JP7211121B2 - 電力変換器、及び制御方法 - Google Patents

電力変換器、及び制御方法 Download PDF

Info

Publication number
JP7211121B2
JP7211121B2 JP2019015169A JP2019015169A JP7211121B2 JP 7211121 B2 JP7211121 B2 JP 7211121B2 JP 2019015169 A JP2019015169 A JP 2019015169A JP 2019015169 A JP2019015169 A JP 2019015169A JP 7211121 B2 JP7211121 B2 JP 7211121B2
Authority
JP
Japan
Prior art keywords
power
voltage
output
reference value
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019015169A
Other languages
English (en)
Other versions
JP2020124058A (ja
Inventor
健一 鈴木
真己 緑川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2019015169A priority Critical patent/JP7211121B2/ja
Publication of JP2020124058A publication Critical patent/JP2020124058A/ja
Application granted granted Critical
Publication of JP7211121B2 publication Critical patent/JP7211121B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Description

本発明は、電力変換器、及び制御方法に関する。
直流送電設備や周波数変換設備などの電力変換設備は、従来は他励式変換器が用いられていた(例えば、特許文献1を参照)。最近ではモジュラーマルチレベル変換器(MMC:Modular Multilevel Converter)を用いたMMC方式などの新しい変換器制御技術が生まれたため、直流電圧の高電圧化および低ロス化が実現できるようになってきた。新しい変換器制御技術の開発に伴い、直流変換設備においては自励式変換器が適用されるようになった。
他励式変換器では、交流系統電圧を直流リアクトルを通して相手側系統の電圧と連系して電力のやり取りをするものである。このため他励式変換器では交流系統電圧が必須である。
一方、自励式変換器では、直流電圧を半導体スイッチで切り刻んで交流回路に交流電圧として発生させて、交流系統電圧と自励式変換器の発生電圧とを交流リアクトル(または変圧器のリアクタンス)で接続して電力のやり取りをするものである。このため自励式変換器では、交流系統電圧がなくても転流動作(変換器動作)が可能である。交流系統電圧が不要であることから、自励式変換器では、直流電圧を交流電圧に変換し、電源として機能する動作も可能である。にもかかわらず、系統間を直流で分断し安定度を向上させる直流送電設備や異なる周波数の系統同士の連系に用いられる周波数変換設備などの電力変換設備では、自励式変換器を電源とするような制御は行われてこなかった。
直流送電設備や周波数変換設備などの電力変換設備における他励式変換器、及び自励式変換器の双方とも、それらの適用範囲は、連系される系統が両方とも健全である場合における系統間の潮流制御に限られていた。
一方、上述したように自励式変換器は交流系統に電圧がなくても転流動作(変換器動作)が可能であるが、自励式変換器では、直流電圧を交流電圧に変換して同期発電機のない単独系統の電源とするような制御は行ってはいなかった。現状は、電圧型自励式変換器を用いて、交流電流制御による潮流制御を行っている。
上述したように自励式変換器は、交流系統に電圧がなくても転流動作(変換器動作)が可能であることから、直流電圧を交流電圧に変換し電圧源として動作させることも可能である。そこで万が一、系統連系する一方の系統において大規模停電が発生した場合には、健全系統から停電系統を立ち上げる(ブラックスタート)機能を備えておくことが考えられる。
従来、大規模停電が広範囲に発生した場合には、まず水力発電設備を利用して火力発電所の所内負荷を活かすことが行われる。所内負荷を活かした後、火力発電機を起動して並列、連系し、系統規模を拡大していくのが従来の一般的な方法である。
このような水力発電設備の利用方法と同様の動作が可能な直流送電設備があれば、例えば水力発電設備が利用できなかった場合にも、大規模停電時の系統復旧に対する信頼度が向上する。
特開2014-128157号公報
直流送電設備を停電系統復旧のための最初の電源とする場合、停電系統側の電力変換器を、交流定格電圧で、かつ周波数が商用周波数(例えば50Hz)で一定となる状態(CVCFモードという)で運転することが行われる。しかし、このCVCFモードの状態において系統復旧を行うと、電力系統に交流電力を供給する電力変換器よりも定格容量の大きな発電機を並列する場合に周波数偏差、及び電圧偏差のために電力動揺が生じ安定運転ができない場合がある。そのため直流送電設備を系統連系の最初の電源とする場合に、系統連系の運転を安定させることが求められる。
本発明は上記の点に鑑みてなされたものであり、直流送電設備を停電系統復旧のための最初の電源とする場合に発電機連系時の運転を安定させることができる電力変換器、及び制御方法を提供する。
本発明は上記の課題を解決するためになされたものであり、本発明の一態様は、電力系統に交流電力を供給する電力変換器であって、直流電力から変換された交流電力である出力電力の値と所定の基準値との差である偏差を取得する偏差取得部と、前記電力系統との連系を行わない自立運転時において、前記偏差取得部が取得する前記偏差に基づいて前記出力電力の電圧である出力電圧の周波数を制御する周波数制御部と、前記電力系統の充電状態に基づいて前記出力電圧を目標値から低下させる出力電圧基準値設定部と、を備える電力変換器である。
また、本発明の一態様は、上記の電力変換器において、自立運転から連系運転への切替時における前記出力電力の制御の有効電力の基準値としての前記切替時の直前の自立運転時の有効電力の値、及び無効電力の基準値としての前記切替時の直前の自立運転時の無効電力の値を設定する基準値設定部をさらに備える。
また、本発明の一態様は、電力系統に交流電力を供給する電力変換器の制御方法であって、直流電力から変換された交流電力である出力電力の値の偏差を取得する偏差取得過程と、前記電力系統との連系を行わない自立運転時において前記偏差取得過程によって取得される前記偏差に基づいて前記出力電力の電圧である出力電圧の周波数を制御する周波数制御過程と、前記電力系統の充電状態に基づいて前記出力電圧を目標値から低下させる出力電圧基準値設定過程と、を有する制御方法である。
本発明によれば、直流送電設備を停電系統復旧のための最初の電源とする場合に発電機連系時の運転を安定させることができる。
本発明の実施形態に係る系統連系の一例を示す図である。 本発明の実施形態に係る電力変換器の構成の一例を示す図である。 本発明の実施形態に係る制御部の構成の一例を示す図である。 本発明の実施形態の変形例に係る制御部の構成の一例を示す図である。 本発明の実施形態に係る周波数制御処理の一例を示す図である。 本発明の実施形態に係る偏差周波数グラフの一例を示す図である。 本発明の実施形態に係る周波数制御処理における周波数の一例を示す図である。 本発明の実施形態に係る低減電圧処理の一例を示す図である。 本発明の実施形態に係る電力基準値切替処理の一例を示す図である。 本発明の実施形態に係る電力基準値切替処理のモデル系統の一例を示す図である。 本発明の実施形態に係る電力変換器の電力動揺の抑制結果の第1例を示す図である。 本発明の実施形態に係る電力変換器の電力動揺の抑制結果の第2例を示す図である。 本発明の実施形態に係る電力変換器のインラッシュ電流抑制結果の一例を示す図である。 本発明の実施形態に係る電力変換器の運転切替時の有効電力及び無効電力の一例を示す図である。 本発明の実施形態に係る変圧器投入時の電力変換器のインラッシュ電流の抑制効果の一例を示す図である。 本発明の実施形態に係る変圧器投入時の変圧器のインラッシュ電流の抑制効果の一例を示す図である。 従来の電力変換器を用いた場合の電力動揺の一例を示す図である。 従来の電力変換器のインラッシュ電流の一例を示す図である。 本発明の実施形態の変形例に係る系統連系の一例を示す図である。 本発明の実施形態の変形例に係る系統連系の一例を示す図である。 公知のトルク特性グラフの一例を示す図である。
(実施形態)
以下、図面を参照しながら本発明の実施形態について詳しく説明する。図1は、本実施形態に係る系統連系ISの一例を示す図である。系統連系ISは、第1系統A1と、第2系統B1と、直流送電設備D1とを備える。
第1系統A1は、一例として50Hzの周波数の系統であり、広範囲停電の状態にある。第2系統B1は、一例として60Hzの周波数の系統であり、健全な状態にある。
直流送電設備D1は、第2系統B1と第1系統A1との直流連系を行う。直流送電設備D1は、電力変換器1と、直流電力供給部2とを備える。電力変換器1は、直流電圧を交流電圧に変換し、電源として機能する自励式変換器である。直流電力供給部2は、電力変換器1の直流電源として機能する。
直流送電設備D1は、自立運転が可能な電力変換器1を備えるため、第1系統A1を広範囲停電状態から復旧させるための最初の電源として用いられる。直流送電設備D1は、まず自立運転を行った後、第二の電源となる火力発電設備の発電機と連系された後に、第1系統A1と第2系統B1とを直流連系する連系運転に移行する。ここで自立運転とは、他の発電機との連系を行わない運転である。
第1系統A1は、火力発電設備A11と、水力発電設備A12とを備える。火力発電設備A11は、火力発電設備A11の発電機A112と、所内負荷A111とを備える。第1系統A1では、直流送電設備D1から供給される交流電力によって火力発電設備A11の所内負荷A111を活かす。第1系統A1では、所内負荷A111を活かした後、火力発電設備A11の発電機A112を起動して並列、連系し、系統規模を拡大していく。
本実施形態の水力発電設備A12は、何らかの理由により、使用不能となっている。従来、第1系統A1では、水力発電設備A12が使用可能な状態であれば、まず水力発電設備A12を利用して火力発電設備A11の所内負荷A111を活かす。本実施形態の第1系統A1では、使用不能となっている水力発電設備A12の代わりに、直流送電設備D1を停電状態から復旧させるための最初の電源として用いる。
ここで図2を参照し、電力変換器1の構成について説明する。図2は、本実施形態に係る電力変換器1の構成の一例を示す図である。電力変換器1は、一例として、MMC方式の自励式変換器であり、電力系統に交流電力を供給する。電力変換器1は、直交変換部10と、制御部11とを備える。
直交変換部10は、直流電力供給部2から供給される入力電力DPを、交流電力に変換する。ここで直流電力供給部2から供給される入力電力DPは、直流電力供給部2から直流電圧として供給される。直交変換部10は、変換した交流電圧を出力電圧VOとして充電対象3に供給する。ここで充電対象3は、例えば、図1の所内負荷A111である。
制御部11は、ゲート信号GSを直交変換部10に与えることによって、直交変換部10が出力する出力電圧VOを制御する。ここで制御部11は、直交変換部10が出力する出力電力値APのうちの有効電力値と出力有効電力基準値との偏差に応じた周波数の出力電圧となるようなゲート信号GSを生成する。
次に図3を参照し、制御部11の構成の詳細について説明する。図3は、本実施形態に係る制御部11の構成の一例を示す図である。制御部11は、連系運転時の出力基準値を設定する有効・無効電力出力基準値設定部110と、交流電圧基準値設定部111と、周波数制御部112と、交流電流値の三相二相変換を行う三相/dq変換部115と、交流電圧制御部116と、内部信号生成部117と、出力電圧指令値の二相三相変換を行うdq/三相変換部120と、ゲートパルス発生部121と、電流制御部122とを備える。
有効・無効電力出力基準値設定部110は、自立運転から連系運転への切替である運転切替MC時における出力電力POを制御するときの有効電力基準値VPOと、自立運転時の有効電力の基準値である自立運転時有効電力基準値VP2とを設定する。有効電力基準値VPOとしては、自立運転から連系運転に切替える直前の出力電力POのうちの有効電力の値が保持され設定され、また自立運転時有効電力基準値VP2としては常に出力電力POのうちの有効電力の値と同値が設定される。
また、有効・無効電力出力基準値設定部110は、運転切替MC時における出力電力POを制御するときの無効電力基準値IPOと、自立運転時の無効電力の基準値である自立運転時無効電力基準値IP2とを設定する。無効電力基準値IPOとしては、自立運転から連系運転に切替える直前の出力電力POのうちの無効電力の値が保持されて設定され、また自立運転時無効電力基準値IP2としては常に出力電力POのうちの無効電力の値と同値が設定される。
交流電圧基準値設定部111は、充電対象3の充電状態を示す充電情報CIに基づいて出力電圧目標値AVOを変更する。ここで出力電圧目標値AVOとは、連系運転時に充電対象3に供給する交流電圧の目標値となる予め決められた値である。交流電圧基準値設定部111は、自立運転の開始時には充電対象3を全電圧で充電するのではなく、充電情報CIに基づいて出力電圧VOを出力電圧目標値AVOに低下させて充電する。
周波数制御部112は、自立運転時において、有効電力偏差ΔPに基づいて出力電圧VOの周波数を制御する。ここで有効電力偏差ΔPとは、出力電力値APのうちの有効電力値と出力電力目標値APOとの差である。周波数制御部112は、有効電力偏差取得部113と、周波数算出部114と、系統電圧位相検出部118と、交流電圧値の三相二相変換を行う三相/dq変換部119とを備える。
有効電力偏差取得部113は、有効電力偏差ΔPを取得する。ここで有効電力偏差取得部113は、出力電力値AP、及び出力電力目標値APOを取得し、有効電力偏差ΔPを算出することによって有効電力偏差ΔPを取得する。出力電力値APは、直交変換部10が出力する交流電流の値と、交流電圧の値の積によって得られる。有効電力偏差取得部113は、偏差取得部の一例である。出力電力目標値APOは、所定の基準値の一例である。有効電力偏差ΔPは、偏差の一例である。
周波数算出部114は、有効電力偏差取得部113が取得した有効電力偏差ΔPに基づいて、出力電圧VOの角周波数ωを算出する。なお、角周波数と周波数とは対応しているため、本明細書では、角周波数と周波数とを区別せず、角周波数のことを周波数という場合がある。
系統電圧位相検出部118は、出力電圧VOの値と、三相/dq変換部119から供給される出力電圧VOの値が三相二相変換された結果とに基づいて、出力電圧VOの位相を検出する。
三相/dq変換部119は、連系運転時には、充電対象3との連系点の電圧として出力電圧VOの値を取得し、三相二相変換を行う。三相/dq変換部119は、自立運転時には、内部信号生成部117から供給される内部信号に基づいて三相二相変換を行う。すなわち系統電圧位相検出部118では、連系運転時には充電対象3との連系点電圧の位相および周波数に一致した値が演算され、また自立運転時には周波数算出部で算出された角周波数と内部信号生成部117から供給される信号の位相に一致した値が演算される。
三相/dq変換部115は、出力電力値APを取得し、出力電力値APが示す交流電流の値に基づいて三相二相変換を行う。
交流電圧制御部116は、出力電圧VOの値を取得し、出力電圧VOが示す交流電圧の値と、交流電圧基準値設定部111の制御結果とに基づいて、交流電圧の振幅を算出する。
内部信号生成部117は、交流電圧制御部116が算出した交流電圧の振幅と、系統電圧位相検出部118が検出した出力電圧VOの位相に基づいて、内部信号を生成する。
電流制御部122は、三相/dq変換部115によって三相二相変換された交流電流の値と、有効・無効電力出力基準値設定部110の制御結果とに基づいて、交流電流値の制御を行う。
dq/三相変換部120は、電流制御部122の制御結果と、三相/dq変換部119によって三相二相変換された交流電圧値に基づいて、二相三相変換を行う。なお、電流制御部122は連系運転中に動作させるため自立運転中は電流制御部のリミッターを閉じるようにする。
ゲートパルス発生部121は、ゲート信号GSを生成する。ここでゲートパルス発生部121は、dq/三相変換部120によって三相二相変換された結果に基づいてPWM(Pulse Width Modulation)制御を行うことによって、ゲート信号GSを生成する。ゲートパルス発生部121は、生成したゲート信号GSを直交変換部10に供給する。
なお、制御部11の構成は、図3に示す構成に限らない。ここで図4を参照し、制御部11の構成の変形例について説明する。図4は、本実施形態の変形例に係る制御部11aの構成の一例を示す図である。
図4の制御部11aと図3の制御部11とを比較すると、内部信号生成部117a、三相/dq変換部119a、及びゲートパルス発生部121aが異なる。ここで、他の構成要素(有効・無効電力出力基準値設定部110、交流電圧基準値設定部111、周波数制御部112、三相/dq変換部115、交流電圧制御部116、dq/三相変換部120、電流制御部122)が持つ機能は図3の制御部11と同じである。図3の制御部11と同じ機能の説明は省略し、図4では、図3の制御部11と異なる部分を中心に説明する。
制御部11aでは、内部信号生成部117aが内部信号を、三相/dq変換部119aではなく、ゲートパルス発生部121aに供給する点が、図3の制御部11と異なる。
内部信号生成部117aは、生成した内部信号を自立運転時にゲートパルス発生部121aに供給する。
周波数制御部112aは、図3の三相/dq変換部119の代わりに三相/dq変換部119aを備える。
三相/dq変換部119aは、連系運転時または自立運転時によらず、充電対象3に供給される出力電圧VOを取得し、出力電圧VOが示す交流電圧の値に基づいて三相二相変換を行う。
ゲートパルス発生部121aは、連系運転時には、図3のゲートパルス発生部121と同様の制御を行う。ゲートパルス発生部121aは、自立運転時には、内部信号生成部117aが生成した内部信号に基づいてPWM制御を行うことによって、ゲート信号GSを生成する。
ここで図5を参照し、制御部11が出力電圧VOの角周波数ωを制御する処理について説明する。図5は、本実施形態に係る周波数制御処理の一例を示す図である。図5に示す周波数制御処理は、電力系統との連系を行う前の自立運転時に実行される。
ステップS10:有効電力偏差取得部113は、出力電力値AP、及び出力電力目標値APOを取得する。ここで有効電力偏差取得部113は、直交変換部10から出力電力値APを取得する。
ステップS20:有効電力偏差取得部113は、ステップS10において取得した出力電力値AP、及び出力電力目標値APOに基づいて有効電力偏差ΔPを算出する。
ステップS30:有効電力偏差取得部113は、ステップS20において有効電力偏差ΔPを算出することによって有効電力偏差ΔPを取得する。したがって、有効電力偏差取得部113は、入力電力DPから変換された交流電力である出力電力の値である出力電力値APと出力電力目標値APOとの差である有効電力偏差ΔPを取得する。
ステップS40:周波数算出部114は、ステップS30において有効電力偏差取得部113が取得した有効電力偏差ΔPに基づいて、直交変換部10が発生する出力電圧VOの角周波数ωを算出する。
ステップS50:周波数制御部112は、ステップS40において周波数算出部114が算出した角周波数ωに基づいて、直交変換部10が充電対象3を充電する出力電圧VOを制御する。
したがって、周波数制御部112は、電力系統との連系を行わない自立運転時において、有効電力偏差取得部113が取得する有効電力偏差ΔPに基づいて出力電圧VOの角周波数ωを制御する。
ここで図6及び図7を参照し、周波数制御処理における有効電力偏差ΔPと角周波数ωとの関係について説明する。図6は、本実施形態に係る有効電力偏差周波数グラフG1の一例を示す図である。有効電力偏差周波数グラフG1は、周波数制御処理における有効電力偏差ΔPと角周波数ωの増減との関係を示すグラフである。
電力変換器1は、公知の誘導電動機のトルク特性に似せた特性を具備する。
図21は、公知のトルク特性グラフG0の一例を示す図である。トルク特性グラフG0は、公知の誘導電動機の回転速度と、軸トルクとの関係を示すグラフである。誘導電動機の安定領域における力行状態では、軸トルクが大きくなると、軸トルクが大きくなることに応じて滑りが大きくなり(同期速度より小)、回生状態では、回生トルクが大きくなると回生トルクが大きくなることに応じて負の滑り(同期速度より大)になる。
図7は、本実施形態に係る周波数制御処理における角周波数ωの一例を示す図である。
上述した公知の誘導電動機のトルク特性のように、電力変換器1の周波数制御処理では、電力変換器1から第1系統A1(火力発電設備の発電機A112)に供給される出力電力POが出力電力目標値APOよりも大きくなる場合には、角周波数ωに対応する回転速度を同期速度よりも小さくする。一方、電力変換器1の周波数制御処理では、出力電力POが出力電力目標値APOよりも小さくなる場合には、角周波数ωに対応する回転速度を同期速度よりも大きくする。
図7に示すとおり、周波数制御部112は、自立運転時において、有効電力偏差取得部113が取得する有効電力偏差ΔPに基づいて、電力変換器1から電力系統へと向かう出力電力POが増加する場合、角周波数ωを減少させる。一方、周波数制御部112は、自立運転時において、有効電力偏差取得部113が取得する有効電力偏差ΔPに基づいて、電力変換器1から電力系統へと向かう出力電力POが減少する場合、角周波数ωを増加させる。
次に図8を参照し、交流電圧基準値設定部111が行う低減電圧処理について説明する。図8は、本実施形態に係る低減電圧処理の一例を示す図である。図8の低減電圧処理は、電力変換器1が出力電圧VOを供給することによって充電対象3の充電を開始した場合に開始される。また、図8の低減電圧処理は電力変換器1が充電対象3の充電を行っている間、繰り返し行われる。
ステップS110:交流電圧基準値設定部111は、充電情報CIを充電対象3から取得する。なお、交流電圧基準値設定部111は、直流送電設備D1の管理者の操作に基づいて入力される指令値として、充電情報CIを取得してもよい。
ステップS120:交流電圧基準値設定部111は、ステップS110において取得した充電情報CIに基づいて出力電圧目標値AVOを変更する。交流電圧基準値設定部111は、充電情報CIが充電未完了の状態を示す場合、出力電圧目標値AVOを低下させる。例えば、交流電圧基準値設定部111は、出力電圧目標値AVOを、充電対象3の全電圧の30パーセントの値に変更する。
つまり、交流電圧基準値設定部111は、第1系統A1の充電状態に基づいて出力電圧VOを出力電圧目標値AVOから低下させる。
交流電圧基準値設定部111は、充電情報CIが示す充電状態の割合に応じて、出力電圧目標値AVOをランプ状に段階的に増加させる。交流電圧基準値設定部111は、充電情報CIが充電完了の状態を示す場合、出力電圧目標値AVOを充電対象3の全電圧の値に変更する。
ステップS130:交流電圧基準値設定部111は、ステップS120において変更した出力電圧目標値AVOに基づいて出力電圧VOを制御する。ここで交流電圧基準値設定部111は、出力電圧目標値AVOをランプ状に段階的に増加させることに応じて、出力電圧VOの値をランプ状に段階的に増加させる。
次に図9を参照し、電力変換器1の電力基準値切替処理について説明する。図9は、本実施形態に係る電力基準値切替処理の一例を示す図である。図9の電力基準値切替処理は、電力変換器1が自立運転を開始した場合に開始される。
ステップS210:有効・無効電力出力基準値設定部110は、自立運転時有効電力基準値VP2と、自立運転時無効電力基準値IP2とを検出しそれらの値を保持する。
ステップS220:有効・無効電力出力基準値設定部110は、自立運転から連系運転への運転切替MCが行われたか否かを判定する。有効・無効電力出力基準値設定部110は、運転切替MCが行われたと判定する場合(ステップS220;YES)、ステップS230の処理を実行する。一方、有効・無効電力出力基準値設定部110は、運転切替MCが行われていないと判定する場合(ステップS220;NO)、ステップS210の処理を再び行う。
ステップS230:有効・無効電力出力基準値設定部110は、運転切替MC時における出力電力値APのうちの有効電力値を制御するときの有効電力基準値VPOとして、自立運転時有効電力基準値VP2を設定する。また、有効・無効電力出力基準値設定部110は、運転切替MC時における無効電力出力を制御するときの無効電力基準値IPOとして、自立運転時無効電力基準値IP2を設定する。
つまり、有効・無効電力出力基準値設定部110は、自立運転から連系運転への運転切替MC時における出力電力POの制御の有効電力基準値VPOとしての運転切替MC時の直前の自立運転時の自立運転時有効電力基準値VP2、及び無効電力基準値IPOとしての運転切替MC時の直前の自立運転時の自立運転時無効電力基準値IP2を設定する。
ここで図10を参照し、電力基準値切替処理のモデル系統Mについて説明する。図10は、本実施形態に係る電力基準値切替処理のモデル系統Mの一例を示す図である。
モデル系統Mでは、自立運転から連系運転への運転切替MCが行われる。自立運転では、電力変換器1はCVCFモードにおいて運転が行われる。モデル系統Mでは、火力発電設備の発電機A112が自立運転中の直流送電設備D1に連系した後に、直流送電設備D1の自励式直流送電の制御モードを交流電圧制御(AC-AVR)から定電力制御(APR)に変更する。
以上に説明したように、本実施形態に係る電力変換器1は、電力系統(この一例において、第1系統A1)に交流電力(この一例において、出力電圧VO)を供給する電力変換器であって、偏差取得部(この一例において、有効電力偏差取得部113)と、周波数制御部112とを備える。
偏差取得部(この一例において、有効電力偏差取得部113)は、直流電力から変換された交流電力である出力電力の値(この一例において、出力電力値AP)と所定の基準値(この一例において、出力電力目標値APO)との差である偏差(この一例において、有効電力偏差ΔP)を取得する。
周波数制御部112は、電力系統(この一例において、第1系統A1)との連系を行わない自立運転時において、偏差取得部(この一例において、有効電力偏差取得部113)が取得する偏差(この一例において、有効電力偏差ΔP)に基づいて出力電圧VOの角周波数ωを制御する。
この構成により、本実施形態に係る電力変換器1では、直流送電設備D1を系統連系ISの最初の電源として充電対象3を充電し、その後に火力発電設備の発電機を連系する場合の電力動揺を抑制できるため、系統連系ISの運転を安定させることができる。
上述したように、直流送電設備D1を停電系統復旧のための最初の電源とするときは、停電系統側の電力変換器である電力変換器1を交流定格電圧、周波数は商用周波数(たとえば50Hz)で一定とするCVCFモードにおいて運転する。電力変換器1は、自励式変換器であり、電力変換器1によってCVCFモードで停電系統を充電し、その後発電機(この一例において、火力発電設備A11の発電機A112)を並列運転すると、電力動揺が大きく安定性に欠ける場合がある。ここで電力動揺は、周波数偏差や電圧偏差によって生じる。
CVCFモード運転時に同期発電機を同期投入するとダンピングが悪い。そこで本実施形態に係る電力変換器1では、公知の誘導電動機の安定領域に似た特性を有している。本実施形態に係る電力変換器1では、トルク(つまり有効電力)に応じて発生電圧の角周波数ωを変化させる特性を有する。すなわち、本実施形態に係る電力変換器1では、電力変換器1から発電機(この一例において、火力発電設備A11の発電機A112)に向かう出力電力POのうちの有効電力値が増加する場合には角周波数ωを減少させ、出力電力POのうちの有効電力値が減少する場合には周波数を増加させる。
ここで図11、図12、及び図17を参照し、電力動揺の抑制の効果について説明する。図11は、本実施形態に係る電力変換器1の電力動揺の抑制結果の第1例を示す図である。図12は、本実施形態に係る電力変換器1の電力動揺の抑制結果の第2例を示す図である。図17は、従来の電力変換器を用いた場合の電力動揺の一例を示す図である。
図11、図12、及び図17の各図において、図(A)は直流送電設備D1の直流電力供給部2の有効電力、及び無効電力を示す。図(B)は直流送電設備D1の電力変換器1の有効電力、及び無効電力を示す。図(C)は電力変換器1が第1系統A1に供給する出力電圧VOの角周波数ωを示す。
図11、及び図12に示す有効電力、及び無効電力は、図17に示す有効電力、及び無効電力に比べて変動が小さく、電力変換器1の周波数制御処理によって電力動揺が抑制されていることがわかる。
また、本実施形態に係る電力変換器1では、交流電圧基準値設定部111をさらに有する。制御部11は、電力系統(この一例において、第1系統A1)の充電状態に基づいて出力電圧VOを目標値(この一例において、出力電圧目標値AVO)から低下させる。
この構成により、本実施形態に係る電力変換器1では、系統連系ISにおける過電圧及び過電流による停止が起きることを抑制できるため、電力系統(この一例において、第1系統A1)の充電が完了するまでの期間において系統連系ISの運転を安定させることができる。
電力変換器から電力系統への試送電時に鉄共振などによる過電圧が発生し得る。また、電力系統の全電圧で変圧器を投入するとインラッシュ電流により電力変換器が過電流停止してしまう場合がある。
そこで本実施形態に係る電力変換器1では、例えば、低減電圧で電力系統(この一例において、第1系統A1)を充電し、変圧器など全電圧では大きな電流が流れるようなものは、低減電圧中に操作し、充電完了後に完了信号を受信して全電圧にする。
ここで図13、及び図18を参照し、変圧器投入時のインラッシュ電流抑制の効果について説明する。図13は、本実施形態に係る電力変換器1のインラッシュ電流抑制結果の一例を示す図である。図18は、従来の電力変換器のインラッシュ電流の一例を示す図である。
図13、及び図18において図(A)は電力変換器1が第1系統A1に供給する出力電圧VOの電圧を示す。図13、及び図18において図(B)は電力変換器1が第1系統A1に供給する電流を示す。
図13では、電力変換器1の低減電圧処理によって出力電圧VOの値は、自立運転開始時からランプ状に段階的に増加している。図18では、出力電圧は自立運転開始時から第1系統A1の全電圧に対応する電圧となっている。
図13の低減された出力電圧VOでの電流は、図18の全電圧時の電流に比べて電流値が小さく、電力変換器1の低減電圧処理によってインラッシュ電流が抑制されていることがわかる。
また、本実施形態に係る電力変換器1では、出力基準値設定部(この一例において、有効・無効電力出力基準値設定部110)をさらに有する。出力基準値設定部(この一例において、有効・無効電力出力基準値設定部110)は、自立運転から連系運転への切替(この一例において、運転切替MC)時における有効電力の値(この一例において、出力電力POのうちの有効電力の値)を制御するときの有効電力の基準値(この一例において、有効電力基準値VPO)として、(この一例において、運転切替MC)切替直前の自立運転時の有効電力の値(この一例において、自立運転時有効電力基準値VP2)、及び無効電力の基準値(この一例において、無効電力基準値IPO)としての切替(この一例において、運転切替MC)直前の自立運転時の無効電力の値(この一例において、自立運転時無効電力基準値IP2)を設定する。
この構成により、本実施形態に係る電力変換器1では、自立運転から連系運転への切替(この一例において、運転切替MC)時において過電流停止してしまうことを抑制できるため、自立運転から連系運転への切替(この一例において、運転切替MC)時において系統連系ISの運転を安定させることができる。
ここで、発電機並列後の系統復旧操作時には、電力変換器が過電流停止してしまう場合がある。本実施形態に係る電力変換器1では、発電機連系後に自励式直流送電の制御モードを交流電圧制御(AC-AVR)から定電力制御(APR)に変更することによって、系統拡大時に変圧器が投入されてもインラッシュ電流によって電力変換器1が過電流のために停止してしまうことを抑制できる。
ここで図14、図15、及び図16を参照し、自立運転から連系運転への運転切替時のインラッシュ電流の抑制効果について説明する。図14は、本実施形態に係る電力変換器1の運転切替時の有効電力及び無効電力の一例を示す図である。図15は、本実施形態に係る変圧器投入時の電力変換器1のインラッシュ電流の抑制効果の一例を示す図である。図16は、本実施形態に係る変圧器投入時の変圧器のインラッシュ電流の抑制効果の一例を示す図である。
図14から、運転切替MCにおいて、電力変換器1の制御モードは、交流電圧制御(AC-AVR)から定電力制御(APR)へと変更され、出力電力POの制御の有効電力基準値VPOとして運転切替MC時の直前の自立運転時の自立運転時有効電力基準値VP2が設定される。また、無効電力基準値IPOとして運転切替MC時の直前の自立運転時の自立運転時無効電力基準値IP2が設定される。
図15に示すように、変圧器投入時に電力変換器1が第1系統A1に供給する出力電力POの電流の変動が抑制されている。また、図16に示すように、変圧器投入時に変圧器の電流の変動が抑制されている。つまり、電力変換器1の電力基準値切替処理によってインラッシュ電流が抑制さていることがわかる。
(変形例)
上述した実施形態の系統連系ISにおいては、自励式の直流送電設備D1の片側である電力変換器1を自立運転して大規模停電中の系統の初期電源とし、定格容量の大きな同期発電機の並列運転を可能にして系統復旧を容易にする一例について説明したが、これに限らない。
図19及び図20を参照し、自励式の直流送電設備D1を備える系統連系ISの変形例について説明する。
図19は、本実施形態の変形例に係る系統連系ISaの一例を示す図である。系統連系ISaでは、複数の直流送電設備として、直流送電設備D1a-1及び直流送電設備D1a-2が備えらえる。直流送電設備D1a-1及び直流送電設備D1a-2の構成は、図1の直流送電設備D1の構成と同様である。
系統連系ISaでは、系統復旧のための初期電源としての容量を拡大させるため同一地点の複数の直流送電設備を並列して自立運転させる。
図20は、本実施形態の変形例に係る系統連系ISbの一例を示す図である。系統連系ISbでは、第1系統A1において火力発電設備A11と蓄電池システムA12とが並列運転される。直流送電設備D1bの構成は、火力発電設備A11と、水力発電設備A12とに交流電力を供給する以外では、直流送電設備D1の構成と同様である。
系統連系ISbでは、容量拡大のため火力発電設備A11に加えて蓄電池システムA12が並列運転され、直流送電設備D1bによる自立運転が可能である。
なお、上述した実施形態においては、偏差取得部が直流電力から変換された交流電力である出力有効電力と所定の有効電力基準値との差である有効電力偏差を取得する場合について説明したが、これに限らない。偏差取得部は、無効電力を含む電力と所定の基準値との差である偏差を取得してもよい。
なお、上述した実施形態においては、周波数制御部が出力電圧の周波数を制御する場合、つまり電圧の周波数を制御する場合について説明したが、これに限らない。周波数制御部は、電圧の周波数に代えて、電力の周波数や、電流の周波数に基づいて制御を行ってもよい。
以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
IS…系統連系、A1…第1系統、B1…第2系統、D1…直流送電設備、1…電力変換器、110…有効・無効電力出力基準値設定部、111…交流電圧基準値設定部、112…周波数制御部、113…有効電力偏差取得部

Claims (3)

  1. 電力系統に交流電力を供給する電力変換器であって、
    直流電力から変換された交流電力である出力電力の値と所定の基準値との差である偏差を取得する偏差取得部と、
    前記電力系統との連系を行わない自立運転時において、前記偏差取得部が取得する前記偏差に基づいて前記出力電力の電圧である出力電圧の周波数を制御する周波数制御部と
    前記電力系統の充電状態に基づいて前記出力電圧を目標値から低下させる出力電圧基準値設定部と、
    を備える電力変換器。
  2. 自立運転から連系運転への切替時における前記出力電力の制御の有効電力の基準値としての前記切替時の直前の自立運転時の有効電力の値、及び無効電力の基準値としての前記切替時の直前の自立運転時の無効電力の値を設定する出力基準値設定部
    をさらに備える請求項1に記載の電力変換器。
  3. 電力系統に交流電力を供給する電力変換器の制御方法であって、
    直流電力から変換された交流電力である出力電力の値の偏差を取得する偏差取得過程と、
    前記電力系統との連系を行わない自立運転時において前記偏差取得過程によって取得される前記偏差に基づいて前記出力電力の電圧である出力電圧の周波数を制御する周波数制御過程と
    前記電力系統の充電状態に基づいて前記出力電圧を目標値から低下させる出力電圧基準値設定過程と、
    を有する制御方法。
JP2019015169A 2019-01-31 2019-01-31 電力変換器、及び制御方法 Active JP7211121B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019015169A JP7211121B2 (ja) 2019-01-31 2019-01-31 電力変換器、及び制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019015169A JP7211121B2 (ja) 2019-01-31 2019-01-31 電力変換器、及び制御方法

Publications (2)

Publication Number Publication Date
JP2020124058A JP2020124058A (ja) 2020-08-13
JP7211121B2 true JP7211121B2 (ja) 2023-01-24

Family

ID=71993155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019015169A Active JP7211121B2 (ja) 2019-01-31 2019-01-31 電力変換器、及び制御方法

Country Status (1)

Country Link
JP (1) JP7211121B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004140943A (ja) 2002-10-18 2004-05-13 Omron Corp パワーコンディショナ装置およびその起動方法
JP2005020870A (ja) 2003-06-25 2005-01-20 Toshiba Corp 電力変換装置の制御装置
JP2010161901A (ja) 2009-01-09 2010-07-22 Daihen Corp インバータ制御回路、このインバータ制御回路を備えた系統連系インバータシステム
JP2011055591A5 (ja) 2009-08-31 2012-09-06
US20140268957A1 (en) 2013-03-15 2014-09-18 Sparq Systems Inc. Single Phase Power System Controller and Method Therefor
JP2016010252A (ja) 2014-06-25 2016-01-18 川崎重工業株式会社 複合発電システム用電力変換装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5498100B2 (ja) 2009-08-31 2014-05-21 株式会社ダイヘン インバータ制御回路、このインバータ制御回路を備えた系統連系インバータシステム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004140943A (ja) 2002-10-18 2004-05-13 Omron Corp パワーコンディショナ装置およびその起動方法
JP2005020870A (ja) 2003-06-25 2005-01-20 Toshiba Corp 電力変換装置の制御装置
JP2010161901A (ja) 2009-01-09 2010-07-22 Daihen Corp インバータ制御回路、このインバータ制御回路を備えた系統連系インバータシステム
JP2011055591A5 (ja) 2009-08-31 2012-09-06
US20140268957A1 (en) 2013-03-15 2014-09-18 Sparq Systems Inc. Single Phase Power System Controller and Method Therefor
JP2016010252A (ja) 2014-06-25 2016-01-18 川崎重工業株式会社 複合発電システム用電力変換装置

Also Published As

Publication number Publication date
JP2020124058A (ja) 2020-08-13

Similar Documents

Publication Publication Date Title
WO2019187411A1 (ja) 分散電源の制御装置
JPWO2019116419A1 (ja) 電力変換装置
US20120262129A1 (en) Double fed induction generator converter and method for suppressing transient in deactivation of crowbar circuit for grid fault ridethrough
JP6072194B2 (ja) インバータ制御装置
JP2011050228A (ja) 無停電電源システム
JP2005269843A (ja) 系統連系装置
JP3950706B2 (ja) 系統連系システム
JP4344523B2 (ja) 分散型電源の出力安定化装置とその制御方法
JP7211121B2 (ja) 電力変換器、及び制御方法
WO2021124577A1 (ja) 電力変換装置
JP5067325B2 (ja) 回転電機制御システム
JP5326786B2 (ja) 電圧変換器制御装置
JP6258806B2 (ja) 系統連系用電力変換装置
JP2016167900A (ja) 風力発電システムの制御装置
JP2897208B2 (ja) 系統連系用電源装置
JP5490801B2 (ja) 自励式無効電力補償装置
JP2009284570A (ja) 小型風力発電充電装置
JP2004187431A (ja) 二次電池を備えた風力発電システム
JP6453107B2 (ja) 発電システム
JP2013243934A (ja) 自励式無効電力補償装置
JP2000287457A (ja) 電圧形自励式電力変換装置
WO2023112222A1 (ja) 電力変換装置及び電力変換装置の制御方法
CN115902401B (zh) 功率单元的相位检测方法及相关设备和介质
Redmann et al. Black Start and Islanding Operation of Wind Turbines with Auxiliary Power Converters and Energy Storage Systems
JPH06169598A (ja) 自然エネルギによる発電システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221226

R150 Certificate of patent or registration of utility model

Ref document number: 7211121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150