JP7204383B2 - インタフェース回路及びインタフェース装置 - Google Patents

インタフェース回路及びインタフェース装置 Download PDF

Info

Publication number
JP7204383B2
JP7204383B2 JP2018164448A JP2018164448A JP7204383B2 JP 7204383 B2 JP7204383 B2 JP 7204383B2 JP 2018164448 A JP2018164448 A JP 2018164448A JP 2018164448 A JP2018164448 A JP 2018164448A JP 7204383 B2 JP7204383 B2 JP 7204383B2
Authority
JP
Japan
Prior art keywords
signal
output
capacitor
switch element
input signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018164448A
Other languages
English (en)
Other versions
JP2019087990A (ja
Inventor
鍾 旻 朴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2019087990A publication Critical patent/JP2019087990A/ja
Application granted granted Critical
Publication of JP7204383B2 publication Critical patent/JP7204383B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018507Interface arrangements
    • H03K19/018521Interface arrangements of complementary type, e.g. CMOS
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • H03K19/00346Modifications for eliminating interference or parasitic voltages or currents
    • H03K19/00361Modifications for eliminating interference or parasitic voltages or currents in field effect transistor circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Logic Circuits (AREA)
  • Electronic Switches (AREA)
  • Communication Control (AREA)

Description

本発明は、インタフェース回路及びインタフェース装置に関するものである。
電子機器に含まれる複数の集積回路チップは、インタフェース回路を介して互いにデータを送受信する。電子機器で処理するデータの容量がますます増加するにつれて、複数の集積回路チップの間で高速のデータ通信を提供できるインタフェース回路が提案されている。また、電子機器に含まれる集積回路チップの個数が増え、かつ種類が多様になるにつれて、インタフェース回路を介するデータの送受信の動作が他の集積回路チップに影響を与えないようにするための様々な方法が提案されている。
本発明の技術的思想が解決しようとする課題の1つは、出力信号のスルーレート(Slew Rate)を調節してデータを高速に送信できるだけでなく、動作環境によって周辺の他の集積回路チップに影響を与える可能性があるEMI(Electro-Magnetic Interference、電磁妨害)を最小化できるインタフェース回路及びインタフェース装置を提供することである。
本発明の一実施形態によるインタフェース回路は、第1電源電圧を供給する第1電源ノードに連結され、第1入力信号により制御される第1スイッチ素子と、上記第1電源電圧よりも小さい第2電源電圧を供給する第2電源ノードに連結され、上記第1入力信号とは異なる第2入力信号により制御される第2スイッチ素子と、上記第1スイッチ素子と上記第2スイッチ素子とが互いに直列に連結されるノードとして定義され、出力信号を出力する出力ノードと、上記第1電源ノードと上記第1スイッチ素子との間に連結される第1抵抗と、上記第2電源ノードと上記第2スイッチ素子との間に連結される第2抵抗と、上記第1抵抗と上記第1スイッチ素子との間のノードに連結され、第1制御信号により充電及び放電される第1キャパシタと、上記第2抵抗と上記第2スイッチ素子との間のノードに連結され、第2制御信号により充電及び放電される第2キャパシタと、を含む。
本発明の一実施形態によるインタフェース装置は、互いに直列に連結される第1スイッチ素子と第2スイッチ素子、上記第1スイッチ素子の入力端に連結される第1キャパシタ、及び上記第2スイッチ素子の入力端に連結される第2キャパシタを各々含む複数のインタフェース回路と、上記第1スイッチ素子と上記第2スイッチ素子のオン/オフを制御して上記複数のインタフェース回路の各々の出力信号を決定し、上記第1キャパシタと上記第2キャパシタを充電及び放電させて上記出力信号のスルーレート(slew_rate)を調節する、上記複数のインタフェース回路を制御するコントローラと、を含む。
本発明の一実施形態によるインタフェース回路は、第1電源電圧の入力を受け、第1入力信号によりオン/オフが制御される第1スイッチ素子と、上記第1電源電圧よりも小さい第2電源電圧の入力を受け、第2入力信号によりオン/オフが制御される第2スイッチ素子と、上記第1スイッチ素子の入力ノードに連結され、上記第1スイッチ素子がターンオンされるときに充電される第1キャパシタと、上記第2スイッチ素子の入力ノードに連結され、上記第2スイッチ素子がターンオフされるときに充電される第2キャパシタと、を含む。
本発明の一実施形態によると、インタフェース回路の第1スイッチ素子と第2スイッチ素子の各々にキャパシタを連結し、第1スイッチ素子及び第2スイッチ素子のオン/オフ動作によりキャパシタを充電又は放電させる。これにより、出力信号のスルーレートを調節できるので、データを高速に送信できるだけでなく、動作環境によって周辺の他の集積回路チップに影響を与える可能性があるEMIを最小化できるインタフェース回路及びインタフェース装置を、小さい回路面積で実現できる。
本発明の多様かつ有益な利点と効果は、上述した内容に限定されず、本発明の具体的な実施形態を説明する過程で、より容易に理解できよう。
本発明の一実施形態による電子機器を概略的に示すブロック図である。 (a)及び(b)は、本発明の一実施形態によるインタフェース装置を概略的に示すブロック図である。 本発明の一実施形態によるインタフェース回路を概略的に示す回路図である。 本発明の一実施形態によるインタフェース回路の動作を説明するための波形図である。 (a)及び(b)は、本発明の一実施形態によるインタフェース回路の動作を説明するための波形図である。 本発明の一実施形態によるインタフェース回路の動作を説明するための図である。 (a)及び(b)は、本発明の一実施形態によるインタフェース回路の動作を説明するの図である。 本発明の一実施形態によるインタフェース回路の動作を説明するための図である。 (a)及び(b)は、本発明の一実施形態によるインタフェース回路の動作を説明するための図である。 (a)及び(b)は、本発明の一実施形態によるインタフェース回路の動作を説明するための図である。 本発明の一実施形態によるメモリ装置の動作を説明するための流れ図である。 本発明の一実施形態によるメモリ装置の動作を説明するための流れ図である。 (a)及び(b)は、本発明の一実施形態によるメモリ装置の動作を説明するための流れ図である。 (a)及び(b)は、本発明の一実施形態によるメモリ装置の動作を説明するための流れ図である。 (a)及び(b)は、本発明の一実施形態によるメモリ装置の動作を説明するための流れ図である。 本発明の一実施形態によるメモリ装置の動作を説明するための流れ図である。 本発明の一実施形態によるインタフェース回路を概略的に示す回路図である。 本発明の一実施形態によるインタフェース回路の動作を説明するための波形図である。
以下、添付した図面を参照して、本発明の好ましい実施形態を説明する。
図1を参照すると、本発明の一実施形態による電子機器10は、プロセッサ11、イメージセンサ12、ディスプレイ13、通信モジュール14、及びメモリ15などを含む。プロセッサ11は、アプリケーションプロセッサ(Application Processor)、中央処理装置などの集積回路から実現される。
プロセッサ11、イメージセンサ12、ディスプレイ13、通信モジュール14、及びメモリ15などは、互いにデータを送受信するためのインタフェース回路を含む。インタフェース回路は、データを送信するための送信回路とデータを受信するための受信回路のうち、少なくとも1つを含む。例えば、電子機器10がモバイル機器である場合、プロセッサ11とイメージセンサ12、プロセッサ11とディスプレイ13は、MIPI(Mobile Industry Processor Interface)標準に準拠してデータを送受信するインタフェース回路を含む。
MIPI標準に準拠すると、互いに異なる物理階層を有する複数の通信規格が定義されることができる。従って、電子機器10に含まれる構成要素11~15の間のデータ通信に適用される通信規格が互いに異なることができるので、2つ以上の通信規格を全て支援できるインタフェース回路に対するニーズはますます増加する傾向にある。
例えば、インタフェース回路は、MIPI標準で規定するD-Phyインタフェース及びC-Phyインタフェースのうち、少なくとも1つによる通信を支援する。D-Phyインタフェースにより通信する場合、送信側のインタフェース回路は、送信しようとするデータを含む信号とクロック信号とを別途に伝送し、受信側のインタフェース回路は、差動信号方式で受信した信号を処理してデータを復元する。一方、C-Phyインタフェースにより通信する場合、送信側と受信側のインタフェース回路は、マルチレベル信号方式により信号を送受信する。一実施形態において、C-Phyインタフェースによる通信では、クロック信号が別途に伝送される必要がない。
電子機器10に含まれる構成要素11~15が互いに送受信するデータの容量はますます増加する傾向にあり、それに伴って、高速でデータを送受信できるインタフェース回路に対する研究が活発に進められている。同時に、インタフェース回路により構成要素11~15のうち少なくとも一部が互いにデータを送受信する動作が、他の構成要素11~15の動作に干渉しないようにするための研究も活発に進められている。
図2は、本発明の一実施形態によるインタフェース装置を概略的に示すブロック図である。
図2(a)を参照すると、アプリケーションプロセッサ20は、コントローラ21と、インタフェース回路22aと、を含む。一実施形態において、コントローラ21は、アプリケーションプロセッサ20の動作の全般を制御するコントロールロジックを含む。インタフェース回路22aは、ディスプレイドライバ30とデータを送受信する機能を行う回路であり、コントローラ21によりインタフェース回路22aの動作方法が決定される。
ディスプレイドライバ30は、コントローラ31と、インタフェース回路32と、を含む。ディスプレイドライバ30のインタフェース回路32は、アプリケーションプロセッサ20のインタフェース回路22aと所定のプロトコルに従ってデータを送受信する。一例として、アプリケーションプロセッサ20のインタフェース回路22aと、ディスプレイドライバ30のインタフェース回路32は、MIPI標準で定義するプロトコルに従ってデータを送受信する。インタフェース回路22a、32の各々は、送信回路と受信回路とを含む。
図2(b)を参照すると、アプリケーションプロセッサ20は、イメージセンサ40とデータを送受信し、イメージセンサ40は、データを送受信するためのインタフェース回路42及びコントローラ41を含む。コントローラ41は、イメージセンサ40が生成したイメージデータを、インタフェース回路42を介してアプリケーションプロセッサ20に伝送する。
本発明の一実施形態によるインタフェース回路22a, 22b、32、42のうち少なくとも1つは、出力信号のスルーレートを調節する機能を有する。出力信号のスルーレートは、コントローラ21、31、41がインタフェース回路22a, 22b、32、42に入力する制御信号により決定されることができる。一実施形態において、コントローラ21、31、41は、インタフェース回路22a, 22b、32、42に入力する制御信号を用いて、インタフェース回路22a, 22b、32、42に含まれるキャパシタを充電及び/又は放電させることにより、出力信号のスルーレートを調節する。
図3は、本発明の一実施形態によるインタフェース回路を概略的に示す回路図である。
図3を参照すると、本発明の一実施形態によるインタフェース回路50は、第1スイッチ素子M1、第2スイッチ素子M2、第1キャパシタC1、第2キャパシタC2、第1抵抗RUP、第2抵抗RDNなどを含む。第1スイッチ素子M1と第2スイッチ素子M2は、第1電源ノード51と第2電源ノード52との間に互いに直列に連結され、第1スイッチ素子M1と第2スイッチ素子M2との間の接続ノードにより出力ノード53が定義される。出力ノード53へ出力される出力信号OUTは、第1スイッチ素子M1を制御する第1入力信号IN1及び第2スイッチ素子M2を制御する第2入力信号IN2により決定される。
第1スイッチ素子M1は、第1抵抗RUPを介して第1電源ノード51に連結され、第2スイッチ素子M2は、第2抵抗RDNを介して第2電源ノード52に連結される。第1電源ノード51を介して第1電源電圧VDDを供給し、第2電源ノード52を介して第2電源電圧VSSが供給される。一実施形態において、第1電源電圧VDDは、第2電源電圧VSSよりも大きい。
第1キャパシタC1は、第1制御信号CNT1が入力される第1制御ノード54と第1共通ノードCMPとの間に連結される。第1共通ノードCMPは、第1抵抗RUPと第1スイッチ素子M1との間のノードと定義される。一方、第2キャパシタC2は、第2制御信号CNT2が入力される第2制御ノード55と第2共通ノードCMNとの間に連結される。第2共通ノードCMNは、第2抵抗RDNと第2スイッチ素子M2との間のノードと定義される。
本発明の一実施形態において、第1キャパシタC1と第2キャパシタC2は能動キャパシタであり、一例として、MOSキャパシタで実現される。第1キャパシタC1と第2キャパシタC2がMOSキャパシタである場合、第1制御信号CNT1及び第2制御信号CNT2の各々は、第1キャパシタC1と第2キャパシタC2の各々のゲート端子へ入力される。一方、第1キャパシタC1と第2キャパシタC2の各々のソース/ドレーン端子は、第1共通ノードCMP及び第2共通ノードCMNに連結される。第1キャパシタC1と第2キャパシタC2の値は、多様に選択でき、一例として、第2キャパシタC2が第1キャパシタC1よりも大きい容量を有する。
インタフェース回路50が差動信号方式でデータを送信するD-Phyインタフェースにより動作する場合、第1入力信号IN1と第2入力信号IN2は、互いに反対の位相を有する。出力信号OUTは、第1入力信号IN1により第1スイッチ素子M1がターンオンすると、ハイ(high)出力値を有し、第2入力信号IN2により第2スイッチ素子M2がターンオンされると、ロー(low)出力値を有する。従って、第1入力信号IN1及び第2入力信号IN2により出力信号OUTの値が決定される。
出力信号OUTがハイ出力値からロー出力値に変わるか、又はロー出力値からハイ出力値に変わるとき、出力信号OUTのスルーレートは、第1入力信号IN1と第2入力信号IN2の大きさ、各素子及び各ノードに存在する寄生成分などから影響を受けることができる。インタフェース回路50を介して送受信するデータの容量がますます増加するにつれて、最近では、出力信号OUTのスルーレートを改善するための様々な方法が提案されている。
一方、インタフェース回路50がマルチレベル信号方式でデータを送信するC-Phyインタフェースにより動作する場合には、第1入力信号IN1と第2入力信号IN2が必ず互いに反対の位相を有する必要はない。少なくとも一部の時間において、第1入力信号IN1と第2入力信号IN2は同一の値を有することができ、その際、出力信号OUTは、ハイ出力値、ロー出力値、及びその間のミドル出力値のうちの何れか1つを有する。
本発明の一実施形態では、第1キャパシタC1と第2キャパシタC2を充電又は放電することにより、出力信号OUTのスルーレートを調節する。一例として、出力信号OUTが増加するときに、第1キャパシタC1及び第2キャパシタC2のうち、少なくとも1つを充電し、出力信号OUTが減少するときに、第1キャパシタC1及び第2キャパシタC2のうち、少なくとも1つを放電することにより、出力信号OUTのスルーレートを増加できる。
一方、図3に示した一実施形態によるインタフェース回路50を単位回路と定義する場合、実際に実現されるインタフェース装置では、1つの出力ノード53に複数の単位回路を連結できる。一例として、1つの出力ノード53には、1つ以上の第1単位回路と、1つ以上の第2単位回路を連結できる。一例として、第1単位回路に含まれる抵抗RUP、RDN及びキャパシタC1、C2の値は、第2単位回路に含まれる抵抗RUP、RDN及びキャパシタC1、C2の値とは互いに異なってもよい。
一実施形態において、1つの出力ノード53には、5つの第1単位回路と2つの第2単位回路が連結される。一例として、第1単位回路の各々に含まれる第1抵抗RUPと第1スイッチ素子M1のターンオン抵抗との合計は、第2単位回路の各々に含まれる第1抵抗RUPと第1スイッチ素子M1のターンオン抵抗との合計の1/2である。同様に、第1単位回路の各々に含まれる第2抵抗RDNと第2スイッチ素子M2のターンオン抵抗との合計は、第2単位回路の各々に含まれる第2抵抗RDNと第2スイッチ素子M2のターンオン抵抗との合計の1/2である。実際の動作では、第1単位回路と第2単位回路の各々に含まれる第1スイッチ素子M1及び第2スイッチ素子M2を適切に制御して必要な抵抗値を設定する。
一実施形態において、第1スイッチ素子M1及び第2スイッチ素子M2の各々の大きさは、上記のような抵抗の条件によって決定されることができる。一例として、第1単位回路と第2単位回路の各々に含まれる第1スイッチ素子と第2スイッチ素子の各々のゲート長が同一であると仮定すると、第1単位回路に含まれる第1スイッチ素子のゲート幅は、第2単位回路に含まれる第1スイッチ素子のゲート幅の2倍である。上記の例示において、ゲート幅は、ゲート長と交差する方向で定義されることができる。同様に、第1単位回路に含まれる第2スイッチ素子のゲート幅は、第2単位回路に含まれる第2スイッチ素子のゲート幅の2倍である。
上記のような第1単位回路及び第2単位回路の個数を仮定すると、第1単位回路に含まれる第1キャパシタC1は、第2単位回路に含まれる第1キャパシタC1のほぼ2倍の容量を有する。また、第1単位回路に含まれる第2キャパシタC2は、第2単位回路に含まれる第2キャパシタC2のほぼ2倍の容量を有する。
マルチレベル信号方式で動作するC-Phyインタフェースの場合、データを伝送するために少なくとも3つの出力ノード53を要する。また、3つの出力ノード53の各々は、互いに同一の値を有さず、上述したように、ハイ出力値、ロー出力値、及びその間のミドル出力値のうち何れか1つを有する。本発明の一実施形態では、ハイ出力値とロー出力値を出力する出力ノード53に連結された単位回路が全て動作する。これに対し、ミドル出力値を出力する出力ノード53に連結された単位回路の中では、一部の第1単位回路のみ動作し、残りの第1単位回路と第2単位回路は動作しなくてもよい。
図4及び図5は、本発明の一実施形態によるインタフェース回路の動作を説明するための波形図である。
まず、図4を参照すると、第1制御信号CNT1及び第2制御信号CNT2は、第1入力信号IN1と同一の位相を有する。一方、第2入力信号IN2は、第1入力信号IN1とは反対の位相を有する。図4に示した一実施形態のように、第1、第2入力信号IN1、IN2と第1、第2制御信号CNT1、CNT2を決定することにより、出力信号OUTのスルーレートを増加させる。
図5は、インタフェース回路50の出力信号OUT及び共通ノードCMP、CMNで検出される共通電圧VCMP、VCMNを示した波形図である。図5(a)は、第1及び第2キャパシタC1、C2が連結されていない場合を仮定したときの出力信号OUTと共通電圧VCMP、VCMNを示した波形図である。
図5(a)を参照すると、第1スイッチ素子M1がターンオンされる第1入力信号IN1の上昇エッジで、第1共通ノードCMPの第1共通電圧VCMPが第1電源電圧VDDから大幅に、かつ急速に減少する。出力信号OUTは、第1電源電圧VDDと、第1共通電圧VCMPの差に比例し、よって、出力信号OUTが第1入力信号IN1の上昇エッジで、緩やかに増加する。即ち、出力信号OUTがロー出力値VOUTLからハイ出力値VOUTHに増加する速度が緩やかになる。
同様に、第2スイッチ素子M2がターンオンされる第2入力信号IN2の上昇エッジで、第2共通ノードCMNの第2共通電圧VCMNが第2電源電圧VSSから大幅に、かつ急速に増加する。従って、出力信号OUTが第2入力信号IN2の上昇エッジで、緩やかに減少する。即ち、出力信号OUTがハイ出力値VOUTHからロー出力値VOUTLに減少する速度が緩やかになる。
これに対し、図5(b)に示した一実施形態を参照すると、第1スイッチ素子M1がターンオンされる第1入力信号IN1の上昇エッジで、第1キャパシタC1が第1制御信号CNT1により充電される。従って、第1キャパシタC1により第1共通電圧VCMPが緩やかに減少し、出力信号OUTがロー出力値VOUTLからハイ出力値VOUTHに急速に増加する。
一方、第2スイッチ素子M1がターンオンされる第2入力信号IN2の上昇エッジでは、第2キャパシタC2が第2制御信号CNT2により放電される。従って、第2キャパシタC2により第2共通電圧VCMNが緩やかに増加し、出力信号OUTがハイ出力値VOUTHからロー出力値VOUTLに急速に減少する。即ち、本発明の一実施形態では、第1制御信号CNT1と第2制御信号CNT2を第1入力信号IN1と同一の位相を有する信号に設定することにより、出力信号OUTのスルーレートを増加できる。
一方、本発明の一実施形態では、第1制御信号CNT1と第2制御信号CNT2の位相を、図4及び図5を参照して説明した実施形態とは逆に設定することにより、出力信号OUTのスルーレートを意図的に減少できる。即ち、出力信号OUTのスルーレートを低くするため、第2入力信号IN2と同一の位相を有するように、第1制御信号CNT1及び第2制御信号CNT2を生成する。上記したように、意図的にインタフェース回路50のスルーレートを低くすることにより、高速のデータ通信を要しない場合、インタフェース回路50の動作が電子機器の他の構成要素、例えば、RFモジュール、GPSモジュールなどの性能に及ぼす干渉を最小化して、EMI(Electro-Magnetic Interference)特性を改善できる。
図6及び図7は、一般的なインタフェース回路の動作を説明するための図である。
まず、図6を参照すると、一般的なインタフェース回路60は、第1出力信号OUT1を出力する第1回路70と、第2出力信号OUT2を出力する第2回路80と、を含む。図6に示した一実施形態によるインタフェース回路60は、MIPI標準に準拠するD-Phyインタフェースによる通信を支援する。第1出力信号OUT1と第2出力信号OUT2は、互いに反対の位相を有する。
第1出力信号OUT1は、第1伝送経路91に沿って第1受信ノード93に入力され、第2出力信号OUT2は、第2伝送経路92に沿って第2受信ノード94に入力される。第1受信ノード93と第2受信ノード94の各々には終端回路が連結され、終端回路は、終端抵抗R及び終端キャパシタCを含む。レシーバ95は、第1出力信号OUT1と第2出力信号OUT2を用いて受信データD0を生成する。
第1回路70と第2回路80は、互いに同一の構造を有する。第1回路70を例示して説明すると、第1回路70は、第1スイッチ素子M1、第2スイッチ素子M2、第1抵抗RUP1、第2抵抗RDN1などを含む。第1スイッチ素子M1と第2スイッチ素子M2の各々の動作は、第1入力信号IN1と第2入力信号IN2により制御される。出力ノード73を介して第1出力信号OUT1が出力され、第1出力信号OUT1は、第1スイッチ素子M1がターンオンされると増加し、第2スイッチ素子M2がターンオンされると減少する。
図7は、図6に示したインタフェース回路60の動作を説明するための波形図である。まず、図7(a)を参照すると、D-Phyインタフェースによる通信で第1出力信号OUT1と第2出力信号OUT2が互いに反対の位相を有するように、第1入力信号IN1と第4入力信号IN4が互いに同一の位相を有し、第2入力信号IN2と第3入力信号IN3が互いに同一の位相を有する。図6に示したインタフェース回路60で、第1回路70と第2回路80は、第1出力信号OUT1及び第2出力信号OUT2のスルーレートを調節できる手段を含まない。従って、図7(b)に示したように、第1出力信号OUT1と第2出力信号OUT2のスルーレートは低く、出力信号のグラフに示されるアイマージン(Eye Margin)が減少する。
図8~図10は、本発明の一実施形態によるインタフェース回路の動作を説明するための図である。
図8を参照すると、本発明の一実施形態によるインタフェース回路100は、第1出力信号OUT1を出力する第1回路110と、第2出力信号OUT2を出力する第2回路120と、を含む。図8に示した一実施形態によるインタフェース回路100は、MIPI標準に準拠するD-Phyインタフェースによる通信を支援し、第1出力信号OUT1と第2出力信号OUT2は、互いに反対の位相を有する。第1、第2データ伝送経路131、132、及び終端抵抗Rと終端キャパシタCからなる終端回路とレシーバ135などの構成と動作は、図6を参照して説明した内容と類似する。
第1回路110と第2回路120は、互いに同一の構造を有する。第1回路110を例示して説明すると、第1回路110は、第1スイッチ素子M1、第2スイッチ素子M2、第1抵抗RUP1、第2抵抗RDN1などを含む。第1スイッチ素子M1と第2スイッチ素子M2の各々の動作は、第1入力信号IN1と第2入力信号IN2により制御される。出力ノード73を介して第1出力信号OUT1が出力され、第1出力信号OUT1は、第1スイッチ素子M1がターンオンされると増加し、第2スイッチ素子M2がターンオンされると減少する。
第1回路110は、第1キャパシタC1及び第2キャパシタC2を含む。第1キャパシタC1は、第1抵抗RUP1と第1スイッチ素子M1に連結され、第1制御信号CNT1により充電又は放電される。第2キャパシタC2は、第2抵抗RDN1と第2スイッチ素子M2に連結され、第2制御信号CNT2により充電又は放電される。インタフェース回路100を制御するコントローラは、第1制御信号CNT1と第2制御信号CNT2を用いて、第1出力信号OUT1のスルーレートを調節できる。同様に、第2出力信号OUT2のスルーレートは、第3キャパシタC3と第4キャパシタC4を各々充電又は放電させる第3制御信号CNT3及び第4制御信号CNT4により設定される。
図9は、第1出力信号OUT1及び第2出力信号OUT2のスルーレートを増加させる実施形態を説明するための波形図である。まず、図9(a)を参照すると、第1入力信号IN1と第2入力信号IN2が互いに反対の位相を有し、第3入力信号IN3と第4入力信号IN4が互いに反対の位相を有する。第1入力信号IN1と第4入力信号IN4は、互いに同一の位相を有する。従って、第1出力信号OUT1と第2出力信号OUT2が互いに反対の位相を有する。
第1回路110に入力される第1制御信号CNT1と第2制御信号CNT2は、第1入力信号IN1と同一の位相を有する。従って、第1スイッチ素子M1がターンオンされる第1入力信号IN1の上昇エッジで第1キャパシタC1が充電され、第1出力信号OUT1が急速に増加する。また、第2スイッチ素子M2がターンオンされる第2入力信号IN2の上昇エッジでは第2キャパシタC2が放電され、第1出力信号OUT1が急速に減少できる。
第2回路120に入力される第3制御信号CNT3と第4制御信号CNT4は、第3入力信号IN3と同一の位相を有する。従って、第1回路110を参照して説明した内容と同様に、第3スイッチ素子M3がターンオンされると、第2出力信号OUT2が急速に増加し、第4スイッチ素子M4がターンオンされると、第2出力信号OUT2が急速に減少する。上述したように、スルーレートを増加させることにより、図9(b)に示したように、アイマージン(Eye Margin)を増加できる。また、レシーバ135が生成した受信データD0がハイ論理値又はロー論理値を有する時間が増加するので、受信側で受信データD0を正確に検出できる。
図10は、第1出力信号OUT1及び第2出力信号OUT2のスルーレートを減少させる実施形態を説明するための波形図である。図10(a)を参照すると、第1入力信号IN1と第2入力信号IN2が互いに反対の位相を有し、第3入力信号IN3と第4入力信号IN4が互いに反対の位相を有する。第1入力信号IN1と第4入力信号IN4は、互いに同一の位相を有する。従って、第1出力信号OUT1と第2出力信号OUT2が互いに反対の位相を有する。
第1回路110に入力される第1制御信号CNT1と第2制御信号CNT2は、第2入力信号IN2と同一の位相を有する。第1スイッチ素子M1がターンオンされる第1入力信号IN1の上昇エッジで第1キャパシタC1が放電され、第1抵抗RUP1と第1スイッチ素子M1と間の共通ノードの電圧が急速に減少する。従って、第1出力信号OUT1が緩やかに増加する。また、第2スイッチ素子M2がターンオンされる第2入力信号IN2の上昇エッジでは第2キャパシタC2が充電され、第1出力信号OUT1が緩やかに減少する。
第2回路120に入力される第3制御信号CNT3と第4制御信号CNT4は、第4入力信号IN4と同一の位相を有する。従って、第3スイッチ素子M3がターンオンされると、第2出力信号OUT2が緩やかに増加し、第4スイッチ素子M4がターンオンされると、第2出力信号OUT2が緩やかに減少する。よって、図10(b)に示したように、アイマージン(Eye Margin)が減少する。
結果的に、本発明の一実施形態によるインタフェース回路100は、出力信号OUT1、OUT2のスルーレートを意図的に増加できるか、又は減少できる。上述したように、スルーレートを意図的に減少することで、高速のデータ通信を要しない場合、インタフェース回路100を用いた通信が電子機器の他の構成要素、例えば、RFモジュール、GPSモジュールなどの性能に及ぼす干渉を最小化できる。
図11~図16は、本発明の一実施形態によるメモリ装置の動作を説明するための流れ図である。
図11を参照すると、本発明の一実施形態によるインタフェース回路200は、第1出力信号OUT1を出力する第1回路210、第2出力信号OUT2を出力する第2回路220、及び第3出力信号OUT3を出力する第3回路230を含む。図11に示した一実施形態によるインタフェース回路200は、MIPI標準に準拠するC-Phyインタフェースによる通信を支援する。第1~第3出力信号OUT1~OUT3は、ハイ出力値、ミドル出力値、ロー出力値のうち何れか1つを有するが、第1~第3出力信号OUT1~OUT3は、互いに同一の値を有することはできない。
第1出力信号OUT1は、第1伝送経路241に沿って第1受信ノード244に入力され、第2出力信号OUT2は、第2伝送経路242に沿って第2受信ノード245に入力され、第3出力信号OUT3は、第3伝送経路243に沿って第3受信ノード246に入力される。第1受信ノード244、第2受信ノード245、第3受信ノード246の各々には終端回路が連結され、終端回路は、終端抵抗R及び終端キャパシタCを含む。
第1~第3レシーバ247~249は、第1~第3出力信号OUT1~OUT3を用いて第1~第3受信データA0~C0を生成する。第1レシーバ247は、第1出力信号OUT1と第2出力信号OUT2との差を用いて第1受信データA0を生成し、第2レシーバ248は、第2出力信号OUT2と第3出力信号OUT3との差を用いて第2受信データB0を生成し、第3レシーバ249は、第3出力信号OUT3と第1出力信号OUT1との差を用いて第3受信データC0を生成する。一実施形態において、受信側では第1~第3受信データA0~C0を用いて3つのビットを有する状態情報に変換し、状態情報の変化を用いてシンボル情報を生成できる。
第1回路210、第2回路220、及び第3回路230は、互いに同一の構造を有する。第1回路210を例示して説明すると、第1回路210は、第1スイッチ素子M1、第2スイッチ素子M2、第1抵抗RUP1、第2抵抗RDN1などを含む。一実施形態において、第1抵抗RUP1と第2抵抗RDN1は、互いに同一の値を有する。第1スイッチ素子M1と第2スイッチ素子M2の各々の動作は、第1入力信号IN1と第2入力信号IN2により制御される。第1出力信号OUT1のレベルは、第1スイッチ素子M1と第2スイッチ素子M2のオン/オフの状態によって決定される。
一方、図11に示した一実施形態において、第1回路210は、第1キャパシタC1及び第2キャパシタC2を含む。第1キャパシタC1は、第1抵抗RUP1と第1スイッチ素子M1に連結され、第1制御信号CNT1により充電又は放電される。第2キャパシタC2は、第2抵抗RDN1と第2スイッチ素子M2に連結され、第2制御信号CNT2により充電又は放電される。インタフェース回路200を制御するコントローラは、第1制御信号CNT1と第2制御信号CNT2を用いて第1出力信号OUT1のスルーレートを調節できる。
同様に、第2出力信号OUT2のスルーレートは、第3キャパシタC3と第4キャパシタC4を各々充電又は放電させる第3制御信号CNT3及び第4制御信号CNT4により決定される。また、第3出力信号OUT3のスルーレートは、第5キャパシタC5と第6キャパシタC6を各々充電又は放電させる第5制御信号CNT5及び第6制御信号CNT6により決定される。
次に、図12を参照すると、本発明の一実施形態による第1出力信号OUT1、第2出力信号OUT2、及び第3出力信号OUT3の波形図が、インタフェース回路200と併せて示されている。図12を参照すると、第1出力信号OUT1、第2出力信号OUT2、及び第3出力信号OUT3の各々は、ハイ出力値、ミドル出力値、及びロー出力値のうち何れか1つを有するが、互いに同一の出力値を有しない。
一例として、第1出力信号OUT1がハイ出力値を有し、第2出力信号OUT2がミドル出力値を有し、第3出力信号OUT3がロー出力値を有するためには、第1回路210の第1スイッチ素子M1はターンオンされ、第2スイッチ素子M2はターンオフされる。また、第2回路220の第3スイッチ素子M3と第4スイッチ素子M4は、両方ともターンオンされる。また、第3回路230の第5スイッチ素子M5がターンオフされ、第6スイッチ素子M6がターンオンされる。その結果、第1出力信号OUT1がハイ出力値を有し、第2出力信号OUT2がミドル出力値を有し、第3出力信号OUT3がロー出力値を有する。
この場合、第1回路210の第1抵抗RUP1と第2抵抗RDN1、及び第3回路230の第1抵抗RUP3と第2抵抗RDN3は、同一の値を有し得る。一方、第2回路220の第1抵抗RUP2と第2抵抗RDN2は、互いに同一の値を有し、第1回路210及び第3回路230に含まれる抵抗RUP1、RUP3、RDN1、RDN3とは異なる値を有し得る。
第1スイッチ素子M1を介して流れる電流は、第1及び第3データ伝送経路241、243を経て第6スイッチ素子M6に流れることができる。一実施形態において、第1受信ノード244の電圧は、3*VDD/4であることができ、第3受信ノード246の電圧は、VDD/4であることができる。一方、第2回路220では、第3スイッチ素子M3と第4スイッチ素子M4が両方ともターンオンされるので、第2回路220内で電流が流れる。従って、第2受信ノード245の電圧は、VDD/2である。よって、第1レシーバ247と第2レシーバ248の各々は、第1受信データA0と第2受信データB0をハイロジック値、例えば、‘1’に決定できる。一方、第3レシーバ249は、第3受信データC0をローロジック値、例えば、‘0’に決定できる。
図12に示した一実施形態において、第1出力信号OUT1のスルーレートを増加させるための第1及び第2キャパシタC1、C2の制御方法は、第1出力信号OUT1の変化によって決定される。一例として、第1出力信号OUT1がハイ出力値からミドル出力値に減少すると、第2キャパシタC2を放電させてスルーレートを高くできる。また、第1出力信号OUT1がロー出力値からハイ出力値に増加すると、第1キャパシタC1と第2キャパシタC2を充電させてスルーレートを高くできる。以下、図13~図15を参照して、図12で例示した第1~第3出力信号OUT1~OUT3の各々のスルーレートを調節する方法を説明する。
図13は、第1出力信号OUT1のスルーレートを調節する方法を説明するための波形図である。まず、図13(a)は、第1出力信号OUT1のスルーレートを増加させる場合に対応することができる。図13(a)を参照すると、第1入力信号IN1と第2入力信号IN2が両方ともハイ入力値を有するときに、第1出力信号OUT1は、ミドル出力値を有することができる。また、第1入力信号IN1のみがハイ入力値を有すると、第1出力信号OUT1はハイ出力値を有し、第2入力信号IN2のみがハイ入力値を有すると、第1出力信号OUT1はロー出力値を有することができる。
図13(a)を参照すると、第1出力信号OUT1がハイ出力値からミドル出力値に減少するとき、第2キャパシタC2を放電させて第1出力信号OUT1を急速に減少できる。また、第1出力信号OUT1がハイ出力値からロー出力値に減少するときには、第1及び第2キャパシタC1、C2を放電させ、第1出力信号OUT1がロー出力値からハイ出力値に増加するときには、第1及び第2キャパシタC1、C2を充電させ、第1出力信号OUT1のスルーレートを増加できる。一実施形態において、第1出力信号OUT1がミドル出力値からハイ出力値に増加するときには、第2キャパシタC2を充電する。
一方、図13(a)の一実施形態とは逆に、第1及び第2キャパシタC1、C2を充電又は放電させて第1出力信号OUT1のスルーレートを減少もできる。図13(b)を参照すると、第1出力信号OUT1がハイ出力値からミドル出力値に減少するとき、第2キャパシタC2を充電させて第1出力信号OUT1を緩やかに減少できる。また、第1出力信号OUT1がハイ出力値からロー出力値に減少するときには、第1及び第2キャパシタC1、C2を充電させ、第1出力信号OUT1がロー出力値からハイ出力値に増加するときには、第1及び第2キャパシタC1、C2を放電させ、第1出力信号OUT1のスルーレートを減少できる。
図14は、第2出力信号OUT2のスルーレートを調節する方法を説明するための波形図である。図14(a)は、第2出力信号OUT2のスルーレートを増加させる実施形態である。図14(a)を参照すると、第2出力信号OUT2がロー出力値からミドル出力値に増加するとき、第3キャパシタC3を充電して第2出力信号OUT2を急速に増加できる。また、第2出力信号OUT2がハイ出力値からロー出力値に減少するときには、第3及び第4キャパシタC3、C4を放電させ、第2出力信号OUT2のスルーレートを増加できる。一実施形態において、第2出力信号OUT2がミドル出力値からロー出力値に減少するときには、第3キャパシタC3を放電する。
一方、図14(a)の一実施形態とは逆に、第3及び第4キャパシタC3、C4を充電又は放電させて第2出力信号OUT2のスルーレートを減少もできる。図14(b)を参照すると、第2出力信号OUT2がロー出力値からミドル出力値に増加するとき、第3キャパシタC3を放電して第2出力信号OUT2を緩やかに増加できる。また、第2出力信号OUT2がハイ出力値からロー出力値に減少するときには、第3及び第4キャパシタC3、C4を充電して第2出力信号OUT2のスルーレートを減少できる。
図15は、第3出力信号OUT3のスルーレートを調節する方法を説明するための波形図である。図15(a)は、第3出力信号OUT3のスルーレートを増加させる実施形態であり、図13(a)及び図14(a)を参照して説明した内容と類似する。一例として、第3出力信号OUT3がロー出力値からハイ出力値に増加するとき、第5及び第6キャパシタC5、C6を充電して第3出力信号OUT3を急速に増加できる。また、第3出力信号OUT3がハイ出力値からロー出力値に減少するときには、第5及び第6キャパシタC5、C6を放電させて第3出力信号OUT3のスルーレートを増加できる。
一方、図15(a)の一実施形態とは逆に、第3出力信号OUT3のスルーレートを低くする一実施形態を示した図15(b)を参照すると、第3出力信号OUT3がハイ出力値からロー出力値に減少するとき、第5及び第6キャパシタC5、C6を充電して第3出力信号OUT3を緩やかに減少できる。また、第3出力信号OUT3がロー出力値からミドル出力値に増加するときには、第5キャパシタC5を放電して第3出力信号OUT3のスルーレートを減少できる。
即ち、本発明の一実施形態では、インタフェース回路200の第1~第3回路210~230に含まれるキャパシタC1~C6を適切に充電又は放電させることにより、出力信号OUT1~OUT3のスルーレートを高くできるか、又は低くできる。一例として、第1電源電圧VDDに連結されるキャパシタC1、C3、C5をプルアップキャパシタ、スイッチ素子M1、M3、M5をプルアップスイッチ素子と定義する。また、第2電源電圧VSSに連結されるキャパシタC2、C4、C6をプルダウンキャパシタ、スイッチ素子M2、M4、M6をプルダウンスイッチ素子と定義する。このとき、出力信号の増加時及び減少時にスルーレートを高くするためのキャパシタ制御方法は、下記表1のとおりである。
Figure 0007204383000001
図16は、図12に示した一実施形態による第1~第3出力信号OUT1~OUT3により生成された第1~第3受信データA0~C0を示した波形図である。インタフェース回路200がC-Phyインタフェースにより動作する場合、第1~第3受信データA0~C0を組み合わせて状態情報を生成し、状態情報の変化によるシンボル情報を生成してデータを復元できる。本発明の一実施形態による方法を適用して第1~第3出力信号OUT1~OUT3のスルーレートを高くすることにより、第1~第3受信データA0~C0のアイマージン(Eye Margin)を改善し、高速のデータ通信をさらに正確に実現することができる。
図17は、本発明の一実施形態によるインタフェース回路を概略的に示す回路図である。
図17を参照すると、本発明の一実施形態によるインタフェース回路300は、第1スイッチ素子M1、第2スイッチ素子M2、第1キャパシタC1、第2キャパシタC2などを含む。インタフェース回路300の動作は、上述した実施形態と類似する。即ち、第1スイッチ素子M1と第2スイッチ素子M2は、第1入力信号IN1及び第2入力信号IN2の各々により制御され、第1入力信号IN1と第2入力信号IN2は、互いに反対の位相を有する。出力信号OUTは、第1入力信号IN1と同一の位相を有することができる。本発明の一実施形態では、第1キャパシタC1及び第2キャパシタC2の充電及び放電を制御することにより、出力信号OUTのスルーレートを高くできる。
図17に示した一実施形態では、第1スイッチ素子M1と第1抵抗RUPとの間の第1共通ノードCMPに連結される第1キャパシタC1が、第1スイッチ素子M1の寄生キャパシタにより提供される。従って、第1キャパシタC1は、第1入力信号IN1により充電又は放電されることができる。一方、第2キャパシタC2は、別途のキャパシタとして提供され、制御信号CNTにより充電又は放電される。以下、図18を参照して、図17に示した一実施形態によるインタフェース回路300の動作を説明する。
図18は、本発明の一実施形態によるインタフェース回路の動作を説明するための波形図である。
図18を参照すると、第1入力信号IN1と第2入力信号IN2は、互いに反対の位相を有し、出力信号OUTは、第1入力信号IN1と同一の位相を有する。第1入力信号IN1の上昇エッジと第2入力信号IN2の下降エッジで、第1スイッチ素子M1がターンオンされ、かつ第2スイッチ素子M2がターンオフされると、出力信号OUTは、ロー出力値からハイ出力値に増加する。それに対し、第1入力信号IN1の下降エッジと第2入力信号IN2の上昇エッジで、第1スイッチ素子M1がターンオフされ、かつ第2スイッチ素子M2がターンオンされると、出力信号OUTは、ハイ出力値からロー出力値に減少する。
第1スイッチ素子M1の寄生キャパシタにより第1キャパシタC1が提供されるので、第1キャパシタC1は、第1入力信号IN1により充電又は放電される。第1入力信号IN1の上昇エッジで、第1キャパシタC1は第1入力信号IN1により充電され、第2キャパシタC2は制御信号CNTにより充電される。従って、共通ノードCMP、CMNの電圧の変動幅、特に第1共通ノードCMPの電圧の減少幅を小さくでき、出力信号OUTをハイ出力値に急速に増加できる。
一方、第2入力信号IN2の上昇エッジで、第1キャパシタC1は第1入力信号IN1により放電し、第2キャパシタC2は制御信号CNTにより放電される。従って、共通ノードCMP、CMNの電圧の変動幅、第2共通ノードCMNの電圧の増加幅を小さくでき、出力信号OUTをロー出力値に急速に減少できる。一方、スルーレートをさらに増加させようとする場合、第1キャパシタC1と並列に別途のキャパシタをさらに連結することもできる。
本発明は、上述した実施形態及び添付された図面により限定されず、添付された特許請求の範囲により限定される。従って、特許請求の範囲に記載された本発明の技術的思想を逸脱しない範囲内で、当技術分野の通常の知識を有する者により多様な形態の置換、変形及び変更が可能であり、これも本発明の範囲に属するものとする。
10 電子機器
11 プロセッサ
12 イメージセンサ
13 ディスプレイ
14 通信モジュール
15 メモリ
20 アプリケーションプロセッサ
21、31、41 コントローラ
22a、22b、32、42、50、60、100、200、300 インタフェース回路
30 ディスプレイドライバ
40 イメージセンサ
51,52 第1、第2電源ノード
53、73、83 出力ノード
54、55 第1、第2制御ノード
70、80 第1、第2回路
91、92 第1、第2伝送経路
93、94 第1、第2受信ノード
95、135 レシーバ
110、120 第1、第2回路
131、132 第1、第2(データ)伝送経路
213、223、233 第1、第2、第3出力ノード
241、242、243 第1、第2、第3伝送経路
244、245、246 第1、第2、第3受信ノード
247、248、249 第1、第2、第3レシーバ
210、220、230 第1、第2、第3回路
131、132 第1、第2(データ)伝送経路
A0,B0、C0 第1、第2、第3受信データ
C1、C2、C3、C4、C5、C6 第1、第2、第3、第4、第5、第6キャパシタ
CMP、CMN 第1、第2共通ノード
CNT1,CNT2、CNT3、CNT4、CNT5、CNT6 第1、第2、第3、第4、第5、第6制御信号
終端キャパシタ
D0 受信データ
IN1,IN2 第1、第2入力信号
IN3,IN4 第3、第4入力信号
M1、M2 第1、第2スイッチ素子
OUT 出力信号
OUT1,OUT2、OUT3 第1、第2、第3出力信号
DN、RDN1、RDN2、RDN3 第2抵抗
終端抵抗
UP、RUP1、RUP2、RUP3 第1抵抗
VDD、VSS 第1、第2電源電圧

Claims (18)

  1. 第1電源電圧を供給する第1電源ノードに連結され第1入力信号により制御される第1スイッチ素子と、
    前記第1電源電圧よりも小さい第2電源電圧を供給する第2電源ノードに連結され前記第1入力信号とは異なる第2入力信号により制御される第2スイッチ素子と、
    前記第1スイッチ素子と前記第2スイッチ素子とが互いに直列に連結されるノードとして定義され出力信号を出力する出力ノードと、
    前記第1電源ノードと前記第1スイッチ素子との間に連結される第1抵抗と、
    前記第2電源ノードと前記第2スイッチ素子との間に連結される第2抵抗と、
    前記第1抵抗と前記第1スイッチ素子との間のノードに連結され第1制御信号により充電及び放電される第1キャパシタと、
    前記第2抵抗と前記第2スイッチ素子との間のノードに連結され第2制御信号により充電及び放電される第2キャパシタと、を備え、
    前記第1入力信号、前記第2入力信号、前記第1制御信号、及び前記第2制御信号の位相を調節して前記出力信号のスルーレート(slew rate)を変更することを特徴とするインタフェース回路。
  2. 前記第1制御信号が前記第1入力信号と同一の位相を有し、前記第2制御信号が前記第2入力信号とは反対の位相を有する場合に、前記出力信号のスルーレートを増加させことを特徴とする請求項に記載のインタフェース回路。
  3. 前記第1制御信号が前記第1入力信号とは反対の位相を有し、前記第2制御信号が前記第2入力信号と同一の位相を有する場合に、前記出力信号のスルーレートを減少させことを特徴とする請求項に記載のインタフェース回路。
  4. 前記第1キャパシタは、前記第1スイッチ素子に存在する寄生キャパシタにより提供されことを特徴とする請求項1に記載のインタフェース回路。
  5. 前記第1キャパシタは、前記第1入力信号により充電及び放電されことを特徴とする請求項に記載のインタフェース回路。
  6. 前記第1抵抗と前記第2抵抗は、同一の値を有すことを特徴とする請求項に記載のインタフェース回路。
  7. 前記第1キャパシタは、前記第1抵抗及び前記第1スイッチ素子を連結する第1共通ノードと、前記第1制御信号の入力を受ける第1制御ノードとの間に連結されことを特徴とする請求項に記載のインタフェース回路。
  8. 前記第1入力信号と前記第2入力信号は、少なくとも一部の時間の間、同一の値を有すことを特徴とする請求項1に記載のインタフェース回路。
  9. 前記出力信号は、互いに異なる大きさを有する3つの出力値のうち何れか1つの値を有すことを特徴とする請求項に記載のインタフェース回路。
  10. 前記第1入力信号と前記第2入力信号は、互いに反対の位相を有すことを特徴とする請求項1に記載のインタフェース回路。
  11. 前記出力信号は、前記第1入力信号と同一の位相を有すことを特徴とする請求項10に記載のインタフェース回路。
  12. 第1電源電圧を供給する第1電源ノードに連結されて第1入力信号により制御される第1スイッチ素子と、前記第1電源電圧よりも小さい第2電源電圧を供給する第2電源ノードに連結されて第2入力信号により制御される第2スイッチ素子前記第1スイッチ素子と前記第2スイッチ素子とが互いに直列に連結されるノードとして定義されて出力信号を出力する出力ノードと、前記第1電源ノードと前記第1スイッチ素子との間に連結される第1抵抗と、前記第2電源ノードと前記第2スイッチ素子との間に連結される第2抵抗と、前記第1抵抗と前記第1スイッチ素子間のノードに連結されて第1制御信号により充電及び放電される第1キャパシタ前記第2抵抗と前記第2スイッチ素子間のノードに連結されて第2制御信号により充電及び放電される第2キャパシタと、を各々含む複数のインタフェース回路と、
    前記第1スイッチ素子と前記第2スイッチ素子のオン/オフを制御して前記複数のインタフェース回路の各々の出力信号を決定し、前記第1入力信号、前記第2入力信号、前記第1制御信号、及び前記第2制御信号の位相を調節して前記複数のインタフェース回路のそれぞれが出力する出力信号のスルーレートを調節すコントローラと、を備えることを特徴とするインタフェース装置。
  13. 前記コントローラは、前記第1スイッチ素子をターンオンするときに前記第1キャパシタに充電信号を入力し、前記第2スイッチ素子をターンオンするときに前記第2キャパシタに放電信号を入力し、前記出力信号のスルーレートを増加させことを特徴とする請求項12に記載のインタフェース装置。
  14. 前記コントローラは、前記第1スイッチ素子をターンオンするときに前記第1キャパシタに放電信号を入力し、前記第2スイッチ素子をターンオンするときに前記第2キャパシタに充電信号を入力し、前記出力信号のスルーレートを減少させことを特徴とする請求項12に記載のインタフェース装置。
  15. 前記出力信号は、第1出力値、前記第1出力値よりも大きい第2出力値、及び前記第2出力値よりも大きい第3出力値のうち何れか1つの値を有すことを特徴とする請求項12に記載のインタフェース装置。
  16. 前記コントローラは、前記出力信号が前記第1出力値から前記第2出力値及び前記第3出力値のうち何れか1つに増加するとき、前記第1キャパシタに充電信号を入力すことを特徴とする請求項15に記載のインタフェース装置。
  17. 前記コントローラは、前記出力信号が前記第3出力値から前記第1出力値及び前記第2出力値のうち何れか1つに減少するとき、前記第2キャパシタに放電信号を入力すことを特徴とする請求項15に記載のインタフェース装置。

  18. 前記コントローラは、前記出力信号が前記第2出力値から前記第3出力値に増加するとき、前記第2キャパシタを充電し、
    前記コントローラは、前記出力信号が前記第2出力値から前記第1出力値に減少するとき、前記第1キャパシタを放電させることを特徴とする請求項15に記載のインタフェース装置。
JP2018164448A 2017-11-03 2018-09-03 インタフェース回路及びインタフェース装置 Active JP7204383B2 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2017-0146058 2017-11-03
KR20170146058 2017-11-03
KR10-2017-0177159 2017-12-21
KR20170177159 2017-12-21
KR10-2018-0041027 2018-04-09
KR1020180041027A KR102366974B1 (ko) 2017-11-03 2018-04-09 인터페이스 회로 및 인터페이스 장치

Publications (2)

Publication Number Publication Date
JP2019087990A JP2019087990A (ja) 2019-06-06
JP7204383B2 true JP7204383B2 (ja) 2023-01-16

Family

ID=66581952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018164448A Active JP7204383B2 (ja) 2017-11-03 2018-09-03 インタフェース回路及びインタフェース装置

Country Status (3)

Country Link
JP (1) JP7204383B2 (ja)
KR (1) KR102366974B1 (ja)
TW (1) TWI782090B (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102404059B1 (ko) * 2020-01-03 2022-05-31 삼성전자주식회사 인터페이스 회로 및 인터페이스 장치
KR20220006851A (ko) 2020-07-09 2022-01-18 삼성전자주식회사 인터페이스 회로 및 인터페이스 장치
KR102542127B1 (ko) * 2021-07-12 2023-06-13 주식회사 솔리드뷰 C-phy 구동기

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011018958A (ja) 2009-07-07 2011-01-27 Panasonic Corp スイッチング素子制御装置およびモータ駆動装置
CN102064817A (zh) 2009-11-18 2011-05-18 上海宏力半导体制造有限公司 I/o驱动电路
JP2013062014A (ja) 2011-08-24 2013-04-04 Semiconductor Energy Lab Co Ltd 半導体装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102737A (ja) * 1995-10-03 1997-04-15 New Japan Radio Co Ltd Cmos3値not回路
US6903588B2 (en) * 2003-04-15 2005-06-07 Broadcom Corporation Slew rate controlled output buffer
TWI241768B (en) * 2005-01-06 2005-10-11 Elite Semiconductor Esmt Slew rate controlled output circuit
US7924066B2 (en) * 2009-03-25 2011-04-12 Fairchild Semiconductor Corporation Low speed, load independent, slew rate controlled output buffer with no DC power consumption

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011018958A (ja) 2009-07-07 2011-01-27 Panasonic Corp スイッチング素子制御装置およびモータ駆動装置
CN102064817A (zh) 2009-11-18 2011-05-18 上海宏力半导体制造有限公司 I/o驱动电路
JP2013062014A (ja) 2011-08-24 2013-04-04 Semiconductor Energy Lab Co Ltd 半導体装置

Also Published As

Publication number Publication date
TW201933776A (zh) 2019-08-16
JP2019087990A (ja) 2019-06-06
KR102366974B1 (ko) 2022-02-25
TWI782090B (zh) 2022-11-01
KR20190050685A (ko) 2019-05-13

Similar Documents

Publication Publication Date Title
CN109756223B (zh) 接口电路和接口装置
US7389194B2 (en) Driver calibration methods and circuits
US6788101B1 (en) Programmable interface circuit for differential and single-ended signals
US9065399B2 (en) Programmable high-speed voltage-mode differential driver
US8610458B2 (en) Impedance control circuit and semiconductor device including the same
US7999579B2 (en) Output driver
JP7204383B2 (ja) インタフェース回路及びインタフェース装置
US7990178B2 (en) Driving circuit with impedence calibration
US8390318B2 (en) Semiconductor device having calibration circuit for adjusting output impedance of output buffer circuit
US9467145B2 (en) Data output circuit
US20060071687A1 (en) Output driver circuit with pre-emphasis function
US8441283B2 (en) Integrated circuit
US8767486B2 (en) Output driver circuit, output driver system and semiconductor memory device
US7619439B2 (en) Semiconductor device
JPH09232940A (ja) 可変電圧可変インピーダンスcmosオフチップ・ドライバおよびレシーバ・インタフェースおよび回路
US7855576B1 (en) Versatile common-mode driver methods and apparatus
KR102609441B1 (ko) 데이터 전송 장치, 이를 포함하는 반도체 장치 및 시스템
US7667531B2 (en) Signal transmission circuit
US6922076B2 (en) Scalable termination
JP2004241930A (ja) 出力回路
CN111159081A (zh) 信号接收电路及使用其的半导体装置和半导体系统
KR20160062180A (ko) 향상된 신뢰도 및 밀도를 갖는 교정형 출력 드라이버
US7826275B2 (en) Memory circuit with high reading speed and low switching noise
US10224911B1 (en) Dual signal protocol input/output (I/O) buffer circuit
KR100327344B1 (ko) 반도체 메모리 장치의 출력 데이터의 슬루 레이트를제어하는 데이터 출력회로

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221228

R150 Certificate of patent or registration of utility model

Ref document number: 7204383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150