JP7342078B2 - Cultivation system using liquid fertilizer, humidity, temperature, and air control - Google Patents

Cultivation system using liquid fertilizer, humidity, temperature, and air control Download PDF

Info

Publication number
JP7342078B2
JP7342078B2 JP2021148369A JP2021148369A JP7342078B2 JP 7342078 B2 JP7342078 B2 JP 7342078B2 JP 2021148369 A JP2021148369 A JP 2021148369A JP 2021148369 A JP2021148369 A JP 2021148369A JP 7342078 B2 JP7342078 B2 JP 7342078B2
Authority
JP
Japan
Prior art keywords
temperature
liquid
humidity
cultivation
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021148369A
Other languages
Japanese (ja)
Other versions
JP2022048127A (en
Inventor
楊怡欣
楊俊彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chun Yen Yang
Yi Hsin Yang
Original Assignee
Chun Yen Yang
Yi Hsin Yang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chun Yen Yang, Yi Hsin Yang filed Critical Chun Yen Yang
Publication of JP2022048127A publication Critical patent/JP2022048127A/en
Application granted granted Critical
Publication of JP7342078B2 publication Critical patent/JP7342078B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cultivation Of Plants (AREA)

Description

本発明は、自動制御による栽培構造及び栽培システムに関し、特に、作物の根系の液肥施用量、湿度、温度を直接制御可能な液肥、湿度、温度、空気の自動制御による栽培構造及び液肥、湿度、温度、空気の制御による栽培システムに関する。 The present invention relates to a cultivation structure and cultivation system with automatic control, and in particular, to a cultivation structure and cultivation system with automatic control of liquid fertilizer, humidity, temperature, and air that can directly control the amount of liquid fertilizer applied to the root system of crops, humidity, and temperature. Regarding cultivation systems that control temperature and air.

近年、地球温暖化及び気候変動の状況が年々深刻になっており、極端な気候によって、温度、湿度、降雨の調和に影響を与えるだけでなく、水資源の分布にも影響を与え、農地の干害や湿害を引き起こし、農作物の成長が制限され、農業の発展にも巨大な衝撃を与える。従って、保護施設及び節水灌漑を利用した無土壌栽培技術は、既に現在の効率的農業の発展傾向となっている。 In recent years, the situation of global warming and climate change has become more serious year by year, and extreme climates not only affect the balance of temperature, humidity, and rainfall, but also affect the distribution of water resources and reduce the amount of agricultural land. It causes drought and moisture damage, restricts the growth of crops, and has a huge impact on agricultural development. Therefore, soilless cultivation techniques using shelter facilities and water-saving irrigation have already become the current development trend of efficient agriculture.

農作物が旺盛に成長し高収量を得るには、植物が丈夫な根系を有することは基本であり、丈夫な根系は完全に最適な根系環境で構築され、その肝心な影響要素として、媒体の温度、湿度(水分)、空気(酸素)及び植物栄養素(肥料)を含む。現在、一般的に使用される点滴灌漑技術は、作物の成長に必要な水分及び栄養を正確に提供したり、節水灌漑の機能を達成したりすることができるが、根系環境の温度と空気を制御できないという欠陥がある。 In order for agricultural crops to grow vigorously and obtain high yields, it is essential for plants to have strong root systems.A strong root system is built in a completely optimal root system environment, and the temperature of the medium is an important influencing factor. , humidity (moisture), air (oxygen) and plant nutrients (fertilizer). At present, the commonly used drip irrigation technology can accurately provide the moisture and nutrients necessary for crop growth or achieve the function of water-saving irrigation, but it can reduce the temperature and air of the root system environment. The flaw is that it cannot be controlled.

現在、経済的価値の高い作物を、密閉型又は半開放型の温室によって効率的に生産することが多いが、夏季の高温と冬季の低温は、依然として作物の成長と生産コストに影響する肝心な要素である。従って、作物に最適な温度、湿度、空気及び栄養を提供する根系環境自動制御システムが存在すれば、植物の生長を改善し、生産効率を向上させることができると共に、温度及び水を局所的に制御するという効果を達成することができ、エネルギーの節約に適合し、生産コストを削減し、水資源の利用効率を向上させるという目的を達成することができる。 Currently, crops with high economic value are often produced efficiently in closed or semi-open greenhouses, but high temperatures in summer and low temperatures in winter remain critical factors that affect crop growth and production costs. is an element. Therefore, if there is an automatic root system environment control system that provides optimum temperature, humidity, air and nutrients for crops, it will be possible to improve plant growth and increase production efficiency, as well as to locally control temperature and water. It can achieve the effect of controlling, meet the purpose of saving energy, reducing production costs and improving the efficiency of water resource use.

本発明の一実施形態は、加圧ガスを貯蔵するためのガス貯蔵ユニットを含む給気装置と、水及び液肥を含む液体を貯蔵するための液体貯蔵ユニットを含む給液装置と、給気装置及び給液装置に管路で接続される少なくとも1つの加湿装置と、一方が給気装置と加湿装置との間に設けられ、且つ加圧ガスの温度を制御するために用いられ、他方が給液装置と加湿装置との間に設けられ、且つ液体の温度を制御するために用いられる2つの温度制御装置と、前記2つの温度制御装置に電気的に接続され、加圧ガスの温度、加圧ガスの圧力、加圧ガスの送出量、液体の温度及び液体の送出量を調整するように、2つの温度制御装置を制御するための処理モジュールと、を含む液肥、湿度、温度、空気の自動制御による栽培構造を提供する。 One embodiment of the present invention provides an air supply device including a gas storage unit for storing pressurized gas, a liquid storage device including a liquid storage unit for storing liquids including water and liquid fertilizer, and an air supply device. and at least one humidifying device connected to the liquid supply device by a pipe line, one of which is provided between the air supply device and the humidification device and is used to control the temperature of the pressurized gas, and the other is connected to the fluid supply device. Two temperature control devices are provided between the liquid device and the humidifying device and are used to control the temperature of the liquid, and a temperature control device is electrically connected to the two temperature control devices and is used to control the temperature of the pressurized gas and the humidification device. a processing module for controlling two temperature control devices to adjust the pressure of the pressurized gas, the delivery amount of the pressurized gas, the temperature of the liquid and the delivery amount of the liquid; Provides a cultivation structure with automatic control.

前記液肥、湿度、温度、空気の自動制御による栽培構造によれば、加圧ガスは、酸素、窒素及び二酸化炭素を含んでよい。 According to the cultivation structure using automatic control of liquid fertilizer, humidity, temperature, and air, the pressurized gas may include oxygen, nitrogen, and carbon dioxide.

前記液肥、湿度、温度、空気の自動制御による栽培構造によれば、加圧ガスの圧力は0.1Bar~2.0Barであってよく、加圧ガスの温度は10℃~30℃であってよく、液体の温度は10℃~30℃であってよい。 According to the cultivation structure using automatic control of liquid fertilizer, humidity, temperature, and air, the pressure of the pressurized gas may be 0.1 Bar to 2.0 Bar, and the temperature of the pressurized gas may be 10°C to 30°C. Often the temperature of the liquid may be between 10°C and 30°C.

前記液肥、湿度、温度、空気の自動制御による栽培構造によれば、加湿装置は、空圧式加湿装置、超音波加湿装置又は電熱式加湿装置であってよい。 According to the cultivation structure using automatic control of liquid fertilizer, humidity, temperature, and air, the humidifier may be a pneumatic humidifier, an ultrasonic humidifier, or an electrically heated humidifier.

前記液肥、湿度、温度、空気の自動制御による栽培構造によれば、加湿装置は、給気装置に管路で接続されるガス送入口、ネック部及び水煙出口を有し、且つその口径がネック部から水煙出口の方向へ徐々に大きくなる本体と、本体と給液装置との間に設けられ、且つ本体のネック部に連通する送液管と、を含んでよい。 According to the cultivation structure using automatic control of liquid fertilizer, humidity, temperature, and air, the humidifying device has a gas inlet connected to the air supply device through a pipe, a neck portion, and a water vapor outlet, and the diameter of the humidifying device is the same as that of the neck portion. The liquid supply pipe may include a main body that gradually increases in size from the bottom toward the water vapor outlet, and a liquid feeding pipe that is provided between the main body and the liquid supply device and communicates with the neck of the main body.

これにより、本発明の液肥、湿度、温度、空気の自動制御による栽培構造は、処理モジュールによって温度制御装置を制御して加圧ガスの温度、圧力及び送出量、並びに液体の温度及び送出量を調整すると共に、更に加圧ガスと液体を混合した後に加湿装置によって高水分含有量の水含有ガスを噴出することで、本発明の液肥、湿度、温度、空気の自動制御による栽培構造が後で栽培に適用される時に植物に最適な成長環境を効果的に提供し、更に栽培効率を向上させることができる。 As a result, the cultivation structure of the present invention that automatically controls liquid fertilizer, humidity, temperature, and air controls the temperature control device using the processing module to control the temperature, pressure, and delivery amount of the pressurized gas, as well as the temperature and delivery amount of the liquid. In addition to adjusting the liquid fertilizer and further mixing the pressurized gas and liquid, a humidifier blows out a water-containing gas with a high water content, so that the liquid fertilizer of the present invention and the cultivation structure with automatic control of humidity, temperature, and air can be used later. When applied to cultivation, it can effectively provide an optimal growth environment for plants and further improve cultivation efficiency.

本発明の別の実施形態は、固体栽培媒体を含む作物栽培ベッドと、作物栽培ベッドに隣接して設けられて連通する液肥、湿度、温度、空気の自動制御による栽培構造であって、加圧ガスを貯蔵するためのガス貯蔵ユニットを含む給気装置と、水及び液肥を含む少なくとも1つの液体を貯蔵するための少なくとも1つの液体貯蔵ユニットを含む給液装置と、給気装置及び給液装置に管路で接続され、固体栽培媒体に水含有ガスを加えるための少なくとも1つの加湿装置と、一方が給気装置と加湿装置との間に設けられ、且つ加圧ガスの温度を制御するために用いられ、他方が給液装置と加湿装置との間に設けられ、且つ液体の温度を制御するために用いられる2つの温度制御装置と、前記2つの温度制御装置に電気的に接続され、加圧ガスの温度、加圧ガスの圧力、加圧ガスの送出量、液体の温度又は液体の送出量を調整するように、2つの温度制御装置を制御するための処理モジュールと、を含む液肥、湿度、温度、空気の自動制御による栽培構造と、加湿装置に隣接して設けられ、固体栽培媒体の温度及び湿度を検知すると共に、前記温度及び湿度に基づいて調整信号を発するためのセンサと、処理モジュール及びセンサに信号的接続され、前記調整信号を受信すると共に、調整信号に基づいて処理モジュールに加圧ガスの温度、加圧ガスの圧力、加圧ガスの送出量、液体の温度、液体の送出量又は水含有ガスの相対湿度を調整させる制御装置と、を備える液肥、湿度、温度、空気の制御による栽培システムを提供する。 Another embodiment of the present invention is a cultivation structure with a crop cultivation bed containing a solid cultivation medium, a liquid fertilizer provided adjacent to and in communication with the crop cultivation bed, automatic control of humidity, temperature, and air, the cultivation structure comprising: a crop cultivation bed containing a solid cultivation medium; an air supply device comprising a gas storage unit for storing gas; a liquid supply device comprising at least one liquid storage unit for storing at least one liquid including water and liquid fertilizer; an air supply device and a liquid supply device at least one humidification device connected by a pipe to the solid cultivation medium for adding water-containing gas to the solid cultivation medium, one of which is provided between the air supply device and the humidification device and for controlling the temperature of the pressurized gas. two temperature control devices, the other of which is provided between the liquid supply device and the humidification device, and which is used to control the temperature of the liquid, and electrically connected to the two temperature control devices, a processing module for controlling two temperature control devices to adjust the temperature of the pressurized gas, the pressure of the pressurized gas, the delivery amount of the pressurized gas, the temperature of the liquid, or the delivery amount of the liquid; , a cultivation structure with automatic control of humidity, temperature, and air, and a sensor provided adjacent to the humidifier to detect the temperature and humidity of the solid cultivation medium and to issue an adjustment signal based on the temperature and humidity. , is signally connected to the processing module and the sensor, receives the adjustment signal, and based on the adjustment signal, the processing module is informed of the temperature of the pressurized gas, the pressure of the pressurized gas, the amount of pressurized gas delivered, the temperature of the liquid, Provided is a cultivation system that controls liquid fertilizer, humidity, temperature, and air, and includes a control device that adjusts the amount of liquid delivered or the relative humidity of water-containing gas.

前記液肥、湿度、温度、空気の制御による栽培システムによれば、加圧ガスは、酸素、窒素及び二酸化炭素を含んでよい。 According to the cultivation system using liquid fertilizer, humidity, temperature, and air control, the pressurized gas may include oxygen, nitrogen, and carbon dioxide.

前記液肥、湿度、温度、空気の制御による栽培システムによれば、加圧ガスの圧力は0.1Bar~2.0Barであってよく、加圧ガスの温度は10℃~30℃であってよく、液体の温度は10℃~30℃であってよく、水含有ガスの相対湿度は50%~98%であってよい。 According to the cultivation system using liquid fertilizer, humidity, temperature, and air control, the pressure of the pressurized gas may be 0.1 Bar to 2.0 Bar, and the temperature of the pressurized gas may be 10° C. to 30° C. , the temperature of the liquid may be between 10° C. and 30° C., and the relative humidity of the water-containing gas may be between 50% and 98%.

前記液肥、湿度、温度、空気の制御による栽培システムによれば、固体栽培媒体は、砂、パーライト、泥炭土、コイア又はそれらの組み合わせであってよい。 According to the liquid fertilizer, humidity, temperature, and air controlled cultivation system, the solid cultivation medium may be sand, perlite, peat soil, coir, or a combination thereof.

前記液肥、湿度、温度、空気の制御による栽培システムによれば、液体貯蔵ユニットの数は2つであってよく、一方の液体貯蔵ユニットは、水を貯蔵するために用いられ、他方の液体貯蔵ユニットは、液肥を貯蔵するために用いられる。 According to the cultivation system with liquid fertilizer, humidity, temperature and air control, the number of liquid storage units may be two, one liquid storage unit being used to store water and the other liquid storage unit being used to store water. The unit is used to store liquid fertilizer.

前記液肥、湿度、温度、空気の制御による栽培システムによれば、加湿装置は、空圧式加湿装置、超音波加湿装置又は電熱式加湿装置であってよい。 According to the cultivation system using liquid fertilizer, humidity, temperature, and air control, the humidifier may be a pneumatic humidifier, an ultrasonic humidifier, or an electric heat humidifier.

前記液肥、湿度、温度、空気の制御による栽培システムによれば、加湿装置は、給気装置に管路で接続されるガス送入口、ネック部及び水煙出口を有し、且つその口径がネック部から水煙出口の方向へ徐々に大きくなる本体と、本体と給液装置との間に設けられ、且つ本体のネック部に連通する送液管と、を含んでよい。 According to the cultivation system using liquid fertilizer, humidity, temperature, and air control, the humidifying device has a gas inlet connected to the air supply device via a pipe, a neck portion, and a water vapor outlet, and the diameter of the humidifying device is the same as that of the neck portion. The liquid supply pipe may include a main body that gradually increases in size from the main body toward the water vapor outlet, and a liquid feeding pipe that is provided between the main body and the liquid supply device and communicates with the neck portion of the main body.

これにより、本発明の液肥、湿度、温度、空気の制御による栽培システムは、センサによって作物栽培ベッドにおける固体栽培媒体の水分含有量、液肥含有量及び温度を検知して調整信号を発し、制御装置が調整信号を受信した後に液肥、湿度、温度、空気の自動制御による栽培構造の処理モジュールを制御して加圧ガスの温度、圧力及び送出量、並びに液体の温度及び送出量を調整し、更に加圧ガスと液体を混合した後に加湿装置によって高水分含量の水含有ガスを植物の根部に噴出することで、本発明の液肥、湿度、温度、空気の制御による栽培システムが植物の根部に供給量が適切な肥料、水分及び大気中の酸素含有量に近い空気を直接提供し、更に植物に最適な成長環境を提供することができ、高い栽培効率を達成するために圃場自動管理に更に適用することができる。 As a result, the cultivation system of the present invention that controls liquid fertilizer, humidity, temperature, and air detects the moisture content, liquid fertilizer content, and temperature of the solid cultivation medium in the crop cultivation bed using the sensor, and issues an adjustment signal to the control device. after receiving the adjustment signal, controls the processing module of the cultivation structure with automatic control of liquid fertilizer, humidity, temperature, and air to adjust the temperature, pressure, and delivery amount of pressurized gas, and the temperature and delivery amount of liquid; The liquid fertilizer, humidity, temperature, and air-controlled cultivation system of the present invention supplies the liquid fertilizer to the roots of plants by jetting water-containing gas with high moisture content to the roots of plants using a humidifier after mixing pressurized gas and liquid. It can directly provide the right amount of fertilizer, moisture and air with oxygen content close to the atmospheric oxygen content, and can further provide the optimal growth environment for plants, and is further applied to automatic field management to achieve high cultivation efficiency. can do.

下記添付図面についての説明は、本発明の上記及び他の目的、特徴、メリットと実施例をより分かりやすくするためのものである。
本発明の一実施形態における液肥、湿度、温度、空気の自動制御による栽培構造を示すアーキテクチャ模式図である。 本発明の別の実施形態における液肥、湿度、温度、空気の制御による栽培システムを示すアーキテクチャ模式図である。 図2の液肥、湿度、温度、空気の制御による栽培システムを示す作動模式図である。 もう一つの実施形態における液肥、湿度、温度、空気の制御による栽培システムの圃場への適用を示す模式図である。 図4の液肥、湿度、温度、空気の制御による栽培システムの圃場への適用を示す別の模式図である。
The following description of the accompanying drawings is intended to make the above and other objects, features, advantages and embodiments of the present invention more clearly understood.
FIG. 1 is a schematic architecture diagram showing a cultivation structure using automatic control of liquid fertilizer, humidity, temperature, and air in an embodiment of the present invention. It is a schematic architecture diagram showing a cultivation system using liquid fertilizer, humidity, temperature, and air control in another embodiment of the present invention. FIG. 3 is a schematic operational diagram showing the cultivation system of FIG. 2 using liquid fertilizer, humidity, temperature, and air control. It is a schematic diagram which shows application to a field of the cultivation system by controlling liquid fertilizer, humidity, temperature, and air in another embodiment. FIG. 5 is another schematic diagram showing the application of the cultivation system of FIG. 4 using liquid fertilizer, humidity, temperature, and air control to a field.

本発明の目的は、植物根部に適量の肥料、水分及び大気中の酸素含有量に近い空気を直接提供し、植物根部の温度を最適な範囲に調整し、更に植物に最適な成長環境を提供し、且つ高い栽培効率を達成するために圃場自動管理に適用できるように、高効率で低コストであり、且つ作物の根系環境における肥料、湿度、温度及び空気を制御可能な栽培装置及びシステムを提供することである。 The purpose of the present invention is to directly provide plant roots with an appropriate amount of fertilizer, moisture, and air with an oxygen content close to that of the atmosphere, adjust the temperature of plant roots to an optimal range, and further provide an optimal growth environment for plants. In order to achieve high cultivation efficiency, we are developing cultivation equipment and systems that are highly efficient, low cost, and capable of controlling fertilizers, humidity, temperature, and air in the root system environment of crops. It is to provide.

以下、本発明の各実施形態をより詳しく検討する。しかしながら、この実施形態は、各種の発明概念での適用であってよく、様々な異なる特定の範囲で具体的に実行されてよい。特定の実施形態は、説明のためのものに過ぎず、開示された範囲に限定されない。 Below, each embodiment of the invention will be discussed in more detail. However, this embodiment may be applied with a variety of inventive concepts and may be specifically implemented in a variety of different specific areas. Particular embodiments are illustrative only and are not limiting to the scope disclosed.

図1を参照されたく、図1は、本発明の一実施形態における液肥、湿度、温度、空気の自動制御による栽培構造100を示すアーキテクチャ模式図である。液肥、湿度、温度、空気の自動制御による栽培構造100は、給気装置110と、給液装置120と、加湿装置130と、温度制御装置111と、温度制御装置121と、処理モジュール140と、を含む。 Please refer to FIG. 1, which is a schematic architecture diagram showing a cultivation structure 100 with automatic control of liquid fertilizer, humidity, temperature, and air in one embodiment of the present invention. The cultivation structure 100 with automatic control of liquid fertilizer, humidity, temperature, and air includes an air supply device 110, a liquid supply device 120, a humidification device 130, a temperature control device 111, a temperature control device 121, a processing module 140, including.

給気装置110は、加圧ガスを貯蔵するためのガス貯蔵ユニット(未図示)を含む。詳しくは、給気装置110は、ガスを貯蔵すると共に必要に応じてガスを放出するための市販の貯蔵設備であってよく、ガス貯蔵ユニットは、給気装置110に内蔵されるか又は独立して設けられるガス貯蔵タンクであってよいが、本発明はこれに限定されない。また、加圧ガスは、植物の根圏に適する適量のガスを提供するために、酸素、窒素及び二酸化炭素を含んでよい。詳しくは、適量の酸素によって植物根系が健全に成長することができ、適量の窒素が植物の根部に共生する窒素固定菌に固定されて肥料に変換されることができ、適切な二酸化炭素が根圏の微小環境を調整することに寄与するが、本発明はこれに限定されない。 The air supply device 110 includes a gas storage unit (not shown) for storing pressurized gas. In particular, the air supply device 110 may be a commercially available storage facility for storing gas and releasing the gas as needed, and the gas storage unit may be built into the air supply device 110 or may be a separate unit. However, the present invention is not limited thereto. The pressurized gas may also include oxygen, nitrogen and carbon dioxide to provide the right amount of gas for the plant's rhizosphere. In detail, an appropriate amount of oxygen allows plant root systems to grow healthily, an appropriate amount of nitrogen is fixed by nitrogen-fixing bacteria that live symbiotically in the roots of plants and is converted into fertilizer, and an appropriate amount of carbon dioxide supports the roots of plants. Although it contributes to adjusting the microenvironment of the sphere, the invention is not limited thereto.

給液装置120は、水及び液肥を含む液体を貯蔵するための液体貯蔵ユニット(未図示)を含む。詳しくは、給液装置120は、液体を貯蔵すると共に必要に応じて液体を放出するための市販の貯蔵設備であってよく、液体貯蔵ユニットは、給液装置120に内蔵されるか又は独立して設けられる貯液タンクであってよいが、本発明はこれに限定されない。なお、本発明の液体は、水及び液肥を含み、水と液肥は、後で使用されるために、異なる液体貯蔵ユニットに別々に貯蔵されてもよいし、必要に応じて単一の液体貯蔵ユニットに貯蔵されてもよいが、本発明はこれに限定されない。 The liquid supply device 120 includes a liquid storage unit (not shown) for storing liquids including water and liquid fertilizer. In particular, the liquid supply device 120 may be a commercially available storage facility for storing liquid and releasing the liquid as needed, and the liquid storage unit may be built into the liquid supply device 120 or may be a separate unit. However, the present invention is not limited thereto. It should be noted that the liquid of the present invention includes water and liquid fertilizer, and water and liquid fertilizer may be stored separately in different liquid storage units for later use, or optionally in a single liquid storage. It may be stored in a unit, but the invention is not limited thereto.

加湿装置130は、給気装置110及び給液装置120に管路で接続される。加湿装置130は、空圧式加湿装置、超音波加湿装置又は電熱式加湿装置であってよいが、本発明はこれに限定されない。 The humidifier 130 is connected to the air supply device 110 and the liquid supply device 120 via a pipe. The humidifying device 130 may be a pneumatic humidifying device, an ultrasonic humidifying device, or an electrothermal humidifying device, but the present invention is not limited thereto.

温度制御装置111は、給気装置110と加湿装置130との間に設けられ、且つ加圧ガスの温度を制御するために用いられるが、温度制御装置121は、給液装置120と加湿装置130との間に設けられ、且つ液体の温度を制御するために用いられる。詳しくは、本発明の液肥、湿度、温度、空気の自動制御による栽培構造100において、温度制御装置111と温度制御装置121は、同じ装置であり、且つ、それぞれ給気装置110における加圧ガスの温度及び給液装置120における液体の温度に監視及び調整を行うために、昇温と降温を制御可能な温度制御モジュール及び温度監視モジュールを含む。なお、本発明の温度制御モジュール及び温度監視モジュールは、本分野の慣用の装置であり、ここでその細部を更に説明しない。 The temperature control device 111 is provided between the air supply device 110 and the humidification device 130 and is used to control the temperature of the pressurized gas. and is used to control the temperature of the liquid. Specifically, in the cultivation structure 100 with automatic control of liquid fertilizer, humidity, temperature, and air according to the present invention, the temperature control device 111 and the temperature control device 121 are the same device, and each controls the pressure of the pressurized gas in the air supply device 110. In order to monitor and adjust the temperature and the temperature of the liquid in the liquid supply device 120, it includes a temperature control module and a temperature monitoring module that can control temperature increase and decrease. It should be noted that the temperature control module and temperature monitoring module of the present invention are conventional devices in this field, and the details thereof will not be further described here.

処理モジュール140は、温度制御装置111及び温度制御装置121に電気的に接続され、加圧ガスの温度、加圧ガスの圧力、加圧ガスの送出量、液体の温度又は液体の送出量を調整するように、温度制御装置111及び温度制御装置121を制御するために用いられる。好ましくは、本発明の液肥、湿度、温度、空気の自動制御による栽培構造100において、加圧ガスの圧力は0.1Bar~2.0Barであってよいが、加圧ガスの温度は10℃~30℃であってよいが、液体の温度は10℃~30℃であってよい。 The processing module 140 is electrically connected to the temperature control device 111 and the temperature control device 121, and adjusts the temperature of the pressurized gas, the pressure of the pressurized gas, the amount of pressurized gas delivered, the temperature of the liquid, or the amount of delivered liquid. It is used to control the temperature control device 111 and the temperature control device 121 so that the temperature control device 111 and the temperature control device 121 are controlled. Preferably, in the cultivation structure 100 with automatic control of liquid fertilizer, humidity, temperature, and air according to the present invention, the pressure of the pressurized gas may be 0.1 Bar to 2.0 Bar, and the temperature of the pressurized gas may be 10° C. to 2.0 Bar. Although it may be 30°C, the temperature of the liquid may be between 10°C and 30°C.

また、図1の実施形態において、加湿装置130は、本体131と、送液管135と、を含む。本体131は、給気装置110に管路で接続されるガス送入口133、ネック部132及び水煙出口134を有し、且つその口径がネック部132から水煙出口134の方向へ徐々に大きくなる。送液管135は、本体131と給液装置120との間に設けられ、且つ本体131のネック部132に連通する。これにより、相対湿度及び温度が適切な水含有ガスを植物に供給する。 In the embodiment shown in FIG. 1, the humidifying device 130 includes a main body 131 and a liquid feeding pipe 135. The main body 131 has a gas inlet 133 connected to the air supply device 110 via a pipe line, a neck portion 132, and a water vapor outlet 134, and its diameter gradually increases from the neck portion 132 toward the water vapor outlet 134. The liquid feeding pipe 135 is provided between the main body 131 and the liquid supply device 120 and communicates with the neck portion 132 of the main body 131. This supplies the plants with water-containing gas at appropriate relative humidity and temperature.

これにより、本発明の液肥、湿度、温度、空気の自動制御による栽培構造100は、処理モジュール140によって温度制御装置111及び温度制御装置121を制御し、更に加圧ガスの温度、圧力及び送出量、並びに液体の温度及び送出量を調整し、更に加圧ガスと液体を混合した後に加湿装置130によって高水分含量の水含有ガスを植物に噴出することで、植物に適量の水分を提供できるだけでなく、気温又は土壤中の温度を効果的に調整することもでき、液体に液肥が含まれる場合に更に植物に適切な肥料を提供し、更に、本発明の液肥、湿度、温度、空気の自動制御による栽培構造100が後で栽培に適用される時に植物に最適な成長環境を提供することができ、栽培効率を大幅に向上させることができ、関連市場での適用可能性を持つ。 As a result, the cultivation structure 100 of the present invention that automatically controls liquid fertilizer, humidity, temperature, and air controls the temperature control device 111 and the temperature control device 121 by the processing module 140, and further controls the temperature, pressure, and delivery amount of the pressurized gas. , and adjust the temperature and delivery amount of the liquid, and furthermore, after mixing the pressurized gas and the liquid, the humidifier 130 blows out water-containing gas with a high moisture content to the plants. In addition, the air temperature or the temperature in the soil can be effectively adjusted, and when the liquid contains liquid fertilizer, it can also provide suitable fertilizer for plants, and the liquid fertilizer, humidity, temperature, and air of the present invention can be automatically controlled. When the controlled cultivation structure 100 is later applied to cultivation, it can provide the plants with an optimal growth environment, and the cultivation efficiency can be greatly improved, which has applicability in related markets.

図2を参照されたく、図2は、本発明の別の実施形態における液肥、湿度、温度、空気の制御による栽培システム200を示すアーキテクチャ模式図である。液肥、湿度、温度、空気の制御による栽培システム200は、作物栽培ベッド210と、液肥、湿度、温度、空気の自動制御による栽培構造100と、センサ220と、制御装置230と、を備える。 Please refer to FIG. 2, which is a schematic architecture diagram illustrating a cultivation system 200 with liquid fertilizer, humidity, temperature, and air control in another embodiment of the present invention. A cultivation system 200 that controls liquid fertilizer, humidity, temperature, and air includes a crop cultivation bed 210, a cultivation structure 100 that automatically controls liquid fertilizer, humidity, temperature, and air, a sensor 220, and a control device 230.

作物栽培ベッド210は、固体栽培媒体211を含む。詳しくは、植物10は、固体栽培媒体211に栽培されるが、固体栽培媒体211は、砂(sand)、パーライト(perlite)、泥炭土(peat moss)、コイア(Coir)又は通気性及び透水性に優れた他の材料であってよく、また上記材料の組み合わせであってもよいが、本発明はこれらに限定されない。 Crop growing bed 210 includes solid growing medium 211 . In detail, the plants 10 are grown on a solid cultivation medium 211, which is made of sand, perlite, peat moss, coir, or air-permeable and water-permeable material. Other materials having excellent properties may be used, or combinations of the above materials may be used, but the present invention is not limited thereto.

液肥、湿度、温度、空気の自動制御による栽培構造100は、作物栽培ベッド210に隣接して設けられて連通し、且つ、給気装置110と、給液装置120と、加湿装置130と、温度制御装置111と、温度制御装置121と、処理モジュール140と、を含む。詳しくは、本発明の液肥、湿度、温度、空気の制御による栽培システム200は、植物10の根部の肥料、水分含有量、空気含有量及び温度を制御するために、本発明の液肥、湿度、温度、空気の自動制御による栽培構造100を圃場に適用したものであり、液肥、湿度、温度、空気の自動制御による栽培構造100の素子及びアーキテクチャの詳細については、前文の説明を参照されたく、ここで繰り返して説明しない。なお、本発明の液肥、湿度、温度、空気の制御による栽培システム200において、液肥、湿度、温度、空気の自動制御による栽培構造100の加湿装置130は、図2に示す通りに水煙出口134が植物10の根部に対向するように作物栽培ベッド210に設けられてもよく、水煙出口134が下から上へ植物10の根部に向かうように植物10の下方に設けられてもよく、又は、最適な栽培効率を達成するように必要に応じて作物栽培ベッド210における如何なる位置に設けられてもよい。また、加湿装置130の数は、必要に応じて1つ、2つ又は複数設けられてよいが、本発明はこれらに限定されない。 A cultivation structure 100 that automatically controls liquid fertilizer, humidity, temperature, and air is provided adjacent to and communicates with a crop cultivation bed 210, and is connected to an air supply device 110, a liquid supply device 120, a humidification device 130, and a temperature control system. It includes a control device 111, a temperature control device 121, and a processing module 140. Specifically, the cultivation system 200 by controlling the liquid fertilizer, humidity, temperature, and air of the present invention uses the liquid fertilizer, humidity, The cultivation structure 100 with automatic control of temperature and air is applied to a field, and for details of the elements and architecture of the cultivation structure 100 with automatic control of liquid fertilizer, humidity, temperature, and air, please refer to the explanation in the preamble. I won't repeat it here. In addition, in the cultivation system 200 that controls liquid fertilizer, humidity, temperature, and air according to the present invention, the humidifier 130 of the cultivation structure 100 that automatically controls liquid fertilizer, humidity, temperature, and air has a water vapor outlet 134 as shown in FIG. The crop cultivation bed 210 may be provided opposite the roots of the plants 10, and the water plume outlet 134 may be provided below the plants 10 from the bottom upwards towards the roots of the plants 10; It may be provided at any position in the crop cultivation bed 210 as necessary to achieve the desired cultivation efficiency. Furthermore, the number of humidifiers 130 may be one, two, or more than one, as required, but the present invention is not limited thereto.

図3を参照されたく、図3は、図2の液肥、湿度、温度、空気の制御による栽培システム200を示す作動模式図である。図3に示すように、給液装置120における液体30が送液管135を介して本体131のネック部132に入った場合、液体30は、サイフォン現象によって本体131内に引き込まれ、且つネック部132で加圧ガス20と混合し、加圧ガス20に均一に分布して相対湿度50%~98%の水含有ガスを形成すし、この時、水含有ガスは、植物10の根部に適切な肥料、水分及び空気を提供するように、水煙出口134から放出されて固体栽培媒体211に入る。これにより、植物10の根圏環境を80%程度の相対湿度に維持することができ、固体栽培媒体211の温度変化範囲を±2℃の間に維持することができると共に、植物10の根部の酸素含有量を向上させ、植物10に最適な成長条件を提供してその環境ストレス及び疾患に対する抗性を高め、更に農薬の使用を減少して関連市場での適用可能性を持つようにすることができる。 Please refer to FIG. 3, which is a schematic operational diagram showing the cultivation system 200 of FIG. 2 that controls liquid fertilizer, humidity, temperature, and air. As shown in FIG. 3, when the liquid 30 in the liquid supply device 120 enters the neck portion 132 of the main body 131 via the liquid sending pipe 135, the liquid 30 is drawn into the main body 131 by a siphon phenomenon, and At step 132, the water-containing gas is mixed with the pressurized gas 20 and uniformly distributed in the pressurized gas 20 to form a water-containing gas with a relative humidity of 50% to 98%. Water vapor exits from outlet 134 and enters solid cultivation medium 211 to provide fertilizer, moisture and air. As a result, the rhizosphere environment of the plant 10 can be maintained at a relative humidity of about 80%, the temperature change range of the solid cultivation medium 211 can be maintained within ±2°C, and the root zone of the plant 10 can be maintained at a relative humidity of about 80%. To improve oxygen content and provide optimal growth conditions for plants 10 to increase their resistance to environmental stresses and diseases, and further reduce the use of pesticides and have applicability in relevant markets. I can do it.

センサ220は、加湿装置130に隣接して設けられ、固体栽培媒体211の温度及び湿度を検知すると共に、前記温度及び湿度に基づいて調整信号を発するために用いられる。しかしながら、説明すべきなのは、センサ220は、図2に示すように加湿装置130に隣接して設けられる以外、植物10の根部の微小環境の変化を検知するために、固体栽培媒体211に埋設されてもよいが、本発明はこれに限定されない。 The sensor 220 is provided adjacent to the humidifier 130 and is used to detect the temperature and humidity of the solid cultivation medium 211 and to issue an adjustment signal based on the temperature and humidity. However, it should be explained that in addition to being provided adjacent to the humidifier 130 as shown in FIG. However, the present invention is not limited thereto.

制御装置230は、処理モジュール140及びセンサ220に信号的接続され、前記調整信号を受信すると共に、調整信号に基づいて処理モジュール140に加圧ガス20の温度、加圧ガス20の圧力、加圧ガス20の送出量、液体30の温度、液体30の送出量又は水含有ガスの相対湿度を調整させる。 The control device 230 is signally connected to the processing module 140 and the sensor 220, receives the adjustment signal, and controls the processing module 140 based on the adjustment signal to control the temperature of the pressurized gas 20, the pressure of the pressurized gas 20, and the pressurization. The amount of gas 20 delivered, the temperature of liquid 30, the amount of liquid 30 delivered, or the relative humidity of water-containing gas is adjusted.

詳しくは、現在の市販の栽培方法によれば、何れも水分を液状で植物の根部に直接施用するが、植物が外部から供給された水分を短時間で完全に吸収できず、水分が栽培ベッドに残されて植物の根部の呼吸を阻害し、又は直接流失して水資源及び肥料の浪費を引き起こす。なお、液肥を植物の根部に直接施用すると、植物が同様に短時間で完全に吸収できず、余分の液肥が土壌に蓄積され、長時間の肥料蓄積によって更に土壤が酸性化して植物の成長に影響し、更に植物の死滅を引き起こす。従って、本発明の液肥、湿度、温度、空気の制御による栽培システム200は、センサ220を更に備え、センサ220は、それぞれ固体栽培媒体211における肥料含有量、水分含有量及び土壤温度などの数値を検知して調整信号を出力するために、土壤電気伝導率(Electrical Conductivity;EC値とも呼ばれる)検知モジュール、湿度検知モジュール及び温度検知モジュールを含み、制御装置230は、前記調整信号を受信した後に処理モジュール140を更に制御して加圧ガス20の温度、加圧ガス20の圧力、加圧ガス20の送出量、液体30の温度、液体30の送出量及び水含有ガスの相対湿度を調整させ、更に栽培条件を正確に制御して植物10を健全に成長させる。 Specifically, according to current commercially available cultivation methods, water is applied directly to the roots of plants in liquid form, but the plants cannot completely absorb the water supplied from outside in a short period of time, causing the water to drain into the cultivation bed. They can be left behind and inhibit the respiration of plant roots, or they can be washed away directly, causing wastage of water resources and fertilizers. Furthermore, if liquid fertilizer is applied directly to the roots of plants, the plants will not be able to absorb it completely in a short period of time, and the excess liquid fertilizer will accumulate in the soil, and the long-term accumulation of fertilizer will further acidify the soil and hinder plant growth. and even cause plant death. Therefore, the cultivation system 200 using liquid fertilizer, humidity, temperature, and air control according to the present invention further includes a sensor 220, which measures numerical values such as fertilizer content, moisture content, and soil temperature in the solid cultivation medium 211, respectively. The controller 230 includes a soil electrical conductivity (also called EC value) detection module, a humidity detection module, and a temperature detection module to detect and output an adjustment signal, and the controller 230 processes the adjustment signal after receiving it. further controlling the module 140 to adjust the temperature of the pressurized gas 20, the pressure of the pressurized gas 20, the delivery amount of the pressurized gas 20, the temperature of the liquid 30, the delivery amount of the liquid 30, and the relative humidity of the water-containing gas; Furthermore, the cultivation conditions are accurately controlled to allow the plants 10 to grow healthily.

図4及び図5を参照されたく、図4は、もう一つの実施形態における液肥、湿度、温度、空気の制御による栽培システム300の圃場への適用を示す模式図であり、図5は、図4の液肥、湿度、温度、空気の制御による栽培システム300の圃場への適用を示す別の模式図である。液肥、湿度、温度、空気の制御による栽培システム300は、作物栽培ベッド310と、液肥、湿度、温度、空気の自動制御による栽培構造400と、センサ320と、制御装置330と、を備えるが、液肥、湿度、温度、空気の自動制御による栽培構造400は、給気装置410と、給液装置420aと、給液装置420bと、加湿装置430と、を含み、図4の液肥、湿度、温度、空気の制御による栽培システム300の作物栽培ベッド310、液肥、湿度、温度、空気の自動制御による栽培構造400、センサ320及び制御装置330は、図2の液肥、湿度、温度、空気の制御による栽培システム200の作物栽培ベッド210、液肥、湿度、温度、空気の自動制御による栽培構造100、センサ220及び制御装置230と類似するが、給液装置120の数及びその管路配置並びに加湿装置130の数のみに異なっているため、同じ構造及び細部については、前文を参照されたく、ここで繰り返して説明しない。 Please refer to FIGS. 4 and 5. FIG. 4 is a schematic diagram showing application of a cultivation system 300 using liquid fertilizer, humidity, temperature, and air control to a field in another embodiment, and FIG. FIG. 4 is another schematic diagram showing the application of the cultivation system 300 using liquid fertilizer, humidity, temperature, and air control in No. 4 to a field. A cultivation system 300 that controls liquid fertilizer, humidity, temperature, and air includes a crop cultivation bed 310, a cultivation structure 400 that automatically controls liquid fertilizer, humidity, temperature, and air, a sensor 320, and a control device 330. The cultivation structure 400 with automatic control of liquid fertilizer, humidity, temperature, and air includes an air supply device 410, a liquid supply device 420a, a liquid supply device 420b, and a humidifier 430, and includes the liquid fertilizer, humidity, and temperature of FIG. , the crop cultivation bed 310 of the cultivation system 300 with air control, the cultivation structure 400 with automatic control of liquid fertilizer, humidity, temperature, and air, the sensor 320, and the control device 330 in FIG. It is similar to the crop cultivation bed 210 of the cultivation system 200, the cultivation structure 100 with automatic control of liquid fertilizer, humidity, temperature, and air, the sensor 220, and the control device 230, but with the exception of the number of liquid supply devices 120, the arrangement of their pipes, and the humidification device 130. For the same structure and details, please refer to the preamble and will not be repeated here.

図4及び図5に示すように、液肥、湿度、温度、空気の制御による栽培システム300は、温室40の中に設けられるが、作物栽培ベッド310は、外部環境が液肥、湿度、温度、空気の制御による栽培システム300による栽培環境の制御効率に影響を与えることを防止するように、温室40で高設栽培を行う。なお、図4の実施例において、給液装置420a及び給液装置420bは、それぞれ独立して設けられ、且つそれぞれ水及び液肥を貯蔵するために用いられる。詳しくは、水及び液肥が別々に貯蔵される場合、制御装置330は、実際のニーズに応じて水及び液肥の送出量を別々に調整し、更に本発明の液肥、湿度、温度、空気の制御による栽培システム300が水分及び液肥の施用をより正確に制御できるようにすると共に、大規模で栽培される作物に液肥、湿度及び温度の制御を行うことができ、関連市場での適用可能性を持つ。 As shown in FIGS. 4 and 5, a cultivation system 300 that controls liquid fertilizer, humidity, temperature, and air is installed in a greenhouse 40, but the crop cultivation bed 310 has an external environment that uses liquid fertilizer, humidity, temperature, and air. Elevated cultivation is performed in the greenhouse 40 so as to prevent the control efficiency of the cultivation environment by the cultivation system 300 from being affected. In the embodiment of FIG. 4, the liquid supply device 420a and the liquid supply device 420b are provided independently, and are used to store water and liquid fertilizer, respectively. In detail, when water and liquid fertilizer are stored separately, the control device 330 can adjust the delivery amount of water and liquid fertilizer separately according to the actual needs, and also control the liquid fertilizer, humidity, temperature, air of the present invention. The cultivation system 300 allows for more precise control of moisture and liquid fertilizer application, as well as liquid fertilizer, humidity and temperature control for crops grown on a large scale, increasing its applicability in related markets. have

本発明は実施形態により前述の通りに開示されたが、これらに限定されなく、当業者であれば、本発明の精神と範囲から逸脱しない限り、多様の変更や修飾を加えることができる。従って、本発明の保護範囲は、下記特許請求の範囲で指定した内容を基準とするものである。 Although the present invention has been disclosed above by way of embodiments, it is not limited thereto, and those skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention is based on the content specified in the following claims.

100、400 液肥、湿度、温度、空気の自動制御による栽培構造
110、410 給気装置
111、121 温度制御装置
120、420a、420b 給液装置
130、430 加湿装置
131 本体
132 ネック部
133 ガス送入口
134 水煙出口
135 送液管
140 処理モジュール
200、300 液肥、湿度、温度、空気の制御による栽培システム
210、310 作物栽培ベッド
211 固体栽培媒体
220、320 センサ
230、330 制御装置
10 植物
20 加圧ガス
30 液体
40 温室
100, 400 Cultivation structure with automatic control of liquid fertilizer, humidity, temperature, and air 110, 410 Air supply device 111, 121 Temperature control device 120, 420a, 420b Liquid supply device 130, 430 Humidification device 131 Main body 132 Neck portion 133 Gas inlet 134 Water mist outlet 135 Liquid pipe 140 Processing module 200, 300 Cultivation system using liquid fertilizer, humidity, temperature, and air control 210, 310 Crop cultivation bed 211 Solid cultivation medium 220, 320 Sensor 230, 330 Control device 10 Plant 20 Pressurized gas 30 Liquid 40 Greenhouse

Claims (5)

固体栽培媒体を含む作物栽培ベッドと、
前記作物栽培ベッドに隣接して設けられて連通する液肥、湿度、温度、空気の自動制御による栽培構造であって、加圧ガスを貯蔵するためのガス貯蔵ユニットを含む給気装置と、水及び液肥を含む少なくとも1つの液体を貯蔵するための少なくとも1つの液体貯蔵ユニットを含む給液装置と、前記給気装置及び前記給液装置に管路で接続され、前記固体栽培媒体に水含有ガスを加えるための少なくとも1つの加湿装置と、一方が前記給気装置と前記加湿装置との間に設けられ、且つ前記加圧ガスの温度を制御するために用いられ、他方が前記給液装置と前記加湿装置との間に設けられ、且つ前記液体の温度を制御するために用いられる2つの温度制御装置と、前記2つの温度制御装置に電気的に接続され、前記加圧ガスの前記温度、前記加圧ガスの圧力、前記加圧ガスの送出量、前記液体の前記温度又は前記液体の送出量を調整するように、前記2つの温度制御装置を制御するための処理モジュールと、を含む液肥、湿度、温度、空気の自動制御による栽培構造と、
前記加湿装置に隣接して設けられ、前記固体栽培媒体の温度及び湿度を検知すると共に、前記温度及び前記湿度に基づいて調整信号を発するためのセンサと、
前記処理モジュール及び前記センサに信号的接続され、前記調整信号を受信すると共に、前記調整信号に基づいて前記処理モジュールに前記加圧ガスの前記温度、前記加圧ガスの前記圧力、前記加圧ガスの前記送出量、前記液体の前記温度、前記液体の前記送出量又は前記水含有ガスの相対湿度を調整させる制御装置と、
を備える液肥、湿度、温度、空気の制御による栽培システムであって、前記少なくとも1つの加湿装置が固体栽培媒体と共に使用され、前記固体栽培媒体は地面から離れて植物を栽培するためのものであり、及び前記固体栽培媒体は、砂、パーライト、泥炭土、コイア又はそれらの組み合わせであり、前記加圧ガスの前記圧力は0.1Bar~2.0Barであり、前記加圧ガスの前記温度は10℃~30℃であり、前記液体の前記温度は10℃~30℃であり、前記水含有ガスの前記相対湿度は50%~98%である、液肥、湿度、温度、空気の制御による栽培システム。
a crop cultivation bed containing a solid cultivation medium;
A cultivation structure with automatic control of liquid fertilizer, humidity, temperature, and air provided adjacent to and communicating with the crop cultivation bed, comprising: an air supply device including a gas storage unit for storing pressurized gas; a liquid supply device comprising at least one liquid storage unit for storing at least one liquid comprising a liquid fertilizer; and a liquid supply device connected by a line to the air supply device and the liquid supply device to supply a water-containing gas to the solid cultivation medium. at least one humidifying device for adding gas, one provided between the air supply device and the humidifying device and used to control the temperature of the pressurized gas, and the other being provided between the fluid supply device and the humidifying device; two temperature control devices provided between the humidifier and used to control the temperature of the liquid; and two temperature control devices electrically connected to the two temperature control devices and used to control the temperature of the pressurized gas, the a processing module for controlling the two temperature control devices so as to adjust the pressure of the pressurized gas, the delivery amount of the pressurized gas, the temperature of the liquid, or the delivery amount of the liquid; A cultivation structure with automatic control of humidity, temperature, and air,
a sensor disposed adjacent to the humidifier for detecting the temperature and humidity of the solid cultivation medium and emitting an adjustment signal based on the temperature and the humidity;
signally connected to the processing module and the sensor to receive the adjustment signal and, based on the adjustment signal, to the processing module to determine the temperature of the pressurized gas, the pressure of the pressurized gas, and the pressurized gas. a control device that adjusts the delivery amount of the liquid, the temperature of the liquid, the delivery amount of the liquid, or the relative humidity of the water-containing gas;
A cultivation system with liquid fertilizer, humidity, temperature and air control comprising: said at least one humidification device being used with a solid cultivation medium, said solid cultivation medium for cultivating plants off the ground; , and the solid cultivation medium is sand, perlite, peat soil, coir or a combination thereof, the pressure of the pressurized gas is 0.1 Bar to 2.0 Bar, and the temperature of the pressurized gas is 10 ℃~30℃, the temperature of the liquid is 10℃~30℃, and the relative humidity of the water-containing gas is 50%~98%, a cultivation system using liquid fertilizer, humidity, temperature, and air control. .
前記加圧ガスは、酸素、窒素及び二酸化炭素を含む請求項に記載の液肥、湿度、温度、空気の制御による栽培システム。 2. The cultivation system according to claim 1 , wherein the pressurized gas contains oxygen, nitrogen, and carbon dioxide. 前記液体貯蔵ユニットの数は2つであり、一方の前記液体貯蔵ユニットは、前記水を貯蔵するために用いられ、他方の前記液体貯蔵ユニットは、前記液肥を貯蔵するために用いられる請求項に記載の液肥、湿度、温度、空気の制御による栽培システム。 The number of the liquid storage units is two, and one of the liquid storage units is used to store the water, and the other liquid storage unit is used to store the liquid fertilizer . A cultivation system using liquid fertilizer, humidity, temperature, and air control as described in . 前記加湿装置は、空圧式加湿装置、超音波加湿装置又は電熱式加湿装置である請求項に記載の液肥、湿度、温度、空気の制御による栽培システム。 The cultivation system according to claim 1 , wherein the humidifier is a pneumatic humidifier, an ultrasonic humidifier, or an electric heat humidifier. 前記加湿装置は、
前記給気装置に管路で接続されるガス送入口、ネック部及び水煙出口を有し、且つその口径が前記ネック部から前記水煙出口の方向へ徐々に大きくなる本体と、
前記本体と前記給液装置との間に設けられ、且つ前記本体の前記ネック部に連通する送液管と、
を含む請求項に記載の液肥、湿度、温度、空気の制御による栽培システム。
The humidifier includes:
a main body having a gas inlet connected to the air supply device through a pipe line, a neck portion, and a water vapor outlet, the diameter of which gradually increases from the neck portion toward the water vapor outlet;
a liquid feeding pipe provided between the main body and the liquid supply device and communicating with the neck part of the main body;
A cultivation system using the liquid fertilizer according to claim 1 , controlling humidity, temperature, and air.
JP2021148369A 2020-09-14 2021-09-13 Cultivation system using liquid fertilizer, humidity, temperature, and air control Active JP7342078B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW109212062 2020-09-14
TW109212062U TWM611567U (en) 2020-09-14 2020-09-14 Structure capable of injecting gas into soil for plant roots to breathe

Publications (2)

Publication Number Publication Date
JP2022048127A JP2022048127A (en) 2022-03-25
JP7342078B2 true JP7342078B2 (en) 2023-09-11

Family

ID=77037735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021148369A Active JP7342078B2 (en) 2020-09-14 2021-09-13 Cultivation system using liquid fertilizer, humidity, temperature, and air control

Country Status (2)

Country Link
JP (1) JP7342078B2 (en)
TW (1) TWM611567U (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3224420B2 (en) 1991-07-01 2001-10-29 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Electrical machinery for cars
JP2006167599A (en) 2004-12-16 2006-06-29 Ikeuchi:Kk Two-fluid nozzle
JP4187032B2 (en) 2006-09-29 2008-11-26 ダイキン工業株式会社 Air conditioner
JP5010217B2 (en) 2006-09-08 2012-08-29 グローリー株式会社 Coin handling machine
JP5224838B2 (en) 2008-02-04 2013-07-03 株式会社ミツトヨ Electromagnetic induction encoder
JP2014217316A (en) 2013-05-08 2014-11-20 株式会社大林組 Plant cultivation system
JP3197768U (en) 2015-03-17 2015-06-04 坂研貿易股▲分▼有限公司 Structure of atomizing device
CN210580391U (en) 2019-08-14 2020-05-22 苏州绿利农业科技有限公司 Nutrient solution constant temperature control device for soilless culture

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5010217B1 (en) * 1970-07-24 1975-04-19
JPS5224838A (en) * 1975-08-13 1977-02-24 Anlet Kk Cultivation of plant
JPH01167847U (en) * 1988-05-09 1989-11-27
JPH03224420A (en) * 1990-01-26 1991-10-03 Nagoya Futou Sairo Kk Mist culturing device
JPH04187032A (en) * 1990-11-21 1992-07-03 Yutaka Yamazaki System for stable plant growth
JPH0652426U (en) * 1992-12-21 1994-07-19 ヤンマー農機株式会社 Cultivation management device
JP2012010651A (en) * 2010-06-30 2012-01-19 Ikeuchi:Kk Plant cultivation device, seedling raising device, and method for cultivating plant
JP2013021938A (en) * 2011-07-19 2013-02-04 Miyairi Valve Seisakusho:Kk Mist sprinkling apparatus in plant factory
JP6385636B2 (en) * 2012-07-20 2018-09-05 株式会社大林組 Fine fog cooling method and fine fog cooling system in plant cultivation facilities

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3224420B2 (en) 1991-07-01 2001-10-29 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Electrical machinery for cars
JP2006167599A (en) 2004-12-16 2006-06-29 Ikeuchi:Kk Two-fluid nozzle
JP5010217B2 (en) 2006-09-08 2012-08-29 グローリー株式会社 Coin handling machine
JP4187032B2 (en) 2006-09-29 2008-11-26 ダイキン工業株式会社 Air conditioner
JP5224838B2 (en) 2008-02-04 2013-07-03 株式会社ミツトヨ Electromagnetic induction encoder
JP2014217316A (en) 2013-05-08 2014-11-20 株式会社大林組 Plant cultivation system
JP3197768U (en) 2015-03-17 2015-06-04 坂研貿易股▲分▼有限公司 Structure of atomizing device
CN210580391U (en) 2019-08-14 2020-05-22 苏州绿利农业科技有限公司 Nutrient solution constant temperature control device for soilless culture

Also Published As

Publication number Publication date
TWM611567U (en) 2021-05-11
JP2022048127A (en) 2022-03-25

Similar Documents

Publication Publication Date Title
CN107950330B (en) Water-saving and efficient drop irrigation cultivation method for potatoes in cold regions
CN101669440B (en) Indirect underground trickle irrigation system
CN102783384A (en) Crop rhizospheric soil conditioning system and conditioning method thereof
CN103503741B (en) Irrigation system and method for utilizing irrigation system to irrigate nyssa aquatica seedlings
CN105123425A (en) Facility cultivation method for grapes
CN205196439U (en) Flowerpot is used in plant cultivation
JP2005117999A (en) Full automatic apparatus for controlling plant culture
CN106718775A (en) A kind of blueberry soilless cultivation method
CN104686278A (en) Retarding culture method of grape trees
WO2017045633A1 (en) Brassica napus irrigation system
JP7342078B2 (en) Cultivation system using liquid fertilizer, humidity, temperature, and air control
CN204180496U (en) Automation Pregermination and seedling breeding all-in-one
TWI809501B (en) Automatic cultivation structure for controlling liquid fertilizer, humidity, temperature and air and liquid fertilizer, humidity, temperature and air control cultivation system
CN110856473A (en) Fruit tree root system cultivation device and irrigation method
CN108668683A (en) Closed cultivation irrigation oxygen supplementation and temperature increase integrated supply system
CN104770243B (en) A kind of vegetable growing system of utilization cattle manure heat
CN107094540A (en) A kind of garden plantses high effect culture device
CN109952850A (en) Drip irrigation pipe arrangement under a kind of black anti-grass cloth
CN210694935U (en) Water and fertilizer integrated system of kiwi fruit upward-spraying and downward-dripping irrigation mode
CN209861587U (en) Garlic liquid manure integration irrigation system
CN201967393U (en) Vegetable seeding culture device
CN114885765B (en) Root-promoting seedling-restoring planting method and drip irrigation method based on fuzzy control
CN204741998U (en) Utilize vegetable cultivation system of cow dung fermentation heat
CN210247734U (en) Automatic seedbed
CN204070009U (en) Root fills with water-saving temp control digital signal device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230830

R150 Certificate of patent or registration of utility model

Ref document number: 7342078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150