JP7211220B2 - 超音波センサ - Google Patents

超音波センサ Download PDF

Info

Publication number
JP7211220B2
JP7211220B2 JP2019072953A JP2019072953A JP7211220B2 JP 7211220 B2 JP7211220 B2 JP 7211220B2 JP 2019072953 A JP2019072953 A JP 2019072953A JP 2019072953 A JP2019072953 A JP 2019072953A JP 7211220 B2 JP7211220 B2 JP 7211220B2
Authority
JP
Japan
Prior art keywords
case
ultrasonic
diaphragm
resonance frequency
ultrasonic sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019072953A
Other languages
English (en)
Other versions
JP2020170995A (ja
Inventor
達也 神谷
格 石井
友貴 種村
敬 青木
哲弥 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2019072953A priority Critical patent/JP7211220B2/ja
Priority to US16/837,258 priority patent/US11445304B2/en
Priority to CN202010253611.2A priority patent/CN111796291A/zh
Publication of JP2020170995A publication Critical patent/JP2020170995A/ja
Application granted granted Critical
Publication of JP7211220B2 publication Critical patent/JP7211220B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/02Microphones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0651Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element of circular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0018Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
    • B81B3/0021Transducers for transforming electrical into mechanical energy or vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/0035Packages or encapsulation for maintaining a controlled atmosphere inside of the chamber containing the MEMS
    • B81B7/0041Packages or encapsulation for maintaining a controlled atmosphere inside of the chamber containing the MEMS maintaining a controlled atmosphere with techniques not provided for in B81B7/0038
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/0061Packages or encapsulation suitable for fluid transfer from the MEMS out of the package or vice versa, e.g. transfer of liquid, gas, sound
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • G01H11/08Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/521Constructional features
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K9/00Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers
    • G10K9/12Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated
    • G10K9/122Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated using piezoelectric driving means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0662Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface
    • B06B1/0666Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface used as a diaphragm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0257Microphones or microspeakers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0271Resonators; ultrasonic resonators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2015/937Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles sensor installation details
    • G01S2015/938Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles sensor installation details in the bumper area
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/13Acoustic transducers and sound field adaptation in vehicles

Description

本発明は、超音波センサに関する。
特許文献1に記載の超音波センサは、ケースと圧電素子とを備えている。ケースは、底部と側壁部とを有する有底筒状に形成されている。圧電素子は、ケースの底部に貼り付けられている。
特開2011-250327号公報
上記のような構成を有する超音波センサにおいて、圧電素子等の超音波素子を収容するケースは、検知対象が存在する外部空間に露出される。具体的には、例えば、超音波センサは、車両に搭載する場合、車載状態にて、車両におけるバンパー等の外板部材に装着される。このため、ケースに小石等の固い異物が衝突する場合がある。
この場合、従来の超音波センサにおいては、ケースに貼り付けられた超音波素子にクラックが発生したり、超音波素子がケースから剥離したりする懸念があった。特に、MEMS型の素子を用いた場合、かかる素子をケースの底部に貼り付けると、素子が破損しやすくなる。MEMSはMicro Electro Mechanical Systemの略である。
本発明は、上記に例示した事情等に鑑みてなされたものである。すなわち、本発明は、例えば、超音波素子を良好に保護することが可能な構成を提供する。
請求項1に記載の超音波センサ(1)は、
指向軸(DA)に沿った厚さ方向を有する振動板であるケース側ダイアフラム(43a)を有する、素子収容ケース(4)と、
前記素子収容ケースの内側に収容されつつ、前記ケース側ダイアフラムから離隔して配置された、超音波素子(50)と、
を備え、
前記超音波素子は、前記指向軸に沿った厚さ方向を有する半導体基板(51)における薄肉部として形成されていて前記指向軸に沿った膜厚方向を有する振動膜である素子側ダイアフラム(54)を有し、
前記半導体基板は、前記ケース側ダイアフラムと前記素子側ダイアフラムとの間に共鳴空間である閉鎖空間(SC)が形成されるように配置されつつ、前記素子収容ケースに固定的に支持され、
前記超音波素子における共振周波数である第一共振周波数と、前記閉鎖空間における共振周波数である第二共振周波数と、前記ケース側ダイアフラムにおける共振周波数である第三共振周波数とが、一致するように構成されている。
請求項4に記載の超音波センサ(1)は、
指向軸(DA)に沿った厚さ方向を有する振動板であるケース側ダイアフラム(43a)を有する、素子収容ケース(4)と、
前記素子収容ケースの内側に収容されつつ、前記ケース側ダイアフラムから離隔して配置された、超音波素子(50)と、
を備え、
前記超音波素子は、前記指向軸に沿った厚さ方向を有する半導体基板(51)における薄肉部として形成されていて前記指向軸に沿った膜厚方向を有する振動膜である素子側ダイアフラム(54)を有し、
前記半導体基板は、前記ケース側ダイアフラムと前記素子側ダイアフラムとの間に共鳴空間である閉鎖空間(SC)が形成されるように配置されつつ、前記素子収容ケースに固定的に支持され、
前記素子収容ケースは、前記指向軸を囲む筒状に形成された側板部(41)と、前記側板部の一端側を液密的に閉塞する外側底板部(43)とを有し、
前記ケース側ダイアフラムは、前記指向軸と交差する面内方向における前記外側底板部の中央部に設けられた薄肉部として形成され、
前記半導体基板は、前記ケース側ダイアフラムの周囲に形成された前記外側底板部における厚肉部であるケース側厚肉部(43b)に固定的に支持されている。
上記構成において、前記超音波素子は、前記素子収容ケースの内側に収容されつつ、前記素子収容ケースに設けられた前記ケース側ダイアフラムから離隔して配置されている。このため、前記ケース側ダイアフラムに小石等の固い異物が衝突しても、かかる衝突による衝撃は、前記超音波素子には直接的には作用しない。したがって、前記超音波素子は、前記素子収容ケースによって良好に保護される。
また、前記超音波素子における前記素子側ダイアフラムは、前記素子収容ケースに固定的に支持された前記半導体基板における前記薄肉部である。この素子側ダイアフラムと、前記ケース側ダイアフラムとの間には、共鳴空間である前記閉鎖空間が設けられている。このため、前記超音波素子と前記ケース側ダイアフラムとのうちの一方における超音波振動は、連成共振により、他方に伝播する。したがって、前記超音波素子と前記ケース側ダイアフラムとの間の超音波振動の伝播効率が良好となる。
このように、上記構成によれば、前記超音波素子を良好に保護しつつ、前記超音波センサの外部空間と前記超音波素子との間の超音波振動の伝播を良好に実現することが可能となる。
なお、出願書類中の各欄において、各要素に括弧付きの参照符号が付されている場合がある。この場合、参照符号は、同要素と後述する実施形態に記載の具体的構成との対応関係の単なる一例を示すものである。よって、本発明は、参照符号の記載によって、何ら限定されるものではない。
実施形態に係る超音波センサを搭載した車両の外観を示す斜視図である。 図1に示された超音波センサの周囲を拡大して示す部分断面図である。 図2に示された超音波マイクロフォンの概略構成を示す断面図である。 第二実施形態に係る超音波マイクロフォンの概略構成を示す断面図である。 第三実施形態に係る超音波マイクロフォンの概略構成を示す断面図である。 第四実施形態に係る超音波マイクロフォンの概略構成を示す断面図である。 第五実施形態に係る超音波マイクロフォンの概略構成を示す断面図である。 第六実施形態に係る超音波マイクロフォンの概略構成を示す断面図である。 第七実施形態に係る超音波マイクロフォンの概略構成を示す断面図である。 第八実施形態に係る超音波マイクロフォンの概略構成を示す断面図である。 第九実施形態に係る超音波マイクロフォンの概略構成を示す断面図である。 第十実施形態に係る超音波マイクロフォンの概略構成を示す断面図である。 第十一実施形態に係る超音波マイクロフォンの概略構成を示す断面図である。 第十二実施形態に係る超音波マイクロフォンの概略構成を示す断面図である。 第十三実施形態に係る超音波マイクロフォンの概略構成を示す断面図である。 第十四実施形態に係る超音波マイクロフォンの概略構成を示す断面図である。 第十五実施形態に係る超音波マイクロフォンの概略構成を示す断面図である。 第十六実施形態に係る超音波マイクロフォンの概略構成を示す断面図である。 第十七実施形態に係る超音波マイクロフォンの概略構成を示す断面図である。 第十八実施形態に係る超音波マイクロフォンの概略構成を示す断面図である。 第十九実施形態に係る超音波マイクロフォンの概略構成を示す断面図である。 第二十実施形態に係る超音波マイクロフォンの概略構成を示す断面図である。
(実施形態)
以下、本発明の実施形態を、図面に基づいて説明する。なお、一つの実施形態に対して適用可能な各種の変形例については、当該実施形態に関する一連の説明の途中に挿入されると、当該実施形態の理解が妨げられるおそれがある。このため、変形例については、当該実施形態に関する一連の説明の途中には挿入せず、その後にまとめて説明する。
(車載構成)
図1を参照すると、本実施形態においては、超音波センサ1は、車両Vを装着対象とする車載型のクリアランスソナーとしての構成を有している。すなわち、超音波センサ1は、車両Vに搭載されることで、当該車両Vの周囲に存在する物体を検知可能に構成されている。
車両Vは、いわゆる四輪自動車であって、箱状の車体V1を備えている。車体V1には、外板を構成する車体部品である、車体パネルV2、フロントバンパーV3、およびリアバンパーV4が装着されている。フロントバンパーV3は、車体V1の前端部に設けられている。リアバンパーV4は、車体V1の後端部に設けられている。
超音波センサ1は、フロントバンパーV3およびリアバンパーV4に装着されることで、車両Vの前方および後方に存在する物体を検知するようになっている。超音波センサ1が、車両Vにおける車体V1に設けられたフロントバンパーV3およびリアバンパーV4に装着された状態を、以下「車載状態」と称する。
具体的には、車載状態にて、フロントバンパーV3には、複数(例えば4個)の超音波センサ1が装着されている。フロントバンパーV3に装着された複数の超音波センサ1は、それぞれ、車幅方向における異なる位置に配置されている。同様に、リアバンパーV4にも、複数(例えば4個)の超音波センサ1が装着されている。フロントバンパーV3およびリアバンパーV4には、超音波センサ1を装着するための貫通孔である装着孔V5が設けられている。
(第一実施形態)
図2は、フロントバンパーV3に取り付けられた複数の超音波センサ1のうちの1個を、車載状態にて示している。以下、図2および図3を参照しつつ、第一実施形態に係る超音波センサ1の構成について説明する。
図2を参照すると、フロントバンパーV3は、バンパー外面V31とバンパー裏面V32とを有している。バンパー外面V31は、フロントバンパーV3の外表面であって、車両Vの外側の空間である外部空間SDに面するように設けられている。バンパー裏面V32は、バンパー外面V31の裏側の面であって、車両VすなわちフロントバンパーV3の内側の空間である車体内空間SNに面するように設けられている。装着孔V5は、バンパー外面V31およびバンパー裏面V32にて開口することで、フロントバンパーV3を厚さ方向に貫通するように設けられている。
超音波センサ1は、超音波を送受信可能に構成されている。すなわち、超音波センサ1は、超音波である探査波を指向軸DAに沿って外部空間SDに向けて送信するように構成されている。「指向軸」とは、超音波センサ1から超音波の送受信方向に沿って延びる仮想直線であって、指向角の基準となるものである。「指向軸」は指向中心軸あるいは検出軸とも称され得る。また、超音波センサ1は、周囲に存在する物体による探査波の反射波を含む受信波を外部空間SDから受信して、受信結果に基づく検知信号を発生および出力するように構成されている。
説明の便宜上、図示の通りに、Z軸が指向軸DAと平行となるように右手系XYZ直交座標系を設定する。このとき、指向軸DAと平行な方向を「指向軸方向」と称する。「指向軸方向における先端側」は、探査波の送信方向側であり、図2および図3における上側すなわちZ軸正方向側に対応する。これに対し、「指向軸方向における基端側」は、図2および図3における下側すなわちZ軸負方向側に対応する。
或る構成要素の指向軸方向における基端側の端部を「基端部」と称し、指向軸方向における先端側の端部を「先端部」と称する。また、指向軸方向と直交する任意の方向を「面内方向」と称する。「面内方向」は、図2および図3における、XY平面と平行な方向である。「面内方向」は、場合によっては、「径方向」とも称され得る。「径方向」は、指向軸DAと直交する仮想平面と指向軸DAとの交点を起点として当該仮想平面内に半直線を描いた場合に、当該半直線が延びる方向である。すなわち、「径方向」は、指向軸DAと直交する仮想平面と指向軸DAとの交点を中心として当該仮想平面内に円を描いた場合の、当該円の半径方向である。
超音波センサ1は、センサケース2と超音波マイクロフォン3とを備えている。センサケース2は、超音波センサ1の筐体を構成する部品あるいは部品群であって、絶縁性合成樹脂によって形成されている。具体的には、センサケース2は、ケース本体部2aと、センサ側コネクタ2bと、マイクロフォン収容部2cとを有している。
ケース本体部2aは、箱状に形成されている。ケース本体部2aの内側には、不図示の制御回路基板等が収容されている。センサ側コネクタ2bは、ケース本体部2aから指向軸DAと交差する方向に延設されている。センサ側コネクタ2bは、ECU等の外部装置に対する電気接続用ワイヤハーネスに設けられた不図示のワイヤ側コネクタと着脱可能に構成されている。ECUはElectronic Control Unitの略である。
マイクロフォン収容部2cは、指向軸DAを囲む略円筒状の部分であって、ケース本体部2aから指向軸方向における先端側に向かって突設されている。車載状態にて、マイクロフォン収容部2cの先端部は、装着孔V5の内壁面と密着するように、装着孔V5内に収容されている。
(超音波マイクロフォン)
マイクロフォン収容部2c内には、超音波マイクロフォン3が収容されている。超音波マイクロフォン3は、略円柱状の外形形状を有するように構成されている。
超音波マイクロフォン3の外表面は、側方外壁面3aと、露出面3bと、外側底面3cとを有している。側方外壁面3aは、指向軸方向に沿った円柱面状に形成されている。
マイクロフォン収容部2cの内壁面と、超音波マイクロフォン3の側方外壁面3aとの間には、不図示のスリーブ部材が設けられている。かかるスリーブ部材は、絶縁性且つゴム弾性を有するシリコーンゴム等によって形成されている。すなわち、マイクロフォン収容部2cの内壁面と側方外壁面3aとの間の隙間は、上記のスリーブ部材によって、水が浸入困難にシールされている。
露出面3bは、指向軸DAと交差する外表面であって、平坦な円形の平面状に形成されている。具体的には、本実施形態においては、露出面3bは、指向軸DAと直交するように設けられている。超音波マイクロフォン3は、車載状態にて、露出面3bが装着孔V5から外部空間SDに露出するように、マイクロフォン収容部2cに収容されている。露出面3bは、探査波が外部空間SDに放射される表面であり、且つ、受信波が当たる表面でもある。このため、露出面3bは、「送受信面」とも称される。
外側底面3cは、指向軸DAと交差する外表面であって、平坦な円形の平面状に形成されている。具体的には、本実施形態においては、外側底面3cは、指向軸DAと直交するように設けられている。すなわち、外側底面3cは、露出面3bと平行な平面として形成されている。外側底面3cを含む、超音波マイクロフォン3の指向軸方向における基端部は、組立状態にて、センサケース2および上記のスリーブ部材によって液密的に覆われるようになっている。「組立状態」は、超音波マイクロフォン3をセンサケース2に装着した状態である。
図3は、図2に示された超音波センサ1から、超音波マイクロフォン3を取り出した状態を示している。図3を参照すると、超音波マイクロフォン3は、素子収容ケース4と、トランスデューサユニット5と、支持基板6とを有している。以下、超音波マイクロフォン3を構成する各部について説明する。なお、図示および説明の簡略化のため、超音波マイクロフォン3の内部における配線等の電気接続構造については、図示および説明を省略する。同様に、超音波マイクロフォン3とセンサケース2側の制御回路基板等との電気接続のための、端子、配線等の電気接続構造についても、図示および説明を省略する。これらの電気接続構造については、いうまでもなく、本願の出願時点の技術常識に基づき、適宜形成することが可能である。
素子収容ケース4は、超音波マイクロフォン3における外側筐体を構成する部分であって、略円柱状の外形形状を有する箱状に形成されている。素子収容ケース4は、その内部の空間である基板背面空間SK内にトランスデューサユニット5および支持基板6を収容するように構成されている。本実施形態においては、素子収容ケース4は、アルミニウム等の金属材料によって形成されている。なお、後述するように、素子収容ケース4を構成する材料は、アルミニウム等の金属材料に限定されない。
素子収容ケース4は、指向軸DAを囲む筒状に形成された側板部41を有している。本実施形態においては、側板部41は、指向軸DAと略平行な中心軸線を有する円筒状に形成されている。側板部41は、ケース側方空間SSに面する側方外壁面3aと、基板背面空間SKに面する側方内壁面41aとを有している。側方内壁面41aは、側板部41の内壁面であって、指向軸DAを囲む円筒内面状に形成されている。
素子収容ケース4は、また、内側底板部42を有している。内側底板部42は、指向軸DAに沿った厚さ方向を有する板状に形成されている。内側底板部42は、側板部41の一端側すなわち指向軸方向における基端側を閉塞するように設けられている。内側底板部42は、ケース背面空間SBに面する主面である外側底面3cと、基板背面空間SKに面する主面である内側底面42aとを有している。「主面」とは、板状部における厚さ方向と直交する表面をいう。ケース背面空間SBは、素子収容ケース4よりも指向軸方向における基端側に位置する、素子収容ケース4の外側の空間である。すなわち、ケース背面空間SBは、組立状態にてマイクロフォン収容部2cおよび上記のスリーブ部材によって占められるようになっている。内側底面42aは、指向軸DAと交差する平坦な円形の平面状に形成されている。具体的には、本実施形態においては、内側底面42aは、指向軸DAと直交するように設けられている。
素子収容ケース4は、さらに、外側底板部43を有している。外側底板部43は、指向軸DAに沿った厚さ方向を有する板状に形成されている。外側底板部43は、後述する閉鎖空間SC内に水等の液体が浸入しないように、側板部41の他端側すなわち指向軸方向における先端側を液密的に閉塞するように設けられている。外側底板部43は、天板部とも称され得る。
外側底板部43は、指向軸DAに沿った厚さ方向を有する振動板であるケース側ダイアフラム43aを有している。ケース側ダイアフラム43aは、トランスデューサユニット5による超音波の送信または受信の際に、撓みながら超音波振動するように設けられている。すなわち、ケース側ダイアフラム43aは、面内方向における中心部が指向軸方向に移動する態様で超音波振動するように形成されている。本実施形態においては、ケース側ダイアフラム43aは、面内方向における形状、すなわち、指向軸DAと直交する面内における形状が、略円形に形成されている。
ケース側ダイアフラム43aは、外側底板部43の面内方向における中央部に設けられた薄肉部として形成されている。すなわち、外側底板部43は、ケース側ダイアフラム43aとケース側厚肉部43bとを有している。ケース側厚肉部43bは、外側底板部43における厚肉部であって、ケース側ダイアフラム43aよりも径方向における外側に配置されている。ケース側厚肉部43bは、ケース側ダイアフラム43aの周囲を囲むように設けられている。ケース側厚肉部43bは、ケース側ダイアフラム43aの径方向における外縁部を固定的に支持するように設けられている。
外側底板部43は、厚さ方向と直交する主面である露出面3bを有している。すなわち、露出面3bの面内方向における中央部は、ケース側ダイアフラム43aにおける外部空間SDに面する外表面を構成するように設けられている。
また、外側底板部43は、ダイアフラム裏面43cとギャップ内壁面43dとを有している。ダイアフラム裏面43cは、ケース側ダイアフラム43aにおける内表面であって、露出面3bの裏側にて指向軸DAと交差するように設けられている。具体的には、本実施形態においては、ダイアフラム裏面43cは、指向軸DAと直交する平坦な円形の平面状に形成されている。すなわち、ダイアフラム裏面43cは、後述する閉鎖空間SCの天井面を構成する内壁面であって、指向軸方向における基端側を向くように設けられている。ギャップ内壁面43dは、ケース側厚肉部43bにおける、閉鎖空間SCに面する内側の側壁面であって、指向軸DAを囲む円筒内面状に形成されている。
超音波センサ1が車載用であることを考慮して、側板部41および外側底板部43は、厚さが0.5mm以上に形成されている。すなわち、ケース側ダイアフラム43aは、0.5mm以上の一定厚さを有する平板状に形成されている。本実施形態においては、外側底板部43は、外側表面すなわち指向軸方向における先端側の表面である露出面3bが平面状となるように形成されている。換言すれば、ケース側ダイアフラム43aとケース側厚肉部43bとは、互いの外側表面が面一となるように設けられている。また、ケース側ダイアフラム43aは、外側底板部43の厚さ方向における一端側に設けられている。
具体的には、本実施形態においては、外側底板部43は、ダイアフラム形成部44とダイアフラム支持部45とを接合した構造を有している。ダイアフラム形成部44は、ケース側ダイアフラム43aの厚さに対応する均一厚さを有する薄板状に形成されている。ダイアフラム支持部45は、ダイアフラム形成部44よりも厚い板状に形成されている。ダイアフラム支持部45には、ギャップ内壁面43dに対応する貫通孔であるギャップ形成孔46が設けられている。すなわち、ギャップ内壁面43dは、ギャップ形成孔46の内壁面として形成されている。
トランスデューサユニット5は、電気信号と超音波振動との変換機能を有する超音波素子50を有している。超音波素子50は、素子収容ケース4の内側に収容されつつ、ケース側ダイアフラム43aから離隔して配置されている。本実施形態においては、トランスデューサユニット5は、MEMS型の圧電トランスデューサとしての構成を有している。すなわち、超音波素子50は、半導体基板51に設けられたMEMS型素子である。
半導体基板51は、指向軸DAに沿った厚さ方向を有するSOI基板であって、ケース側厚肉部43bに固定的に支持されている。SOIはSilicon On Insulatorの略である。具体的には、半導体基板51は、ケース側厚肉部43bに固定された支持基板6と接合されつつ、支持基板6に固定されている。すなわち、半導体基板51は、支持基板6を介してケース側厚肉部43bと固定的に接合されている。
半導体基板51は、一対の主面である基板底面52および素子支持面53を有している。基板底面52は、平坦な平面状に形成されている。基板底面52が不図示の接着層により支持基板6と接合されることで、半導体基板51が支持基板6に固定されている。素子支持面53は、超音波素子50を担持する主面であって、平面状に形成されている。素子支持面53は、基板背面空間SKに面するように設けられている。
半導体基板51には、素子側ダイアフラム54が設けられている。素子側ダイアフラム54は、指向軸DAに沿った膜厚方向を有する振動膜であって、半導体基板51における薄肉部として形成されている。素子支持面53は、素子側ダイアフラム54の外表面として設けられている。すなわち、素子側ダイアフラム54は、素子支持面53を平面状に形成するように、半導体基板51の厚さ方向における一端側に設けられている。素子側ダイアフラム54は、トランスデューサユニット5による超音波の送信または受信の際に、撓みながら超音波振動するように設けられている。すなわち、素子側ダイアフラム54は、面内方向における中心部が指向軸方向に移動する態様で、ケース側ダイアフラム43aと同一方向に超音波振動するように形成されている。
超音波素子50は、素子側ダイアフラム54と素子部55とを有している。素子部55は、素子側ダイアフラム54に設けられている。本実施形態においては、素子部55は、圧電膜と薄膜電極とを積層した圧電素子であって、素子支持面53上に固定されている。すなわち、超音波素子50は、PMUTとしての構成を有している。PMUTはPiezoelectric Micro-machined Ultrasonic Transducersの略である。
超音波素子50は、素子部55に印加された交流電圧である駆動電圧に基づいて、素子側ダイアフラム54が超音波振動するように構成されている。また、超音波素子50は、素子側ダイアフラム54の振動状態に基づいて、素子部55にて出力電圧が発生するように構成されている。
素子側ダイアフラム54は、面内方向に対向する素子側厚肉部56の間を架け渡すように設けられている。すなわち、素子側厚肉部56は、面内方向について素子側ダイアフラム54に隣接する厚肉部であって、素子側ダイアフラム54よりも厚い所定厚さを有している。
半導体基板51は、素子側凹部57を有している。素子側凹部57は、面内方向における素子側ダイアフラム54に対応する位置に設けられた凹部であって、指向軸方向に沿って開口するように形成されている。すなわち、素子側凹部57は、素子側厚肉部56に囲まれるように設けられている。
本実施形態においては、素子側凹部57は、支持基板6に向かって開口するように設けられている。すなわち、素子側凹部57の内側の空間である素子側空洞部58は、素子側ダイアフラム54および素子側厚肉部56によって、基板背面空間SKから遮断されている。
支持基板6は、超音波素子50を有するトランスデューサユニット5を固定的に支持する部材であって、指向軸DAに沿った厚さ方向を有する板状に形成されている。支持基板6は、外側底板部43と半導体基板51との間に配置されている。支持基板6は、一対の主面である実装面61およびケース固定面62を有している。
実装面61は、基板背面空間SKに面するように設けられている。実装面61上には、半導体基板51が固定されている。実装面61における半導体基板51の周囲に設けられた不図示の電極パッドと、トランスデューサユニット5に設けられた不図示の電極パッドとは、ボンディングワイヤ等の配線を介して電気接続されている。
支持基板6は、外側底板部43におけるケース側厚肉部43bと接合されつつ、素子収容ケース4に固定されている。具体的には、ケース固定面62は、不図示の接着層により、外側底板部43におけるケース側厚肉部43bに固定されている。ケース固定面62とケース側ダイアフラム43aとの間には、ギャップGが設けられている。すなわち、ギャップGは、ケース側ダイアフラム43aと支持基板6との間の空隙である。
支持基板6は、連通孔63を有している。連通孔63は、支持基板6を厚さ方向に貫通する貫通孔であって、実装面61およびケース固定面62にて開口するように設けられている。連通孔63は、指向軸DAを囲む丸孔状に形成されている。すなわち、連通孔63は、円筒内面状の内壁面である基板内壁面64を有している。
本実施形態においては、支持基板6は、連通孔63が素子側凹部57と隣接しつつ連通するように、半導体基板51と接合されている。すなわち、連通孔63は、半導体基板51に設けられた素子側空洞部58と連通するように設けられている。また、連通孔63は、ギャップGとも連通するように設けられている。すなわち、連通孔63は、ギャップGと素子側空洞部58との間にて、両者を連通させるように設けられている。そして、素子側空洞部58と、ギャップGと、連通孔63とによって、閉鎖空間SCが形成されている。
閉鎖空間SCは、外側底板部43と半導体基板51と支持基板6との接合体の内部に形成されている。すなわち、閉鎖空間SCは、ダイアフラム裏面43cとギャップ内壁面43dと基板内壁面64と素子側凹部57とによって囲まれている。閉鎖空間SCは、ケース側ダイアフラム43aと素子側ダイアフラム54との間に設けられている。閉鎖空間SCは、半導体基板51を挟んで基板背面空間SKとは反対側に設けられている。「閉鎖空間」は、外部との連通孔を有しない、閉じられた空間を意味する。本実施形態においては、閉鎖空間SCは、気密且つ液密に密閉された空間として形成されている。
上記の通り、半導体基板51は、ケース側ダイアフラム43aと素子側ダイアフラム54との間に閉鎖空間SCが形成されるように配置されつつ、素子収容ケース4に固定的に支持されている。閉鎖空間SCは、素子収容ケース4内に設けられた共鳴空間としての機能を有している。すなわち、閉鎖空間SCは、ケース側ダイアフラム43aと素子側ダイアフラム54との間で超音波振動が連成共振により伝播するように設けられている。
本実施形態においては、閉鎖空間SCは、空間断面積が指向軸方向について変化するように形成されている。「空間断面積」は、閉鎖空間SCにおける、指向軸DAと直交する平面による断面積である。具体的には、閉鎖空間SCは、素子側空洞部58にて最も空間断面積が小さく、ギャップGにて最も空間断面積が大きくなるように形成されている。連通孔63は、その空間断面積が素子側空洞部58以上且つギャップG未満となるように形成されている。すなわち、連通孔63は、その内壁面である基板内壁面64が径方向について素子側凹部57の内側に位置しないように形成されている。
超音波マイクロフォン3は、超音波素子50、閉鎖空間SC、およびケース側ダイアフラム43aにおける共振周波数が、30kHz~100kHzとなるように構成されている。また、超音波マイクロフォン3は、第一共振周波数と第二共振周波数と第三共振周波数とが一致するように構成されている。第一共振周波数は、超音波素子50における、共振周波数すなわち構造共振周波数である。第二共振周波数は、閉鎖空間SCにおける、共振周波数すなわち共鳴周波数である。第三共振周波数は、ケース側ダイアフラム43aにおける、共振周波数すなわち構造共振周波数である。
具体的には、超音波マイクロフォン3は、Δfr≦BWとなるように構成されている。Δfrは、第一共振周波数と第二共振周波数の差、第二共振周波数と第三共振周波数との差、および、第一共振周波数と第三共振周波数との差のうちの、最大値である。すなわち、Δfrは、ケース側ダイアフラム43a、超音波素子50、および閉鎖空間SCの間の、共振周波数のズレ量の最大値である。BWは、超音波素子50と閉鎖空間SCとケース側ダイアフラム43aとのうちの最も共振帯が広いものにおける、当該共振帯の帯域幅である。
「共振帯」とは、共振周波数をピークとする出力曲線あるいは特性曲線において、ピーク値から3dB低下する二つの周波数fa,fb間の周波数帯域である。「ピーク値から3dB低下」は、「ピーク値の1/√2倍」とも言い換えられ得る。「共振帯」は、「構造体共振の共振帯」、あるいは、「共振ピークの3dB帯」とも称され得る。帯域幅は、「-3dB帯域幅」、「3dB帯域幅」、あるいは単に「周波数帯域幅」とも称され得る。
(効果)
以下、本実施形態の構成による動作概要を、同構成により奏される効果とともに、各図面を参照しつつ説明する。
超音波センサ1の車載状態にて、素子収容ケース4における外側底板部43の外表面である露出面3bは、外部空間SDに露出される。このため、車両Vの走行中等において、露出面3bに、小石等の固い異物が衝突する場合がある。
この点、上記構成においては、超音波素子50は、素子収容ケース4の内側に収容されつつ、素子収容ケース4に設けられたケース側ダイアフラム43aから離隔して配置されている。すなわち、超音波素子50は、車載状態にて外部空間SDに露出する外側底板部43には貼り付けられていない。このため、ケース側ダイアフラム43aに小石等の固い異物が衝突しても、かかる衝突による衝撃は、超音波素子50には直接的には作用しない。したがって、超音波素子50におけるクラック等の発生が、良好に防止され得る。特に、外側底板部43を厚く形成しなくても、超音波素子50におけるクラック等の不具合の発生が、良好に回避され得る。したがって、超音波センサ1の体格の大型化を回避しつつ、超音波素子50を良好に保護することが可能となる。
また、超音波マイクロフォン3の指向軸方向における先端部、すなわち、側板部41の指向軸方向における先端側は、外側底板部43により液密的に閉塞されている。このため、露出面3b側すなわち外部空間SD側からの、素子収容ケース4内への水等の液体の浸入が、良好に抑制される。
さらに、超音波マイクロフォン3の指向軸方向における基端部は、組立状態にて、センサケース2および上記のスリーブ部材によって液密的に覆われている。具体的には、ケース側方空間SSおよびケース背面空間SBは、マイクロフォン収容部2cおよび上記のスリーブ部材によって占められている。このため、車体内空間SN側からの、素子収容ケース4内への水等の液体の浸入が、良好に抑制される。
このように、上記構成によれば、超音波素子50および閉鎖空間SCは、水等の浸入から良好に保護される。したがって、水等の浸入による、超音波素子50における故障あるいは閉鎖空間SCにおける共鳴周波数の変動等の、不具合の発生が、良好に抑制される。
また、超音波素子50が設けられた素子側ダイアフラム54は、閉鎖空間SCを隔ててケース側ダイアフラム43aと対向配置されている。すなわち、半導体基板51における薄肉部である素子側ダイアフラム54と、外側底板部43における薄肉部であるケース側ダイアフラム43aとの間には、共鳴空間である閉鎖空間SCが設けられている。閉鎖空間SCは、液密的且つ気密的な空間として形成されている。このため、超音波振動は、閉鎖空間SC内の媒体(例えば空気)を介して、素子側ダイアフラム54すなわち超音波素子50とケース側ダイアフラム43aとの間を良好に伝播する。
具体的には、探査波の送信時においては、駆動電圧の印加により超音波素子50にて発生した超音波振動が、閉鎖空間SC内の媒体に伝播する。閉鎖空間SC内の媒体に伝播した超音波振動は、ケース側ダイアフラム43aに伝播する。ケース側ダイアフラム43aに伝播した超音波振動により、外部空間SDに向けて探査波が送信される。逆に、受信時においては、外部空間SDからの受信波により励振されたケース側ダイアフラム43aの振動が、閉鎖空間SC内の媒体に伝播する。閉鎖空間SC内の媒体に伝播した振動は、素子側ダイアフラム54に伝播する。これにより、素子部55にて出力電圧が発生する。
このように、超音波素子50とケース側ダイアフラム43aとのうちの一方における超音波振動は、ギャップG内の媒体を介した連成共振により、他方に伝播する。したがって、超音波素子50とケース側ダイアフラム43aとの間の超音波振動の伝播効率が良好となる。
ここで、超音波センサ1は、第一共振周波数と第二共振周波数と第三共振周波数とが一致するように構成されている。第一共振周波数は、超音波素子50における、共振周波数すなわち構造共振周波数である。第二共振周波数は、閉鎖空間SCにおける、共振周波数すなわち共鳴周波数である。第三共振周波数は、ケース側ダイアフラム43aにおける、共振周波数すなわち構造共振周波数である。したがって、超音波素子50とケース側ダイアフラム43aとの間の超音波振動の伝播効率が良好となる。
このように、上記構成によれば、超音波素子50を良好に保護しつつ、超音波センサ1の外部空間SDと超音波素子50との間の超音波振動の伝播を良好に実現することが可能となる。特に、超音波素子50として、バルク型よりも大出力が得られにくいMEMS型の構成を用いても、振動が連成共振により効率的に伝播することで、良好な送受信性能が実現され得る。また、車載用の超音波センサ1として、素子収容ケース4の強度確保のために外側底板部43を厚さが0.5mm以上となるように厚めに形成しても、良好な送受信性能が実現され得る。
但し、製造上、第一共振周波数と第二共振周波数と第三共振周波数とを完全に一致させることは困難である。そこで、第一共振周波数と第二共振周波数と第三共振周波数とが実質的に一致しているものとするために、これらの差をどの程度に収めるかが問題となる。
この点、本発明の筆頭発明者を含む共同発明者は、鋭意検討の結果、第一共振周波数と第二共振周波数と第三共振周波数とが実質的に一致しているものと評価できる条件を見出した。その条件とは、Δfr≦BWである。Δfrは、第一共振周波数と第二共振周波数の差、第二共振周波数と第三共振周波数との差、および、第一共振周波数と第三共振周波数との差のうちの、最大値である。BWは、超音波素子50と閉鎖空間SCとケース側ダイアフラム43aとのうちの最も共振帯が広いものにおける、当該共振帯の帯域幅である。これにより、良好な送受信特性が得られる。
上記構成においては、素子収容ケース4は、閉鎖空間SCを気密且つ液密に密閉するように形成されている。このため、ケース側ダイアフラム43aと超音波素子50との間の、閉鎖空間SC内の媒体(例えば空気)は、超音波振動を伝播する流体バネとして良好に機能する。すなわち、閉鎖空間SCを気密的に形成することで、超音波素子50とケース側ダイアフラム43aとの間の疎密波の強度を高めることができる。したがって、かかる構成によれば、良好な送受信特性が得られる。
ところで、超音波マイクロフォン3の指向性は、駆動周波数と、ケース側ダイアフラム43aの振動範囲とによって変化する。すなわち、指向角は、駆動周波数と振動範囲との積が小さくなるほど大きくなる。
この点、上記構成においては、素子側凹部57の内側の空間である素子側空洞部58と、ギャップGと、連通孔63とによって、閉鎖空間SCが形成されている。また、閉鎖空間SCは、空間断面積が指向軸方向について変化するように形成されている。具体的には、素子側空洞部58における空間断面積が最も小さく、ギャップGにおける空間断面積が最も大きい。連通孔63における空間断面積は、素子側空洞部58における空間断面積以上である。これにより、所望の駆動周波数と指向角とを実現するための設計自由度が向上する。
すなわち、例えば、駆動周波数に関しては、超音波素子50における構造共振周波数を所望の周波数に設定することが可能である。超音波素子50における構造共振周波数は、素子側ダイアフラム54と素子部55との積層体における寸法等の設計パラメータを調整することで設定可能である。具体的には、例えば、素子側ダイアフラム54の、材料、厚さ、面内方向におけるサイズ、等を調整することで、超音波素子50における構造共振周波数を任意の値に設定することが可能である。
また、ケース側ダイアフラム43aにおける指向角および構造共振周波数は、ケース側ダイアフラム43aにおける寸法等の設計パラメータを調整することで設定可能である。具体的には、例えば、ケース側ダイアフラム43aの、材料、厚さ、面内方向におけるサイズ、等が調整可能である。すなわち、上記構成においては、指向角およびケース側ダイアフラム43aにおける構造共振周波数を、超音波素子50および閉鎖空間SCにおける共振周波数とは独立に調整することが可能である。
さらに、閉鎖空間SCにおける共鳴周波数は、閉鎖空間SCを構成する各部の寸法調整することで設定可能である。具体的には、例えば、ギャップG、連通孔63、および素子側空洞部58の、指向軸方向寸法および面内方向寸法が調整可能である。ここで、共鳴周波数の設定に際しては、ケース側ダイアフラム43aおよび素子側ダイアフラム54の、厚さおよび面内方向におけるサイズが変わらないようにすることが好適である。具体的には、例えば、ケース側厚肉部43bの厚さ、半導体基板51の厚さ、支持基板6の厚さ、連通孔63の内径、等を調整することが好適である。これにより、共鳴周波数を、素子側ダイアフラム54および超音波素子50における構造共振周波数とは独立に調整することが可能である。
上記構成においては、超音波素子50は、MEMS型の半導体素子として、半導体基板51に形成されている。かかる構成によれば、超音波素子50における送受信性能を維持しつつ、超音波素子50を良好に小型化することが可能となる。したがって、超音波センサ1の体格を大型化させることなく、後述の実施形態のように超音波素子50を面内方向に複数配列形成して超音波センサ1を高機能化することが可能となる。
上記構成においては、素子収容ケース4は、指向軸DAを囲む筒状に形成された側板部41と、側板部41の一端側を液密的に閉塞する外側底板部43とを有している。また、ケース側ダイアフラム43aは、面内方向における外側底板部43の中央部に設けられた薄肉部として形成されている。さらに、超音波素子50を有する半導体基板51は、ケース側ダイアフラム43aの周囲に形成された外側底板部43における厚肉部であるケース側厚肉部43bに固定的に支持されている。かかる構成によれば、ケース側ダイアフラム43aと素子側ダイアフラム54との間に設けられた共鳴空間である閉鎖空間SCを所望の特性を有するように形成することが、簡略な製造工程によって実現され得る。
(第二実施形態)
以下、第二実施形態について、図4を参照しつつ説明する。なお、以下の第二実施形態の説明においては、主として、第一実施形態と異なる部分について説明する。また、第一実施形態と第二実施形態とにおいて、互いに同一または均等である部分には、同一符号が付されている。したがって、以下の第二実施形態の説明において、第一実施形態と同一の符号を有する構成要素に関しては、技術的矛盾または特段の追加説明なき限り、上記の第一実施形態における説明が適宜援用され得る。
図4に示されているように、超音波マイクロフォン3には、容積調整部401が設けられている。容積調整部401は、ダイアフラム裏面43cとは異なる位置にて、閉鎖空間SCに面するように設けられている。
本実施形態においては、容積調整部401は、閉鎖空間SCに向かって面内方向すなわち径方向に沿って突設された突起として形成されている。具体的には、図4の例においては、突起としての容積調整部401は、ギャップ内壁面43dに設けられている。
閉鎖空間SCに向かって突設された突起としての容積調整部401を設けて、閉鎖空間SCの容積を調整することで、閉鎖空間SCにおける共鳴周波数を調整することが可能となる。この点、ダイアフラム裏面43cに容積調整部401を設けることも一応可能である。しかしながら、ダイアフラム裏面43cは、ケース側ダイアフラム43aにおける、閉鎖空間SCに面する内表面である。ダイアフラム裏面43cに突起を設けると、かかる突起は、振動的には、ケース側ダイアフラム43aに対する付着物と等価となる。このため、ダイアフラム裏面43cに容積調整部401を設けると、閉鎖空間SCにおける共鳴周波数のみならず、ケース側ダイアフラム43aにおける共振周波数も変化してしまう。
そこで、本実施形態においては、閉鎖空間SCの容積を調整する容積調整部401は、ダイアフラム裏面43cとは異なる位置に設けられている。かかる構成によれば、容積調整部401を用いた閉鎖空間SCにおける共鳴周波数の調整を、素子側ダイアフラム54および超音波素子50における構造共振周波数とは独立に調整することが可能となる。したがって、所望の駆動周波数と指向角とを実現するための設計自由度が向上する。
なお、突起としての容積調整部401は、ギャップ内壁面43dに代えて、あるいはこれとともに、連通孔63に設けられ得る。同様に、突起としての容積調整部401は、素子側凹部57における、素子側ダイアフラム54の裏面以外の、円筒内面状の部分に設けられ得る。
(第三実施形態)
以下、第三実施形態について、図5を参照しつつ説明する。なお、以下の第三実施形態の説明においては、主として、第二実施形態と異なる部分について説明する。また、第二実施形態と第三実施形態とにおいて、互いに同一または均等である部分には、同一符号が付されている。したがって、以下の第三実施形態の説明において、先に説明した他の実施形態と同一の符号を有する構成要素に関しては、技術的矛盾または特段の追加説明なき限り、当該他の実施形態における説明が適宜援用され得る。後述の第四実施形態以降の他の実施形態についても同様である。
図5に示されているように、本実施形態においては、容積調整部401は、閉鎖空間SCに向かって開口する凹部として形成されている。具体的には、図5の例においては、凹部としての容積調整部401は、ギャップ内壁面43dにて、面内方向すなわち径方向に沿って開口するように設けられている。
かかる構成によれば、上記第二実施形態と同様の効果が奏される。なお、凹部としての容積調整部401は、ギャップ内壁面43dに代えて、あるいはこれとともに、連通孔63に設けられ得る。同様に、凹部としての容積調整部401は、素子側凹部57における、素子側ダイアフラム54の裏面以外の、円筒内面状の部分に設けられ得る。
(第四実施形態)
以下、第四実施形態について、図6を参照しつつ説明する。本実施形態においては、容積調整部401は、外側底板部43に設けられたテーパ部であって、ギャップ形成孔46の内径が指向軸方向における位置に応じて変化するように形成されている。すなわち、ギャップ内壁面43dは、円錐台状に形成されたギャップ形成孔46の内壁面であって、テーパ面状の形状を有している。
かかる構成によれば、上記第二実施形態および第三実施形態と同様の効果が奏される。なお、テーパ部としての容積調整部401は、外側底板部43におけるギャップ形成孔46に代えて、あるいはこれとともに、連通孔63に設けられ得る。同様に、テーパ部としての容積調整部401は、素子側凹部57に設けられ得る。
(第五実施形態)
以下、第五実施形態について、図7を参照しつつ説明する。本実施形態においては、素子収容ケース4には、スリット402が形成されている。スリット402は、素子収容ケース4の指向軸方向における先端部、すなわち、ケース側ダイアフラム43aが設けられた側の一端部に設けられている。
図7に示されているように、本実施形態においては、スリット402は、側板部41の上端部に形成されている。具体的には、スリット402は、側板部41を径方向に貫通することで、外側底板部43におけるケース側厚肉部43bに達するように設けられている。
スリット402は、封止材403によって気密的且つ液密的に封止されている。封止材403は、例えば、合成樹脂等によって形成されている。また、素子収容ケース4内には、吸湿材404が収容されている。吸湿材404は、閉鎖空間SC内に設けられている。また、吸湿材404は、基板背面空間SK内に設けられている。
かかる構成においては、スリット402を設けることで、ケース側ダイアフラム43aが振動しやすくなる。これにより、超音波センサ1における指向性を高めることが可能となる。また、スリット402を封止材403によって気密的且つ液密的に封止することで、露出面3b側すなわち外部空間SD側からの、素子収容ケース4内への水等の液体の浸入が、良好に抑制される。また、閉鎖空間SCにおける気密性が、良好に確保され得る。
また、閉鎖空間SC内に吸湿材404を設けることで、閉鎖空間SCにおける共鳴周波数の変動が、良好に抑制される。さらに、基板背面空間SK内に吸湿材404を設けることで、配線部における腐食等の、超音波素子50における劣化あるいは故障の発生が、良好に抑制される。
(第六実施形態)
以下、第六実施形態について、図8を参照しつつ説明する。本実施形態においては、スリット402は、ケース側ダイアフラム43aに形成されている。具体的には、図8の例においては、スリット402は、ケース側ダイアフラム43aを厚さ方向に貫通するように設けられている。また、スリット402は、ケース側ダイアフラム43aの径方向における外縁部に設けられている。
かかる構成によれば、上記第五実施形態と同様の効果が奏される。なお、本実施形態においても、上記第五実施形態と同様に、閉鎖空間SC内に吸湿材404を設けることで、閉鎖空間SCにおける共鳴周波数の変動が、良好に抑制される。また、基板背面空間SK内に吸湿材404を設けることで、超音波素子50における劣化あるいは故障の発生が、良好に抑制される。
(第七実施形態)
以下、第七実施形態について、図9を参照しつつ説明する。本実施形態においては、閉鎖空間SC内には、制振材405が収容されている。制振材405は、ケース側ダイアフラム43aにおける振動に対するダンパー効果を奏するように設けられている。具体的には、図9の例においては、制振材405は、合成ゴム等の合成樹脂によって形成された板状部材であって、ダイアフラム裏面43cに貼り付けられている。
かかる構成によれば、超音波センサ1における残響の発生が、良好に低減される。これにより、残響時間が短縮され、以て超音波センサ1における近距離検知性能が向上する。
(第八実施形態)
以下、第八実施形態について、図10を参照しつつ説明する。本実施形態においては、超音波マイクロフォン3は、温度センサ406と周波数変更部407とを備えている。
温度センサ406は、超音波センサ1の動作環境温度に対応する出力を発生するように設けられている。図10の例においては、温度センサ406は、基板背面空間SK内に収容されている。すなわち、温度センサ406は、超音波素子50における素子部55に対向する空間である、素子収容ケース4の内側の基板背面空間SK内の温度に対応する出力を発生するようになっている。具体的には、温度センサ406は、内側底板部42における内側底面42a上に固定されている。
周波数変更部407は、超音波センサ1の動作環境温度に応じて、ケース側ダイアフラム43aにおける振動周波数を変更するように設けられている。具体的には、周波数変更部407は、温度センサ406の出力に基づいて、ケース側ダイアフラム43aにおける構造共振周波数を変更するように構成されている。周波数変更部407は、図2に示されたケース本体部2aの内側に収容された不図示の制御回路基板に実装された制御ICによって、動作が制御されるようになっている。
本実施形態においては、周波数変更部407は、バルクPZT等のバルク圧電セラミックからなる圧電素子であって、電圧印加により歪を発生するように形成されている。PZTはチタン酸ジルコン酸鉛の略称である。すなわち、周波数変更部407は、電圧印加時の歪によりケース側ダイアフラム43aにおける内部応力すなわち張力を調整するように、素子収容ケース4におけるケース側ダイアフラム43aまたはその近傍位置に貼り付けられている。図10の例においては、周波数変更部407は、外側底板部43におけるケース側ダイアフラム43aまたはその近傍にて、露出面3bに固定されている。
超音波センサ1の動作環境温度が変化すると、ケース側ダイアフラム43aにおける共振周波数がシフトする。ケース側ダイアフラム43aにおける共振周波数がシフトすると、ケース側ダイアフラム43aにおける共振周波数と超音波素子50における共振周波数との差が大きくなる。すると、超音波素子50とケース側ダイアフラム43aとの間の振動伝播効率が低下する。そこで、本実施形態においては、温度センサ406と周波数変更部407とが設けられている。
かかる構成においては、温度センサ406は、超音波センサ1の動作環境温度に対応する出力を発生する。これにより、超音波センサ1の動作環境温度が検出可能となる。周波数変更部407は、検出された動作環境温度に応じて、ケース側ダイアフラム43aにおける共振周波数を変更する。具体的には、検出された動作環境温度に応じて、周波数変更部407に制御電圧が印加される。周波数変更部407は、印加された制御電圧に応じて歪を発生することで、ケース側ダイアフラム43aにおける内部応力すなわち張力を調整する。
かかる構成によれば、動作環境温度の変化による共振条件のズレが、良好に補償され得る。また、ケース側ダイアフラム43aにおける共振周波数を、閉鎖空間SCにおける共鳴周波数および超音波素子50における共振周波数とは独立に制御することが可能となる。
(第九実施形態)
以下、第九実施形態について、図11を参照しつつ説明する。本実施形態においては、温度センサ406は、半導体基板51に設けられている。具体的には、図11の例においては、温度センサ406は、素子支持面53上に固定されている。
かかる構成によれば、上記第八実施形態と同様の効果が奏される。なお、温度センサ406を半導体基板51に設ける場合、温度センサ406の設置位置は、素子支持面53上に限定されない。すなわち、例えば、温度センサ406は、半導体基板51の端面に設けられてもよい。あるいは、例えば、温度センサ406は、半導体基板51の内部に設けられてもよい。また、温度センサ406は、MEMS技術によって半導体基板51に設けられてもよい。
(第十実施形態)
以下、第十実施形態について、図12を参照しつつ説明する。本実施形態においては、周波数変更部407は、超音波素子50における振動周波数を変更するように設けられている。具体的には、周波数変更部407は、温度センサ406の出力に基づいて、超音波素子50における構造共振周波数を変更するように構成されている。
本実施形態においては、周波数変更部407は、MEMS型の圧電素子であって、電圧印加により歪を発生するように形成されている。すなわち、周波数変更部407は、電圧印加時の歪により素子側ダイアフラム54における内部応力すなわち張力を調整するように、半導体基板51における素子側ダイアフラム54またはその近傍位置に設けられている。
超音波センサ1の動作環境温度が変化すると、ケース側ダイアフラム43aにおける共振周波数がシフトする。ケース側ダイアフラム43aにおける共振周波数がシフトすると、超音波素子50とケース側ダイアフラム43aとの間の振動伝播効率が低下する。そこで、本実施形態においては、温度センサ406と周波数変更部407とが設けられている。
かかる構成においては、温度センサ406は、超音波センサ1の動作環境温度に対応する出力を発生する。これにより、超音波センサ1の動作環境温度が検出可能となる。周波数変更部407は、検出された動作環境温度に応じて、超音波素子50における共振周波数を変更する。具体的には、検出された動作環境温度に応じて、周波数変更部407に制御電圧が印加される。周波数変更部407は、印加された制御電圧に応じて歪を発生することで、素子側ダイアフラム54における内部応力すなわち張力を調整する。
かかる構成によれば、動作環境温度の変化による共振条件のズレが、良好に補償され得る。また、超音波素子50における共振周波数を、閉鎖空間SCにおける共鳴周波数およびケース側ダイアフラム43aにおける共振周波数とは独立に制御することが可能となる。
(第十一実施形態)
以下、第十一実施形態について、図13を参照しつつ説明する。本実施形態においては、周波数変更部407は、閉鎖空間SCにおける振動周波数を変更するように設けられている。具体的には、周波数変更部407は、温度センサ406の出力に基づいて、閉鎖空間SCにおける共鳴周波数を変更するように構成されている。
本実施形態においては、周波数変更部407は、バルクPZT等のバルク圧電セラミックからなる圧電素子であって、電圧印加により変形するように形成されている。図13の例においては、周波数変更部407は、ケース側厚肉部43bに設けられている。具体的には、周波数変更部407は、ダイアフラム形成部44と支持基板6との間に配置されている。周波数変更部407とダイアフラム形成部44との間、および、周波数変更部407と支持基板6との間には、弾性接合層408が設けられている。弾性接合層408は、弾性接着剤層によって形成されている。
かかる構成においては、温度センサ406は、超音波センサ1の動作環境温度に対応する出力を発生する。これにより、超音波センサ1の動作環境温度が検出可能となる。周波数変更部407は、検出された動作環境温度に応じて、閉鎖空間SCにおける共鳴周波数を変更する。具体的には、検出された動作環境温度に応じて、周波数変更部407に制御電圧が印加される。周波数変更部407は、印加された制御電圧に応じて、指向軸方向および面内方向に伸縮する。
周波数変更部407の指向軸方向における伸縮は、弾性接合層408によって吸収される。このため、周波数変更部407の指向軸方向における伸縮による、ケース側ダイアフラム43aおよび超音波素子50における共振周波数の変動が、良好に抑制され得る。
一方、周波数変更部407の面内方向における伸縮により、ギャップGの面内方向すなわち径方向における寸法が変化する。すると、閉鎖空間SCの体積が変化する。これにより、閉鎖空間SCにおける共鳴周波数が変化する。このように、かかる構成によれば、閉鎖空間SCにおける共鳴周波数を、ケース側ダイアフラム43aおよび超音波素子50における共振周波数とは独立に制御することが可能となる。
(第十二実施形態)
以下、第十二実施形態について、図14を参照しつつ説明する。本実施形態においては、素子収容ケース4は、通気口421を有している。
通気口421は、素子収容ケース4の内側の基板背面空間SKと、素子収容ケース4の外側のケース背面空間SBとを連通させるように設けられている。具体的には、通気口421は、内側底板部42を厚さ方向に貫通する貫通孔であって、外側底面3cおよび内側底面42aにて開口するように形成されている。
通気口421は、空気が通過可能な一方で液体の通過が抑制されるように、液密的に封止されている。具体的には、図14の例においては、通気口421には、通気口シール材422が装着されている。通気口シール材422は、空気が通過可能な一方で液体の通過が困難な多孔質材料によって形成されている。また、素子収容ケース4内には、吸湿材404が収容されている。
かかる構成においては、素子収容ケース4の内側の基板背面空間SKと、素子収容ケース4の外側のケース背面空間SBとの間の気体の授受が可能となる。これにより、接着剤の揮発成分等を素子収容ケース4の外側に排出することが可能となる。また、素子側ダイアフラム54を挟んで閉鎖空間SCの反対側に位置する基板背面空間SKを外気と連通させることで、素子側ダイアフラム54の変形の際の抵抗が低減し、受信感度が向上する。さらに、通気口シール材422を設けることで、通気口421にて水等の液体が素子収容ケース4の内部に浸入することを良好に抑制することができる。
(第十三実施形態)
以下、第十三実施形態について、図15を参照しつつ説明する。本実施形態においては、ケース側ダイアフラム43a、超音波素子50、および閉鎖空間SCが、面内方向に複数配列形成されている。
具体的には、外側底板部43には、ケース側隔壁部431が設けられている。ケース側隔壁部431は、外側底板部43における厚肉部であって、ケース側厚肉部43bとは異なる位置に設けられている。すなわち、ケース側隔壁部431は、面内方向について、隣接する2つのケース側ダイアフラム43aの間に配置されている。換言すれば、ケース側隔壁部431は、複数のケース側ダイアフラム43aを面内方向について区分するように設けられている。
ケース側隔壁部431は、指向軸方向における基端部が支持基板6と当接することで、支持基板6により支持されている。また、ケース側隔壁部431は、ダイアフラム支持部45の一部を構成する部分であって、指向軸方向における基端側からダイアフラム形成部44を支持するように設けられている。すなわち、ケース側隔壁部431は、ケース側厚肉部43bと同一の、指向軸方向における寸法を有している。
本実施形態においては、ケース側隔壁部431によって区分された複数のギャップGが、面内方向に複数配列形成されている。複数のギャップGの各々は、面内方向について、複数のケース側ダイアフラム43aの各々に対応する位置に配置されている。
半導体基板51には、複数の超音波素子50が設けられている。複数の超音波素子50の各々は、面内方向について、複数のケース側ダイアフラム43aの各々に対応する位置に配置されている。すなわち、一対一に対応する、超音波素子50とケース側ダイアフラム43aとの対が、複数対設けられている。
半導体基板51には、複数の素子側凹部57が設けられている。複数の素子側凹部57の各々は、面内方向について、複数のケース側ダイアフラム43aの各々に対応する位置に配置されている。すなわち、一対一に対応する、素子側凹部57とケース側ダイアフラム43aとの対が、複数対設けられている。
支持基板6には、複数の連通孔63が形成されている。複数の連通孔63の各々は、面内方向について、複数のケース側ダイアフラム43aの各々に対応する位置に配置されている。すなわち、一対一に対応する、連通孔63とケース側ダイアフラム43aとの対が、複数対設けられている。また、一対一に対応する、連通孔63とギャップGとの対が、複数対設けられている。さらに、一対一に対応する、連通孔63と素子側空洞部58との対が、複数対設けられている。
超音波マイクロフォン3には、複数の閉鎖空間SCが形成されている。複数の閉鎖空間SCの各々は、面内方向について、複数のケース側ダイアフラム43aの各々に対応する位置に配置されている。すなわち、一対一に対応する、閉鎖空間SCとケース側ダイアフラム43aとの対が、複数対設けられている。複数の閉鎖空間SCの各々は、1つのギャップGと、これに対応する連通孔63および素子側空洞部58とによって形成されている。
かかる構成によれば、複数の超音波素子50の各々を良好に保護しつつ、これらを用いたセンサアレイとしての機能(例えば角度検知機能等)を良好に実現することが可能となる。また、超音波素子50と閉鎖空間SCとケース側ダイアフラム43aとの組が複数設けられる。このため、各組における周波数特性を個別設計することで、広帯域化等の高機能化が実現され得る。
すなわち、ケース側ダイアフラム43aが面内方向に複数配列形成されている場合、複数のケース側ダイアフラム43aの各々は、互いに異なる共振周波数を有していてもよい。また、超音波素子50が面内方向に複数配列形成されている場合、複数の超音波素子50の各々は、互いに異なる共振周波数を有していてもよい。また、閉鎖空間SCが面内方向に複数配列形成されている場合、複数の閉鎖空間SCの各々は、互いに異なる共鳴周波数を有していてもよい。
(第十四実施形態)
以下、第十四実施形態について、図16を参照しつつ説明する。本実施形態においても、上記第十三実施形態と同様に、ケース側ダイアフラム43a、超音波素子50、および閉鎖空間SCが、面内方向に複数配列形成されている。以下の第十四実施形態の説明においては、主として、上記第十三実施形態と異なる部分について説明する。
本実施形態においては、図15に示されたケース側隔壁部431に代えて、ダイアフラム分離材432が設けられている。ダイアフラム分離材432は、面内方向について、隣接する2つのケース側ダイアフラム43aの間に介在して設けられている。
ダイアフラム分離材432は、図15に示されたケース側隔壁部431と同様に、複数のケース側ダイアフラム43aを面内方向について区分するように設けられている。同様に、ダイアフラム分離材432は、複数のギャップGを面内方向について区分するように設けられている。すなわち、ダイアフラム分離材432は、面内方向について、隣接する2つのギャップGの間に介在して設けられている。
さらに、ダイアフラム分離材432は、ケース側ダイアフラム43aが面内方向に複数配列形成されている場合における、隣接するケース側ダイアフラム43a同士の振動伝達を抑制するように構成されている。具体的には、ダイアフラム分離材432は、合成ゴム等の合成樹脂によって形成されていて、制振機能を有している。
本実施形態においては、ダイアフラム形成部44における、ダイアフラム分離材432に対応する位置には、分離材挿通孔433が設けられている。分離材挿通孔433は、ダイアフラム形成部44を厚さ方向に貫通する貫通孔である。ダイアフラム分離材432は、指向軸方向における基端部が支持基板6と当接することで、支持基板6により支持されている。また、ダイアフラム分離材432は、指向軸方向における先端部が分離材挿通孔433に挿通されている。ダイアフラム分離材432の指向軸方向における先端部が分離材挿通孔433に挿通されている部分は、気密的且つ液密的にシールされている。
かかる構成においては、面内方向に隣接するケース側ダイアフラム43a同士の振動伝達が、良好に抑制され得る。また、面内方向に隣接するギャップG同士の振動伝達が、良好に抑制され得る。したがって、超音波素子50と閉鎖空間SCとケース側ダイアフラム43aとの組が複数設けられた場合における、各組同士の混信が、良好に抑制される。
(第十五実施形態)
以下、第十五実施形態について、図17を参照しつつ説明する。以下の第十五実施形態の説明においても、主として、上記第十三実施形態と異なる部分について説明する。
本実施形態においても、上記第十三実施形態と同様に、ケース側ダイアフラム43aおよび超音波素子50が、面内方向に複数配列形成されている。すなわち、ギャップGおよび素子側空洞部58が、面内方向に複数配列形成されている。
一方、本実施形態においては、連通孔63が、複数のギャップGに跨るように設けられている。また、連通孔63が、複数の素子側空洞部58に跨るように設けられている。すなわち、面内方向に隣接する複数の閉鎖空間SCが、連通孔63によって連通するように形成されている。あるいは、面内方向について、1つの閉鎖空間SCが、連通孔63から、複数のギャップGおよび素子側空洞部58に向かって分岐するように形成されている。
かかる構成によれば、混信抑制機能については上記第十四実施形態には若干劣るものの、上記第十三実施形態と同様の効果が奏され得る。
(第十六実施形態)
以下、第十六実施形態について、図18を参照しつつ説明する。本実施形態においても、上記第十三実施形態と同様に、超音波素子50が、面内方向に複数配列形成されている。すなわち、素子側空洞部58が、面内方向に複数配列形成されている。また、連通孔63が、面内方向に複数配列形成されている。複数の連通孔63の各々は、対応する素子側凹部57すなわち素子側空洞部58と連通するように設けられている。
一方、本実施形態においては、ギャップGが、複数の超音波素子50に跨るように設けられている。同様に、ギャップGが、複数の連通孔63に跨るように設けられている。すなわち、面内方向について、1つの閉鎖空間SCが、ギャップGから複数の連通孔63に向かって分岐するように形成されている。あるいは、面内方向に隣接する複数の閉鎖空間SCが、ギャップGによって連通するように形成されている。
かかる構成によれば、混信抑制機能については上記第十四実施形態には若干劣るものの、上記第十三実施形態と同様の効果が奏され得る。
(第十七実施形態)
以下、第十七実施形態について、図19を参照しつつ説明する。本実施形態においても、上記第十三実施形態と同様に、超音波素子50が、面内方向に複数配列形成されている。すなわち、素子側空洞部58が、面内方向に複数配列形成されている。
一方、本実施形態においては、ギャップGおよび連通孔63が、複数の超音波素子50に跨るように設けられている。すなわち、面内方向について、1つの閉鎖空間SCが、連通孔63から複数の素子側空洞部58に向かって分岐するように形成されている。
かかる構成によれば、混信抑制機能については上記第十四実施形態には若干劣るものの、上記第十三実施形態と同様の効果が奏され得る。
(第十八実施形態)
以下、第十八実施形態について、図20を参照しつつ説明する。本実施形態においては、面内方向に隣接する2つの連通孔63が、基板側隔壁部650によって分割されている。すなわち、面内方向に隣接する複数の閉鎖空間SCが、ギャップGおよび素子側空洞部58によって連通するように形成されている。あるいは、面内方向について、1つの閉鎖空間SCが、支持基板6にて2つの連通孔63に分岐するように形成されている。
かかる構成によれば、連通孔63および基板側隔壁部650における寸法等の設計パラメータを調整することで、閉鎖空間SCにおける共鳴周波数を調整することが可能である。したがって、閉鎖空間SCにおける共鳴周波数を、素子側ダイアフラム54および超音波素子50における構造共振周波数とは独立に調整することが可能となる。
(第十九実施形態)
以下、第十九実施形態について、図21を参照しつつ説明する。本実施形態は、図3に示された第一実施形態における支持基板6を省略した構成に相当する。すなわち、本実施形態においては、半導体基板51は、素子収容ケース4に直接的に固定されている。
具体的には、図21を参照すると、半導体基板51は、素子側凹部57がギャップGと隣接しつつ連通するように外側底板部43におけるケース側厚肉部43bと接合されている。半導体基板51は、不図示の接着層によりケース側厚肉部43bに接着されることで、素子収容ケース4に固定されている。また、素子側凹部57の内側の空間である素子側空洞部58と、ギャップGとによって、閉鎖空間SCが形成されている。
本実施形態によれば、上記第一実施形態と同様の効果が、よりいっそう簡略な装置構成により達成され得る。
(第二十実施形態)
以下、第二十実施形態について、図22を参照しつつ説明する。本実施形態は、図3に示された第一実施形態における半導体基板51の装着姿勢を変更した構成に相当する。
すなわち、本実施形態においては、半導体基板51は、素子支持面53にて、不図示の接着層により支持基板6と接合されている。また、素子側凹部57は、基板背面空間SKに向かって開口することで、素子側空洞部58が連通孔63ではなく基板背面空間SKと連通するように設けられている。
図22に示されているように、閉鎖空間SCは、素子側空洞部58を含まなくてもよい。すなわち、ギャップGと連通孔63とによって、閉鎖空間SCが形成されていてもよい。
(変形例)
本発明は、上記実施形態に限定されるものではない。故に、上記実施形態に対しては、適宜変更が可能である。以下、代表的な変形例について説明する。以下の変形例の説明においては、上記実施形態との相違点を主として説明する。また、上記実施形態と変形例とにおいて、互いに同一または均等である部分には、同一符号が付されている。したがって、以下の変形例の説明において、上記実施形態と同一の符号を有する構成要素に関しては、技術的矛盾または特段の追加説明なき限り、上記実施形態における説明が適宜援用され得る。
超音波センサ1の装着対象は、フロントバンパーV3およびリアバンパーV4に限定されない。具体的には、例えば、超音波センサ1は、車体パネルV2にも装着され得る。すなわち、装着孔V5は、車体パネルV2にも設けられ得る。また、超音波センサ1は、車載用に限定されない。また、超音波センサ1は、クリアランスソナーに限定されない。すなわち、超音波センサ1は、他の用途にも用いられ得る。
超音波センサ1は、超音波を送受信可能な構成に限定されない。すなわち、例えば、超音波センサ1は、超音波の発信のみが可能な構成を有していてもよい。あるいは、超音波センサ1は、他の超音波発信器から発信された超音波である探査波の、周囲に存在する物体による反射波を受信する機能のみを有するものであってもよい。
超音波センサ1における各部の構成も、上記具体例に限定されない。具体的には、例えば、超音波マイクロフォン3すなわち素子収容ケース4の外形形状は、略円柱状に限定されず、略正六角柱状、略正八角柱状、等であってもよい。
素子収容ケース4を構成する材料は、アルミニウム等の金属材料に限定されない。すなわち、例えば、素子収容ケース4は、ポリカーボネート、ポリスチレン、等の合成樹脂材料によっても形成され得る。あるいは、素子収容ケース4は、炭素繊維、炭素繊維含有樹脂、等によっても形成され得る。あるいは、素子収容ケース4のうちの少なくとも一部、例えば、ケース側ダイアフラム43aは、形状記憶機能あるいは超弾性機能を有する材料によって形成され得る。これにより、温度変化、外力、等による変形に起因する共振周波数変化が、良好に抑制され得る。
素子収容ケース4の構造についても、技術的な不都合が生じない限り、特段の限定はない。具体的には、例えば、側板部41と外側底板部43とは、同一材料によって継ぎ目なく一体に形成されていてもよい。あるいは、側板部41と外側底板部43とは、異なる材料によって形成されていてもよい。
ケース側ダイアフラム43aの面内方向における形状も、上記具体例のような略円形に限定されない。すなわち、ケース側ダイアフラム43aの面内方向における形状としては、例えば、略矩形、略楕円形、略正六角形、略正八角形、等の任意の形状が採用可能である。同様に、ケース側ダイアフラム43aの断面形状も、平板状に限定されない。具体的には、例えば、ケース側ダイアフラム43aは、外部空間SDに向かって突出する曲板状に形成されていてもよい。
図3等において、ケース側厚肉部43bは、省略され得る。すなわち、ケース側ダイアフラム43aは、外側底板部43の面内方向におけるほぼ全部を占めるように設けられていてもよい。かかる構成によれば、所定の共振周波数を実現するための、ケース側ダイアフラム43aにおける厚さを、図3の場合よりも厚くすることができる。したがって、素子収容ケース4の強度が向上する。具体的には、例えば、素子収容ケース4を合成樹脂等の軽量の材料で形成した場合における、素子収容ケース4の強度を、良好に向上することが可能となる。
ケース側ダイアフラム43aとケース側厚肉部43bとは、異なる材料によって形成されていてもよい。同様に、ダイアフラム形成部44とダイアフラム支持部45とは、異なる材料によって形成されていてもよい。
ダイアフラム形成部44とダイアフラム支持部45とは、継ぎ目なく一体に形成されていてもよい。
吸湿材404は、図3~図6、図9~図13、図15~図22においても設けられ得る。吸湿材404は、閉鎖空間SCと基板背面空間SKとのうちの一方に設けられていてもよい。
超音波センサ1の動作環境温度は、超音波センサ1の外部から入手可能である。具体的には、動作環境温度は、車両Vに搭載された別の温度検出部によって検出され得る。よって、動作環境温度は、ECUから受信することも可能である。このため、温度センサ406は、省略され得る。
周波数変更部407の構造および設置位置についても、特段の限定はない。すなわち、例えば、図10に示された、ケース側ダイアフラム43aにおける構造共振周波数を変更するための周波数変更部407は、露出面3b以外の位置に設けられ得る。具体的には、かかる周波数変更部407は、例えば、側方外壁面3aの指向軸方向における先端部に設けられ得る。あるいは、かかる周波数変更部407は、例えば、ケース側厚肉部43bにおけるダイアフラム形成部44とダイアフラム支持部45との接合部に設けられ得る。
超音波素子50における構造共振周波数を変更するための周波数変更部407についても、上記の具体例に限定されない。すなわち、例えば、かかる周波数変更部407は、ヒータであってもよい。
閉鎖空間SCにおける共鳴周波数を変更するための周波数変更部407についても、上記の具体例に限定されない。すなわち、例えば、かかる周波数変更部407は、電圧印加により変形する圧電素子に限定されない。また、周波数変更部407は、ギャップGの指向軸方向における寸法を変化させるように構成されていてもよい。
超音波素子50の種類についても、特段の限定はない。すなわち、例えば、超音波素子50は、PMUTに限定されない。超音波素子50は、CMUTとしての構成を有していてもよい。CMUTはCapacitive Micro-machined Ultrasound Transducerの略である。
支持基板6の素子収容ケース4に対する固定は、側板部41にて行われ得る。
支持基板6は、回路基板であってもよい。すなわち、信号処理のための各種回路部品が実装面61上に実装されていてもよい。
支持基板6は、回路基板ではなくてもよい。すなわち、信号処理のための各種回路部品は、半導体基板51上に実装されていてもよい。あるいは、かかる回路部品は、ケース本体部2aの内側に設けられた不図示の制御回路基板上に実装されていてもよい。
図10に示された第八実施形態と、図12に示された第十実施形態と、図13に示された第十一実施形態とのうちの、2つあるいは全部は、互いに組み合わせることが可能である。
図4~図14に示された構成は、図15~図20に示されたアレイ型の構成に適用され得る。
上記の各実施形態においては、閉鎖空間SCは、気密且つ液密に密閉された空間として形成されている。しかしながら、本発明は、かかる態様に限定されない。すなわち、超音波素子50とケース側ダイアフラム43aとの間の、超音波振動の伝播性能が良好に得られていれば、閉鎖空間SCにおける厳密な気密性は要求されない。但し、閉鎖空間SC内に水等の液体が浸入すると、閉鎖空間SCの体積が減少し、これにより共鳴周波数が変動する。また、浸入した水等の液体により、劣化が発生し得る。このため、閉鎖空間SCは、少なくとも液密に密閉された空間として形成されていることが好適である。
図3等において、閉鎖空間SCは、その空間断面積が指向軸方向について変化するように形成されている。しかしながら、本発明は、かかる態様に限定されない。すなわち、ケース側ダイアフラム43aと素子側ダイアフラム54との間で超音波振動が連成共振により伝播することができれば、指向軸方向における閉鎖空間SCの空間断面積の分布態様について、特段の限定はない。但し、閉鎖空間SCの空間断面積を指向軸方向における位置によらず一定にしようとすれば、設計自由度が小さくなる。これに対し、指向軸方向における閉鎖空間SCの空間断面積の分布態様を調整可能とすることで、所望の駆動周波数と指向角とを実現するための設計自由度が向上する。
複数のケース側ダイアフラム43aのうちの一部における共振周波数が一致するように、ケース側ダイアフラム43aが面内方向に複数配列形成されていてもよい。この場合の「一致」も、上記と同様に、実質的な一致が含まれる。すなわち、複数のケース側ダイアフラム43aは、そのうちの少なくとも一部が互いに異なる共振周波数を有するように設けられ得る。同様に、複数の超音波素子50は、そのうちの少なくとも一部が互いに異なる共振周波数を有するように設けられ得る。また、複数の閉鎖空間SCは、そのうちの少なくとも一部が互いに異なる共鳴周波数を有するように設けられ得る。
上記の説明において、互いに継ぎ目無く一体に形成されていた複数の構成要素は、互いに別体の部材を貼り合わせることによって形成されてもよい。同様に、互いに別体の部材を貼り合わせることによって形成されていた複数の構成要素は、互いに継ぎ目無く一体に形成されてもよい。
上記の説明において、互いに同一の材料によって形成されていた複数の構成要素は、互いに異なる材料によって形成されてもよい。同様に、互いに異なる材料によって形成されていた複数の構成要素は、互いに同一の材料によって形成されてもよい。
上記実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に本発明が限定されることはない。同様に、構成要素等の形状、方向、位置関係等が言及されている場合、特に必須であると明示した場合および原理的に特定の形状、方向、位置関係等に限定される場合等を除き、その形状、方向、位置関係等に本発明が限定されることはない。
変形例も、上記の例示に限定されない。すなわち、例えば、上記に例示した以外で、複数の実施形態同士が、技術的に矛盾しない限り、互いに組み合わされ得る。同様に、複数の変形例が、技術的に矛盾しない限り、互いに組み合わされ得る。
1 超音波センサ
4 素子収容ケース
41 側板部
42 外側底板部
43a ケース側ダイアフラム
50 超音波素子
51 半導体基板
54 素子側ダイアフラム
DA 指向軸
SC 閉鎖空間

Claims (20)

  1. 超音波センサ(1)であって、
    指向軸(DA)に沿った厚さ方向を有する振動板であるケース側ダイアフラム(43a)を有する、素子収容ケース(4)と、
    前記素子収容ケースの内側に収容されつつ、前記ケース側ダイアフラムから離隔して配置された、超音波素子(50)と、
    を備え、
    前記超音波素子は、前記指向軸に沿った厚さ方向を有する半導体基板(51)における薄肉部として形成されていて前記指向軸に沿った膜厚方向を有する振動膜である素子側ダイアフラム(54)を有し、
    前記半導体基板は、前記ケース側ダイアフラムと前記素子側ダイアフラムとの間に共鳴空間である閉鎖空間(SC)が形成されるように配置されつつ、前記素子収容ケースに固定的に支持され、
    前記超音波素子における共振周波数である第一共振周波数と、前記閉鎖空間における共振周波数である第二共振周波数と、前記ケース側ダイアフラムにおける共振周波数である第三共振周波数とが、一致するように構成された、
    超音波センサ。
  2. 前記第一共振周波数と前記第二共振周波数の差、前記第二共振周波数と前記第三共振周波数との差、および、前記第一共振周波数と前記第三共振周波数との差のうちの、最大値をΔfrとし、
    前記超音波素子と前記閉鎖空間と前記ケース側ダイアフラムとのうちの最も共振帯が広いものにおける、当該共振帯の帯域幅をBWとすると、
    Δfr≦BWとなるように構成された、
    請求項1に記載の超音波センサ。
  3. 前記素子収容ケースは、前記指向軸を囲む筒状に形成された側板部(41)と、前記側板部の一端側を液密的に閉塞する外側底板部(43)とを有し、
    前記ケース側ダイアフラムは、前記指向軸と交差する面内方向における前記外側底板部の中央部に設けられた薄肉部として形成され、
    前記半導体基板は、前記ケース側ダイアフラムの周囲に形成された前記外側底板部における厚肉部であるケース側厚肉部(43b)に固定的に支持された、
    請求項1または2に記載の超音波センサ。
  4. 超音波センサ(1)であって、
    指向軸(DA)に沿った厚さ方向を有する振動板であるケース側ダイアフラム(43a)を有する、素子収容ケース(4)と、
    前記素子収容ケースの内側に収容されつつ、前記ケース側ダイアフラムから離隔して配置された、超音波素子(50)と、
    を備え、
    前記超音波素子は、前記指向軸に沿った厚さ方向を有する半導体基板(51)における薄肉部として形成されていて前記指向軸に沿った膜厚方向を有する振動膜である素子側ダイアフラム(54)を有し、
    前記半導体基板は、前記ケース側ダイアフラムと前記素子側ダイアフラムとの間に共鳴空間である閉鎖空間(SC)が形成されるように配置されつつ、前記素子収容ケースに固定的に支持され、
    前記素子収容ケースは、前記指向軸を囲む筒状に形成された側板部(41)と、前記側板部の一端側を液密的に閉塞する外側底板部(43)とを有し、
    前記ケース側ダイアフラムは、前記指向軸と交差する面内方向における前記外側底板部の中央部に設けられた薄肉部として形成され、
    前記半導体基板は、前記ケース側ダイアフラムの周囲に形成された前記外側底板部における厚肉部であるケース側厚肉部(43b)に固定的に支持された、
    音波センサ。
  5. 前記指向軸に沿った厚さ方向を有し、前記外側底板部と前記半導体基板との間に配置された、支持基板(6)をさらに備え、
    前記支持基板は、前記外側底板部における前記ケース側厚肉部と接合されつつ、前記素子収容ケースに固定され、
    前記半導体基板は、前記支持基板と接合されつつ、前記支持基板に固定され、
    前記支持基板は、前記ケース側ダイアフラムと前記支持基板との間のギャップ(G)と連通するように当該支持基板を貫通する貫通孔である連通孔(63)を有し、
    前記ギャップと前記連通孔とによって、前記閉鎖空間が形成された、
    請求項4に記載の超音波センサ。
  6. 前記半導体基板は、前記面内方向について前記素子側ダイアフラムに隣接する厚肉部である素子側厚肉部(56)に囲まれるように、前記面内方向における前記素子側ダイアフラムに対応する位置に設けられた凹部である、素子側凹部(57)を有し、
    前記半導体基板は、前記素子側凹部が前記連通孔と隣接しつつ連通するように前記支持基板と接合され、
    前記素子側凹部の内側の空間である素子側空洞部(58)と、前記ギャップと、前記連通孔とによって、前記閉鎖空間が形成された、
    請求項5に記載の超音波センサ。
  7. 前記半導体基板は、前記面内方向について前記素子側ダイアフラムに隣接する厚肉部である素子側厚肉部(56)に囲まれるように、前記面内方向における前記素子側ダイアフラムに対応する位置に設けられた凹部である、素子側凹部(57)を有し、
    前記半導体基板は、前記素子側凹部が前記ギャップと隣接しつつ連通するように前記外側底板部における前記ケース側厚肉部と接合されつつ、前記素子収容ケースに固定され、
    前記素子側凹部の内側の空間である素子側空洞部(58)と、前記ギャップとによって、前記閉鎖空間が形成された、
    請求項5に記載の超音波センサ。
  8. 前記閉鎖空間は、前記指向軸と直交する断面による断面積が、前記指向軸と平行な指向軸方向について変化するように形成された、
    請求項1~7のいずれか1つに記載の超音波センサ。
  9. 前記閉鎖空間内に収容された制振材(405)をさらに備えた、
    請求項1~8のいずれか1つに記載の超音波センサ。
  10. 前記ケース側ダイアフラム、前記超音波素子、または前記閉鎖空間が、前記指向軸と交差する面内方向に複数配列形成された、
    請求項1~9のいずれか1つに記載の超音波センサ。
  11. 前記ケース側ダイアフラムが前記面内方向に複数配列形成されている場合における、隣接する前記ケース側ダイアフラム同士の振動伝達を抑制するように、隣接する前記ケース側ダイアフラムの間に介在して設けられた、ダイアフラム分離材(432)をさらに備えた、
    請求項10に記載の超音波センサ。
  12. 前記ケース側ダイアフラムが前記面内方向に複数配列形成されている場合、複数の前記ケース側ダイアフラムの各々が、互いに異なる共振周波数を有し、
    前記超音波素子が前記面内方向に複数配列形成されている場合、複数の前記超音波素子の各々が、互いに異なる共振周波数を有し、
    前記閉鎖空間が前記面内方向に複数配列形成されている場合、複数の前記閉鎖空間の各々が、互いに異なる共振周波数を有する、
    請求項10または11に記載の超音波センサ。
  13. 前記ケース側ダイアフラムにおける前記閉鎖空間に面する内表面であるダイアフラム裏面(43c)とは異なる位置にて前記閉鎖空間に面するように設けられた、突起、テーパ部、または凹部であって、前記閉鎖空間の容積を調整するように形成された、容積調整部(401)をさらに備えた、
    請求項1~12のいずれか1つに記載の超音波センサ。
  14. 前記指向軸と平行な指向軸方向における、前記ケース側ダイアフラムが設けられた側の前記素子収容ケースの一端部には、スリット(402)が形成された、
    請求項1~13のいずれか1つに記載の超音波センサ。
  15. 前記スリットは、封止材(403)によって気密的且つ液密的に封止された、
    請求項14に記載の超音波センサ。
  16. 前記素子収容ケース内には、吸湿材(404)が収容された、
    請求項1~15のいずれか1つに記載の超音波センサ。
  17. 前記素子収容ケースは、
    前記半導体基板を挟んで前記閉鎖空間とは反対側に設けられた基板背面空間(SK)と、
    前記基板背面空間と前記素子収容ケースの外側のケース背面空間(SB)とを連通させるように設けられた通気口(421)と、
    を有し、
    前記通気口は、空気が通過可能な一方で液体の通過が抑制されるように液密的に封止された、
    請求項1~16のいずれか1つに記載の超音波センサ。
  18. 当該超音波センサの動作環境温度に応じて、前記超音波素子、前記閉鎖空間、または前記ケース側ダイアフラムにおける振動周波数を変更するように設けられた、周波数変更部(407)をさらに備えた、
    請求項1~17のいずれか1つに記載の超音波センサ。
  19. 前記超音波素子、前記閉鎖空間、および前記ケース側ダイアフラムにおける共振周波数が、30kHz~100kHzとなるように構成された、
    請求項1~18のいずれか1つに記載の超音波センサ。
  20. 車両(V)における車体(V1)に装着された車載状態にて、前記ケース側ダイアフラムにおける前記指向軸と交差する外表面である露出面(3b)が前記車体の外板(V3)に設けられた貫通孔(V5)から外部空間(SD)に露出するように構成され、
    前記ケース側ダイアフラムは、厚さが0.5mm以上に形成された、
    請求項1~19のいずれか1つに記載の超音波センサ。
JP2019072953A 2019-04-05 2019-04-05 超音波センサ Active JP7211220B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019072953A JP7211220B2 (ja) 2019-04-05 2019-04-05 超音波センサ
US16/837,258 US11445304B2 (en) 2019-04-05 2020-04-01 Ultrasonic sensor
CN202010253611.2A CN111796291A (zh) 2019-04-05 2020-04-02 超声传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019072953A JP7211220B2 (ja) 2019-04-05 2019-04-05 超音波センサ

Publications (2)

Publication Number Publication Date
JP2020170995A JP2020170995A (ja) 2020-10-15
JP7211220B2 true JP7211220B2 (ja) 2023-01-24

Family

ID=72661985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019072953A Active JP7211220B2 (ja) 2019-04-05 2019-04-05 超音波センサ

Country Status (3)

Country Link
US (1) US11445304B2 (ja)
JP (1) JP7211220B2 (ja)
CN (1) CN111796291A (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018126387A1 (de) * 2018-10-23 2020-04-23 Tdk Electronics Ag Schallwandler und Verfahren zum Betrieb des Schallwandlers
JP7226154B2 (ja) * 2019-07-10 2023-02-21 株式会社デンソー 超音波センサ
DE102020123100A1 (de) * 2019-09-04 2021-03-04 Ford Global Technologies, Llc Systeme und verfahren für einen piezoelektrischen membranwandler für automobilmikrofonanwendungen
US11358537B2 (en) * 2019-09-04 2022-06-14 Ford Global Technologies, Llc Systems and methods for a piezoelectric diaphragm transducer for automotive microphone applications
IT202000024469A1 (it) * 2020-10-16 2022-04-16 St Microelectronics Srl Trasduttore ultrasonico microlavorato piezoelettrico
IT202000024466A1 (it) * 2020-10-16 2022-04-16 St Microelectronics Srl Trasduttore ultrasonico microlavorato piezoelettrico con oscillazioni libere ridotte
US11899143B2 (en) 2021-07-12 2024-02-13 Robert Bosch Gmbh Ultrasound sensor array for parking assist systems
CN116027308A (zh) * 2021-10-25 2023-04-28 广州视源电子科技股份有限公司 超声换能器及电子设备
US11661160B1 (en) * 2021-11-18 2023-05-30 Teledyne Instruments, Inc. Low frequency sound source for long-range glider communication and networking
JP2023125677A (ja) * 2022-02-28 2023-09-07 株式会社鷺宮製作所 検知スイッチおよびこれを用いた音検知システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005051687A (ja) 2003-07-31 2005-02-24 Matsushita Electric Works Ltd 圧電型超音波センサ及びその共振周波数調節方法
JP2006094459A (ja) 2004-08-25 2006-04-06 Denso Corp 超音波センサ
JP2009058298A (ja) 2007-08-30 2009-03-19 Denso Corp 超音波センサ
JP2016146515A (ja) 2015-02-06 2016-08-12 株式会社ダイセル 超音波の送受信素子

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59218098A (ja) * 1984-03-14 1984-12-08 Matsushita Electric Ind Co Ltd 超音波セラミツクマイクロホン
JP2005051689A (ja) * 2003-07-31 2005-02-24 Matsushita Electric Works Ltd 超音波アレイセンサおよび超音波センサ並びに超音波アレイセンサの製造方法
JP4645436B2 (ja) 2005-12-22 2011-03-09 株式会社デンソー 超音波センサ
JP5004840B2 (ja) 2007-04-25 2012-08-22 京セラ株式会社 マイクロホン素子搭載基板およびマイクロホン装置
JP2009071395A (ja) * 2007-09-11 2009-04-02 Ritsumeikan 超音波受信素子及びこれを用いた超音波トランスデューサ
JP5325555B2 (ja) 2008-12-05 2013-10-23 船井電機株式会社 マイクロホンユニット
JPWO2010106733A1 (ja) * 2009-03-16 2012-09-20 パナソニック株式会社 半導体装置
JP5625498B2 (ja) 2010-05-28 2014-11-19 株式会社村田製作所 超音波センサ
JP5029727B2 (ja) 2010-06-01 2012-09-19 オムロン株式会社 半導体装置及びマイクロフォン
JP5327279B2 (ja) * 2011-06-13 2013-10-30 株式会社デンソー 超音波センサ装置
JP6123171B2 (ja) * 2012-05-21 2017-05-10 セイコーエプソン株式会社 超音波トランスデューサー、超音波プローブおよび超音波検査装置
JP6327821B2 (ja) 2013-09-20 2018-05-23 株式会社東芝 音響センサ及び音響センサシステム
WO2016029378A1 (en) * 2014-08-27 2016-03-03 Goertek. Inc Mems device with valve mechanism
JP2016058880A (ja) 2014-09-09 2016-04-21 晶▲めい▼電子股▲ふん▼有限公司 ノイズカップリングの影響を低減させるマイクロフォン装置
US9800965B2 (en) * 2015-10-19 2017-10-24 Motorola Solutions, Inc. Multi-microphone porting and venting structure for a communication device
US20170214994A1 (en) * 2016-01-25 2017-07-27 Knowles Electronics, Llc Earbud Control Using Proximity Detection
JP6693154B2 (ja) * 2016-02-04 2020-05-13 セイコーエプソン株式会社 超音波トランスデューサー、超音波プローブ、超音波装置、超音波トランスデューサーの製造方法、及び振動装置
DE102016201872A1 (de) * 2016-02-08 2017-08-10 Robert Bosch Gmbh MEMS-Lautsprechervorrichtung sowie entsprechendes Herstellungsverfahren
JP7099267B2 (ja) * 2018-11-14 2022-07-12 セイコーエプソン株式会社 超音波デバイスおよび超音波センサー

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005051687A (ja) 2003-07-31 2005-02-24 Matsushita Electric Works Ltd 圧電型超音波センサ及びその共振周波数調節方法
JP2006094459A (ja) 2004-08-25 2006-04-06 Denso Corp 超音波センサ
JP2009058298A (ja) 2007-08-30 2009-03-19 Denso Corp 超音波センサ
JP2016146515A (ja) 2015-02-06 2016-08-12 株式会社ダイセル 超音波の送受信素子

Also Published As

Publication number Publication date
US11445304B2 (en) 2022-09-13
JP2020170995A (ja) 2020-10-15
CN111796291A (zh) 2020-10-20
US20200322730A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
JP7211220B2 (ja) 超音波センサ
JP4513596B2 (ja) 超音波センサ
EP1962552B1 (en) Ultrasonic transducer
US11181627B2 (en) Ultrasonic sensor
JP4917401B2 (ja) 障害物検出装置
US6087760A (en) Ultrasonic transmitter-receiver
EP2076062B1 (en) Ultrasonic sensor
JP4458172B2 (ja) 超音波センサの取り付け構造
US20120176002A1 (en) Acoustic transducer and method of driving the same
US10536779B2 (en) Electroacoustic transducer
JP7192510B2 (ja) 超音波センサ
JP7226154B2 (ja) 超音波センサ
WO2005009075A1 (ja) 超音波送受波器
JP7088099B2 (ja) 超音波センサ
JP7167567B2 (ja) 超音波センサ
KR20120059196A (ko) 초음파 센서
WO2020218038A1 (ja) 超音波センサ
WO2023106211A1 (ja) 超音波センサおよび物体検知装置
JP7435282B2 (ja) 超音波トランスデューサ
US20220057507A1 (en) Ultrasonic sensor
US11899143B2 (en) Ultrasound sensor array for parking assist systems
WO2023203805A1 (ja) 超音波トランスデューサ
WO2021256414A1 (ja) 超音波センサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221226

R151 Written notification of patent or utility model registration

Ref document number: 7211220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151