WO2019187411A1 - 分散電源の制御装置 - Google Patents

分散電源の制御装置 Download PDF

Info

Publication number
WO2019187411A1
WO2019187411A1 PCT/JP2018/046994 JP2018046994W WO2019187411A1 WO 2019187411 A1 WO2019187411 A1 WO 2019187411A1 JP 2018046994 W JP2018046994 W JP 2018046994W WO 2019187411 A1 WO2019187411 A1 WO 2019187411A1
Authority
WO
WIPO (PCT)
Prior art keywords
distributed power
power supply
virtual
value
virtual inertia
Prior art date
Application number
PCT/JP2018/046994
Other languages
English (en)
French (fr)
Inventor
佳澤 李
輝 菊池
智道 伊藤
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to EP18912725.1A priority Critical patent/EP3780310A4/en
Publication of WO2019187411A1 publication Critical patent/WO2019187411A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/241The oscillation concerning frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component

Definitions

  • the present invention relates to a distributed power supply control device for stably operating a distributed power supply linked to a power system.
  • RES Renewable Energy Source
  • synchronous generators In the conventional power system, most of the power generation facilities are synchronous generators. These synchronous generators have a rotor that rotates in synchronization with the system frequency. Since each of these rotors has a rotational moment of inertia, a large moment of inertia exists in the system when a plurality of synchronous generators in the system rotate together. Thereby, the system frequency is stabilized at a constant frequency such as 50 Hz or 60 Hz.
  • a conventional power converter is controlled based on an equation of motion including a virtual inertia constant so that the power converter included in a distributed power source such as a renewable energy power generation system operates as a virtual synchronous generator.
  • a technique is known (see, for example, Patent Document 1).
  • the present invention provides a control device for a distributed power source that can stabilize the output power of the distributed power source linked to the power system.
  • a distributed power supply control device sets virtual inertia for a power conversion device that links a distributed power supply to a power system.
  • a virtual inertia value is calculated based on the state, and the virtual inertia is set in the power conversion device based on either the calculated virtual inertia value or the required inertia value requested by the system operator.
  • the structure of the control apparatus of the renewable energy system which is one Embodiment is shown.
  • the structure of the renewable energy system in FIG. 1 is shown.
  • the structure of a decentralized control apparatus is shown.
  • An example of the time change of the active power output from the power converter when the virtual inertia is changed while the virtual damping constant is constant is shown.
  • An example of the time change of the active power output from the power converter when the virtual inertia is constant and the virtual damping constant is changed is shown.
  • FIG. 1 shows a configuration of a control device of a renewable energy (power generation) system linked to a power system, which is an embodiment of the present invention.
  • the renewable energy system 102 includes a plurality of power conversion devices 104.
  • Each of the plurality of power conversion devices 104 converts the power generated by the renewable energy source 103 into AC power having a system voltage and a system frequency, and outputs the AC power to a power system (not shown).
  • the power conversion device 104 has a main circuit composed of semiconductor switching elements, and switching of the main circuit is controlled by the decentralized control device 105, whereby the output power of the power conversion device 104 is controlled.
  • renewable energy source 103 a wind power generator, a solar battery, or the like is applied. Further, as the main circuit of the power conversion device 104, a power conversion circuit such as a three-phase inverter circuit is applied.
  • the grid interconnection control device 100 shown in FIG. 1 includes a request command 111 indicating a value of inertia required for the renewable energy system 102 transmitted from the grid operator via a communication line, and a decentralized control device 105. Based on the operation state 112 of the decentralized control device 105 transmitted from the recording device 106 and the specification data 113 related to the renewable energy system 102 and the power conversion device 104 read from the recording device 106. The virtual inertia value (virtual inertia constant) and the virtual damping constant value set for each of these are calculated, and the calculated virtual inertia value is transmitted to the renewable energy system 102 as the virtual inertia command 115.
  • the grid connection control apparatus 100 is comprised from a computer system, and performs processes, such as calculation of a virtual inertia value, by running a predetermined program.
  • the decentralized control device 105 controls the power conversion device 104 so as to exhibit inertia like a synchronous generator based on the virtual inertia value set by the grid interconnection control device 100.
  • the grid operator 101 is, for example, an electric power company.
  • the grid operator sets an inertia value assigned to the renewable energy system 102 among the inertia values necessary for stabilizing the power system, and uses the set inertia value as the request command 111 as a central power supply command station, etc. Is transmitted by the communication device.
  • the grid interconnection control device 100 uses the total virtual inertia 114, which is the sum of the virtual inertia values set in each of the plurality of decentralized control devices 105, that is, the virtual inertia value of the renewable energy system. The person 101 is notified through the communication line.
  • the inertia meter 107 shown in FIG. 1 displays information 116 indicating the virtual inertia command 115, the total virtual inertia 114, and the like calculated by the grid interconnection control device 100 on a display device or the like while being updated sequentially or as needed. Record in a storage device such as a memory. Thereby, the operation state of the decentralized control device 105 can be easily confirmed on the renewable energy system side.
  • FIG. 2 shows the configuration of the renewable energy system 102 in FIG.
  • the renewable energy system 102 includes a plurality of (three in FIG. 2) renewable energy sources 103, each of a plurality of (three in FIG. 2) power converters 104. Connected to input. Each output of the plurality of power conversion devices 104 is connected in parallel through the power transmission cable 202, and the output connected in parallel is connected to the power system 201.
  • the power conversion device 104 includes a power conversion main circuit 203 (inverter) including a semiconductor switching element (insulated gate bipolar transistor in FIG. 2) and a flywheel diode.
  • the decentralized control device 105 is based on the virtual inertia command 115 from the grid interconnection control device 100 as described above, and the power conversion main circuit 203 that the detection unit 204 detects using the current sensor CT and the voltage sensor VT.
  • a voltage command (Vi ⁇ ⁇ ⁇ i) is created based on the input / output current / voltage.
  • the pulse width modulation unit 205 performs power conversion by comparing a voltage command (Vi ⁇ i) created by the decentralized control device 105 with a carrier signal such as a triangular wave (not shown), that is, by pulse width modulation (PWM).
  • a drive pulse for driving the semiconductor switching element of the main circuit 203 is created.
  • the output power of the power conversion device 104 is controlled so that the output voltage matches the voltage command.
  • FIG. 3 shows the configuration of the decentralized control device 105.
  • the decentralized control device 105 includes a power calculator 301, a virtual synchronous generator model 302 that simulates the operation of a synchronous generator having mechanical inertia, an integrator 303, and a waveform that generates a voltage command.
  • a generator 305 is provided.
  • the power calculation unit 301 includes a DC side voltage (V dc ) and current (I dc ) of the power conversion main circuit 203 (FIG. 2) of the power conversion device 104, and an AC side voltage (V and V) of the power conversion main circuit 203. Based on the current (I), DC input power (active power P mi ) and AC output power (active power P ei , reactive power Q ei ) in the power conversion device 104 are calculated. As described above, the current is detected by the detection unit 204 (FIG. 2) included in the power conversion device 104.
  • the virtual synchronous generator model 302 is set based on an equation of motion (equation (2) to be described later) of the synchronous generator including the virtual inertia constant Ji and the virtual damping constant Di.
  • equation (2) equation (2) to be described later
  • the angular frequency ( ⁇ i ) of the AC output is calculated.
  • the effective powers P mi and P ei respectively correspond to the mechanical rotational force applied to the generator and the electrical output of the generator in the equation of motion of the synchronous generator.
  • the virtual inertia constant Ji and the virtual damping constant Di correspond to the moment of inertia of the rotor of the synchronous generator and the braking effect by the braking winding, respectively.
  • the virtual inertia constant Ji and the virtual damping constant Di are calculated by the grid interconnection control device 100 (FIG. 2) and given to the decentralized control device 105.
  • the integrator 303 integrates the angular frequency ( ⁇ i ) calculated by the virtual synchronous generator model 302 to calculate the phase angle ( ⁇ i ) of the AC output.
  • the reactive power control unit 304 compares the output power (reactive power Q ei ) of the power conversion device 104 calculated by the power calculation unit 301 with a reactive power command (Q * ) given from another control device (not shown). Thus, an output voltage (V i ) that matches the output power (reactive power Q ei ) with the reactive power command (Q * ) is calculated according to the comparison result.
  • the waveform generation unit 305 causes the pulse width modulation unit 205 (FIG. 2) to respond to the output voltage (V i ) calculated by the reactive power control unit 304 and the phase angle ( ⁇ i ) calculated by the integrator 303. A voltage command (Vi ⁇ i) to be applied is created.
  • the renewable energy system 102 (FIG. 2) can have the same power generation characteristics as the synchronous generator.
  • the active power Pei output from the individual power converters 104 to the power system is expressed by Expression (1).
  • V i and V g are the output voltage of the power converter and the voltage of the power system, respectively, and ⁇ i and ⁇ g are the phase angle of the output voltage of the power converter and the power system, respectively. Is the phase angle of the voltage.
  • X i is the impedance of the cable connecting the output of the power converter and the power system.
  • P mi and P ei are the active power input to each power conversion device 104 and the active power output from the power conversion device 104 to the power system, as described above.
  • Expression (3) is obtained from Expression (1) and Expression (2).
  • the average value of the phase angles ( ⁇ 1 , ⁇ 2 , ⁇ 3 in FIG. 2) of the output voltages of the plurality of power conversion devices 104 included in the renewable energy system 102 is defined as ⁇ a .
  • the time / first-order differentiation of the phase angles ⁇ i and ⁇ i in the equation (3) is assumed that the time frequency and second-order differentiation of the angular frequency, ⁇ i , that is, the time change of the angular frequency is substantially the same for the plurality of power conversion devices 104.
  • Expression (4) is obtained from Expression (3) relating to each of the plurality of power conversion devices 104 (adding the sides of each expression).
  • Equation (3) indicates that the phase angle response ⁇ a of the renewable energy system 102 can be expressed by a second-order linear differential equation having a constant coefficient.
  • the characteristic equation used to determine the theta a is expressed by Equation (5).
  • ⁇ n is a natural frequency (natural frequency)
  • is an attenuation ratio
  • Equation (6) the value of the total virtual inertia obtained by adding the virtual inertias of the individual power conversion devices 104 and the value of the total virtual attenuation constant obtained by adding the virtual attenuation constants of the individual power conversion devices 104 are obtained. Affects the overall operation of the renewable energy system 102. For this reason, in the present embodiment, as will be described later, the value of the total virtual inertia and the value of the total virtual damping constant are optimized, and the operation of the entire renewable energy system 102 is stabilized.
  • FIG. 4 shows an example of the temporal change of the active power output from the power converter 104 when the virtual inertia constant J i is changed while the virtual damping constant D i is constant.
  • FIG. 4 shows the result of examination by the present inventor based on the above-described equation (3).
  • each value of active power, J i and D i is a pu (per unit) value.
  • the initial value of active power is 0.5 pu.
  • the state of vibration of the active power changes depending on the value of the virtual inertia J i .
  • the peak value of the oscillating active power is reduced. In this way, fluctuations in the output power of the power converter can be suppressed by the control for setting J i .
  • FIG. 5 shows an example of a temporal change in the active power output from the power conversion device 104 when the virtual inertia constant J i is constant and the virtual damping constant D i is changed.
  • FIG. 5 shows the result of the study by the present inventor based on the above-described equation (3).
  • each value of active power, J i and D i is a pu (per unit) value.
  • the initial value of active power is 0.5 pu.
  • the state of oscillation of the active power changes with the value of the virtual damping constant D i.
  • D i the peak value of the active power is reduced to vibrate.
  • the control for setting the D i it is possible to suppress the agitation of the output power of the power converter.
  • FIG. 6 is a flowchart showing a processing operation executed by the grid interconnection control device 100 in order to set virtual inertia and a virtual damping constant in the power conversion device.
  • step S1 the grid interconnection control device 100 receives a virtual inertia value J req (corresponding to the request command 111 in FIG. 1) requested by the grid operator to the renewable energy system 102 (step S1).
  • step S ⁇ b> 2 the grid interconnection control device 100 sets the operation state 112 (FIG. 1) of the power conversion device 104 or the decentralized control device 105, that is, the operation state of the renewable energy system, On the basis of the specification data 113 (FIG. 1) relating to the renewable energy system 102 including the virtual inertia upper limit value J max, i and the virtual inertia upper limit value J for each power conversion device in the renewable energy system 102.
  • the lower limit value Dmin, i of the virtual damping constant during operation with max, i is set. Specific setting means will be described later.
  • step S3 the grid interconnection control apparatus 100 determines whether or not the total value ⁇ J max, i of each upper limit value J max, i is smaller than the requested virtual inertia value J req . That is, the grid interconnection control apparatus determines whether or not the renewable energy system can include the virtual inertia value J req requested by the grid operator. If J max, total value .SIGMA.j max of i, is smaller than the virtual inertia value J req where i is requested (YES in step S3), and the process proceeds to step S4-1. If ⁇ J max, i is not smaller than J req (NO in step S3), that is, if ⁇ J max, i is greater than or equal to J req , the process proceeds to step S4-2.
  • step S4-1 the grid interconnection control apparatus 100 calculates a total virtual inertia value J opt suitable for the renewable energy system 102 by the equation (7) based on the result (YES) of step S3.
  • J opt is the total value ⁇ J max, i of the upper limit value of the virtual inertia in each power conversion device.
  • step S4-2 the grid interconnection control apparatus 100 calculates a total virtual inertia value J opt suitable for the renewable energy system 102 by the equation (8) based on the result (NO) of step S3.
  • J opt becomes the required virtual inertia value J req .
  • step S5 is executed.
  • step S5 the grid interconnection control device 100 calculates a total virtual attenuation constant value D optimal (optimum value) suitable for the renewable energy system.
  • D optimal optimum value
  • the total virtual attenuation constant value to approximate the response of the average theta a phase angle according to equation (4) described above the critical damped response, damping ratio in equation (5) xi] is adjusted.
  • D optimal is expressed by equation (9) from equation (6) when the adjusted attenuation ratio is ⁇ optimal .
  • step S6 the grid interconnection control device, based on the calculated total virtual inertia value J opt and the total virtual damping constant D optimal , the virtual inertia value J opt in the decentralized control device of each power conversion device.
  • I and the virtual damping constant value D opt, i are set under the four constraints shown in the figure.
  • the first constraint is that the sum of the individual virtual inertia values J opt, i is equal to the calculated total virtual inertia value J opt .
  • the second constraint is that the sum of the individual virtual damping constants D opt, i is as close as possible to the optimal total virtual damping constant value.
  • the third and fourth constraints are constraints for preventing the operation of each power converter from exceeding the rated operation.
  • each virtual inertia value J opt, i does not exceed the upper limit value J max, i .
  • the fourth constraint is that each virtual attenuation constant value D opt, i is greater than or equal to the minimum value D min, i .
  • step S7 the grid interconnection control apparatus 100 outputs the calculated J opt and D optimum and transmits them to the grid operator 101 and the inertia meter 107 (FIG. 1). Further, the grid interconnection control device 100 outputs the calculated J opt, i , D opt, i and transmits it to the decentralized control device of each power conversion device.
  • FIG. 7 shows a functional configuration of the grid interconnection control device 100 when step S2 of FIG. 6 is executed. That is, FIG. 7 shows the lower limit value (minimum value) D min of the individual virtual damping constants in the operation according to the upper limit value (maximum value) J max, i , J max, i of the individual virtual inertia in this embodiment. , I is shown as one means.
  • the energy stored on the DC side of the power conversion device is used.
  • This energy corresponds to the mechanical rotational energy of the synchronous generator rotor.
  • the renewable energy source is a wind turbine (WT)
  • the energy used for virtual inertial operation is mechanical rotational energy stored in the WT generator rotor.
  • the electrical energy stored in the storage battery may be used.
  • the state of the energy source for these virtual inertia operations (such as fluctuation or abnormality), for example, the rotational angular frequency state of the WT generator and the state of charge (SOC) of the storage battery can be regenerated during the virtual inertia operation. It affects the stable operation of the energy system. That is, an operation that exceeds the specification (for example, rating) of the power conversion device may occur during the virtual inertia operation.
  • the rotational angular frequency and SOC margin (the margin to the specification value (eg, rated value) of the actual operation value), the output operation of the power converter ( It is preferable to limit the magnitude of the virtual inertia value by the margin of the output angular frequency or the like.
  • the maximum value J max, i of the virtual inertia is set in consideration of these margins by the functional configuration of FIG.
  • the renewable energy source is a wind turbine (WT).
  • the grid interconnection control device 100 includes the WT rotation angular frequency ⁇ mi and the output angular frequency ⁇ i that are the operating state of the renewable energy system, and ⁇ that is the specification data of the renewable energy system. lower limit omega mi over the mi, max, ⁇ mi, upper and lower limit values of min and ⁇ i ⁇ i, max, collecting ⁇ i, max.
  • the operation state and the specification data are acquired from the decentralized control device 105 and the recording device 106, respectively.
  • omega margin for the upper and lower limit values of i has ( ⁇ i, max - ⁇ i, ⁇ i - ⁇ i, min), the margin for the upper and lower limit values having the omega m, i (omega mi, max ⁇ ⁇ mi , ⁇ mi ⁇ mi, min ).
  • the minimum value selection unit 501 selects the smaller margin, that is, the minimum margin, of the margin for the upper limit value and the margin for the lower limit value as the margin ⁇ mi for the rotation angular frequency and the margin ⁇ i for the output angular frequency.
  • the maximum virtual inertia setting unit 502 calculates the upper limit value J max, i of the virtual inertia according to the equation (10) based on ⁇ mi and ⁇ i and the margins ⁇ mi and ⁇ i selected by the minimum value selection unit 501. .
  • JWT, i represents the inertia constant (moment of inertia) of the rotor of each wind turbine.
  • Equation (10) is obtained by taking into account margins ⁇ mi and ⁇ i , energy stored on the direct current side of the power converter used for virtual inertia operation, that is, mechanical rotational energy of the rotor of the wind turbine and virtual inertia It can be derived under the condition that the energy output by the power converter by the operation (corresponding to the mechanical rotational energy of the rotor of the virtual synchronous generator) is equal to the law of conservation of energy (detailed derivation process is omitted) To do). Such derivation means can also be applied to other renewable energy sources (such as solar cells).
  • the grid interconnection control device 100 sets J max, i calculated by the maximum virtual inertia setting unit 502 in the decentralized control device 105 in each power conversion device 104.
  • the grid interconnection control device 100 sets the minimum value Dmin, i of the virtual attenuation constant as follows for the stable operation of the power conversion device that does not exceed the specifications during the virtual inertia operation.
  • the grid interconnection control device 100 is configured to output the output power P ei of each power conversion device that is the operating state of the renewable energy system, and P ei that is the specification data of the renewable energy system. Collect lower limit values P ei, max , P ei, min .
  • the grid interconnection controller 100 calculates a margin with respect to the upper and lower limit values having the P ei (P ei, max -P ei, P ei -P ei, min) a.
  • the minimum value selection unit 501 selects, as the output power margin ⁇ P ei , the smaller margin, that is, the minimum margin, of the margin for the upper limit value and the margin for the lower limit value.
  • the minimum attenuation constant setting unit 503 is a virtual attenuation constant for J i, max, that is, the minimum virtual attenuation based on the above-described equations (3) and (5) under the margin ⁇ P ei output from the minimum value selection unit 501.
  • the constant D min, i is calculated.
  • the grid interconnection control device 100 sets D min, i calculated by the minimum attenuation constant setting unit 503 in the decentralized control device 105 in each power conversion device 104.
  • the grid interconnection control device on the renewable energy system side requires the inertia value required by the grid operator for the renewable energy system, and the specifications and operations of the renewable energy system. Compared with the total virtual inertia value calculated based on the state, select one of them and set it in the renewable energy system. Also, depending on the required inertia value or total virtual inertia value to be set, By calculating the attenuation constant and setting it in the renewable energy system, a stable virtual inertia operation can be performed in the same manner as the inertia operation of the synchronous generator.
  • the renewable energy system is configured to operate in a virtual inertial operation by setting a virtual inertia and a virtual damping constant for each power converter according to the operating state margin with respect to the specifications of the renewable energy system. Sometimes it works stably without exceeding specifications.
  • the power source to be controlled is not limited to a renewable energy source, but may be various distributed power sources (such as an engine generator) linked to the power system via a power conversion device.
  • the renewable energy system may include one renewable energy source and one power converter.
  • 100 grid interconnection control device 101 grid operator, 102 renewable energy system, 103 renewable energy source, 104 power conversion device, 105 decentralized control device, 106 recording device, 107 inertia meter, 111 request command, 112 operation State, 113 specification data, 114 total virtual inertia, 115 virtual inertia command, 116 information, 201 power system, 202 power transmission cable, 203 power conversion main circuit, 204 detection unit, 205 pulse width modulation unit, 301 power calculation unit, 302 virtual Synchronous generator model, 303 integrator, 304 reactive power control unit, 305 waveform generation unit, 501 minimum value selection unit, 502 maximum virtual inertia setting unit, 503 minimum attenuation constant setting unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

電力系統に連系される分散電源の出力電力を安定にできる分散電源の制御装置を提供する。分散電源の制御装置(100)は、分散電源を電力系統に連系させる電力変換装置(104)に対して、仮想慣性を設定するものであって、分散電源の仕様および動作状態に基づいて仮想慣性値を算出し、算出される仮想慣性値と、系統運用者(101)から要求される要求慣性値とのいずれか一方に基づいて、電力変換装置(104)に仮想慣性を設定する。

Description

分散電源の制御装置
 本発明は、電力系統に連系される分散電源を安定に動作させる分散電源の制御装置に関する。
 国連気候変動枠組条約第22回締約国会議(COP22)の後、世界中の国々は、再生可能エネルギー源(以下、「RES」と記す。「RES」は、Renewable Energy Sourceの略)の導入を進めている。RESを導入する場合、電力変換装置は、RESによって発生した電力を調整して電力系統に送電するために、不可欠である。
 従来の電力系統では、発電設備のほとんどが同期発電機である。これらの同期発電機は、系統周波数に同期して回転する回転子を有する。これらの回転子は、各々、回転慣性モーメントを有するので、系統内に在る複数の同期発電機がいっしょに回転すると、系統内には大きな慣性モーメントが存在することになる。これにより、系統周波数が、50Hzまたは60Hzというような一定周波数で安定する。
 しかしながら、RESの導入が進むにしたがって、RESを用いる再生可能エネルギー(発電)システムにおける電力変換装置は慣性を有さないので、電力系統においては、慣性および同期特性を備える発電機の割合が相対的に少なくなってきている。したがって、電力系統の安定性が減少する怖れがある。
 これに対し、再生可能エネルギー発電システムなどの分散電源が備える電力変換装置が仮想的な同期発電機として動作するように、仮想的な慣性定数を含む運動方程式に基づいて電力変換装置を制御する従来技術が知られている(例えば、特許文献1参照)。
米国特許出願公開第2011/0270463号明細書
 上記従来技術では、系統事故などの擾乱が発生した場合、過渡的に、電力変換装置の出力電力に電力動揺が発生する怖れが有る。すなわち、擾乱が発生した場合に、再生可能エネルギー発電システムなどの分散電源の動作が不安定になり得る。
 そこで、本発明は、電力系統に連系される分散電源の出力電力を安定にできる分散電源の制御装置を提供する。
 上記課題を解決するために、本発明による分散電源の制御装置は、分散電源を電力系統に連系させる電力変換装置に対して、仮想慣性を設定するものであって、分散電源の仕様および動作状態に基づいて仮想慣性値を算出し、算出される仮想慣性値と、系統運用者から要求される要求慣性値とのいずれか一方に基づいて、電力変換装置に仮想慣性を設定する。
 本発明によれば、電力変換装置の出力電力に発生する電力動揺を抑制することができる。
 上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
一実施形態である再生可能エネルギーシステムの制御装置の構成を示す。 図1における再生可能エネルギーシステムの構成を示す。 非集中型制御装置の構成を示す。 仮想減衰定数は一定にして仮想慣性を変化させた場合における、電力変換装置が出力する有効電力の時間変化の一例を示す。 仮想慣性は一定にして仮想減衰定数を変化させた場合における、電力変換装置が出力する有効電力の時間変化の一例を示す。 系統連系制御装置が実行する処理動作を示すフローチャートである。 図6のステップS2を実行するときの系統連系制御装置の機能構成を示す。
 以下、本発明の実施形態について、図面を用いながら説明する。なお、各図において、参照番号が同一のものは同一の構成要件あるいは類似の機能を備えた構成要件を示している。
 図1は、本発明の一実施形態である、電力系統に連系される再生可能エネルギー(発電)システムの制御装置の構成を示す。
 図1に示すように、再生可能エネルギーシステム102は、複数の電力変換装置104を備える。複数の電力変換装置104の各々は、再生可能エネルギー源103が発生する電力を、系統電圧および系統周波数を有する交流電力に変換して、図示しない電力系統へ出力する。電力変換装置104は、半導体スイッチング素子からなる主回路を有し、この主回路のスイッチングが、非集中型制御装置105によって制御されることにより、電力変換装置104の出力電力が制御される。
 なお、再生可能エネルギー源103としては、風力発電機や太陽電池などが適用される。また、電力変換装置104の主回路としては、三相インバータ回路などの電力変換回路が適用される。
 図1に示す系統連系制御装置100は、系統運用者から通信回線を介して送信される、再生可能エネルギーシステム102に要求される慣性の値を示す要求指令111と、非集中型制御装置105から送信される非集中型制御装置105の動作状態112と、記録装置106から読み込まれる再生可能エネルギーシステム102や電力変換装置104に関する仕様データ113と、に基づいて、複数の非集中型制御装置105の各々に設定する仮想慣性値(仮想慣性定数)および仮想減衰定数値を計算して、計算した仮想慣性値を仮想慣性指令115として再生可能エネルギーシステム102へ送信する。なお、系統連系制御装置100は、コンピューターシステムから構成され、所定のプログラムを実行することにより、仮想慣性値の計算などの処理を行う。
 非集中型制御装置105は、系統連系制御装置100によって設定される仮想慣性値に基づいて、電力変換装置104を、同期発電機のような慣性を示すように制御する。
 ここで、系統運用者101は、例えば、電力事業者である。系統運用者は、電力系統の安定化のために必要な慣性値の内、再生可能エネルギーシステム102に割り当てる慣性値を設定して、設定した慣性値を、要求指令111として、中央給電指令所などから通信装置によって送信する。
 また、系統連系制御装置100は、複数の非集中型制御装置105の各々に設定する仮想慣性値の和である総仮想慣性114、すなわち再生可能エネルギーシステムが有する仮想慣性の値を、系統運用者101に通信回線を介して通知する。
 図1に示す慣性メータ107は、系統連系制御装置100によって算出される仮想慣性指令115や総仮想慣性114等を示す情報116を、逐次または随時更新しながらディスプレイ装置などに表示するとともに、半導体メモリなどの記憶装置に記録する。これにより、再生可能エネルギーシステム側で、非集中型制御装置105の動作状態を容易に確認できる。
 図2は、図1における再生可能エネルギーシステム102の構成を示す。
 図2に示すように、再生可能エネルギーシステム102は、複数の(図2では三台の)再生可能エネルギー源103の各々が、複数の(図2では三台の)電力変換装置104の各々の入力に接続される。複数の電力変換装置104の各出力は、送電ケーブル202を介して、並列多重接続され、並列多重接続された出力が、電力系統201に接続される。
電力変換装置104は、再生可能エネルギー源103からの電力(Pmi:i=1~3)を交流電力(Pei:i=1~3)に変換して、電力系統201へ出力する。
 電力変換装置104は、半導体スイッチング素子(図2では絶縁ゲートバイポーラトランジスタ)およびフライホイールダイオードからなる電力変換主回路203(インバータ)を備える。非集中型制御装置105は、上述のように系統連系制御装置100からの仮想慣性指令115に基づくと共に、検出部204が電流センサCTおよび電圧センサVTを用いて検出する、電力変換主回路203の入出力電流・電圧に基づいて、電圧指令(Vi∠θi)を作成する。パルス幅変調部205は、非集中型制御装置105によって作成される電圧指令(Vi∠θi)と図示しない三角波などのキャリア信号とを比較することにより、すなわちパルス幅変調(PWM)により、電力変換主回路203の半導体スイッチング素子を駆動するための駆動パルスを作成する。この駆動パルスによって電力変換主回路203が動作することにより、出力電圧が電圧指令に一致するように、電力変換装置104の出力電力が制御される。
 図3は、非集中型制御装置105の構成を示す。
 図3に示すように、非集中型制御装置105は、電力計算部301、機械的慣性を有する同期発電機の動作を模擬する仮想同期発電機モデル302、積分器303、電圧指令を作成する波形発生部305を備えている。
 電力計算部301は、電力変換装置104の電力変換主回路203(図2)の直流側の電圧(Vdc)および電流(Idc)、並びに電力変換主回路203の交流側の電圧(Vおよび電流(I)に基づいて、電力変換装置104における直流入力電力(有効電力Pmi)、交流出力電力(有効電力Pei、無効電力Qei)を算出する。なお、直流側および交流側における電圧・電流は、前述したように、電力変換装置104が備える検出部204(図2)によって検出される。
 仮想同期発電機モデル302は、仮想慣性定数Jiおよび仮想減衰定数Diを含む同期発電機の運動方程式(後述する式(2))に基づいて設定される。仮想同期発電機モデル302によって、電力計算部301によって計算される電力変換装置104への入力電力(有効電力Pmi)と電力変換装置104の出力電力(有効電力Pei)との差分に応じて、交流出力の角周波数(ω)が算出される。有効電力PmiおよびPeiは、それぞれ、同期発電機の運動方程式において、発電機に与える機械的回転力および発電機の電気出力に対応する。また、仮想慣性定数Jiおよび仮想減衰定数Diは、それぞれ、同期発電機の回転子が有する慣性モーメント、制動巻線による制動効果に対応する。ここで、本実施形態において、仮想慣性定数Jiおよび仮想減衰定数Diは、系統連系制御装置100(図2)によって、計算されて、非集中型制御装置105に与えられる。
 積分器303は、仮想同期発電機モデル302によって算出される角周波数(ω)を積分して、交流出力の位相角(θ)を計算する。
 無効電力制御部304は、電力計算部301によって計算される電力変換装置104の出力電力(無効電力Qei)と、図示されない他の制御装置から与えられる無効電力指令(Q)とを比較して、比較結果に応じて、出力電力(無効電力Qei)を無効電力指令(Q)に一致させるような出力電圧(V)を算出する。
 波形発生部305は、無効電力制御部304によって算出される出力電圧(V)と、積分器303によって算出される位相角(θ)に応じて、パルス幅変調部205(図2)に与える電圧指令(Vi∠θi)を作成する。
 このような非集中型制御装置105により電力変換装置104を制御することにより、再生可能エネルギーシステム102(図2)に、同期発電機と同様の発電特性を持たせることができる。
 次に、図3に示す非集中型制御装置105を備える電力変換装置104を複数台備える本実施形態における再生可能エネルギーシステム102の挙動について説明する。
 個々の電力変換装置104から電力系統へ出力される有効電力Peiは、式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 式(1)において、V,Vは、それぞれ、電力変換装置の出力電圧、電力系統の電圧であり、θ,θは、それぞれ、電力変換装置の出力電圧の位相角、電力系統の電圧の位相角である。また、Xは、電力変換装置の出力と電力系統とを接続するケーブルのインピーダンスである。なお、式(1)においては、θとθの差が小さいという条件のもとで、正弦関数を近似している。なお、V,V,θ,θ,Xは、図2中に付記している(但し、i=1,2,3)。
 仮想同期発電機モデル302(図3)において、運動方程式は、位相角応答をθとして式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
 式(2)中、Pmi,Peiは、上述のように、それぞれ、個々の電力変換装置104に入力される有効電力、電力変換装置104から電力系統へ出力される有効電力である。
 式(1)および式(2)から、式(3)が得られる。上述のように、Pmi,Peiは、同期発電機への機械的回転力および電気出力に対応する。なお、Pmi,Peiは、図2中に付記している(但し、i=1,2,3)。
Figure JPOXMLDOC01-appb-M000003
 ここで、再生可能エネルギーシステム102が備える複数台の電力変換装置104の出力電圧の位相角(図2では、θ,θ,θ)の平均値をθとする。さらに、本実施形態では、複数台の電力変換装置104が再生可能エネルギーシステム102において互いに近接して配置されているため、式(3)中の位相角θ、θの時間・一階微分すなわち角周波数、θの時間・二階微分すなわち角周波数の時間変化は、複数台の電力変換装置104についてほぼ同等であるとする。このような状況下で、複数台の電力変換装置104の各々に関する式(3)から(各式の辺々を足し合わせる)、式(4)が得られる。
Figure JPOXMLDOC01-appb-M000004
 式(3)は、いわば、再生可能エネルギーシステム102の位相角応答θが、定係数の2階線形微分方程式で表せることを示している。この場合、θを求めるために用いられる特性方程式は式(5)で表される。
Figure JPOXMLDOC01-appb-M000005
 式(5)において、ωは固有周波数(自然周波数)であり、ξは減衰比である。式(4)における各係数と、式(5)から、式(6)が得られる。
Figure JPOXMLDOC01-appb-M000006
 式(6)から判るように、個々の電力変換装置104における仮想慣性を足し合わせた総仮想慣性の値、および個々の電力変換装置104における仮想減衰定数を足し合わせた総仮想減衰定数の値が、再生可能エネルギーシステム102全体の動作に影響する。このため、本実施形態では、後述するように、総仮想慣性の値および総仮想減衰定数の値を最適化して、再生可能エネルギーシステム102全体の動作を安定化する。
 次に、個々の電力変換装置における仮想慣性および仮想減衰定数の影響について、図4および図5を用いて説明する。
 図4は、仮想減衰定数Dは一定にして仮想慣性Jを変化させた場合における、電力変換装置104が出力する有効電力の時間変化の一例を示す。なお、本図4は、前述の式(3)に基づく、本発明者による検討結果である。なお、図4において、有効電力、JおよびDの各値は、pu(per unit)値である。また、有効電力の初期値は0.5puとしている。
 図4が示すように、仮想慣性Jの値によって有効電力の振動の状態が変化する。Jの値を大きくすると、振動する有効電力のピーク値が低減する。このように、Jを設定する制御により、電力変換装置の出力電力の動揺を抑えることができる。
 図5は、仮想慣性Jは一定にして仮想減衰定数Dを変化させた場合における、電力変換装置104が出力する有効電力の時間変化の一例を示す。なお、本図5は、前述の式(3)に基づく、本発明者による検討結果である。なお、図5において、有効電力、JおよびDの各値は、pu(per unit)値である。また、有効電力の初期値は0.5puとしている。
 図5が示すように、仮想減衰定数Dの値によって有効電力の振動の状態が変化する。
の値を大きくすると、振動する有効電力のピーク値が低減する。このように、Dを設定する制御により、電力変換装置の出力電力の動揺を抑えることができる。
 なお、図4、図5に示すように、いずれのJ,Dの値についても、過渡的には振幅が大きな電力動揺が生じている。このため、系統運用者によって要求される仮想慣性値を設定して電力変換装置を制御すると、過渡的に発生する大きな電力動揺が、電力変換装置の性能(例えば、定格電力容量や定格電流など)を越え、電力変換装置の動作を停止するに至る場合が起こり得る。そこで、本実施形態では、後述するように、系統運用者から要求される仮想慣性の値を考慮しながらも、再生可能エネルギーシステム側で、自システムに適した仮想慣性の値を設定する。これにより、再生可能エネルギーシステムの動作を停止させることなく、確実に、電力動揺を抑制できる。
 図6は、電力変換装置に仮想慣性および仮想減衰定数を設定するために系統連系制御装置100が実行する処理動作を示すフローチャートである。
 ステップS1において、系統連系制御装置100は、系統運用者が再生可能エネルギーシステム102に対して要求する仮想慣性値Jreq(図1における要求指令111に相当)を受ける(ステップS1)。
 次に、ステップS2において、系統連系制御装置100は、電力変換装置104または非集中型制御装置105の動作状態112(図1)、すなわち再生可能エネルギーシステムの動作状態と、電力変換装置104を含む再生可能エネルギーシステム102に関する仕様データ113(図1)とに基づいて、再生可能エネルギーシステム102における各電力変換装置に対して、仮想慣性の上限値Jmax,iと、仮想慣性の上限値Jmax,iによる動作時における仮想減衰定数の下限値Dmin,iとを設定する。なお、具体的な設定手段については、後述する。
 次に、ステップS3において、系統連系制御装置100は、各上限値Jmax,iの総計値ΣJmax,iが要求されている仮想慣性値Jreqより小さいか否かを判定する。
すなわち、系統連系制御装置は、再生可能エネルギーシステムが、系統運用者が要求する仮想慣性値Jreqを備えることができるか否かを判定する。Jmax,iの総計値ΣJmax,iが要求されている仮想慣性値Jreqよりも小さい場合(ステップS3のYES)、ステップS4-1に進む。また、ΣJmax,iがJreqよりも小さくはない場合(ステップS3のNO)、すなわちΣJmax,iがJreq以上である場合、ステップS4-2に進む。
 ステップS4-1において、系統連系制御装置100は、ステップS3の結果(YES)に基づいて、式(7)によって、再生可能エネルギーシステム102に適する総仮想慣性値Joptを算出する。
Figure JPOXMLDOC01-appb-M000007
 ここでは、再生可能エネルギーシステムが、要求されている仮想慣性値Jreqを備えることができないため、Joptは、各電力変換装置における仮想慣性の上限値の総計値ΣJmax,iとなる。
 また、ステップS4-2において、系統連系制御装置100は、ステップS3の結果(NO)に基づいて、式(8)によって、再生可能エネルギーシステム102に適する総仮想慣性値Joptを算出する。
Figure JPOXMLDOC01-appb-M000008
 ここでは、再生可能エネルギーシステムが、要求されている仮想慣性値Jreqを備えることができるため、Joptは、要求されている仮想慣性値Jreqとなる。
 ステップS4-1およびS4-2のいずれかが実行されると、次に、ステップS5が実行される。
 ステップS5において、系統連系制御装置100は、再生可能エネルギーシステムに適した総仮想減衰定数値Doptimal(最適値)を計算する。本実施形態において、総仮想減衰定数値は、前述の式(4)に従う位相角の平均値θの応答を臨界減衰応答に近づけるように、式(5)における減衰比ξが調整される。この場合、Doptimalは、調整された減衰比をξoptimalとすると、式(6)から、式(9)によって表わされる。
Figure JPOXMLDOC01-appb-M000009
 理想的な臨界減衰応答の場合、ξoptimal=1であり、繰り返し振動が発生しない。また、ξoptimal=0.707(=1/(21/2))とすれば、繰り返し振動の収束時間が最短になる。
 次に、ステップS6において、系統連系制御装置は、算出された総仮想慣性値Joptと総仮想減衰定数Doptimalに基づき、個々の電力変換装置の非集中型制御装置における仮想慣性値Jopt,iおよび仮想減衰定数値Dopt,iを、図中に示す4つの制約のもとで設定する。第1の制約は、個々の仮想慣性値Jopt,iの和が算出された総仮想慣性値Joptに等しいことである。第2の制約は、個々の仮想減衰定数Dopt,iの和が最適な総仮想減衰定数値にできるだけ近付けることである。第3および第4の制約は、各電力変換装置の動作が、定格動作を超えないようにするための制約である。第3の制約は、個々の仮想慣性値Jopt,iが、上限値Jmax,iを超えないことである。第4の制約は、個々の仮想減衰定数値Dopt,iが最小値Dmin,i以上であることである。
 ステップS7において、系統連系制御装置100は、算出されたJoptおよびDoptimalを出力して、系統運用者101および慣性メータ107(図1)に送信する。
また、系統連系制御装置100は、算出されたJopt,i,Dopt,iを出力して、個々の電力変換装置の非集中型制御装置へ送信する。
 図7は、図6のステップS2を実行するときの系統連系制御装置100の機能構成を示す。すなわち、本図7は、本実施形態において、個々の仮想慣性の上限値(最大値)Jmax,i、Jmax,iによる動作時における個々の仮想減衰定数の下限値(最小値)Dmin,iを設定する一手段を示す。
 仮想慣性を有する電力変換装置の動作(仮想慣性動作)時には、電力変換装置の直流側において貯蔵されたエネルギーが用いられる。このエネルギーは、同期発電機の回転子の機械的回転エネルギーに対応する。例えば、再生可能エネルギー源が風力タービン(WT)である場合、仮想慣性動作に用いられるエネルギーは、WTの発電機の回転子に貯蔵された機械的回転エネルギーである。また、蓄電池に貯蔵された電気エネルギーが用いられる場合もある。
 これらの仮想慣性動作のためのエネルギー源の状態(変動や異常の有無など)、例えば、WTの発電機における回転角周波数の状態や蓄電池における充電状態(SOC)は、仮想慣性動作時における再生可能エネルギーシステムの安定動作に影響する。すなわち、仮想慣性動作時に電力変換装置の仕様(例えば定格)を超えるような動作を起こし得る。したがって、仕様を超えない安定動作のためには、回転角周波数やSOCのマージン(実際の動作値が有する仕様値(例えば定格値)までの余裕度)の大きさ、電力変換装置の出力動作(出力角周波数など)のマージンによって、仮想慣性値の大きさを制限することが好ましい。
 そこで、本実施形態では、図7の機能構成により、これらマージンを考慮して仮想慣性の最大値Jmax,iを設定する。なお、ここでは、再生可能エネルギー源が風力タービン(WT)であるとする。
 図7に示すように、系統連系制御装置100は、再生可能エネルギーシステムの動作状態であるWTの回転角周波数ωmiおよび出力角周波数ω、ならびに、再生可能エネルギーシステムの仕様データであるωmiの上下限値ωmi,max,ωmi,minおよびωの上下限値ωi,max,ωi,maxを収集する。なお、前述(図1)のように、動作状態および仕様データは、それぞれ、非集中型制御装置105および記録装置106から取得される。
 まず、系統連系制御装置100は、ωが有する上下限値に対するマージン(ωi,max-ω,ω-ωi,min)、ωm,iが有する上下限値に対するマージン(ωmi,max-ωmi,ωmi-ωmi,min)を算出する。
 最小値選択部501は、回転角周波数のマージンΔωmiおよび出力角周波数のマージンΔωとして、上限値に対するマージンと下限値に対するマージンとの内、小さい方のマージンすなわち最小のマージンを選択する。
 最大仮想慣性設定部502は、ωmiおよびω、最小値選択部501によって選択されるマージンΔωmi,Δωに基づいて、式(10)によって、仮想慣性の上限値Jmax,i算出する。なお、式(10)中、JWT,iは個々の風力タービンの回転子の慣性定数(慣性モーメント)を示す。
Figure JPOXMLDOC01-appb-M000010
 式(10)は、マージンΔωmi,Δωを考慮して、仮想慣性動作に用いられる電力変換装置の直流側に貯蔵されたエネルギー、すなわち風力タービンの回転子の機械的回転エネルギーと、仮想慣性動作により電力変換装置が出力するエネルギー(仮想同期発電機の回転子の機械的回転エネルギーに対応)とが、エネルギー保存則により等しいという条件のもとで導出できる(詳細な導出過程の記載は省略する)。なお、このような導出手段は、他の再生可能エネルギー源(太陽電池など)に対しても適用できる。
 系統連系制御装置100は、最大仮想慣性設定部502によって算出されるJmax,iを個々の電力変換装置104における非集中型制御装置105に設定する。
 さらに、系統連系制御装置100は、仮想慣性動作時における仕様を超えない電力変換装置の安定動作のために、次のように仮想減衰定数の最小値Dmin,iを設定する。
 図7に示すように、系統連系制御装置100は、再生可能エネルギーシステムの動作状態である個々の電力変換装置の出力電力Pei、ならびに、再生可能エネルギーシステムの仕様データであるPeiの上下限値Pei,max,Pei,minを収集する。
 まず、系統連系制御装置100は、Peiが有する上下限値に対するマージン(Pei,max-Pei,Pei-Pei,min)を算出する。
 最小値選択部501は、出力電力のマージンΔPeiとして、上限値に対するマージンと下限値に対するマージンとの内、小さい方のマージンすなわち最小のマージンを選択する。
 最小減衰定数設定部503は、最小値選択部501が出力するマージンΔPeiのもとで、前述の式(3)および(5)に基づいて、Ji,maxに対する仮想減衰定数すなわち最小仮想減衰定数Dmin,iを算出する。
 系統連系制御装置100は、最小減衰定数設定部503によって算出されるDmin,iを個々の電力変換装置104における非集中型制御装置105に設定する。
 上述のように、本実施形態によれば、再生可能エネルギーシステム側における系統連系制御装置が、系統運用者から再生可能エネルギーシステムに要求される要求慣性値と、再生可能エネルギーシステムの仕様および動作状態に基づいて算出される総仮想慣性値とを比較して、いずれか一方を選択して再生可能エネルギーシステムに設定し、また、設定される要求慣性値または総仮想慣性値に応じて総仮想減衰定数を算出して再生可能エネルギーシステムに設定することにより、同期発電機の慣性動作と同様に安定した仮想慣性動作が可能になる。
 また、本実施形態によれば、再生可能エネルギーシステムの仕様に対する動作状態のマージンに応じて、電力変換装置ごとに仮想慣性および仮想減衰定数を設定することにより、再生可能エネルギーシステムは、仮想慣性動作時に、仕様を超えることなく安定に動作する。
 なお、本発明は前述した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前述した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施形態の構成の一部について、他の構成の追加・削除・置き換えをすることが可能である。
 例えば、制御対象となる電源は、再生可能エネルギー源に限らず、電力変換装置を介して電力系統に連系する種々の分散電源(エンジン発電機など)でも良い。また、再生可能エネルギーシステムが備える、再生可能エネルギー源および電力変換装置は、各々一台でも良い。
100 系統連系制御装置、101 系統運用者、102 再生可能エネルギーシステム、103 再生可能エネルギー源、104 電力変換装置、105 非集中型制御装置、106 記録装置、107 慣性メータ、111 要求指令、112 動作状態、113 仕様データ、114 総仮想慣性、115 仮想慣性指令、116 情報、201 電力系統、202 送電ケーブル、203 電力変換主回路、204 検出部、205 パルス幅変調部、301 電力計算部、302 仮想同期発電機モデル、303 積分器、304 無効電力制御部、305 波形発生部、501 最小値選択部、502 最大仮想慣性設定部、503 最小減衰定数設定部

Claims (12)

  1.  分散電源を電力系統に連系させる電力変換装置に対して、仮想慣性を設定する、分散電源の制御装置において、
     前記分散電源の仕様および動作状態に基づいて仮想慣性値を算出し、
     算出される前記仮想慣性値と、系統運用者から要求される要求慣性値とのいずれか一方に基づいて、前記電力変換装置に前記仮想慣性を設定することを特徴とする分散電源の制御装置。
  2.  請求項1に記載される分散電源の制御装置において、
     前記電力変換装置に設定される前記仮想慣性の値を表示するメータを備えることを特徴とする分散電源の制御装置。
  3.  請求項1に記載される分散電源の制御装置において、
     前記電力変換装置に設定される前記仮想慣性の値を前記系統運用者へ送信することを特徴とする分散電源の制御装置。
  4.  請求項1に記載される分散電源の制御装置において、
     算出される前記仮想慣性値に基づいて、前記電力変換装置に設定される仮想減衰定数を算出することを特徴とする分散電源の制御装置。
  5.  請求項4に記載される分散電源の制御装置において、
     前記仮想減衰定数は、所定の減衰比のもとで算出されることを特徴とする分散電源の制御装置。
  6.  請求項1に記載される分散電源の制御装置において、
     前記分散電源の前記仕様に対する前記動作状態のマージンに基づいて、前記電力変換装置に前記仮想慣性を設定することを特徴とする分散電源の制御装置。
  7.  請求項6に記載される分散電源の制御装置において、
     前記マージンに基づいて前記仮想慣性の上限値を算出する最大仮想慣性設定部を備え、 前記上限値に基づいて前記電力変換装置に前記仮想慣性を設定することを特徴とする分散電源の制御装置。
  8.  請求項7に記載される分散電源の制御装置において、
     前記上限値と前記要求慣性値とを比較した結果に基づいて、前記電力変換装置に前記仮想慣性を設定することを特徴とする分散電源の制御装置。
  9.  請求項4に記載される分散電源の制御装置において、
     前記分散電源の前記仕様に対する前記動作状態のマージンに基づいて、前記電力変換装置に前記仮想減衰定数を設定することを特徴とする分散電源の制御装置。
  10.  請求項9に記載される分散電源の制御装置において、
     前記マージンに基づいて、前記仮想減衰定数の下限値を算出する最小減衰定数設定部を備え、
     前記下限値に基づいて前記電力変換装置に前記仮想減衰定数を設定することを特徴とする分散電源の制御装置。
  11.  複数の分散電源を電力系統に連系させる複数の電力変換装置の各々に対して、仮想慣性を設定する、分散電源の制御装置において、
     前記分散電源の仕様および動作状態に基づいて、前記複数の分散電源の総仮想慣性値を算出し、
     算出される前記総仮想慣性値と、系統運用者から要求される要求慣性値とのいずれか一方に基づいて、前記複数の電力変換装置の各々に前記仮想慣性を設定することを特徴とする分散電源の制御装置。
  12.  請求項11に記載される分散電源の制御装置において、
     前記分散電源の前記仕様に対する前記動作状態のマージンに基づいて、前記複数の電力変換装置の各々に前記仮想慣性を設定することを特徴とする分散電源の制御装置。
PCT/JP2018/046994 2018-03-28 2018-12-20 分散電源の制御装置 WO2019187411A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18912725.1A EP3780310A4 (en) 2018-03-28 2018-12-20 CONTROL DEVICE FOR A DISTRIBUTED POWER SOURCE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018061111A JP7025973B2 (ja) 2018-03-28 2018-03-28 分散電源の制御装置
JP2018-061111 2018-03-28

Publications (1)

Publication Number Publication Date
WO2019187411A1 true WO2019187411A1 (ja) 2019-10-03

Family

ID=68061177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046994 WO2019187411A1 (ja) 2018-03-28 2018-12-20 分散電源の制御装置

Country Status (3)

Country Link
EP (1) EP3780310A4 (ja)
JP (1) JP7025973B2 (ja)
WO (1) WO2019187411A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112152197A (zh) * 2020-08-12 2020-12-29 浙江大学 一种多机电力系统的频率强度参数测定方法
CN112448401A (zh) * 2020-12-15 2021-03-05 南方电网科学研究院有限责任公司 提升虚拟同步机暂态功角稳定性的控制方法、装置及设备
WO2021091136A1 (ko) * 2019-11-07 2021-05-14 한국전기연구원 분산전원의 계통 유지 및 분산 운영 제어 방법 및 그 장치
CN112803474A (zh) * 2020-12-30 2021-05-14 国网黑龙江省电力有限公司电力科学研究院 一种增强能量路由器直流母线稳定性的控制方法
CN114996980A (zh) * 2022-08-08 2022-09-02 中国科学院电工研究所 一种分布式能源微网群的聚合惯量能力评估方法
WO2022269858A1 (ja) 2021-06-24 2022-12-29 三菱電機株式会社 電力変換装置
CN115549169A (zh) * 2022-09-28 2022-12-30 南方电网科学研究院有限责任公司 一种异步互联的柔性直流虚拟惯量控制方法、装置及系统
CN115841012A (zh) * 2022-03-03 2023-03-24 中国电力科学研究院有限公司 一种确定电网可承受的最小惯量的方法和装置
EP4107836B1 (en) 2020-04-23 2023-07-19 Hitachi Energy Switzerland AG Power supporting arrangement for a power grid operated as a virtual synchronous machine

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7265928B2 (ja) * 2019-05-15 2023-04-27 株式会社日立製作所 系統管理装置および系統管理方法
JP6735039B1 (ja) * 2020-03-19 2020-08-05 富士電機株式会社 系統連系インバータ及び系統周波数の変動抑制方法
WO2022097269A1 (ja) * 2020-11-06 2022-05-12 三菱電機株式会社 電力変換装置
CN116686180A (zh) * 2021-01-15 2023-09-01 三菱电机株式会社 电力变换装置
US20240088673A1 (en) * 2021-02-05 2024-03-14 Mitsubishi Electric Corporation Electric power control system
JP7530849B2 (ja) 2021-03-03 2024-08-08 株式会社日立製作所 電力系統安定化装置および電力系統安定化方法
JP7502243B2 (ja) 2021-09-15 2024-06-18 株式会社東芝 インバータ、電源装置、エネルギー制御方法、及びプログラム
CN114024335A (zh) * 2021-11-18 2022-02-08 华北电力大学 一种交直流混合微电网互联变流器虚拟惯性控制策略
JP2023137734A (ja) 2022-03-18 2023-09-29 株式会社東芝 パワーコンディショナ及び電力系統運用システム
WO2024180658A1 (ja) * 2023-02-28 2024-09-06 株式会社東芝 電力変換装置及びプログラム
JP7355265B1 (ja) * 2023-05-23 2023-10-03 富士電機株式会社 電力変換装置
JP7459405B1 (ja) 2023-08-28 2024-04-01 三菱電機株式会社 電力変換装置
JP7490166B1 (ja) 2023-10-20 2024-05-24 三菱電機株式会社 制御装置、及び制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055322A2 (en) * 2008-11-12 2010-05-20 Ulive Enterprises Limited Static synchronous generators
WO2010108979A2 (en) * 2009-03-25 2010-09-30 Vestas Wind Systems A/S Improved frequency control
CN104578173A (zh) * 2015-01-26 2015-04-29 西安交通大学 一种基于虚拟同步发电机技术的逆变器并网控制方法
JP2016077138A (ja) * 2014-10-02 2016-05-12 三菱電機株式会社 配電系統を構成する方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2402499B1 (es) * 2011-02-28 2013-11-26 Abengoa Solar New Technologies S.A. Controlador de la característica electromecánica virtual para convertidores estáticos de potencia.
ES2402467B1 (es) * 2011-02-28 2014-01-27 Abengoa Solar New Technologies S.A. Controlador de potencia síncrona de un sistema de generación basado en convertidores estáticos de potencia.
US9728969B2 (en) * 2011-05-31 2017-08-08 Vestas Wind Systems A/S Systems and methods for generating an inertial response to a change in the voltage of an electricial grid
JP6548570B2 (ja) * 2015-12-25 2019-07-24 株式会社日立製作所 電力供給システム、電力供給システム用の制御装置およびプログラム
CN105576697B (zh) * 2015-12-30 2018-09-28 阳光电源股份有限公司 基于虚拟同步机的并网控制方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055322A2 (en) * 2008-11-12 2010-05-20 Ulive Enterprises Limited Static synchronous generators
US20110270463A1 (en) 2008-11-12 2011-11-03 George Weiss Static synchronous generators
WO2010108979A2 (en) * 2009-03-25 2010-09-30 Vestas Wind Systems A/S Improved frequency control
JP2016077138A (ja) * 2014-10-02 2016-05-12 三菱電機株式会社 配電系統を構成する方法
CN104578173A (zh) * 2015-01-26 2015-04-29 西安交通大学 一种基于虚拟同步发电机技术的逆变器并网控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3780310A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021091136A1 (ko) * 2019-11-07 2021-05-14 한국전기연구원 분산전원의 계통 유지 및 분산 운영 제어 방법 및 그 장치
EP4107836B1 (en) 2020-04-23 2023-07-19 Hitachi Energy Switzerland AG Power supporting arrangement for a power grid operated as a virtual synchronous machine
CN112152197A (zh) * 2020-08-12 2020-12-29 浙江大学 一种多机电力系统的频率强度参数测定方法
CN112448401A (zh) * 2020-12-15 2021-03-05 南方电网科学研究院有限责任公司 提升虚拟同步机暂态功角稳定性的控制方法、装置及设备
CN112803474A (zh) * 2020-12-30 2021-05-14 国网黑龙江省电力有限公司电力科学研究院 一种增强能量路由器直流母线稳定性的控制方法
WO2022269858A1 (ja) 2021-06-24 2022-12-29 三菱電機株式会社 電力変換装置
CN115841012A (zh) * 2022-03-03 2023-03-24 中国电力科学研究院有限公司 一种确定电网可承受的最小惯量的方法和装置
CN115841012B (zh) * 2022-03-03 2023-10-27 中国电力科学研究院有限公司 一种确定电网可承受的最小惯量的方法和装置
CN114996980A (zh) * 2022-08-08 2022-09-02 中国科学院电工研究所 一种分布式能源微网群的聚合惯量能力评估方法
CN114996980B (zh) * 2022-08-08 2022-11-18 中国科学院电工研究所 一种分布式能源微网群的聚合惯量能力评估方法
CN115549169A (zh) * 2022-09-28 2022-12-30 南方电网科学研究院有限责任公司 一种异步互联的柔性直流虚拟惯量控制方法、装置及系统
CN115549169B (zh) * 2022-09-28 2024-05-24 南方电网科学研究院有限责任公司 一种异步互联的柔性直流虚拟惯量控制方法、装置及系统

Also Published As

Publication number Publication date
JP7025973B2 (ja) 2022-02-25
JP2019176584A (ja) 2019-10-10
EP3780310A4 (en) 2021-12-22
EP3780310A1 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
WO2019187411A1 (ja) 分散電源の制御装置
Hirase et al. Analysis of resonance in microgrids and effects of system frequency stabilization using a virtual synchronous generator
Amin et al. Understanding the origin of oscillatory phenomena observed between wind farms and HVDC systems
EP3376627B1 (en) Method and control system for controlling a power converter
US10873273B2 (en) Renewable energy resources integrating power conversion apparatus
JP6084863B2 (ja) 系統連系する電力変換装置
US8432052B2 (en) Wind power converter system with grid side reactive power control
EP3734787A1 (en) Microgrid control system and microgrid
JP4680102B2 (ja) 電力変換装置
US10263550B2 (en) Gas turbine power generation system and control system used in the same
JP3435474B2 (ja) 変速風車
JP5408889B2 (ja) 電力変換装置
CN105305491A (zh) 一种基于虚拟同步发电机的光伏电源控制策略
CN103972928A (zh) 一种基于虚拟同步发电机的微网微源控制方法
EP2485378A1 (en) Control arrangement and method for regulating the output voltage of a dc source power converter connected to a multi-source dc system
CN104638679A (zh) 一种采用自适应调节的虚拟同步发电机频率控制方法
JP6414795B2 (ja) 電力供給システム及び制御方法
CN109980682A (zh) 基于功率前馈的vsg储能电站主动频率支撑控制方法
Yu et al. An overview of grid-forming control for wind turbine converters
WO2021205700A1 (ja) 電力変換装置
JP2017127141A (ja) 擬似同期化力電圧型コンバータおよびそのコントローラ
CN109193609A (zh) 一种基于vsg控制的直流电网直流电压协调控制方法
WO2023233454A1 (ja) 電力変換装置、および制御装置
JP2016167900A (ja) 風力発電システムの制御装置
JP7054653B2 (ja) 電力変換システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018912725

Country of ref document: EP

Effective date: 20201028