿って配列されており、
    前記パッシベーション膜には、前記パッシベーション膜の外縁から内方に向けて凹み、かつ前記パッシベーション膜を前記厚さ方向に貫通する複数の凹部が設けられており、
    前記厚さ方向に視て、前記複数の凹部は、前記複数の陥入部に個別に重なっており、
    前記素子本体は、前記厚さ方向において前記主面とは反対側を向く裏面と、前記厚さ方向に対して直交する方向を向き、かつ前記裏面につながる第2側面と、前記第1側面と前記第2側面とにつながる中間面と、を有し、
    前記厚さ方向に視て、前記第2側面は、前記第1側面よりも外方に位置する領域を含み、
    前記厚さ方向に視て、前記中間面は、枠状である、半導体素子。
  2. 厚さ方向を向く主面と、前記厚さ方向に対して直交する方向を向き、かつ前記主面につながる第1側面と、を有する素子本体と、
    前記主面の上に配置され、かつ前記主面と前記第1側面との境界に隣接する試験電極と、
    前記主面を覆うパッシベーション膜と、を備え、
    前記素子本体には、前記境界を跨ぎ、かつ前記主面および前記第1側面の双方から凹む複数の陥入部が設けられており、
    前記複数の陥入部は、前記境界に沿って配列されており、
    前記パッシベーション膜には、前記パッシベーション膜の外縁から内方に向けて凹み、かつ前記パッシベーション膜を前記厚さ方向に貫通する複数の凹部が設けられており、
    前記厚さ方向に視て、前記複数の凹部は、前記複数の陥入部に個別に重なっており、
    前記素子本体は、前記厚さ方向において前記主面とは反対側を向く裏面と、前記厚さ方向に対して直交する方向を向き、かつ前記裏面につながる第2側面と、前記第1側面と前記第2側面とにつながる中間面と、を有し、
    前記厚さ方向に視て、前記第2側面は、前記第1側面よりも外方に位置する領域を含み、
    前記厚さ方向に視て、前記中間面は、前記厚さ方向に対して互いに離間した一対の領域を含む、半導体素子。
  3. 前記厚さ方向に視て前記複数の凹部は、前記複数の陥入部を個別に包含している、請求項1または2に記載の半導体素子。
  4. 前記中間面は、粗面である、請求項1ないし3のいずれかに記載の半導体素子。
  5. 前記中間面は、前記素子本体の内方に向けて凹状である、請求項4に記載の半導体素子 。
  6. 前記複数の陥入部の各々の前記厚さ方向に対して直交する方向に沿った断面積は、前記主面から前記裏面にかけて徐々に小である、請求項1ないし5のいずれかに記載の半導体素子。
  7. 前記複数の陥入部の少なくともいずれかには、前記素子本体の欠片が付着している、請求項1ないし6のいずれかに記載の半導体素子。
  8. 前記試験電極は、前記厚さ方向に対して直交する方向において前記素子本体の外方を向く端面を有し、
    前記端面は、露出している、請求項1ないし7のいずれかに記載の半導体素子。
  9. 前記素子本体は、前記裏面を含む半導体基板と、前記主面を含み、かつ前記半導体基板に積層された機能層と、を有し、
    前記試験電極は、前記機能層に導通しており、
    前記半導体基板および前記機能層は、それぞれ前記第1側面の一部を含む、請求項1ないし8のいずれかに記載の半導体素子。
  10. 前記複数の陥入部は、前記半導体基板の内部に到達している、請求項に記載の半導体素子。
  11. 前記主面の上に配置され、かつ前記パッシベーション膜に囲まれるとともに、前記機能層に導通する複数の電極と、
    前記パッシベーション膜を覆い、かつ前記複数の電極の周囲に位置する表面保護膜と、をさらに備える、請求項9または10に記載の半導体素子。
  12. 厚さ方向を向く主面を有する素子連続体の上に試験電極を形成する工程と、
    前記主面から凹み、かつ前記厚さ方向に対して直交する第1方向に延びる溝を、前記試験電極を分断しつつ前記素子連続体に形成する工程と、
    前記溝にダイシングブレードを前記厚さ方向に向けて挿入することにより、前記第1方向に沿って前記素子連続体を切断する工程と、を備え、
    前記溝を形成する工程は、第1除去工程および第2除去工程を含み、
    前記第1除去工程では、前記厚さ方向に視て前記第1方向に所定の間隔で配列された複数の第1円状領域と、前記厚さ方向に視て前記第1方向に所定の間隔で配列され、かつ前記厚さ方向および前記第1方向の双方に対して直交する第2方向に前記複数の第1円状領域から離間した複数の第2円状領域と、の各々に第1レーザを照射することにより、前記複数の第1円状領域、および前記複数の第2円状領域に重なる前記素子連続体の一部と、前記複数の第1円状領域、および前記複数の第2円状領域の少なくともいずれかに重なる前記試験電極と、を除去し、
    前記第2除去工程では、前記厚さ方向に視て前記第1方向に延び、かつ前記複数の第1円状領域と前記複数の第2円状領域との相互につながる帯状領域に第2レーザを照射することにより、前記帯状領域に重なる前記素子連続体の一部および前記試験電極を除去する、半導体素子の製造方法。
  13. 前記第1レーザの前記第2方向における照射寸法は、前記第2レーザの前記第2方向における照射寸法よりも小である、請求項12に記載の半導体素子の製造方法。
  14. 前記第1レーザの出力は、前記第2レーザの出力よりも小である、請求項13に記載の半導体素子の製造方法。
  15. 前記複数の第1円状領域の各々の大きさはいずれも等しく、
    前記複数の第2円状領域の各々の大きさはいずれも等しい、請求項14に記載の半導体素子の製造方法。
JP2018208591A 2018-11-06 2018-11-06 半導体素子、および半導体素子の製造方法 Active JP7343271B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018208591A JP7343271B2 (ja) 2018-11-06 2018-11-06 半導体素子、および半導体素子の製造方法
US16/670,413 US11094601B2 (en) 2018-11-06 2019-10-31 Semiconductor element and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018208591A JP7343271B2 (ja) 2018-11-06 2018-11-06 半導体素子、および半導体素子の製造方法

Publications (2)

Publication Number Publication Date
JP2020077680A JP2020077680A (ja) 2020-05-21
JP7343271B2 true JP7343271B2 (ja) 2023-09-12

Family

ID=70458947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018208591A Active JP7343271B2 (ja) 2018-11-06 2018-11-06 半導体素子、および半導体素子の製造方法

Country Status (2)

Country Link
US (1) US11094601B2 (ja)
JP (1) JP7343271B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116844A (ja) 2003-10-09 2005-04-28 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
JP2006339382A (ja) 2005-06-01 2006-12-14 Renesas Technology Corp 半導体装置の製造方法
WO2007055010A1 (ja) 2005-11-10 2007-05-18 Renesas Technology Corp. 半導体装置の製造方法および半導体装置
JP2011035302A (ja) 2009-08-05 2011-02-17 Renesas Electronics Corp 半導体装置の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922929A (ja) 1995-07-04 1997-01-21 Ricoh Co Ltd Bgaパッケージ半導体素子及びその検査方法
JP2011249366A (ja) * 2010-05-21 2011-12-08 Panasonic Corp 半導体装置及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116844A (ja) 2003-10-09 2005-04-28 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
JP2006339382A (ja) 2005-06-01 2006-12-14 Renesas Technology Corp 半導体装置の製造方法
WO2007055010A1 (ja) 2005-11-10 2007-05-18 Renesas Technology Corp. 半導体装置の製造方法および半導体装置
JP2011035302A (ja) 2009-08-05 2011-02-17 Renesas Electronics Corp 半導体装置の製造方法

Also Published As

Publication number Publication date
US11094601B2 (en) 2021-08-17
JP2020077680A (ja) 2020-05-21
US20200144136A1 (en) 2020-05-07

Similar Documents

Publication Publication Date Title
JP6061726B2 (ja) 半導体装置および半導体ウェハ
US20080179710A1 (en) Semiconductor wafer with improved crack protection
JP6264230B2 (ja) 半導体装置
KR20080086389A (ko) 반도체 장치 및 반도체 장치의 제조 방법
JP6335184B2 (ja) 半導体装置およびその製造方法
CN103972211A (zh) 半导体装置
WO2020032206A1 (ja) SiC半導体装置
JP7343271B2 (ja) 半導体素子、および半導体素子の製造方法
JP5609981B2 (ja) 半導体装置の製造方法
JP2009135397A (ja) 半導体装置
JP4581158B2 (ja) 半導体基板の切断方法
JPH08172062A (ja) 半導体ウエハ及び半導体ウエハの製造方法
JP5559599B2 (ja) 半導体装置およびその製造方法ならびに半導体ウエハ
JP2008053559A (ja) 半導体装置およびその製造方法
JP6391294B2 (ja) ウェーハ、及びウェーハの製造方法、並びにデバイスチップの製造方法
JP2004327708A (ja) 半導体装置およびその製造方法
TWI688072B (zh) 半導體積體電路裝置
JP4604633B2 (ja) 半導体装置とその製造方法
JP2008085043A (ja) 半導体ウェハ、半導体チップおよび半導体チップの製造方法。
JP2016201192A (ja) チップヒューズおよびチップヒューズの製造方法
TWI846006B (zh) 半導體裝置及其製造方法
JPS6381948A (ja) 多層配線半導体装置
KR20180098120A (ko) 반도체 장치 및 반도체 장치의 제조 방법
WO2023286692A1 (ja) 半導体ウェハ
JP7402293B2 (ja) SiC半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230831

R150 Certificate of patent or registration of utility model

Ref document number: 7343271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150