JP7175899B2 - 胃抑制ペプチド受容体(gipr)に対するアンタゴニストにコンジュゲートされたglp-1受容体アゴニストを使用して代謝障害を治療又は改善する方法 - Google Patents

胃抑制ペプチド受容体(gipr)に対するアンタゴニストにコンジュゲートされたglp-1受容体アゴニストを使用して代謝障害を治療又は改善する方法 Download PDF

Info

Publication number
JP7175899B2
JP7175899B2 JP2019538424A JP2019538424A JP7175899B2 JP 7175899 B2 JP7175899 B2 JP 7175899B2 JP 2019538424 A JP2019538424 A JP 2019538424A JP 2019538424 A JP2019538424 A JP 2019538424A JP 7175899 B2 JP7175899 B2 JP 7175899B2
Authority
JP
Japan
Prior art keywords
seq
heavy chain
variable region
light chain
polynucleotide sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019538424A
Other languages
English (en)
Other versions
JP2020506900A (ja
JP2020506900A5 (ja
Inventor
チュヨン,ユエン
ネティロジャナクン,チャウィタ
ホルダー,ジェリー・ライアン
ウー,ビン
フォルシー,ジェ-ムズ・アール
ハーバリッチ,ブラッドリー・ジェイ
シャム,ケルビン
ミランダ,レスリー・ピー
ルゥ,シュウ-チェン
ベニアント-エリソン,ミュリエル・エム
スタニスラウス,シャナカ
イェ,ジュインミン
シュイ,ジン
Original Assignee
アムジエン・インコーポレーテツド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アムジエン・インコーポレーテツド filed Critical アムジエン・インコーポレーテツド
Publication of JP2020506900A publication Critical patent/JP2020506900A/ja
Publication of JP2020506900A5 publication Critical patent/JP2020506900A5/ja
Priority to JP2022141970A priority Critical patent/JP2022184880A/ja
Application granted granted Critical
Publication of JP7175899B2 publication Critical patent/JP7175899B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6849Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a receptor, a cell surface antigen or a cell surface determinant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2869Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against hormone receptors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/77Internalization into the cell

Description

本開示は、2型糖尿病、グルコースレベルの上昇、インスリンレベルの上昇、肥満、非アルコール性脂肪性肝疾患、循環器疾患又は糖尿病性腎症などの代謝障害の、胃抑制ペプチド受容体(GIPR)に特異的な抗原結合タンパク質にコンジュゲートされたGLP-1受容体アゴニストを使用する治療又は寛解に関する。
グルコース依存性インスリン分泌刺激ポリペプチド(GIP)は、小腸(十二指腸及び空腸)においてK細胞から分泌される42のアミノ酸の単一ペプチドである。ヒトGIPは、プロGIPがプロセシングを受けて生じるものであり、プロGIPは、染色体17qに局在する遺伝子によってコードされる153のアミノ酸の前駆体である(Inagaki et al.,Mol Endocrinol 1989;3:1014-1021、Fehmann et al.Endocr Rev.1995;16:390-410)。GIPは、以前は胃抑制ポリペプチドと呼ばれていた。
GIPの分泌は、食物摂取によって誘導される。GIPは、組織に対して多くの生理学的作用を及ぼすものであり、こうした作用には、脂肪細胞における脂肪貯蔵の促進ならびに膵島β細胞の機能及びグルコース依存性のインスリン分泌の促進が含まれる。GIP及びグルカゴン様ポリペプチド-1(GLP-1)は、インスリン分泌刺激因子(「インクレチン」)として知られている。インタクトなGIPは、DPPIVによって迅速に分解されることで不活性形態となる。2型糖尿病患者では、GIPのインスリン分泌刺激作用は失われているが、GLP-1のインクレチン作用はそのまま残っている(Nauck et al.J.Clinc.Invest.1993;91:301-307)。
GIP受容体(GIPR)は、細胞外N末端、7つの膜貫通ドメイン及び細胞内C末端を有するGタンパク質共役型受容体(GPCR)のセクレチン-グルカゴンファミリーのメンバーである。このファミリーの受容体のN末端細胞外ドメインは、通常、グリコシル化されており、受容体の認識及び結合ドメインを形成する。GIPRは、膵臓、腸、脂肪組織、心臓、下垂体、副腎皮質及び脳を含む、多くの組織において高度に発現する(Usdin et al.,Endocrinology.1993,133:2861-2870)。ヒトGIPRは、466のアミノ酸を含み、染色体19q13.3に位置する遺伝子によってコードされる(Gremlich et al.,Diabetes.1995;44:1202-8、Volz et al.,FEBS Lett.1995,373:23-29)。ヒト、ラット及びマウスでは、mRNAが選択的スプライシングを受ける結果として、長さが異なるGIP受容体変異体が生成することが研究によって示唆されている。
GIPRノックアウトマウス(Gipr-/-)では、高脂肪食誘導性の体重増加に抵抗性が存在し、インスリン感受性及び脂質プロファイルが改善している(Yamada et al.,Diabetes.2006,55:S86、Miyawaki et al.Nature Med.2002,8:738-742)。さらに、新規の小分子GIPRアンタゴニストであるSKL-14959は、肥満及びインスリン抵抗性を阻止する(Diabetologia 2008,51:S373,44th EASD Annual meeting poster)。
まとめると、これらと肥満及びインスリン抵抗性との関連は、GIPRを阻害することが治療介入にとって有用なアプローチであることを示唆している。
グルカゴン様ペプチド-1は、プログルカゴン遺伝子に由来する31のアミノ酸のペプチドである。GLP-1は、小腸L細胞によって分泌されるものであり、食物摂取に応じて放出されることで膵臓β細胞からのインスリン分泌を誘導する(Diabetes 2004,53:S3,205-214)。インクレチン作用に加えて、GLP-1は、グルカゴンの分泌低減、胃内容排出の遅延及びカロリー摂取の低減も行う(Diabetes Care,2003,26(10):2929-2940)。GLP-1は、GLP-1受容体の活性化によってその作用を発揮し、GLP-1受容体は、クラスBに属するGタンパク質共役型受容体である(Endocrinology.1993,133(4):1907-10)。GLP-1は、DPP-IV酵素による迅速分解によってその機能は限定されており、結果的に半減期は約2分である。エキセナチド、リラグルチド、デュラグルチドなどの持続性のGLP-1受容体アゴニスト(GLP-1RA)が最近開発され、2型糖尿病を有する患者の血糖制御を改善するために、現在、臨床的に使用されている。さらに、GLP-1RAは、患者における体重低減ならびに血圧及び血漿コレステロールレベルの低減も促進する(Bioorg.Med.Chem.Lett 2013,23:4011-4018)。
Inagaki et al.,Mol Endocrinol 1989;3:1014-1021 Fehmann et al.Endocr Rev.1995;16:390-410 Nauck et al.J.Clinc.Invest.1993;91:301-307 Usdin et al.,Endocrinology.1993,133:2861-2870 Gremlich et al.,Diabetes.1995;44:1202-8 Volz et al.,FEBS Lett.1995,373:23-29 Yamada et al.,Diabetes.2006,55:S86 Miyawaki et al.Nature Med.2002,8:738-742 Diabetologia 2008,51:S373,44th EASD Annual meeting poster Diabetes 2004,53:S3,205-214 Diabetes Care,2003,26(10):2929-2940 Endocrinology.1993,133(4):1907-10 Bioorg.Med.Chem.Lett 2013,23:4011-4018
1つの態様では、本開示は、代謝障害を有する対象を治療する方法であって、ヒトGIPRに特異的に結合する抗原結合タンパク質を含む治療有効量の組成物を対象に投与する工程を含み、その抗原結合タンパク質は、GLP-1受容体アゴニストにコンジュゲートされている、方法を提供する。1つの実施形態では、代謝障害は、グルコース代謝の障害である。別の実施形態では、グルコース代謝障害は、高血糖を含み、抗原結合タンパク質の投与は、血漿グルコースを低減する。別の実施形態では、グルコース代謝障害は、高インスリン血症を含み、抗原結合タンパク質の投与は、血漿インスリンを低減する。別の実施形態では、グルコース代謝障害は、耐糖能障害を含み、抗原結合タンパク質の投与は、耐糖能を向上させる。別の実施形態では、グルコース代謝障害は、インスリン抵抗性を含み、抗原結合タンパク質の投与は、インスリン抵抗性を低減する。別の実施形態では、グルコース代謝障害は、糖尿病を含む。別の実施形態では、対象は、肥満である。別の実施形態では、組成物の投与は、肥満対象の体重を低減する。別の実施形態では、組成物の投与は、肥満対象における体重増加を低減する。別の実施形態では、組成物の投与は、肥満対象における体脂肪量を低減する。別の実施形態では、グルコース代謝障害は、インスリン抵抗性を含み、組成物の投与は、肥満対象におけるインスリン抵抗性を低減する。別の実施形態では、組成物の投与は、進行した脂肪肝を有する肥満対象における脂肪肝を低減する。別の実施形態では、組成物の投与は、肝臓脂肪含量が増加した肥満対象における肝臓脂肪含量を低減する。
1つの態様では、本組成物は、ヒトGIPRのアミノ酸配列に対して少なくとも90%のアミノ酸配列同一性を有するアミノ酸配列を有するタンパク質に特異的に結合する抗体又はその機能的断片であって、参照配列である配列番号455に対する抗体軽鎖のD70、参照配列である配列番号612に対する抗体重鎖のE276及び参照配列である配列番号612に対する抗体重鎖のT363からなる群から選択される1つ以上のコンジュゲーション部位でシステイン又は非標準アミノ酸のアミノ酸置換を含む抗体又はその機能的断片と、1つ以上のコンジュゲーション部位で置換されたシステイン残基又は非標準アミノ酸残基の側鎖を通して抗体又は機能的断片にコンジュゲートされているGLP-1受容体アゴニストとを含む抗体又はその機能的断片を含む。
1つの実施形態では、ヒトGIPRは、配列番号3141、配列番号3143及び配列番号3145からなる群から選択される配列を含む配列を有する。1つの実施形態では、抗体又はその機能的断片は、モノクローナル抗体、組換え抗体、ヒト抗体、ヒト化抗体、キメラ抗体、多重特異性抗体又はその抗体断片である。1つの実施形態では、抗体断片は、Fab断片、Fab’断片又はF(ab’)2断片である。1つの実施形態では、抗体又はその機能的断片は、IgG1型、IgG2型、IgG3型又はIgG4型のものである。1つの実施形態では、抗体又はその機能的断片は、ヒトGIPRの細胞外部分へのGIPの結合を阻害する。
1つの実施形態では、GLP-1受容体アゴニストは、GLP-1(7-37)又はGLP-1(7-37)類似体である。1つの実施形態では、GLP-1受容体アゴニストは、エキセナチド、リラグルチド、リキシセナチド、アルビグルチド、デュラグルチド、セマグルチド及びタスポグルチドからなる群から選択される。1つの実施形態では、GLP-1受容体アゴニストは、GLP-1(7-37)(配列番号3184);GLP-1(7-36)-NH(配列番号3185);リラグルチド、アルビグルチド、タスポグルチド、デュラグルチド、セマグルチド;LY2428757;エキセンディン-4(配列番号3163);エキセンディン-3(配列番号3164);Leu14-エキセンディン-4(配列番号3165);Leu14,Phe25-エキセンディン-4(配列番号3166);Leu14,Ala19,Phe25-エキセンディン-4(配列番号3167);エキセンディン-4(1-30)(配列番号3168);Leu14-エキセンディン-4(1-30)(配列番号3169);Leu14,Phe25-エキセンディン-4(1-30)(配列番号3170);Leu14,Ala19,Phe25-エキセンディン-4(1-30)(配列番号3171);エキセンディン-4(1-28)(配列番号3172);Leu14-エキセンディン-4(1-28)(配列番号3173);Leu14,Phe25-エキセンディン-4(1-28)(配列番号3174);Leu14,Ala19,Phe25-エキセンディン-4(1-28)(配列番号3175);Leu14,Lys17,20,Ala19,Glu21,Phe25,Gln28-エキセンディン-4(配列番号3176);Leu14,Lys17,20,Ala19,Glu21,Gln28-エキセンディン-4(配列番号3177);オクチルGly14,Gln28-エキセンディン-4(配列番号3178);Leu14,Gln28,オクチルGly34-エキセンディン-4(配列番号3179);Phe,Leu14,Gln28,Lys33,Glu34,Ile35,36,Ser37-エキセンディン-4(1-37)(配列番号3180);Phe,Leu14,Lys17,20,Ala19,Glu21,Gln28-エキセンディン-4(配列番号3181);Val11,Ile13,Leu14,Ala16,Lys21,Phe25-エキセンディン-4(配列番号3182);エキセンディン-4-Lys40(配列番号3183);GLP-1(7-37)(配列番号3184);GLP-1(7-36)-NH(配列番号3185);Aib8,35,Arg26,34,Phe31-GLP-1(7-36))(配列番号3186);HXaaEGTFTSDVSSYLEXaa22Xaa23AAKEFIXaa30WLXaa33Xaa34GXaa36Xaa37(式中、Xaaは、A、V又はGであり、Xaa22は、G、K又はEであり、Xaa23は、Q又はKであり、Xaa30は、A又はEであり、Xaa33は、V又はKであり、Xaa34は、K、N又はRであり、Xaa36は、R又はGであり、及びXaa37は、G、H、P又は非存在である)(配列番号3187);Arg34-GLP-1(7-37)(配列番号3188);Glu30-GLP-1(7-37)(配列番号3189);Lys22-GLP-1(7-37)(配列番号3190);Gly8,36,Glu22-GLP-1(7-37)(配列番号3191);Val,Glu22,Gly36-GLP-1(7-37)(配列番号3192);Gly8,36,Glu22,Lys33,Asn34-GLP-1(7-37)(配列番号3193);Val,Glu22,Lys33,Asn34,Gly36-GLP-1(7-37)(配列番号3194);Gly8,36,Glu22,Pro37-GLP-1(7-37)(配列番号3195);Val,Glu22,Gly36,Pro37-GLP-1(7-37)(配列番号3196);Gly8,36,Glu22,Lys33,Asn34,Pro37-GLP-1(7-37)(配列番号3197);Val,Glu22,Lys33,Asn34,Gly36,Pro37-GLP-1(7-37)(配列番号3198);Gly8,36,Glu22-GLP-1(7-36)(配列番号3199);Val,Glu22,Gly36-GLP-1(7-36)(配列番号3200);Val,Glu22,Asn34,Gly36-GLP-1(7-36)(配列番号3201);Gly8,36,Glu22,Asn34-GLP-1(7-36)(配列番号3202);GLP-1類似体(配列番号3206);GLP-1類似体(配列番号3207);[N-(17-カルボキシヘプタデカン酸)Lys20]エキセンディン-4-NH(配列番号3208);[N-(17-カルボキシヘプタ-デカノイル)Lys32]エキセンディン-4-NH(配列番号3209);[デスアミノ-His,N-(17-カルボキシヘプタデカノイル)Lys20]エキセンディン-4-NH(配列番号3210);[Arg12,27,NLe14,N-(17-カルボキシ-ヘプタデカノイル)Lys32]エキセンディン-4-NH(配列番号3211);[N-(19-カルボキシ-ノナデカノイルアミノ)Lys20]-エキセンディン-4-NH(配列番号3212);[N-(15-カルボキシペンタデカノイルアミノ)Lys20]-エキセンディン-4-NH(配列番号3213);[N-(13-カルボキシトリデカノイルアミノ)Lys20]エキセンディン-4-NH(配列番号3214);[N-(11-カルボキシ-ウンデカノイル-アミノ)Lys20]エキセンディン-4-NH(配列番号3215);エキセンディン-4-Lys40(e-MPA)-NH(配列番号3216);エキセンディン-4-Lys40(e-AEEA-AEEA-MPA)-NH(配列番号3217);エキセンディン-4-Lys40(e-AEEA-MPA)-NH(配列番号3218);エキセンディン-4-Lys40(e-MPA)-アルブミン(配列番号3219);エキセンディン-4-Lys40(e-AEEA-AEEA-MPA)-アルブミン(配列番号3220);エキセンディン-4-Lys40(e-AEEA-MPA)-アルブミン(配列番号3221);デスアミノ-His,Arg26,Lys34(Nε-(γ-Glu(N-α-ヘキサデカノイル)))-GLP-1(7-37)(配列番号3222として開示されたコアペプチド)(配列番号3222);デスアミノ-His,Arg26,Lys34(Nε-オクタノイル)-GLP-1(7-37)(配列番号3223);Arg26,34,Lys38(Nε-(ω-カルボキシペンタデカノイル))-GLP-1(7-38)(配列番号3224);Arg26,34,Lys36(Nε-(γ-Glu(N-α-ヘキサデカノイル)))-GLP-1(7-36)(配列番号3225として開示されたコアペプチド)(配列番号3225);[Aib;Lys37]GLP-1_(7-37)(配列番号3226);[Aib,Lys26]GLP-1_(7-37)(配列番号3227);[Aib8,22;Lys36]GLP-1(7-36)-アミド(配列番号3228);[Aib8,22;BLeu32;Lys36]GLP-1(7-36)-アミド(配列番号3229);[Aib8,22;Lys37]GLP-1(7-37)-アミド(配列番号3230);[Aib8,22;BLeu32;Lys37]GLP-1(7-37)-アミド(配列番号3231);[Aib8,22;aMeLeu32;Lys37]GLP-1(7-37)-アミド(配列番号3232);[Aib8,22;AMEF12;Lys37]GLP-1(7-37)-アミド(配列番号3233);[Aib8,22;BLeu16;Lys37]GLP-1(7-37)-アミド
(配列番号3234);[Aib8,22;Gly36;Lys37]GLP-1(7-37)-アミド(配列番号3235);[Aib8,22;Lys33,37;Asn34;Gly36]GLP-1(7-37)-アミド(配列番号3236);[Aib8,22;Lys33;Asn34;Gly36;Aeea37]GLP-1(7-37)-Aeea-Lys-アミド(配列番号3237);[Aib8,22;Gly36]GLP-1(7-37)(配列番号3238);シクロ[E23-K27][Aib;Gly36]GLP-1(7-37)(配列番号3239);シクロ[E22-K26][Aib;Gly36;Lys37]GLP-1(7-37)-アミド(配列番号3240);[Aib8,22]-GLP-1(7-22)-Ex4(17-39)(配列番号3241);[Gly8,36;Glu22]GLP-1(7-37)(配列番号3242);[Aib;Glu22;Gly36]GLP-1(7-37)-アミド(配列番号3243);[Aib;Tyr16;Glu22;Gly36]GLP-1_(7-37)(配列番号3244);[Aib;Lys18,33;Glu22,23,30;Val25;Arg26;Leu27;Asn34;Gly36]GLP-1(7-37)(配列番号3245);[Aib;Lys18,33;Glu22,23,30;Leu27;Asn34;Gly36]GLP-1(7-37)(配列番号3246);[Aib;Lys18;Glu22,23,30;Leu27;Gly36]GLP-1(7-37)(配列番号3247);[Aib8,22;Ile;Gly36]GLP-1_(7-36)(配列番号3248);及び[Aib8,22;Glu15;Gly36]GLP-1_(7-36)(配列番号3249)からなる群から選択される。
1つの実施形態では、GLP-1(7-37)又はGLP-1(7-37)類似体は、前記類似体のK26、K36、K37、K39又はC末端アミン基に対応する残基で抗体又はその断片にコンジュゲートされている。
1つの実施形態では、GLP-1受容体アゴニストは、(GlySer)、(GlySer)、(GlySer)、(GlySer)、(GlySer)、(GlySer)、(GlySer)、(GlySer)、(GlySer)及び(GlySer)からなる群から選択される配列を含むペプチドリンカーを介して抗体又はその断片にコンジュゲートされている。
抗GIPR/GLP-1ペプチドコンジュゲートの生成の反応スキームである。 CHOK1-GLP-1R H20組換え細胞中のGLP-1受容体アゴニスト活性及び293HEK-GIPR #10組換え細胞中のGIPRアンタゴニスト活性である。 CHOK1-GLP-1R H20組換え細胞中のGLP-1受容体アゴニスト活性及び293HEK-GIPR #10組換え細胞中のGIPRアンタゴニスト活性である。 CHOK1-GLP-1R H20組換え細胞中のGLP-1受容体アゴニスト活性及び293HEK-GIPR #10組換え細胞中のGIPRアンタゴニスト活性である。 CHOK1-GLP-1R H20組換え細胞中のGLP-1受容体アゴニスト活性及び293HEK-GIPR #10組換え細胞中のGIPRアンタゴニスト活性である。 CHOK1-GLP-1R H20組換え細胞中のGLP-1受容体アゴニスト活性及び293HEK-GIPR #10組換え細胞中のGIPRアンタゴニスト活性である。 CHOK1-GLP-1R H20組換え細胞中のGLP-1受容体アゴニスト活性及び293HEK-GIPR #10組換え細胞中のGIPRアンタゴニスト活性である。 CHOK1-GLP-1R H20組換え細胞中のGLP-1受容体アゴニスト活性及び293HEK-GIPR #10組換え細胞中のGIPRアンタゴニスト活性である。 CHOK1-GLP-1R H20組換え細胞中のGLP-1受容体アゴニスト活性及び293HEK-GIPR #10組換え細胞中のGIPRアンタゴニスト活性である。 CHOK1-GLP-1R H20組換え細胞中のGLP-1受容体アゴニスト活性及び293HEK-GIPR #10組換え細胞中のGIPRアンタゴニスト活性である。 CHOK1-GLP-1R H20組換え細胞中のGLP-1受容体アゴニスト活性及び293HEK-GIPR #10組換え細胞中のGIPRアンタゴニスト活性である。 CHOK1-GLP-1R H20組換え細胞中のGLP-1受容体アゴニスト活性及び293HEK-GIPR #10組換え細胞中のGIPRアンタゴニスト活性である。 CHOK1-GLP-1R H20組換え細胞中のGLP-1受容体アゴニスト活性及び293HEK-GIPR #10組換え細胞中のGIPRアンタゴニスト活性である。 CHOK1-GLP-1R H20組換え細胞中のGLP-1受容体アゴニスト活性及び293HEK-GIPR #10組換え細胞中のGIPRアンタゴニスト活性である。 CHOK1-GLP-1R H20組換え細胞中のGLP-1受容体アゴニスト活性及び293HEK-GIPR #10組換え細胞中のGIPRアンタゴニスト活性である。 CHOK1-GLP-1R H20組換え細胞中のGLP-1受容体アゴニスト活性及び293HEK-GIPR #10組換え細胞中のGIPRアンタゴニスト活性である。 CHOK1-GLP-1R H20組換え細胞中のGLP-1受容体アゴニスト活性及び293HEK-GIPR #10組換え細胞中のGIPRアンタゴニスト活性である。 CHOK1-GLP-1R H20組換え細胞中のGLP-1受容体アゴニスト活性及び293HEK-GIPR #10組換え細胞中のGIPRアンタゴニスト活性である。 CHOK1-GLP-1R H20組換え細胞中のGLP-1受容体アゴニスト活性及び293HEK-GIPR #10組換え細胞中のGIPRアンタゴニスト活性である。 CHOK1-GLP-1R H20組換え細胞中のGLP-1受容体アゴニスト活性及び293HEK-GIPR #10組換え細胞中のGIPRアンタゴニスト活性である。 CHOK1-GLP-1R H20組換え細胞中のGLP-1受容体アゴニスト活性及び293HEK-GIPR #10組換え細胞中のGIPRアンタゴニスト活性である。 2G10コンジュゲートのGLP-1アゴニスト活性は、GLP-1Rのみを発現する細胞(CHOK1 hGLP-1R H20)と比較してGLP-1R及びGIPRの両方を発現する細胞(CHOK1 hGLP-1R/hGIPR M1)においてより効力が高い。 2G10コンジュゲートのGLP-1アゴニスト活性は、GLP-1Rのみを発現する細胞(CHOK1 hGLP-1R H20)と比較してGLP-1R及びGIPRの両方を発現する細胞(CHOK1 hGLP-1R/hGIPR M1)においてより効力が高い。 2G10コンジュゲートのGLP-1アゴニスト活性は、GLP-1Rのみを発現する細胞(CHOK1 hGLP-1R H20)と比較してGLP-1R及びGIPRの両方を発現する細胞(CHOK1 hGLP-1R/hGIPR M1)においてより効力が高い。 db/dbマウスにおけるインビボ活性-グルコース及び体重に及ぼす作用である。 db/dbマウスにおけるインビボ活性-グルコース及び体重に及ぼす作用である。 db/dbマウスにおけるインビボ活性-グルコース及び体重に及ぼす作用である。 db/dbマウスにおけるインビボ活性-グルコース及び体重に及ぼす作用である。 db/dbマウスにおけるインビボ活性-グルコース及び体重に及ぼす作用である。 db/dbマウスにおけるインビボ活性-グルコース及び体重に及ぼす作用である。 db/dbマウスにおけるインビボ活性-グルコース及び体重に及ぼす作用である。 db/dbマウスにおけるインビボ活性-グルコース及び体重に及ぼす作用である。 db/dbマウスにおけるインビボ活性-グルコース及び体重に及ぼす作用である。 db/dbマウスにおけるインビボ活性-グルコース及び体重に及ぼす作用である。 db/dbマウスにおけるインビボ活性-グルコース及び体重に及ぼす作用である。 db/dbマウスにおけるインビボ活性-グルコース及び体重に及ぼす作用である。 db/dbマウスにおけるインビボ活性-グルコース及び体重に及ぼす作用である。 db/dbマウスにおけるインビボ活性-グルコース及び体重に及ぼす作用である。 db/dbマウスにおけるインビボ活性-グルコース及び体重に及ぼす作用である。 db/dbマウスにおけるインビボ活性-グルコース及び体重に及ぼす作用である。 db/dbマウスにおけるインビボ活性-グルコース及び体重に及ぼす作用である。 db/dbマウスにおけるインビボ活性-グルコース及び体重に及ぼす作用である。 C57Bl6マウスにおける5G12及び2G10化学的コンジュゲートのGLP-1受容体アゴニスト及びGIPRアンタゴニストのインビボ活性(グルコース耐性試験)である。 C57Bl6マウスにおける5G12及び2G10化学的コンジュゲートのGLP-1受容体アゴニスト及びGIPRアンタゴニストのインビボ活性(グルコース耐性試験)である。 C57Bl6マウスにおける5G12及び2G10化学的コンジュゲートのGLP-1受容体アゴニスト及びGIPRアンタゴニストのインビボ活性(グルコース耐性試験)である。 C57Bl6マウスにおける5G12及び2G10化学的コンジュゲートのGLP-1受容体アゴニスト及びGIPRアンタゴニストのインビボ活性(グルコース耐性試験)である。 DIOマウスにおける5G12及び2G10化学的コンジュゲートのGLP-1受容体アゴニスト及びGIPRアンタゴニストのインビボ活性(血漿グルコース及び体重の変化)である。 DIOマウスにおける5G12及び2G10化学的コンジュゲートのGLP-1受容体アゴニスト及びGIPRアンタゴニストのインビボ活性(血漿グルコース及び体重の変化)である。 GLP-1R-GIPR二重特異性コンジュゲート1273は、雄の特発性肥満性カニクイザルにおける体重を減少させる(ベースラインからの変化率(%))。 GLP-1R-GIPR二重特異性コンジュゲート1273は、雄の特発性肥満性カニクイザルにおける総エネルギー摂取量を減少させる(ベースラインからの変化率(%))。 GLP-1R-GIPR二重特異性コンジュゲート1273は、雄の特発性肥満性カニクイザルにおける空腹時インスリンを減少させる(ベースラインからの変化率(%))。 GLP-1R-GIPR二重特異性コンジュゲート1273は、雄の特発性肥満性カニクイザルにおける空腹時トリグリセリドを減少させる(ベースラインからの変化率(%))。 GLP-1R-GIPR二重特異性コンジュゲート1273は、雄の特発性肥満性カニクイザルにおける空腹時総コレステロールを減少させる(ベースラインからの変化率(%))。 GLP-1R-GIPR二重特異性コンジュゲート1264は、雄の特発性肥満性カニクイザルにおける体重を減少させる(ベースラインからの変化率(%))。 GLP-1R-GIPR二重特異性コンジュゲート1264は、雄の特発性肥満性カニクイザルにおける総エネルギー摂取量を減少させる(ベースラインからの変化率(%))。 GLP-1R-GIPR二重特異性コンジュゲート1264は、雄の特発性肥満性カニクイザルにおける空腹時インスリンを減少させる(ベースラインからの変化率(%))。 GLP-1R-GIPR二重特異性コンジュゲート1264は、雄の特発性肥満性カニクイザルにおける空腹時トリグリセリドを減少させる(ベースラインからの変化率(%))。 GLP-1R-GIPR二重特異性コンジュゲート1264は、雄の特発性肥満性カニクイザルにおける空腹時総コレステロールを減少させる(ベースラインからの変化率(%))。 GLP-1R-GIPR二重特異性コンジュゲート1248及び1257は、雄の特発性肥満性カニクイザルにおける体重を減少させる(ベースラインからの変化率(%))。 GLP-1R-GIPR二重特異性コンジュゲート1248及び1257は、雄の特発性肥満性カニクイザルにおける総エネルギー摂取量を減少させる(ベースラインからの変化率(%))。 GLP-1R-GIPR二重特異性コンジュゲート1248及び1257は、雄の特発性肥満性カニクイザルにおける空腹時インスリンを減少させる(ベースラインからの変化率(%))。 GLP-1R-GIPR二重特異性コンジュゲート1248及び1257は、雄の特発性肥満性カニクイザルにおける空腹時トリグリセリドを減少させる(ベースラインからの変化率(%))。 GLP-1R-GIPR二重特異性コンジュゲート1248及び1257は、雄の特発性肥満性カニクイザルにおける空腹時コレステロールを減少させる(ベースラインからの変化率(%))。 抗GIPR/GLP-1R二重特異性コンジュゲートの結合親和性である。 抗GIPR/GLP-1R二重特異性コンジュゲートの結合親和性である。 抗GIPR/GLP-1R二重特異性コンジュゲート1248は、GLP-1R及びGIPRの両方を発現する細胞内での強力なGLP-1R及びGIPRの内在化を促進する。 GLP-1R内在化アッセイにおける抗GIPR/GLP-1R二重特異性コンジュゲートの時間経過及び用量反応である。 GLP-1R内在化アッセイにおける抗GIPR/GLP-1R二重特異性コンジュゲートの時間経過及び用量反応である。 GLP-1R、GIPR及び二重特異性コンジュゲートは、内在化されると共局在化する。 GLP-1R、GIPR及び二重特異性コンジュゲートは、内在化されると共局在化する。 GLP-1R、GIPR及び二重特異性コンジュゲートは、内在化されると共局在化する。 GLP-1R、GIPR及び二重特異性コンジュゲートは、内在化されると共局在化する。 受容体内在化の阻害は、1248誘導性cAMP生成を減少させる。 受容体内在化の阻害は、1248誘導性cAMP生成を減少させる。 二重特異性コンジュゲートは、FACS分析においてGLP-1R及びGIPRへの結合である。 二重特異性コンジュゲートは、FACS分析においてGLP-1R及びGIPRへの結合である。 二重特異性コンジュゲートは、FACS分析においてGLP-1R及びGIPRへの結合である。 抗GIPR/GLP-1R二重特異性コンジュゲートは、カルシウム流出を刺激する。 抗GIPR/GLP-1R二重特異性コンジュゲート1248は、GLP-1R及びGIPR両方の経路を通してβ-アレスチン動員を促進する。 抗GIPR/GLP-1R二重特異性コンジュゲート1248は、GLP-1R及びGIPR両方の経路を通してβ-アレスチン動員を促進する。 抗GIPR/GLP-1R二重特異性コンジュゲート1248は、ヒト膵臓小島におけるインスリン分泌を刺激する。
本開示は、GIPの生物学的活性を遮断又は妨害することにより、グルコース代謝の障害(例えば、2型糖尿病、グルコースレベルの上昇、インスリンレベルの上昇、脂質異常症、メタボリックシンドローム(シンドロームX又はインスリン抵抗性症候群)、糖尿、代謝性アシドーシス、糖尿病性ニューロパシー、糖尿病性腎症、糖尿病性網膜症、糖尿病性心筋症、1型糖尿病、肥満及び肥満によって増悪した病状)などの代謝障害を治療する方法を提供する。1つの実施形態では、GLP-1受容体アゴニストにコンジュゲートされた治療有効量の単離ヒトGIPR結合タンパク質は、それを必要とする対象に投与される。投与方法及び送達方法も提供される。
実施例を含む、本明細書で使用されるポリペプチド及び核酸の組換え方法は、一般に、Sambrook et al.,Molecular Cloning:A Laboratory Manual(Cold Spring Harbor Laboratory Press,1989)、又はCurrent Protocols in Molecular Biology(Ausubel et al.,eds.,Green Publishers Inc.and Wiley and Sons 1994)に示されるものであり、これらの文献は両方共、あらゆる目的を対象として参照によって本明細書に組み込まれる。
本明細書で使用されるセクションの見出しは、構成のみを目的としており、記載対象の限定であると解釈されることにはならない。
本明細書では、別段の定義がない限り、本出願と関連して使用される科学用語及び専門用語は、当業者によって一般に理解される意味を有するものとする。さらに、文脈上異なる解釈を要する場合を除き、単数形の用語は、複数形を含むものとし、複数形の用語は、単数形を含むものとする。
一般に、本明細書に記載の細胞及び組織の培養、分子生物学、免疫学、微生物学、遺伝学、ならびにタンパク質及び核酸の化学、ならびにハイブリダイゼーションと関連して使用される命名法及びそれらの手法は、よく知られているものであり、当該技術分野において一般に使用されるものである。別段の記載がない限り、本出願の方法及び手法は、一般に、当該技術分野においてよく知られる通常の方法に従って実施され、こうした方法及び手法は、本明細書を通して引用及び議論される様々な一般の参考文献及び特定性の高い参考文献に記載されるものである。例えば、Sambrook et al.,Molecular Cloning:A Laboratory Manual,3rd ed.,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.(2001)、Ausubel et al.,Current Protocols in Molecular Biology,Greene Publishing Associates(1992)及びHarlow and Lane Antibodies:A Laboratory Manual Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.(1990)を参照されたい。これらの文献は、参照によって本明細書に組み込まれる。酵素反応及び精製手法は、製造者の説明に従って実施されるか、当該技術分野において一般に達成されるように実施されるか、又は本明細書に記載のように実施される。本明細書に記載の分析化学、合成有機化学、ならびに医薬品化学及び製薬化学と関連して使用される専門用語、ならびにそれらの実験室的な手順及び手法は、よく知られているものであり、当該技術分野において一般に使用されるものである。化学合成、化学分析、医薬的な調製物、製剤及び送達、ならびに患者の治療を目的として、標準的な手法を使用することができる。
本発明は、本明細書に記載の特定の方法論、プロトコール及び試薬等に限定されず、したがって、変わり得るものであると理解されるべきである。本明細書で使用される専門用語は、特定の実施形態の説明を目的としているにすぎず、開示の範囲の限定は意図されず、開示の範囲は、特許請求の範囲のみによって定義される。
実施例又は別の形で記載される場合を除き、本明細書で使用される成分又は反応条件の量を示す数はすべて、すべての場合において「約」という用語によって修飾されると理解されるべきである。「約」という用語は、割合と関連して使用されるとき、±1%を意味し得る。
別段の記載がない限り、本明細書で使用される「1つの(a)」及び「1つの(an)」は、慣例に従い、「1つ又は複数」を意味する。
本明細書で使用される「アミノ酸」及び「残基」という用語は、互換的に使用され、ペプチド又はポリペプチドとの関連で使用されるとき、天然起源のアミノ酸と合成のアミノ酸との両方、ならびに天然起源のアミノ酸と化学的に類似したアミノ酸類似体、アミノ酸模倣体及び非天然起源のアミノ酸を指す。
「天然起源のアミノ酸」は、遺伝コードによってコードされるアミノ酸、ならびに遺伝コードによってコードされ、合成された後に修飾されるアミノ酸(例えば、ヒドロキシプロリン、γ-カルボキシグルタメート及びO-ホスホセリン)である。アミノ酸類似体は、天然起源のアミノ酸と同一の基本化学構造、すなわち水素に結合したα炭素、カルボキシル基、アミノ基及びR基を有する化合物であり、例えば、ホモセリン、ノルロイシン、メチオニンスルホキシド、メチルメチオニンスルホニウムである。そのような類似体は、改変されたR基(例えば、ノルロイシン)又は改変されたペプチド骨格を有し得るが、天然起源のアミノ酸と同一の基本化学構造を保持することになる。
「アミノ酸模倣体」は、アミノ酸の一般化学構造と異なる構造を有するが、天然起源のアミノ酸と類似の様式で機能する化学化合物である。例には、アミドのメタクリロイル誘導体又はアクリロイル誘導体、β-イミノ酸、γ-イミノ酸、δ-イミノ酸(ピペリジン-4-カルボン酸など)及び同様のものが含まれる。
「非天然起源のアミノ酸」は、天然起源のアミノ酸と同一の基本化学構造を有するが、翻訳複合体によって伸長ポリペプチド鎖に組み込まれない化合物である。「非天然起源のアミノ酸」には、限定はされないが、天然にコードされるアミノ酸(限定はされないが、20の共通アミノ酸を含む)が修飾(例えば、翻訳後修飾)されることによって生じるが、翻訳複合体によって伸長ポリペプチド鎖にそれ自体が天然に組み込まれることのないアミノ酸も含まれる。ポリペプチド配列に挿入するか、又はポリペプチド配列における野生型残基の代わりに使用することができる非天然起源のアミノ酸の例のリストには、限定はされないが、β-アミノ酸、ホモアミノ酸、環状アミノ酸及び側鎖が誘導体化されたアミノ酸が含まれる。例には、シトルリン(Cit)、ホモシトルリン(hCit)、Nα-メチルシトルリン(NMeCit)、Nα-メチルホモシトルリン(Nα-MeHoCit)、オルニチン(Orn)、Nα-メチルオルニチン(Nα-MeOrn又はNMeOrn)、サルコシン(Sar)、ホモリジン(hLys又はhK)、ホモアルギニン(hArg又はhR)、ホモグルタミン(hQ)、Nα-メチルアルギニン(NMeR)、Nα-メチルロイシン(Nα-MeL又はNMeL)、N-メチルホモリジン(NMeHoK)、Nα-メチルグルタミン(NMeQ)、ノルロイシン(Nle)、ノルバリン(Nva)、1,2,3,4-テトラヒドロイソキノリン(Tic)、オクタヒドロインドール-2-カルボン酸(Oic)、3-(1-ナフチル)アラニン(1-Nal)、3-(2-ナフチル)アラニン(2-Nal)、1,2,3,4-テトラヒドロイソキノリン(Tic)、2-インダニルグリシン(IgI)、パラ-ヨードフェニルアラニン(pI-Phe)、パラ-アミノフェニルアラニン(4AmP又は4-アミノ-Phe)、4-グアニジノフェニルアラニン(Guf)、グリシルリジン(「K(Nε-グリシル)」又は「K(グリシル)」又は「K(gly)」と略される)、ニトロフェニルアラニン(ニトロphe)、アミノフェニルアラニン(アミノphe又はアミノ-Phe)、ベンジルフェニルアラニン(ベンジルphe)、γ-カルボキシグルタミン酸(γ-カルボキシglu)、ヒドロキシプロリン(ヒドロキシpro)、p-カルボキシル-フェニルアラニン(Cpa)、α-アミノアジピン酸(Aad)、Nα-メチルバリン(NMeVal)、N-α-メチルロイシン(NMeLeu)、Nα-メチルノルロイシン(NMeNle)、シクロペンチルグリシン(Cpg)、シクロヘキシルグリシン(Chg)、アセチルアルギニン(アセチルarg)、α,β-ジアミノプロピオン酸(Dpr)、α,γ-ジアミノブタン酸(Dab)、ジアミノプロピオン酸(Dap)、シクロヘキシルアラニン(Cha)、4-メチル-フェニルアラニン(MePhe)、β,β-ジフェニル-アラニン(BiPhA)、アミノブタン酸(Abu)、4-フェニル-フェニルアラニン(又はビフェニルアラニン、4Bip)、α-アミノ-イソブタン酸(Aib)、ベータ-アラニン、ベータ-アミノプロピオン酸、ピペリジン酸、アミノカプロン酸、アミノヘプタン酸、アミノピメリン酸、デスモシン、ジアミノピメリン酸、N-エチルグリシン、N-エチルアスパラギン、ヒドロキシリジン、アロ-ヒドロキシリジン、イソデスモシン、アロ-イソロイシン、N-メチルグリシン、N-メチルイソロイシン、N-メチルバリン、4-ヒドロキシプロリン(Hyp)、γ-カルボキシグルタメート、ε-N,N,N-トリメチルリジン、ε-N-アセチルリジン、O-ホスホセリン、N-アセチルセリン、N-ホルミルメチオニン、3-メチルヒスチジン、5-ヒドロキシリジン、ω-メチルアルギニン、4-アミノ-O-フタル酸(4APA)及び他の類似アミノ酸、ならびに具体的に記載のもののいずれかの誘導体化形態が含まれ、これらのものは、L-形態又はD-形態をとり、括弧内には略語が記載される。
「単離された核酸分子」という用語は、5’末端から3’末端へと読まれるデオキシリボヌクレオチド塩基もしくはリボヌクレオチド塩基の一本鎖もしくは二本鎖のポリマー(例えば、本明細書で提供されるGIPR核酸配列)又はその類似体であって、細胞源から全核酸が単離されるときにその核酸と共に天然に見出されるポリペプチド、ペプチド、脂質、糖質、ポリヌクレオチド、又は他の材料の少なくとも約50パーセントが取り除かれているものを指す。好ましくは、単離された核酸分子は、その核酸の天然環境において見出され、ポリペプチド生成におけるその使用、又はその治療的、診断的、予防的、もしくは研究的な使用を妨害すると想定される任意の他の混入核酸分子又は他の分子を実質的に含まない。
「単離されたポリペプチド」という用語は、ポリペプチドが細胞源から単離されるときにそのポリペプチドと共に天然に見出されるポリペプチド、ペプチド、脂質、糖質、ポリヌクレオチド、又は他の材料の少なくとも約50パーセントが取り除かれているポリペプチド(例えば、本明細書で提供されるGIPRポリペプチド配列、又は本発明の抗原結合タンパク質)を指す。好ましくは、単離されたポリペプチドは、その天然環境において見出され、その治療的、診断的、予防的、又は研究的な使用を妨害すると想定される任意の他の混入ポリペプチド又は他の混入物を実質的に含まない。
直接的又はリンカー部分を通して間接的のいずれかで本発明の別の抗GIPR抗原結合タンパク質に共有結合により連結、付着もしくは結合された本発明のGLP-1受容体アゴニストを含むか、又は化学的手段によって(例えば、翻訳後もしくは合成後)コンジュゲートされたかどうかにかかわらず、「コンジュゲート」もしくは「コンジュゲートされた」分子である本発明の組成物である。
「コードする」という用語は、1つ又は複数のアミノ酸をコードするポリヌクレオチド配列を指す。用語は、開始コドン又は終始コドンを必要としない。
2つ以上の核酸又はポリペプチド配列と関連する「同一」及び「同一性」パーセントという用語は、同一である2つ以上の配列又は部分配列を指す。「同一性パーセント」は、比較分子におけるアミノ酸又はヌクレオチドの間で残基が同一であるパーセントを意味し、比較される分子の中で最小のもののサイズに基づいて計算される。こうした計算では、特定の数学モデル又はコンピュータープログラム(すなわち「アルゴリズム」)により、アライメントにおけるギャップ(存在する場合)に対処することができる。アライメントされる核酸又はポリペプチドの同一性の計算に使用することができる方法には、Computational Molecular Biology,(Lesk,A.M.,ed.),(1988)New York:Oxford University Press、Biocomputing Informatics and Genome Projects,(Smith,D.W.,ed.),1993,New York:Academic Press、Computer Analysis of Sequence Data,Part I,(Griffin,A.M.,and Griffin,H.G.,eds.),1994,New Jersey:Humana Press、von Heinje,G.,(1987)Sequence Analysis in Molecular Biology,New York:Academic Press、Sequence Analysis Primer,(Gribskov,M.and Devereux,J.,eds.),1991,New York:M.Stockton Press及びCarillo et al.,(1988)SIAM J.Applied Math.48:1073に記載のものが含まれる。
同一性パーセントの計算では、比較される配列は、配列間の一致を最大化する方法でアライメントされる。同一性パーセントの決定に使用されるコンピュータープログラムは、GCGプログラムパッケージであり、このプログラムパッケージは、GAP(Devereux et al.,(1984)Nucl.Acid Res.12:387;Genetics Computer Group,University of Wisconsin,Madison,WI)を含む。コンピューターアルゴリズムであるGAPは、配列同一性パーセントが決定されることになる2つのポリペプチド又はポリヌクレオチドのアライメントをとるために使用される。配列は、そのそれぞれのアミノ酸又はヌクレオチドの一致が最適となるようにアライメントされる(「一致スパン」は、アルゴリズムによって決定される)。ギャップオープニングペナルティ(3x平均対角要素として計算され、「平均対角要素」は、使用される比較マトリックスの対角要素の平均である。「対角要素」は、特定の比較マトリックスによってそれぞれの完全アミノ酸一致に割り当てられるスコア又は数である)及びギャップ延長ペナルティ(通常、ギャップオープニングペナルティの1/10倍である)、ならびにPAM250又はBLOSUM62などの比較マトリックスがアルゴリズムと併せて使用される。特定の実施形態では、標準的な比較マトリックス(PAM250比較マトリックスについては、Dayhoff et al.,(1978)Atlas of Protein Sequence and Structure 5:345-352を参照されたい。BLOSUM62比較マトリックスについては、Henikoff et al.,(1992)Proc.Natl.Acad.Sci.U.S.A.89:10915-10919を参照されたい)は、アルゴリズムによっても使用される。
GAPプログラムを使用し、ポリペプチド又はヌクレオチド配列の同一性パーセントを決定するための推奨パラメーターには、下記のものが含まれる。
アルゴリズム:Needleman et al.,1970,J.Mol.Biol.48:443-453
比較マトリックス:前出のHenikoff et al.,1992
ギャップペナルティ:12(例外として、末端のギャップにはペナルティなし)
ギャップ長ペナルティ:4
類似性の許容限界値:0
2つのアミノ酸配列のアライメントをとるための特定のアライメントスキームを用いると、2つの配列において短い領域のみが一致する可能性がある。アライメントされたこの短い領域は、2つの全長配列の間に顕著な関連性が存在しないとしても非常に高い配列同一性を有する可能性がある。したがって、望まれるであれば、標的ポリペプチドにおいて少なくとも50の連続アミノ酸にまたがるアライメントが得られるように、選択されるアライメント方法(例えば、GAPプログラム)を調整することができる。
「GIPRポリペプチド」及び「GIPRタンパク質」という用語は、互換的に使用され、ヒト又はマウスなどの哺乳類において発現する天然起源の野生型ポリペプチドを意味し、天然起源の対立遺伝子(例えば、ヒトGIPRタンパク質の天然起源の対立遺伝子形態)を含む。本開示の目的では、「GIPRポリペプチド」という用語は、任意の全長GIPRポリペプチドを指すために互換的に使用することができ、こうした全長GIPRポリペプチドは、例えば、配列番号3141(466のアミノ酸残基からなり、配列番号3142のヌクレオチド配列によってコードされる)、又は配列番号3143(430のアミノ酸残基からなり、配列番号3144の核酸配列によってコードされる)、又は配列番号3145(493のアミノ酸残基からなり、配列番号3146の核酸配列によってコードされる)、又は配列番号3147(460のアミノ酸残基からなり、配列番号3148の核酸配列によってコードされる)、又は配列番号3149(230のアミノ酸残基からなり、配列番号3150の核酸配列によってコードされる)である。
「GIPRポリペプチド」という用語は、天然起源のGIPRポリペプチド配列(例えば、配列番号3141、配列番号3143、又は配列番号3145)が改変されたGIPRポリペプチドも包含する。そのような改変には、限定はされないが、非天然起源のアミノ酸、非天然起源のアミノ酸類似体及びアミノ酸模倣体での置換を含む、1つ又は複数のアミノ酸置換が含まれる。
様々な実施形態において、GIPRポリペプチドは、天然起源のGIPRポリペプチド(例えば、配列番号3141、配列番号3143、又は配列番号3145)との同一性が少なくとも約90パーセントであるアミノ酸配列を含む。他の実施形態では、GIPRポリペプチドは、天然起源のGIPRポリペプチドアミノ酸配列(例えば、配列番号3141、配列番号3143、又は配列番号3145)との同一性が約95パーセント、約96パーセント、約97パーセント、約98パーセント、又は約99パーセントであるアミノ酸配列を含む。そのようなGIPRポリペプチドは、必ずしも必要ではないが、GIPに結合する能力など、野生型GIPRポリペプチドの活性を少なくとも1つ有することが好ましい。本発明は、そのようなGIPRポリペプチド配列をコードする核酸分子も包含する。
「GIPR活性アッセイ」(「GIPR機能アッセイ」とも称される)という用語は、細胞状況におけるGIP又はGIP結合タンパク質の活性の測定に使用することができるアッセイを意味する。1つの実施形態では、「活性」(又は「機能」)アッセイ」は、GIPR発現細胞(GIPがcAMPシグナルを誘導することができる)におけるcAMPアッセイであり得、GIP/GIPR結合タンパク質の活性は、GIPリガンドの存在下/非存在下で測定することが可能であり、この場合、阻害/活性化のIC50/EC50及び度合いを得ることができる(Biochemical and Biophysical Research Communications(2002)290:1420-1426)。別の実施形態では、「活性」(又は「機能」)アッセイは、膵臓ベータ細胞(GIPがグルコース依存性のインスリン分泌を誘導することができる)におけるインスリン分泌アッセイであり得、GIP/GIPR結合タンパク質の活性は、GIPリガンドの存在下/非存在下で測定することが可能であり、この場合、阻害/活性化のIC50/EC50及び度合いを得ることができる(Biochemical and Biophysical Research Communications(2002)290:1420-1426)。
「GIPR結合アッセイ」という用語は、GIPRへのGIPの結合の測定に使用することができるアッセイを意味する。1つの実施形態では、「GIPR結合アッセイ」は、GIPR発現細胞への蛍光標識GIPの結合を測定するFMAT又はFACSを使用するアッセイであり得、GIP/GIPR結合タンパク質の活性は、GIPR発現細胞への蛍光標識GIPの結合の置き換えを対象として測定することができる。別の実施形態では、「GIPR結合アッセイ」は、GIPR発現細胞への放射性標識GIPの結合を測定するアッセイであり得、GIP/GIPR結合タンパク質の活性は、GIPR発現細胞への放射性標識GIPの結合の置き換えを対象として測定することができる(Biochimica et Biophysica Acta(2001)1547:143-155)。
「GIP」、「胃抑制ポリペプチド」、「グルコース依存性インスリン分泌刺激ペプチド」及び「GIPリガンド」という用語は、互換的に使用され、ヒト又はマウスなどの哺乳類において発現する天然起源の野生型ポリペプチドを意味し、天然起源の対立遺伝子(例えば、ヒトGIPタンパク質の天然起源の対立遺伝子形態)を含む。本開示の目的では、「GIP」という用語は、任意の成熟GIPポリペプチドを指すために互換的に使用することができる。
成熟ヒトGIPの42のアミノ酸の配列は、
YAEGTFISDY SIAMDKIHQQ DFVNWLLAQK GKKNDWKHNI TQ(配列番号3151)
であり、DNA配列:
Figure 0007175899000001
によってコードされる。
成熟マウスGIPの42のアミノ酸の配列は、
YAEGTFISDY SIAMDKIRQQ DFVNWLLAQR GKKSDWKHNI TQ(配列番号3153)
であり、DNA配列:
Figure 0007175899000002
によってコードされる。
成熟ラットGIPの42のアミノ酸の配列は、
YAEGTFISDY SIAMDKIRQQ DFVNWLLAQK GKKNDWKHNL TQ(配列番号3155)
であり、DNA配列:
Figure 0007175899000003
によってコードされる。
「GIPRアンタゴニスト」は、GIPRのGIP活性化を低減又は阻害する化合物を意味する。そのようなアンタゴニストには、化学合成された小分子及び抗原結合タンパク質が含まれる。
本明細書で使用される「抗原結合タンパク質」は、GIPRポリペプチド(例えば、配列番号3141、配列番号3143、又は配列番号3145で提供されるものなどのヒトGIPRポリペプチド)などの特定の標的抗原に特異的に結合する任意のタンパク質を意味する。用語は、少なくとも2つの全長重鎖及び2つの全長軽鎖を含むインタクトな抗体、ならびにその誘導体、変異体、断片及び変異物を包含する。抗体断片の例には、Fab断片、Fab’断片、F(ab’)断片及びFv断片が含まれる。抗原結合タンパク質には、以下にさらに記載されるnanobodies及びscFvなどのドメイン抗体も含まれる。
一般に、GIPR抗原結合タンパク質は、その抗原結合タンパク質が非GIPR分子に対して本質的にバックグラウンドの結合を示すとき、その標的抗原であるGIPRに「特異的に結合する」と言われる。しかしながら、GIPRに特異的に結合する抗原結合タンパク質は、異なる種に由来するGIPRポリペプチドと交差反応し得る。典型的には、GIPR抗原結合タンパク質は、表面プラズマ共鳴(surface plasma resonance)手法(例えば、BIACore,GE-Healthcare Uppsala,Sweden)又は結合平衡除外法(KinExA,Sapidyne,Boise,Idaho)を介して測定される解離定数(KD)が≦10-7Mであるとき、ヒトGIPRに特異的に結合する。GIPR抗原結合タンパク質は、記載の方法を使用して測定されるKDが≦5x10-9Mであるとき、「高い親和性」でヒトGIPRに特異的に結合し、記載の方法を使用して測定されるKDが≦5x10-10Mであるとき、「非常に高い親和性」でヒトGIPRに特異的に結合する。
「抗原結合領域」は、特定の抗原に特異的に結合するタンパク質又はタンパク質の一部を意味する。例えば、抗原と相互作用し、抗原に対するその特異性及び親和性を抗原結合タンパク質に与えるアミノ酸残基を含む抗原結合タンパク質のその部分は、「抗原結合領域」と称される。抗原結合領域は、典型的には、免疫グロブリン、一本鎖免疫グロブリン、又はラクダ科の動物の抗体の「相補的結合領域」(「CDR」)を1つ又は複数含む。特定の抗原結合領域は、1つ又は複数の「フレームワーク」領域も含む。「CDR」は、抗原結合の特異性及び親和性に寄与するアミノ酸配列である。「フレームワーク」領域は、CDRの適切な立体構造の維持に役立つことで、抗原結合領域と抗原との間の結合を促進することができる。
組換えGIPR抗原結合タンパク質を含む、「組換えタンパク質」は、組換え手法の使用、すなわち本明細書に記載の組換え核酸の発現を介して調製されるタンパク質である。組換えタンパク質の生成方法及び生成手法は、当該技術分野においてよく知られている。
「抗体」という用語は、任意のアイソタイプのインタクトな免疫グロブリン、又は標的抗原への特異的結合についてインタクトな抗体と競合することができるその断片を指し、例えば、キメラ抗体、ヒト化抗体、完全ヒト抗体及び二重特異性抗体を含む。したがって、「抗体」は、抗原結合タンパク質の一種である。インタクトな抗体は、一般に、少なくとも2つの全長重鎖及び2つの全長軽鎖を含むことになる。抗体は、単一の供給源のみに由来し得るか、又は「キメラ」であり得、キメラは、すなわち、以下にさらに記載されるように、その抗体の異なる部分が、2つの異なる抗体に由来し得るものである。抗原結合タンパク質、抗体、又は結合断片は、ハイブリドーマにおいて、組換えDNA手法により又はインタクトな抗体の酵素的もしくは化学的な切断により生成してよい。
抗体又はその断片に関して使用される「軽鎖」という用語は、全長軽鎖及び結合特異性を与えるために十分な可変領域配列を有するその断片を含む。全長軽鎖は、可変領域ドメイン(VL)及び定常領域ドメイン(CL)を含む。軽鎖の可変領域ドメインは、ポリペプチドのアミノ末端に位置する。軽鎖には、カッパー鎖及びラムダ鎖が含まれる。
抗体又はその断片に関して使用される「重鎖」という用語は、全長重鎖及び結合特異性を与えるために十分な可変領域配列を有するその断片を含む。全長重鎖は、可変領域ドメイン(VH)ならびに3つの定常領域ドメイン(CH1、CH2及びCH3)を含む。VHドメインは、ポリペプチドのアミノ末端に位置し、CHドメインは、カルボキシル末端に位置し、CH3は、ポリペプチドのカルボキシ末端に最も近い位置に存在する。重鎖は、IgG(IgG1サブタイプ、IgG2サブタイプ、IgG3サブタイプ及びIgG4サブタイプを含む)、IgA(IgA1サブタイプ及びIgA2サブタイプを含む)、IgM、ならびにIgEを含む、任意のアイソタイプのものであり得る。
本明細書で使用される、抗体又は免疫グロブリンの鎖(重鎖又は軽鎖)の「免疫学的に機能性の断片」(又は単に「断片」)という用語は、全長鎖に存在するアミノ酸の少なくともいくつかを欠いているが、抗原に特異的に結合する能力を有する抗体の一部(その部分がどのように得られるか、又は合成されるかは問われない)を含む抗原結合タンパク質である。そのような断片は、それが標的抗原に特異的に結合するという点で生物学的に活性であり、所与のエピトープへの特異的に結合について、インタクトな抗体を含む、他の抗原結合タンパク質と競合することができる。
こうした生物学的に活性な断片は、組換えDNA手法によって生成してよく、又はインタクトな抗体を含む、抗原結合タンパク質の酵素的もしくは化学的な切断によって生成してよい。免疫学的に機能性の免疫グロブリン断片には、限定はされないが、Fab断片、Fab’断片及びF(ab’)断片が含まれる。
別の実施形態では、Fv、ドメイン抗体及びscFvであり、これらは、本発明の抗体に由来し得る。
例えば、1つ又は複数のCDRなど、本明細書に開示の抗原結合タンパク質の機能性部分は、第2のタンパク質又は小分子に共有結合で結合させることで、体における特定の標的を対象とする治療剤を創出し、二機能性の治療特性を持たせるか、又は血清半減期を延長できることがさらに企図される。
「Fab断片」は、1つの軽鎖と、1つの重鎖のCH1及び可変領域とから構成される。Fab分子の重鎖は、別の重鎖分子とジスルフィド結合を形成することができない。
「Fc」領域は、抗体のCH2ドメイン及びCH3ドメインを含む2つの重鎖断片を含む。2つの重鎖断片は、2つ以上のジスルフィド結合及びCH3ドメインの疎水性相互作用によって共にまとめられる。
「Fab’断片」は、1つの軽鎖と、VHドメイン及びCH1ドメインに加えてCH1ドメインとCH2ドメインとの間の領域も含む1つの重鎖の一部とを含み、その結果、2つのFab’断片の2つの重鎖の間に鎖間ジスルフィド結合を形成することでF(ab’)2分子を形成することができる。
「F(ab’)2断片」は、2つの軽鎖と、CH1ドメインとCH2ドメインとの間の定常領域の一部を含む2つの重鎖とを含み、その結果、鎖間ジスルフィド結合が2つの重鎖の間に形成される。したがって、F(ab’)2断片は、2つの重鎖の間のジスルフィド結合によって共にまとめられた2つのFab’断片から構成される。
「Fv領域」は、重鎖と軽鎖との両方に由来する可変領域を含むが、定常領域を欠いている。
「一本鎖抗体」又は「scFv」は、重鎖可変領域と軽鎖可変領域とが可動性リンカーによって連結されることで単一のポリペプチド鎖を形成しているFv分子であり、この単一のポリペプチド鎖によって抗原結合領域が形成される。scFvは、国際特許出願公開国際公開第88/01649号パンフレットならびに米国特許第4,946,778号明細書及び同第5,260,203号明細書において詳細に議論されており、これらの文献の開示内容は、参照によって組み込まれる。
「ドメイン抗体」又は「一本鎖免疫グロブリン」は、重鎖の可変領域のみ又は軽鎖の可変領域のみを含む免疫学的に機能性の免疫グロブリン断片である。ドメイン抗体の例には、Nanobodies(登録商標)が含まれる。いくつかの場合、2つ以上のVH領域が、ペプチドリンカーを介して共有結合で連結されることで二価のドメイン抗体が創出される。二価のドメイン抗体の2つのVH領域は、同一又は異なる抗原を標的とし得る。
「二価の抗原結合タンパク質」又は「二価の抗体」は、2つの抗原結合領域を含む。いくつかの場合、2つの結合領域は、同一の抗原特異性を有する。二価の抗原結合タンパク質及び二価の抗体は、二重特異性であり得、これについては以下を参照されたい。
「多特異性抗原結合タンパク質」又は「多特異性抗体」は、複数の抗原又はエピトープを標的とするものである。
「二重特異性(bispecific)」、「二重特異性(dual-specific)」又は「二重特異性(bifunctional)」の抗原結合タンパク質又は抗体は、それぞれハイブリッドの抗原結合タンパク質又は抗体であり、2つの異なる抗原結合部位を有する。二重特異性の抗原結合タンパク質及び抗体は、多特異性抗原結合タンパク質又は多特異性抗体の一種であり、限定はされないが、ハイブリドーマの融合又はFab’断片の連結を含む、様々な方法によって生成してよい。例えば、Songsivilai and Lachmann,1990,Clin.Exp.Immunol.79:315-321、Kostelny et al.,1992,J.Immunol.148:1547-1553を参照されたい。二重特異性の抗原結合タンパク質又は抗体の2つの結合部位は、2つの異なるエピトープに結合することになり、こうした2つの異なるエピトープは、同一又は異なるタンパク質標的に存在し得る。
抗原結合タンパク質(例えば、抗体)との関連において使用されるとき、「競合する」という用語は、抗原結合タンパク質間の競合が、共通の抗原(例えば、GIPR又はその断片)への参照抗原結合タンパク質の特異的結合を抗原結合タンパク質(例えば、抗体又はその免疫学的に機能性の断片)が試験下で阻止又は阻害するアッセイによって決定されることを意味する。様々な型の競合的結合アッセイを使用することができ、例えば、固相の直接的又は間接的な放射免疫測定法(RIA)、固相の直接的又は間接的な酵素免疫測定法(EIA)、サンドイッチ競合アッセイ(例えば、Stahli et al.,1983,Methods in Enzymology 9:242-253を参照されたい)、固相直接ビオチン-アビジンEIA(例えば、Kirkland et al.,1986,J.Immunol.137:3614-3619を参照されたい)、固相直接標識アッセイ、固相直接標識サンドイッチアッセイ(例えば、Harlow and Lane,1988,Antibodies,A Laboratory Manual,Cold Spring Harbor Pressを参照されたい)、I-125標識を使用する固相直接標識RIA(例えば、Morel et al.,1988,Molec.Immunol.25:7-15を参照されたい)、固相直接ビオチン-アビジンEIA(例えば、Cheung,et al.,1990,Virology 176:546-552を参照されたい)及び直接標識RIA(Moldenhauer et al.,1990,Scand.J.Immunol.32:77-82)を使用することができる。典型的には、そのようなアッセイでは、固体表面に結合した精製抗原又はこうした抗原のいずれかを有する細胞、非標識試験抗原結合タンパク質及び標識参照抗原結合タンパク質が使用される。競合的阻害は、試験抗原結合タンパク質の存在下で固体表面又は細胞に結合した標識の量を決定することによって測定される。通常、試験抗原結合タンパク質は過剰に存在する。競合的結合を決定するための方法に関する追加詳細は、本明細書の実施例において提供される。通常、競合する抗原結合タンパク質が過剰に存在すると、競合する抗原結合タンパク質は、共通の抗原への参照抗原結合タンパク質の特異的結合が少なくとも40%、少なくとも45%、少なくとも50%、少なくとも55%、少なくとも60%、少なくとも65%、少なくとも70%、又は少なくとも75%阻害することになる。いくつかの場合、結合は、少なくとも80%、少なくとも85%、少なくとも90%、少なくとも95%、又は少なくとも97%以上阻害される。
「抗原」という用語は、抗原結合タンパク質(例えば、抗体を含む)などの選択的結合剤による結合を受ける能力を有し、さらに、その抗原に結合する能力を有する抗体を生成するために動物において使用することが可能な分子又は分子の一部を指す。抗原は、異なる抗原結合タンパク質(例えば、抗体)と相互作用する能力を有する1つ又は複数のエピトープを有し得る。
「エピトープ」という用語は、抗原結合タンパク質(例えば、抗体)による結合を受ける分子の一部である。用語は、抗体などの抗原結合タンパク質に特異的に結合する能力を有する任意の決定基を含む。エピトープは、連続的又は非連続的(不連続的)(例えば、ポリペプチドでは、そのポリペプチド配列では互いに連続的ではないが、その分子の中で結び付きを有するアミノ酸残基は、抗原結合タンパク質による結合を受ける)であり得る。立体構造エピトープは、活性タンパク質の立体構造には存在するが、変性タンパク質には存在しないエピトープである。特定の実施形態では、エピトープは、抗原結合タンパク質を生成するために使用されるエピトープと類似した三次元構造をそれが含むが、抗原結合タンパク質を生成するために使用されるそのエピトープにおいて見られるアミノ酸残基をそれが含まないか、又はそのいくつかのみを含むという点で模倣的であり得る。エピトープは、タンパク質に存在することが最も多いが、場合により、核酸などの他の種類の分子に存在し得る。エピトープ決定基は、アミノ酸、糖側鎖、リン酸基又はスルホニル基など、化学的に活性な表面分類の分子を含み得、特定の三次元構造特性及び/又は特定の電荷特性を有し得る。一般に、特定の標的抗原に特異的な抗原結合タンパク質は、タンパク質及び/又は巨大分子の複合混合物において標的抗原に存在するエピトープを優先的に認識することになる。
本明細書で使用される「実質的に純粋」は、記載の種の分子が主要存在種であり、すなわち同一の混合物において他のどの個々の種よりもそれがモルベースで豊富に存在することを意味する。特定の実施形態では、実質的に純粋な分子は、目的種が、存在するすべての巨大分子種の少なくとも50%(モルベース)を構成する組成物である。他の実施形態では、実質的に純粋な組成物は、組成物に存在するすべての巨大分子種の少なくとも80%、少なくとも85%、少なくとも90%、少なくとも95%、少なくとも96%、少なくとも97%、少なくとも98%、又は少なくとも99%を構成することになる。他の実施形態では、目的種は、本質的な均一性を有するまで精製され、通常の検出方法によって組成物中に混入種を検出することはできず、したがって組成物は、単一の検出可能な巨大分子種からなる。
「治療」という用語は、損傷、病態、又は病状の治療又は寛解における成功の任意の兆候を指し、こうした兆候には、症状の軽減、緩和、縮小、又は損傷、病態、もしくは病状の患者耐容性の向上、悪化速度又は衰退速度の鈍化、悪化終点の衰弱軽減、患者の身体的又は精神的な健全性の改善など、任意の客観的又は主観的なパラメーターが含まれる。症状の治療又は寛解は、身体検査、神経精神医学的検査及び/又は精神医学的評価の結果を含む、客観的又は主観的なパラメーターに基づき得る。例えば、本明細書で提示される特定の方法は、循環器疾患の発生率の低減、循環器疾患の緩和誘起及び/又は循環器疾患と関連する症状の寛解により、粥状動脈硬化などの循環器疾患を成功裏に治療する。
「有効量」は、一般に、症状の重症度及び/又は頻度の低減、症状及び/又は根底に存在する原因の除去、症状の発症及び/又はその根底に存在する原因の予防、及び/又は疾患病状(例えば、糖尿病、肥満、脂質異常症、グルコースレベルの上昇、インスリンレベルの上昇、もしくは糖尿病性腎症)に起因するダメージもしくはそれと関連するダメージの改善もしくは治療に十分な量である。いくつかの実施形態では、有効量は、治療的に有効な量又は予防的に有効な量である。「治療的に有効な量」は、疾患病状(例えば、粥状動脈硬化)又は症状、具体的には、疾患病状と関連する状態又は症状の治療に十分な量、あるいは方法は何であれ、疾患病状又は疾患と関連する任意の他の望ましくない症状の進行の予防、防止、遅延、又は好転に十分な量である。「予防的に有効な量」は、対象に投与されると、意図される予防効果を有することになる医薬組成物の量であり、こうした予防効果は、例えば、疾患病状の発症(もしくは再発)の予防もしくは遅延、又は疾患病状もしくは関連症状の発症(もしくは再発)の可能性の低減である。必ずしも1回用量の投与によって完全な治療効果又は予防効果が生じる必要はなく、完全な治療効果又は予防効果は、一連の用量の投与の後にのみ生じ得る。したがって、治療的に有効な量又は予防的に有効な量は、1回又は複数回の投与で投与してよい。
本明細書で使用される「治療的に有効な用量」及び「治療的に有効な量」という用語は、研究者、医師、又は他の臨床医によって探究されている組織系、動物、又はヒトにおいて、治療中の疾患又は障害の症状の軽減又は寛解を含む、生物学的又は薬用的な応答を誘発するGIPR結合タンパク質の量、すなわち観測可能なレベルの1つ又は複数の所望の生物学的又は薬用的な応答を支持するGIPR結合タンパク質の量を意味し、こうした応答は、例えば、血中のグルコース、インスリン、トリグリセリド、もしくはコレステロールのレベルの低下、体重の減少、又は耐糖能、エネルギー消費、もしくはインスリン感受性の改善である。
「ポリヌクレオチド」又は「核酸」という用語は、一本鎖のヌクレオチドポリマーと二本鎖のヌクレオチドポリマーとの両方を含む。ポリヌクレオチドを構成するヌクレオチドは、リボヌクレオチドもしくはデオキシリボヌクレオチド、又はいずれかの型のヌクレオチドの改変形態であり得る。改変には、ブロモウリジン及びイノシン誘導体などの塩基改変、2’,3’-ジデオキシリボースなどのリボース改変、ならびにホスホロチオエート、ホスホロジチオエート、ホスホロセレノエート、ホスホロジセレノエート、ホスホロアニロチオエート(phosphoroanilothioate)、ホスホロアニラデート(phoshoraniladate)及びホスホロアミデート(phosphoroamidate)などのヌクレオチド間結合の改変が含まれる。
「オリゴヌクレオチド」という用語は、200以下のヌクレオチドを含むポリヌクレオチドを意味する。いくつかの実施形態では、オリゴヌクレオチドは、10~60の塩基長である。他の実施形態では、オリゴヌクレオチドは、12、13、14、15、16、17、18、19、又は20~40のヌクレオチド長である。オリゴヌクレオチドは、例えば、変異遺伝子の構築において使用するための一本鎖又は二本鎖であり得る。オリゴヌクレオチドは、センスオリゴヌクレオチド又はアンチセンスオリゴヌクレオチドであり得る。オリゴヌクレオチドは、検出アッセイのための放射標識、蛍光標識、ハプテン、又は抗原性標識を含む、標識を含み得る。オリゴヌクレオチドは、例えば、PCRプライマー、クローニングプライマー、又はハイブリダイゼーションプローブとして使用してよい。
「単離された核酸分子」は、ゲノム、mRNA、cDNA、もしくは合成を起源とするか、又はそれらの何らかの組み合わせであるDNA又はRNAであって、単離されたポリヌクレオチドが天然に見出されるポリヌクレオチドのすべてもしくは一部を伴わないか、又はそれが天然では連結されないポリヌクレオチドに連結されているDNA又はRNAを意味する。本開示の目的では、特定のヌクレオチド配列を「含む核酸分子」は、インタクトな染色体を包含しないと理解されるべきである。特定の核酸配列を「含む」単離された核酸分子は、その特定の配列に加えて、最大で10もしくはさらに最大で20に及ぶ数の他のタンパク質もしくはその一部をコードする配列を含み得、又は記載の核酸配列のコード領域の発現を制御する調節配列を機能可能なように連結して含み得、及び/又はベクター配列を含み得る。
別段の記載がない限り、本明細書で議論される任意の一本鎖ポリヌクレオチド配列の左側末端は、5’末端であり、二本鎖ポリヌクレオチド配列の左側方向は、5’方向と称される。新生RNA転写物が5’から3’へと付加される方向は、転写方向と称される。RNA転写物と同一の配列を有するDNA鎖に存在し、RNA転写物の5’末端に対して5’側に位置する配列領域は、「上流配列」と称される。RNA転写物と同一の配列を有するDNA鎖に存在し、RNA転写物の3’末端に対して3’側に位置する配列領域は、「下流配列」と称される。
「制御配列」という用語は、それが連結されるコード配列の発現及びプロセシングに影響を与えることができるポリヌクレオチド配列を指す。そのような制御配列の性質は、宿主生物に依存し得る。特定の実施形態では、原核生物向けの制御配列は、プロモーター、リボソーム結合部位及び転写終結配列を含み得る。例えば、真核生物向けの制御配列は、転写因子のための認識部位を1つ又は複数含むプロモーター、転写エンハンサー配列及び転写終結配列を含み得る。「制御配列」は、リーダー配列及び/又は融合パートナー配列を含み得る。
「ベクター」という用語は、宿主細胞へのタンパク質コード情報の導入に使用される任意の分子又は実体(例えば、核酸、プラスミド、バクテリオファージ、又はウイルス)を意味する。
「発現ベクター」又は「発現構築物」という用語は、宿主細胞の形質転換に適しており、そこに機能可能なように連結される1つ又は複数の異種性コード領域の発現を(宿主細胞と協同して)誘導及び/又は制御する核酸配列を含むベクターを指す。発現構築物は、限定はされないが、転写、翻訳に影響するか、又はそれを制御し、イントロンが存在するのであれば、そこに機能可能なように連結されるコード領域のRNAスプライシングに影響する配列を含み得る。
本明細書で使用される「機能可能なように連結される」は、この用語が適用される構成要素が、適切な条件下でそれがその固有機能を実施することが可能になる関係にあることを意味する。例えば、ベクターにおいてタンパク質コード配列に「機能可能なように連結される」制御配列は、制御配列の転写活性と適合する条件下でタンパク質コード配列の発現が達成されるようにそこに連結される。
「宿主細胞」という用語は、核酸配列で形質転換されており、それによって目的とする遺伝子を発現する細胞を意味する。用語は、親細胞の子孫を含み、目的とする遺伝子が存在する限り、子孫の形態学又は遺伝子構成が起源の親細胞と同一であるか否かは問われない。
「ポリペプチド」又は「タンパク質」という用語は、アミノ酸残基のポリマーを指すために本明細書で互換的に使用される。用語は、1つ又は複数のアミノ酸残基が、対応する天然起源のアミノ酸の類似体又は模倣体であるアミノ酸ポリマー、ならびに天然起源のアミノ酸ポリマーにも適用される。用語は、例えば、糖タンパク質を形成するための糖質残基の付加、又はリン酸化によって修飾されたアミノ酸ポリマーも包含し得る。ポリペプチド及びタンパク質は、天然起源及び非天然起源の細胞によって産生し得るか、又は遺伝子操作もしくは組換えられた細胞によって産生し、天然のタンパク質のアミノ酸配列を有する分子を含むか、あるいは天然の配列の1つ又は複数のアミノ酸の欠失、それへの付加及び/又はその置換を有する分子を含む。「ポリペプチド」及び「タンパク質」という用語は、具体的には、GIPR抗原結合タンパク質、抗体、あるいは抗原結合タンパク質の1つ又は複数のアミノ酸の欠失、それへの付加及び/又はその置換を有する配列を包含する。「ポリペプチド断片」という用語は、全長タンパク質と比較して、アミノ末端の欠失、カルボキシル末端の欠失及び/又は内部の欠失を有するポリペプチドを指す。そのような断片は、全長タンパク質と比較して改変されたアミノ酸も含み得る。特定の実施形態では、断片は、約5~500のアミノ酸長である。例えば、断片は、少なくとも5、少なくとも6、少なくとも8、少なくとも10、少なくとも14、少なくとも20、少なくとも50、少なくとも70、少なくとも100、少なくとも110、少なくとも150、少なくとも200、少なくとも250、少なくとも300、少なくとも350、少なくとも400、又は少なくとも450のアミノ酸長であり得る。有用なポリペプチド断片には、結合ドメインを含む、抗体の免疫学的に機能性の断片が含まれる。
「単離されたタンパク質」という用語は、対象タンパク質が、(1)それと共に通常見られると想定される他のタンパク質を少なくともいくつかは含まないか、(2)例えば、同一種などの同一源に由来する他のタンパク質を本質的に含まないか、(3)異なる種に由来する細胞によって発現するか、(4)天然ではそれに付随するポリヌクレオチド、脂質、糖質、もしくは他の材料の少なくとも約50パーセントが取り除かれているか、(5)天然ではそれに付随しないポリペプチドと機能可能なように(共有結合的もしくは非共有結合的な相互作用によって)結び付いているか、又は(6)天然には生じないことを意味する。典型的には、「単離されたタンパク質」は、所与の試料の少なくとも約5%、少なくとも約10%、少なくとも約25%、又は少なくとも約50%を構成する。ゲノムDNA、cDNA、mRNA、もしくは合成起源の他のRNA、又はそれらの任意の組み合わせにより、そのような単離されたタンパク質はコードされ得る。好ましくは、単離されたタンパク質は、その天然環境において見出され、その治療的、診断的、予防的、研究的、又は他の用途を妨害すると想定されるタンパク質もしくはポリペプチド又は他の混入物を実質的に含まない。
ポリペプチド(例えば、抗体などの抗原結合タンパク質)の「変異体」は、別のポリペプチド配列と比較して、アミノ酸配列に1つ又は複数のアミノ酸残基の挿入、欠失及び/又は置換が生じたアミノ酸配列を含む。変異体には、融合タンパク質が含まれる。
ポリペプチドの「誘導体」は、例えば、別の化学部分への複合化を介して、挿入、欠失、又は置換による変異体と異なる何らかの様式で化学的に改変されたポリペプチド(例えば、抗体などの抗原結合タンパク質)である。
ポリペプチド、核酸、宿主細胞及び同様のものなどの生物学的材料と関連して本明細書を通して使用される「天然起源」という用語は、天然に見出される材料を指す。
本明細書で使用される「対象」又は「患者」は、任意の哺乳類であり得る。典型的な実施形態では、対象又は患者は、ヒトである。
本明細書に開示のように、本開示によって記載されるGIPRポリペプチドは、標準的な分子生物学的方法論を使用して操作及び/又は生成することができる。様々な例では、GIPRをコードする核酸配列は、配列番号1、配列番号3、又は配列番号5のすべて又は一部を含み得るものであり、適切なオリゴヌクレオチドプライマーを使用し、ゲノムDNA又はcDNAから単離及び/又は増幅することができる。プライマーは、標準的な(RT)-PCR増幅手法に従って、本明細書で提供される核酸配列及びアミノ酸配列に基づいて設計することができる。その後、増幅されたGIPR核酸は、適切なベクターへとクローニングし、DNA配列解析によって特徴付けることができる。
本明細書で提供されるGIPR配列のすべて又は一部の単離又は増幅においてプローブとして使用するためのオリゴヌクレオチドは、例えば、自動化DNA合成装置などの標準的な合成手法を使用して設計及び生成することができるか、又はより長いDNA配列から単離することができる。
ヒトGIPRの466のアミノ酸の配列は、(Volz et al.,FEBS Lett.373:23-29(1995)、NCBI参照配列:NP_0001555):
Figure 0007175899000004
であり、DNA配列(NCBI参照配列:NM_000164):
Figure 0007175899000005
Figure 0007175899000006
によってコードされる。
ヒトGIPRの430のアミノ酸のアイソフォーム(アイソフォームX1)は、自動化コンピューター解析によって予測されたものであり、配列(NCBI参照配列XP_005258790):
Figure 0007175899000007
を有し、DNA配列:
Figure 0007175899000008
によってコードされる。
ヒトGIPRの493のアミノ酸のアイソフォームは、選択的スプライシングによって生成するものであり、配列(Gremlich et al.,Diabetes 44:1202-8(1995)、UniProtKB配列識別子:P48546-2):
Figure 0007175899000009
を有し、DNA配列:
Figure 0007175899000010
によってコードされる。
マウスGIPRの460のアミノ酸の配列は、(NCBI参照配列:NP_001074284、uniprotKB/Swiss-Prot Q0P543-1)(Vassilatis et al.,PNAS USA 2003,100:4903-4908を参照されたい)
Figure 0007175899000011
であり、DNA配列(NCBI参照配列:NM_001080815):
Figure 0007175899000012
によってコードされる。
マウスGIPRの230のアミノ酸のアイソフォームは、選択的スプライシングによって生成するものであり、配列(Gerhard et al.,Genome Res,14:2121-2127(2004)、NCBI参照配列:AAI20674):
Figure 0007175899000013
を有し、DNA配列:
Figure 0007175899000014
によってコードされる。
本明細書に記載の「GIPRポリペプチド」という用語は、例えば、配列番号3141、配列番号3143、又は配列番号3145のヒトアミノ酸配列などの天然起源のGIPRポリペプチド配列を包含する。しかしながら、「GIPRポリペプチド」という用語は、例えば、配列番号3141、配列番号3143、又は配列番号3145などの天然起源のGIPRポリペプチド配列のアミノ酸配列と1つ又は複数のアミノ酸が異なり、その結果、配列が、配列番号3141、配列番号3143、又は配列番号3145と少なくとも90%で同一であるアミノ酸配列を含むポリペプチドも包含する。GIPRポリペプチドは、天然起源又は非天然起源のアミノ酸を使用し、GIPRポリペプチドの特定の位置に対して1つ又は複数のアミノ酸置換(保存的又は非保存的なもの)を導入することによって生成することができる。
「保存的アミノ酸置換」では、天然のアミノ酸残基(すなわち野生型GIPRポリペプチド配列の所与の位置に見られる残基)と、非天然の残基(すなわち野生型GIPRポリペプチド配列の所与の位置に見られない残基)と、が置換され得、その結果、その位置のアミノ酸残基の極性又は電荷に対する影響は、ほとんど存在しないか、又は全く存在しない。保存的アミノ酸置換は、典型的には生物学的な系における合成によってではなく、化学的なペプチド合成によって組み込まれる非天然起源のアミノ酸残基も包含する。こうしたものには、ペプチド模倣体及びアミノ酸部分が逆転又は反転した他の形態が含まれる。
天然起源の残基は、下記の共通の側鎖特性に基づくクラスに分類することができる:
(1)疎水性:ノルロイシン、Met、Ala、Val、Leu、Ile、
(2)中性の親水性:Cys、Ser、Thr、
(3)酸性:Asp、Glu、
(4)塩基性:Asn、Gln、His、Lys、Arg、
(5)鎖の配向に影響する残基:Gly、Pro、及び
(6)芳香族:Trp、Tyr、Phe。
アミノ酸の追加の分類群は、例えば、Creighton(1984)PROTEINS:STRUCTURE AND MOLECULAR PROPERTIES(2d Ed.1993),W.H.Freeman and Companyに記載の原理を使用して構築することもできる。いくつかの場合、そのような特性の2つ以上に基づいて置換をさらに特徴付けることが有用であり得る(例えば、Thr残基などの「小極性」残基での置換は、適切な状況では高度に保存的な置換となり得る)。
保存的置換は、こうしたクラスの1つのメンバーと、同一クラスの別のメンバーとの交換を伴い得る。非保存的置換は、こうしたクラスの1つのメンバーと、別のクラスのメンバーとの交換を伴い得る。
上記の分類のものと類似の生理化学的特性を有することが知られる合成アミノ酸残基、希少アミノ酸残基、又は改変アミノ酸残基を、配列における特定のアミノ酸残基を「保存的」に置換するものとして使用することができる。例えば、D-Arg残基は、典型的なL-Arg残基を置換するものとして働き得る。2つ以上の上記のクラスに関して特定の置換を説明することができる場合もあり得る(例えば、小さい疎水性の残基での置換は、上記のクラスの両方に見られる残基又は両方の定義を満たすそのような残基と類似の生理化学的特性を有することが当該技術分野において知られる他の合成残基、希少残基、もしくは改変残基での1つのアミノ酸の置換を意味する)。
本明細書で提供されるGIPRポリペプチドをコードする核酸配列には、配列番号3141、配列番号3143、又は配列番号3145と縮重関係にあるものと、本開示の他の態様に由来する、配列番号3141、配列番号3143、又は配列番号3145のポリペプチド変異体をコードするものと、が含まれる。
本明細書で提供されるGIPR核酸配列を発現するために、標準的なクローニング手法及び発現手法に従って、例えば、配列番号3141、配列番号3143、又は配列番号3145などの適切なコード配列を適切なベクターにクローニングすることができ、適切な宿主への導入の後、配列が発現することで、コードされるポリペプチドを生成することができ、こうした手法は、当該技術分野において知られている(例えば、Sambrook,J.,Fritsh,E.F.,and Maniatis,T.Molecular Cloning:A Laboratory Manual 2nd,ed.,Cold Spring Harbor Laboratory,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.,1989に記載される)。本発明は、本発明による核酸配列を含むそのようなベクターにも関する。
「ベクター」は、(a)ポリペプチドをコードする核酸配列の発現を促進する送達媒体、(b)そこからのポリペプチドの生成を促進する送達媒体、(c)それを用いる標的細胞の遺伝子導入/形質転換を促進する送達媒体、(d)核酸配列の複製を促進する送達媒体、(e)核酸の安定性を促進する送達媒体、(f)核酸及び/又は形質転換/遺伝子導入細胞の検出を促進する送達媒体、及び/又は(g)ポリペプチドをコードする核酸に対して有利な生物学的及び/又は生理化学的な機能を別の形で付与する送達媒体を指す。ベクターは、染色体ベクター、非染色体ベクター及び合成核酸ベクター(適切な一連の発現制御要素を含む核酸配列)を含む、任意の適切なベクターであり得る。そのようなベクターの例には、SV40の誘導体、細菌プラスミド、ファージDNA、バキュロウイルス、酵母プラスミド、プラスミドとファージDNAとの組み合わせに由来するベクター、ならびにウイルス核酸(RNA又はDNA)ベクターが含まれる。
組換え発現ベクターは、原核細胞(例えば、E.coli)又は真核細胞(例えば、バキュロウイルス発現ベクターを使用する昆虫細胞、酵母細胞、もしくは哺乳類細胞)においてGIPRタンパク質が発現するように設計することができる。1つの実施形態では、宿主細胞は、哺乳類の非ヒト宿主細胞である。代表的な宿主細胞には、典型的にはクローニング及び発現に使用される宿主が含まれ、こうした宿主には、Escherichia coli株であるTOP10F’、TOP10、DH10B、DH5a、HB101、W3110、BL21(DE3)及びBL21(DE3)pLysS、BLUESCRIPT(Stratagene)、哺乳類細胞株であるCHO、CHO-K1、HEK293、293-EBNApINベクター(Van Heeke & Schuster,J.Biol.Chem.264:5503-5509(1989)、pETベクター(Novagen,Madison Wis.)が含まれる。あるいは、組換え発現ベクターは、例えば、T7プロモーター調節配列及びT7ポリメラーゼ及びインビトロの翻訳システムを使用し、インビトロで転写及び翻訳することができる。好ましくは、ベクターは、ポリペプチドをコードする核酸配列を含むクローニング部位の上流にプロモーターを含む。スイッチのオンオフが切り替え可能なプロモーターの例には、lacプロモーター、T7プロモーター、trcプロモーター、tacプロモーター及びtrpプロモーターが含まれる。
したがって、GIPRをコードする核酸配列を含み、組換えGIPRの発現を促進するベクターが本明細書で提供される。様々な実施形態において、ベクターは、GIPRの発現を調節するヌクレオチド配列を機能可能なように連結して含む。ベクターは、任意の適切なプロモーター、エンハンサー及び他の発現促進要素を含み得るか、又はそれと結び付けられ得る。そのような要素の例には、強力な発現プロモーター(例えば、ヒトCMV IEプロモーター/エンハンサー、RSVプロモーター、SV40プロモーター、SL3-3プロモーター、MMTVプロモーター、もしくはHIV LTRプロモーター、EF1アルファプロモーター、CAGプロモーター)、有効なポリ(A)終結配列、E.coliにおけるプラスミド産物のための複製起点、選択可能マーカーとしての抗生物質耐性遺伝子及び/又は簡便なクローニング部位(例えば、ポリリンカー)が含まれる。ベクターは、CMV IEなどの恒常性プロモーターとは対照的な誘導性プロモーターも含み得る。1つの態様では、肝臓組織又は膵臓組織などの代謝的に関連する組織における配列の発現を促進する組織特異的プロモーターに機能可能なように連結されたGIPRポリペプチドコード配列を含む核酸が提供される。
本開示の別の態様では、本明細書に開示のGIPR核酸及びベクターを含む宿主細胞が提供される。様々な実施形態において、ベクター又は核酸は、宿主細胞ゲノムに組み込まれ、他の実施形態では、ベクター又は核酸は、染色体外に存在する。
そのような核酸、ベクター、又はそれらのいずれかもしくは両方の組み合わせを含む酵母細胞、細菌細胞(例えば、E.coli)及び哺乳類細胞(例えば、不死化哺乳類細胞)などの組換え細胞が提供される。様々な実施形態において、GIPRポリペプチドが発現するようにコードされる配列を含む、プラスミド、コスミド、ファージミド、又は直鎖発現要素などの非組み込み核酸を含む細胞が提供される。
本明細書で提供されるGIPRポリペプチドをコードする核酸配列を含むベクターは、形質転換又は遺伝子導入によって宿主細胞に導入することができる。細胞を発現ベクターで形質転換する方法はよく知られている。
GIPRをコードする核酸は、ウイルスベクターを介して宿主細胞又は宿主動物に配置及び/又は送達することができる。この能力を有する任意の適切なウイルスベクターを使用することができる。ウイルスベクターは、単独、あるいは所望の宿主細胞における本発明の核酸の送達、複製及び/又は発現を促進する1つ又は複数のウイルスタンパク質と組み合わせて、任意の数のウイルスポリヌクレオチドを含み得る。ウイルスベクターは、ウイルスゲノムのすべてもしくは一部を含むポリヌクレオチド、ウイルスタンパク質/核酸複合体、ウイルス様粒子(VLP)、又はウイルス核酸及びGIPRポリペプチドをコードする核酸を含むインタクトなウイルス粒子であり得る。ウイルス粒子であるウイルスベクターは、野生型ウイルス粒子又は改変ウイルス粒子を含み得る。ウイルスベクターは、アデノウイルスベクターアンプリコンなど、複製及び/又は発現のための別のベクター又は野生型ウイルスが存在する必要があるベクターであり得る(例えば、ウイルスベクターは、ヘルパー依存性ウイルスであり得る)。典型的には、そのようなウイルスベクターは、野生型ウイルス粒子からなるか、あるいは導入遺伝子容量が増えるか、又は核酸の遺伝子導入及び/又は発現に役立つようにそのタンパク質及び/又は核酸含量が改変されたウイルス粒子からなる(そのようなベクターの例には、ヘルペスウイルス/AAVアンプリコンが含まれる)。典型的には、ウイルスベクターは、通常はヒトに感染するウイルスと類似のもの及び/又はそれに由来するものである。この点に関して適切なウイルスベクター粒子には、例えば、アデノウイルスベクター粒子(アデノウイルス科の任意のウイルス又はアデノウイルス科のウイルスに由来する任意のウイルスを含む)、アデノ随伴ウイルスベクター粒子(AAVベクター粒子)又は他のパルボウイルス及びパルボウイルスベクター粒子、パピローマウイルスベクター粒子、フラビウイルスベクター、アルファウイルスベクター、ヘルペスウイルスベクター、ポックスウイルスベクター、レトロウイルスベクター(レンチウイルスベクターを含む)が含まれる。
本明細書に記載されるように発現するGIPRポリペプチドは、標準的なタンパク質精製方法を使用して単離することができる。GIPRポリペプチドは、それを自然に発現する細胞から単離することができるか、又は例えば、GIPRを自然には発現しない細胞など、GIPRを発現するように操作された細胞から単離することができる。
GIPRポリペプチドを単離するために用いることができるタンパク質精製方法、ならびに関連する材料及び試薬は、当該技術分野において知られている。GIPRポリペプチドの単離に有用であり得る追加の精製方法は、Bootcov MR,1997,Proc.Natl.Acad.Sci.USA 94:11514-9,Fairlie WD,2000,Gene 254:67-76などの参考文献において見つけることができる。
ヒトGIPR(hGIPR)を含む、GIPRに結合するアンタゴニスト抗原結合タンパク質が本明細書で提供される。1つの実施形態では、ヒトGIPRは、配列番号3141に示されるものなどの配列を有する。別の実施形態では、ヒトGIPRは、配列番号3143に示されるものなどの配列を有する。別の実施形態では、ヒトGIPRは、配列番号3145に示されるものなどの配列を有する。
1つの態様では、本発明は、ヒトGIPRに特異的に結合する抗体又はその機能的断片であって、1つ以上のコンジュゲーション部位でシステイン又は非標準アミノ酸のアミノ酸置換を含む抗体又はその機能的断片と、GLP-1受容体アゴニストであって、1つ以上のコンジュゲーション部位で置換されたシステイン残基又は非標準アミノ酸残基の側鎖を通して抗体又はその機能的断片にコンジュゲートされているGLP-1受容体アゴニストとを含む組成物に向けられる。
提供される抗原結合タンパク質は、本明細書に記載の相補性決定領域(CDR)が1つ又は複数組み込まれる及び/又は連結されるポリペプチドである。いくつかの抗原結合タンパク質では、CDRは、「フレームワーク」領域に組み込まれ、この領域によってCDRの方向が整えられ、その結果、CDRの適切な抗原結合特性が達成される。本明細書に記載の特定の抗原結合タンパク質は、抗体であるか、又は抗体に由来する。他の抗原結合タンパク質では、CDR配列は、異なる型のタンパク質骨格に組み込まれる。様々な構造が以下にさらに記載される。
本明細書に開示の抗原結合タンパク質は、様々な有用性を有する。抗原結合タンパク質は、例えば、特異的結合アッセイ、GIPRの親和性精製及びGIPR活性の他のアンタゴニストを同定するためのスクリーニングアッセイにおいて有用である。抗原結合タンパク質の他の用途には、例えば、GIPRと関連する疾患又は病状の診断及びGIPRの存在の有無を決定するためのスクリーニングアッセイが含まれる。提供される抗原結合タンパク質がアンタゴニストであることを考慮すると、GIPR抗原結合タンパク質は、体重増加の低減に有用な治療方法において、食物摂取量が維持されるか、又は増加し、体脂肪量%が増加し、除脂肪量%が増加する間でも耐糖能を改善し、インスリンレベルを低減し、コレステロール及びトリグリセリドのレベルを低減することで価値を有する。したがって、抗原結合タンパク質は、例えば、2型糖尿病などの糖尿病、肥満、脂質異常症、グルコースレベルの上昇、又はインスリンレベルの上昇の治療及び予防において有用性を有する。
GIPRの活性の調節に有用な様々な選択的結合剤が提供される。こうした薬剤には、例えば、抗原結合ドメインを含み、GIPRポリペプチド、具体的には、ヒトGIPRに特異的に結合する抗原結合タンパク質(例えば、scFv、ドメイン抗体及び抗原結合領域を有するポリペプチド)が含まれる。こうした薬剤のいくつかは、例えば、GIPRの活性増進に有用であり、GIPRと関連する1つ又は複数の活性を活性化することができる。
一般に、提供される抗原結合タンパク質は、典型的には、本明細書に記載のCDRを1つ又は複数(例えば、1つ、2つ、3つ、4つ、5つ、又は6つ)含む。いくつかの場合、抗原結合タンパク質は、(a)ポリペプチド構造と、(b)ポリペプチド構造に挿入及び/又は連結される1つ又は複数のCDRとを含む。ポリペプチド構造は、様々な異なる形態をとり得る。例えば、ポリペプチド構造は、天然起源の抗体又はその断片もしくは変異体のフレームワークであり得るか、又はそれを含み得、あるいは本質的に完全に合成のものであり得る。様々なポリペプチド構造の例が以下にさらに記載される。
特定の実施形態では、抗原結合タンパク質のポリペプチド構造は、抗体であるか、又は抗体に由来する。したがって、提供される特定の抗原結合タンパク質の例には、限定はされないが、モノクローナル抗体、二重特異性抗体、ミニボディ、ドメイン抗体(Nanobodies(登録商標)など)、合成抗体(本明細書では「抗体模倣体」と称されることがある)、キメラ抗体、ヒト化抗体、ヒト抗体、抗体融合体及びそれぞれのその一部又は断片が含まれる。いくつかの場合、抗原結合タンパク質は、完全抗体の免疫学的断片(例えば、Fab、Fab’、F(ab’)2)である。他の場合、抗原結合タンパク質は、本発明の抗体に由来するCDRを使用するscFvである。
本明細書で提供される抗原結合タンパク質は、ヒトGIPRに特異的に結合する。特定の実施形態では、抗原結合タンパク質は、配列番号3141のアミノ酸配列を含むか、又はそれからなるヒトGIPRに特異的に結合する。特定の実施形態では、抗原結合タンパク質は、配列番号3143のアミノ酸配列を含むか、又はそれからなるヒトGIPRに特異的に結合する。特定の実施形態では、抗原結合タンパク質は、配列番号3145のアミノ酸配列を含むか、又はそれからなるヒトGIPRに特異的に結合する。
提供される抗原結合タンパク質は、アンタゴニストであり、典型的には、下記の特性の1つ、2つ、3つ、4つ、5つ、6つ、7つ、又は8つすべてを有する:
(a)GIPRへのGIPの結合を阻止又は低減する能力であって、例えば、放射性標識もしくは蛍光標識されたリガンドによる結合試験などの方法、又は本明細書に記載の方法(例えば、cAMPアッセイもしくは他の機能アッセイ)によってレベルを測定することができる能力。同等条件下での配列番号3141、配列番号3143、又は配列番号3145の事前処理レベルと比較して、低減は、少なくとも10%、少なくとも25%、少なくとも50%、少なくとも100%、又はそれを超える割合となり得る。
(b)血中グルコースを低減する能力、
(c)耐糖能を向上させる能力、
(d)インスリン感受性を向上させる能力、
(e)体重を低減する能力、又は体重増加を低減する能力、
(f)体脂肪量を低減する能力、又は脂肪組織における炎症を低減する能力、
(g)絶食時のインスリンレベルを低減する能力、
(h)循環コレステロールレベルを低減する能力、
(i)循環トリグリセリドレベルを低減する能力、
(j)脂肪肝を低減する能力、又は肝臓におけるトリグリセリドレベルを低減する能力、
(k)AST、ALT及び/又はALPのレベルを低減すること。
1つの実施形態では、GIPR抗原結合タンパク質は、下記の活性の1つ又は複数を有する:
(a)ヒトGIPRに結合し、その結果、例えば、表面プラズマ共鳴(surface plasma resonance)又は結合平衡除外法の手法を介して測定すると、KDが、≦200nM、≦150nM、≦100nM、≦50nM、≦10nM、≦5nM、≦2nM、又は≦1nMとなる。
(b)ヒト血清における半減期が少なくとも3日である。
提供される抗原結合タンパク質のいくつかの、GIPRに対する結合速度(ka)は、例えば、後述のように測定すると、少なくとも10/Mx秒、少なくとも10/Mx秒、又は少なくとも10/Mx秒である。提供される特定の抗原結合タンパク質が有する解離速度(dissociation rate)又は解離速度(off-rate)は遅い。いくつかの抗原結合タンパク質は、例えば、1x10-2-1、又は1x10-3-1、又は1x10-4-1、又は1x10-5-1というkd(解離乗数)を有する。特定の実施形態では、抗原結合タンパク質は、25pM未満、50pM未満、100pM未満、500pM未満、1nM未満、5nM未満、10nM未満、25nM未満、又は50nM未満のKD(平衡結合親和性)を有する。
別の態様では、インビトロ又はインビボ(例えば、ヒト対象に投与されるとき)の半減期が少なくとも1日である抗原結合タンパク質が提供される。1つの実施形態では、抗原結合タンパク質は、少なくとも3日の半減期を有する。様々な他の実施形態では、抗原結合タンパク質は、4日、5日、6日、7日、8日、9日、10日、15日、20日、25日、30日、40日、50日、又は60日以上の半減期を有する。別の実施形態では、抗原結合タンパク質は、非誘導体化抗体又は非改変抗体と比較してその半減期が長くなるように誘導体化又は改変される。別の実施形態では、血清半減期を増加させるために抗原結合タンパク質に点変異が含められる。そのような変異体及び誘導体化形態に関する詳細は、以下にさらに提供される。
提供される抗原結合タンパク質のいくつかは、典型的には、天然起源の抗体と関連する構造を有する。こうした抗体の構造単位は、典型的には、1つ又は複数の四量体を含み、四量体はそれぞれ、ポリペプチド鎖の2つの同一のカプレットから構成されるが、哺乳類のいくつかの種は、単一の重鎖のみを有する抗体も産生する。典型的な抗体では、それぞれの対又はカプレットは、1つの全長「軽」鎖(特定の実施形態では、約25kDa)と、1つの全長「重」鎖(特定の実施形態では、約50~70kDa)とを含む。個々の免疫グロブリン鎖はそれぞれ、いくつかの「免疫グロブリンドメイン」から構成され、「免疫グロブリンドメイン」はそれぞれ、およそ90~110のアミノ酸からなり、特徴的なフォールディングパターンを示す。こうしたドメインは、抗体ポリペプチドを構成する基本単位である。それぞれの鎖のアミノ末端部分は、典型的には、抗原認識を担う可変ドメインを含む。カルボキシ末端部分は、鎖のもう一方の末端と比較して進化的に保存度が高く、「定常領域」又は「C領域」と称される。ヒト軽鎖は、一般に、カッパー軽鎖及びラムダ軽鎖として分類され、こうした軽鎖はそれぞれ、1つの可変ドメイン及び1つの定常ドメインを含む。重鎖は、典型的には、ミュー鎖、デルタ鎖、ガンマ鎖、アルファ鎖、又はイプシロン鎖として分類され、こうした鎖は、それぞれIgM、IgD、IgG、IgA及びIgEとして抗体のアイソタイプを定義する。IgGは、限定はされないが、IgG1、IgG2、IgG3及びIgG4を含む、いくつかのサブタイプを有する。IgMサブタイプには、IgM及びIgM2が含まれる。IgAサブタイプには、IgA1及びIgA2が含まれる。ヒトでは、IgAアイソタイプ及びIgDアイソタイプは、4つの重鎖及び4つの軽鎖を含み、IgGアイソタイプ及びIgEアイソタイプは、2つの重鎖及び2つの軽鎖を含み、IgMアイソタイプは、5つの重鎖及び5つの軽鎖を含む。重鎖のC領域は、典型的には、エフェクター機能を担い得るドメインを1つ又は複数含む。重鎖の定常領域ドメインの数は、アイソタイプに依存することになる。IgGの重鎖は、例えば、重鎖のそれぞれが、CH1、CH2及びCH3として知られる3つのC領域ドメインを含む。提供される抗体は、こうしたアイソタイプ及びサブタイプのいずれかを有し得る。特定の実施形態では、GIPR抗体は、IgG1サブタイプ、IgG2サブタイプ、又はIgG4サブタイプのものである。「GIPR抗体」及び「抗GIPR抗体」という用語は、本出願及び図を通して互換的に使用される。用語は両方共、GIPRに結合する抗体を指す。
全長の軽鎖及び重鎖では、可変領域及び定常領域は、約12以上のアミノ酸の「J」領域によって連結され、重鎖は、約10以上のアミノ酸の「D」領域も含む。例えば、Fundamental Immunology,2nd ed.,Ch.7(Paul,W.,ed.)1989,New York:Raven Press(あらゆる目的を対象としてその全体が参照によって本明細書に組み込まれる)を参照されたい。それぞれの軽鎖/重鎖対の可変領域は、典型的には、抗原結合部位を形成する。
本明細書で提供される抗体について、免疫グロブリン鎖の可変領域は、一般に、3つの超可変領域(「相補性決定領域」又はCDRと呼ばれることの方が多い)によって連結された相対的に保存されたフレームワーク領域(FR)を含む同一の全体構造を示す。上述のそれぞれの重鎖/軽鎖対の2つの鎖に由来するCDRは、典型的には、フレームワーク領域によって整列されることで、GIPRに存在する特定のエピトープと特異的に結合する構造を形成する。こうした要素は、天然起源の軽鎖可変領域と重鎖可変領域との両方において、典型的には、N末端からC末端にかけて下記の順序で存在する:FR1、CDR1、FR2、CDR2、FR3、CDR3及びFR4。こうしたドメインのそれぞれの位置を占めるアミノ酸に対して番号を割り当てるための番号付けシステムが考案されている。この番号付けシステムは、Kabat Sequences of Proteins of Immunological Interest(1987 and 1991,NIH,Bethesda,Md.)、又はChothia & Lesk,1987,J.Mol.Biol.196:901-917、Chothia et al.,1989,Nature342:878-883において定義されている。
後述の実施例に記載されるように調製及び同定される特定の抗体の配列情報は、表1にまとめられている。したがって、1つの実施形態では、抗原結合タンパク質は、表1の行の1つにおいて特定されるCDR配列、可変ドメイン配列、ならびに軽鎖配列及び重鎖配列を有する抗体である。
本発明の抗体及びその断片の可変軽鎖配列、可変重鎖配列、軽鎖配列、重鎖配列、CDRL1配列、CDRL2配列、CDRL3配列、CDRH1配列、CDRH2配列及びCDRH3配列には配列番号が割り当てられており、こうした配列番号は、表1に示される。本発明の抗体及びその断片の可変軽鎖配列、可変重鎖配列、軽鎖配列、重鎖配列、CDRL1配列、CDRL2配列、CDRL3配列、CDRH1配列、CDRH2配列及びCDRH3配列をコードするポリヌクレオチドにも配列番号が割り当てられており、こうした配列番号は、表2に示される。本発明の抗原結合タンパク質は、配列番号によって特定することができるが、構築物名(例えば、2C2.005)又は識別子番号(例えば、iPS:336175)によっても特定することができる。以下の表1~5において特定される抗原結合タンパク質は、構築物名に基づくファミリーに分類することができる。例えば、「4B1ファミリー」は、構築物4B1、構築物4B1.010、構築物4B1.011、構築物4B1.012、構築物4B1.013、構築物4B1.014、構築物4B1.015及び構築物4B1.016を含む。
本明細書で提供される様々な軽鎖可変領域及び重鎖可変領域は、表3に示される。こうした可変領域のそれぞれを重鎖定常領域又は軽鎖定常領域に付加することで、それぞれ完全抗体の重鎖及び軽鎖を構成し得る。さらに、そのようにして生成した重鎖配列及び軽鎖配列のそれぞれを組み合わせることで完全抗体の構造を形成し得る。
Figure 0007175899000015
Figure 0007175899000016
Figure 0007175899000017
Figure 0007175899000018
Figure 0007175899000019
Figure 0007175899000020
Figure 0007175899000021
Figure 0007175899000022
Figure 0007175899000023
Figure 0007175899000024
Figure 0007175899000025
Figure 0007175899000026
Figure 0007175899000027
Figure 0007175899000028
Figure 0007175899000029
Figure 0007175899000030
Figure 0007175899000031
Figure 0007175899000032
Figure 0007175899000033
Figure 0007175899000034
Figure 0007175899000035
Figure 0007175899000036
Figure 0007175899000037
Figure 0007175899000038
Figure 0007175899000039
Figure 0007175899000040
Figure 0007175899000041
Figure 0007175899000042
Figure 0007175899000043
Figure 0007175899000044
Figure 0007175899000045
Figure 0007175899000046
Figure 0007175899000047
Figure 0007175899000048
Figure 0007175899000049
Figure 0007175899000050
Figure 0007175899000051
Figure 0007175899000052
Figure 0007175899000053
Figure 0007175899000054
Figure 0007175899000055
Figure 0007175899000056
Figure 0007175899000057
Figure 0007175899000058
Figure 0007175899000059
Figure 0007175899000060
Figure 0007175899000061
Figure 0007175899000062
Figure 0007175899000063
Figure 0007175899000064
Figure 0007175899000065
Figure 0007175899000066
Figure 0007175899000067
Figure 0007175899000068
Figure 0007175899000069
Figure 0007175899000070
Figure 0007175899000071
Figure 0007175899000072
Figure 0007175899000073
Figure 0007175899000074
Figure 0007175899000075
Figure 0007175899000076
Figure 0007175899000077
Figure 0007175899000078
Figure 0007175899000079
Figure 0007175899000080
Figure 0007175899000081
Figure 0007175899000082
Figure 0007175899000083
Figure 0007175899000084
Figure 0007175899000085
Figure 0007175899000086
Figure 0007175899000087
Figure 0007175899000088
Figure 0007175899000089
Figure 0007175899000090
Figure 0007175899000091
Figure 0007175899000092
Figure 0007175899000093
Figure 0007175899000094
Figure 0007175899000095
Figure 0007175899000096
Figure 0007175899000097
Figure 0007175899000098
Figure 0007175899000099
Figure 0007175899000100
Figure 0007175899000101
Figure 0007175899000102
Figure 0007175899000103
Figure 0007175899000104
Figure 0007175899000105
Figure 0007175899000106
Figure 0007175899000107
Figure 0007175899000108
Figure 0007175899000109
Figure 0007175899000110
Figure 0007175899000111
Figure 0007175899000112
Figure 0007175899000113
Figure 0007175899000114
Figure 0007175899000115
Figure 0007175899000116
Figure 0007175899000117
Figure 0007175899000118
Figure 0007175899000119
Figure 0007175899000120
Figure 0007175899000121
Figure 0007175899000122
Figure 0007175899000123
Figure 0007175899000124
Figure 0007175899000125
Figure 0007175899000126
Figure 0007175899000127
Figure 0007175899000128
Figure 0007175899000129
Figure 0007175899000130
Figure 0007175899000131
Figure 0007175899000132
Figure 0007175899000133
Figure 0007175899000134
Figure 0007175899000135
Figure 0007175899000136
Figure 0007175899000137
Figure 0007175899000138
Figure 0007175899000139
Figure 0007175899000140
Figure 0007175899000141
Figure 0007175899000142
Figure 0007175899000143
Figure 0007175899000144
Figure 0007175899000145
Figure 0007175899000146
Figure 0007175899000147
Figure 0007175899000148
Figure 0007175899000149
Figure 0007175899000150
Figure 0007175899000151
Figure 0007175899000152
Figure 0007175899000153
Figure 0007175899000154
Figure 0007175899000155
Figure 0007175899000156
Figure 0007175899000157
Figure 0007175899000158
Figure 0007175899000159
Figure 0007175899000160
Figure 0007175899000161
Figure 0007175899000162
Figure 0007175899000163
Figure 0007175899000164
Figure 0007175899000165
Figure 0007175899000166
Figure 0007175899000167
Figure 0007175899000168
Figure 0007175899000169
Figure 0007175899000170
Figure 0007175899000171
Figure 0007175899000172
Figure 0007175899000173
Figure 0007175899000174
Figure 0007175899000175
Figure 0007175899000176
Figure 0007175899000177
Figure 0007175899000178
Figure 0007175899000179
Figure 0007175899000180
Figure 0007175899000181
Figure 0007175899000182
Figure 0007175899000183
Figure 0007175899000184
Figure 0007175899000185
Figure 0007175899000186
Figure 0007175899000187
Figure 0007175899000188
Figure 0007175899000189
Figure 0007175899000190
Figure 0007175899000191
Figure 0007175899000192
Figure 0007175899000193
Figure 0007175899000194
Figure 0007175899000195
Figure 0007175899000196
Figure 0007175899000197
Figure 0007175899000198
Figure 0007175899000199
Figure 0007175899000200
Figure 0007175899000201
Figure 0007175899000202
Figure 0007175899000203
Figure 0007175899000204
Figure 0007175899000205
Figure 0007175899000206
Figure 0007175899000207
Figure 0007175899000208
Figure 0007175899000209
Figure 0007175899000210
Figure 0007175899000211
Figure 0007175899000212
Figure 0007175899000213
Figure 0007175899000214
Figure 0007175899000215
Figure 0007175899000216
Figure 0007175899000217
Figure 0007175899000218
Figure 0007175899000219
Figure 0007175899000220
Figure 0007175899000221
Figure 0007175899000222
Figure 0007175899000223
Figure 0007175899000224
Figure 0007175899000225
Figure 0007175899000226
Figure 0007175899000227
Figure 0007175899000228
Figure 0007175899000229
Figure 0007175899000230
Figure 0007175899000231
Figure 0007175899000232
Figure 0007175899000233
Figure 0007175899000234
Figure 0007175899000235
Figure 0007175899000236
Figure 0007175899000237
Figure 0007175899000238
Figure 0007175899000239
Figure 0007175899000240
Figure 0007175899000241
Figure 0007175899000242
Figure 0007175899000243
Figure 0007175899000244
Figure 0007175899000245
Figure 0007175899000246
Figure 0007175899000247
Figure 0007175899000248
Figure 0007175899000249
Figure 0007175899000250
Figure 0007175899000251
Figure 0007175899000252
Figure 0007175899000253
Figure 0007175899000254
Figure 0007175899000255
Figure 0007175899000256
Figure 0007175899000257
Figure 0007175899000258
Figure 0007175899000259
Figure 0007175899000260
Figure 0007175899000261
Figure 0007175899000262
Figure 0007175899000263
Figure 0007175899000264
Figure 0007175899000265
Figure 0007175899000266
Figure 0007175899000267
Figure 0007175899000268
Figure 0007175899000269
Figure 0007175899000270
Figure 0007175899000271
Figure 0007175899000272
Figure 0007175899000273
Figure 0007175899000274
Figure 0007175899000275
Figure 0007175899000276
Figure 0007175899000277
Figure 0007175899000278
Figure 0007175899000279
Figure 0007175899000280
Figure 0007175899000281
Figure 0007175899000282
Figure 0007175899000283
Figure 0007175899000284
Figure 0007175899000285
Figure 0007175899000286
Figure 0007175899000287
Figure 0007175899000288
Figure 0007175899000289
Figure 0007175899000290
Figure 0007175899000291
Figure 0007175899000292
Figure 0007175899000293
Figure 0007175899000294
Figure 0007175899000295
Figure 0007175899000296
Figure 0007175899000297
Figure 0007175899000298
Figure 0007175899000299
Figure 0007175899000300
Figure 0007175899000301
Figure 0007175899000302
Figure 0007175899000303
Figure 0007175899000304
Figure 0007175899000305
Figure 0007175899000306
Figure 0007175899000307
Figure 0007175899000308
Figure 0007175899000309
Figure 0007175899000310
Figure 0007175899000311
Figure 0007175899000312
Figure 0007175899000313
Figure 0007175899000314
Figure 0007175899000315
Figure 0007175899000316
Figure 0007175899000317
Figure 0007175899000318
Figure 0007175899000319
Figure 0007175899000320
Figure 0007175899000321
Figure 0007175899000322
Figure 0007175899000323
Figure 0007175899000324
Figure 0007175899000325
Figure 0007175899000326
Figure 0007175899000327
Figure 0007175899000328
Figure 0007175899000329
Figure 0007175899000330
Figure 0007175899000331
Figure 0007175899000332
Figure 0007175899000333
Figure 0007175899000334
Figure 0007175899000335
Figure 0007175899000336
Figure 0007175899000337
Figure 0007175899000338
Figure 0007175899000339
Figure 0007175899000340
Figure 0007175899000341
Figure 0007175899000342
Figure 0007175899000343
Figure 0007175899000344
Figure 0007175899000345
Figure 0007175899000346
Figure 0007175899000347
Figure 0007175899000348
Figure 0007175899000349
Figure 0007175899000350
Figure 0007175899000351
Figure 0007175899000352
Figure 0007175899000353
Figure 0007175899000354
Figure 0007175899000355
Figure 0007175899000356
Figure 0007175899000357
Figure 0007175899000358
Figure 0007175899000359
Figure 0007175899000360
Figure 0007175899000361
Figure 0007175899000362
Figure 0007175899000363
Figure 0007175899000364
Figure 0007175899000365
Figure 0007175899000366
Figure 0007175899000367
Figure 0007175899000368
Figure 0007175899000369
Figure 0007175899000370
Figure 0007175899000371
Figure 0007175899000372
Figure 0007175899000373
Figure 0007175899000374
Figure 0007175899000375
Figure 0007175899000376
Figure 0007175899000377
Figure 0007175899000378
Figure 0007175899000379
Figure 0007175899000380
Figure 0007175899000381
Figure 0007175899000382
Figure 0007175899000383
Figure 0007175899000384
Figure 0007175899000385
Figure 0007175899000386
Figure 0007175899000387
Figure 0007175899000388
Figure 0007175899000389
Figure 0007175899000390
Figure 0007175899000391
Figure 0007175899000392
Figure 0007175899000393
Figure 0007175899000394
Figure 0007175899000395
Figure 0007175899000396
Figure 0007175899000397
Figure 0007175899000398
Figure 0007175899000399
Figure 0007175899000400
Figure 0007175899000401
Figure 0007175899000402
Figure 0007175899000403
Figure 0007175899000404
Figure 0007175899000405
Figure 0007175899000406
Figure 0007175899000407
Figure 0007175899000408
Figure 0007175899000409
Figure 0007175899000410
Figure 0007175899000411
Figure 0007175899000412
Figure 0007175899000413
Figure 0007175899000414
Figure 0007175899000415
Figure 0007175899000416
Figure 0007175899000417
Figure 0007175899000418
Figure 0007175899000419
1つの実施形態では、抗体又はその断片は、配列番号1~157からなる群から選択される配列を含む軽鎖可変領域と、配列番号158~314からなる群から選択される配列を含む重鎖可変領域とを含み、その抗体又はその機能的断片は、参照配列である配列番号455に対する抗体軽鎖のD70、参照配列である配列番号612に対する抗体重鎖のE276及び参照配列である配列番号612に対する抗体重鎖のT363からなる群から選択される1つ以上のコンジュゲーション部位でシステイン又は非標準アミノ酸のアミノ酸置換を含む。
1つの実施形態では、抗体又はその断片は、配列番号1を含む軽鎖可変領域及び配列番号158を含む重鎖可変領域、配列番号2を含む軽鎖可変領域及び配列番号159を含む重鎖可変領域、配列番号3を含む軽鎖可変領域及び配列番号160を含む重鎖可変領域、配列番号4を含む軽鎖可変領域及び配列番号161を含む重鎖可変領域、配列番号5を含む軽鎖可変領域及び配列番号162を含む重鎖可変領域、配列番号6を含む軽鎖可変領域及び配列番号163を含む重鎖可変領域、配列番号7を含む軽鎖可変領域及び配列番号164を含む重鎖可変領域、配列番号8を含む軽鎖可変領域及び配列番号165を含む重鎖可変領域、配列番号9を含む軽鎖可変領域及び配列番号166を含む重鎖可変領域、配列番号10を含む軽鎖可変領域及び配列番号167を含む重鎖可変領域、配列番号11を含む軽鎖可変領域及び配列番号168を含む重鎖可変領域、配列番号12を含む軽鎖可変領域及び配列番号169を含む重鎖可変領域、配列番号13を含む軽鎖可変領域及び配列番号170を含む重鎖可変領域、配列番号14を含む軽鎖可変領域及び配列番号171を含む重鎖可変領域、配列番号15を含む軽鎖可変領域及び配列番号172を含む重鎖可変領域、配列番号16を含む軽鎖可変領域及び配列番号173を含む重鎖可変領域、配列番号17を含む軽鎖可変領域及び配列番号174を含む重鎖可変領域、配列番号18を含む軽鎖可変領域及び配列番号175を含む重鎖可変領域、配列番号19を含む軽鎖可変領域及び配列番号176を含む重鎖可変領域、配列番号20を含む軽鎖可変領域及び配列番号177を含む重鎖可変領域、配列番号21を含む軽鎖可変領域及び配列番号178を含む重鎖可変領域、配列番号22を含む軽鎖可変領域及び配列番号179を含む重鎖可変領域、配列番号23を含む軽鎖可変領域及び配列番号180を含む重鎖可変領域、配列番号24を含む軽鎖可変領域及び配列番号181を含む重鎖可変領域、配列番号25を含む軽鎖可変領域及び配列番号182を含む重鎖可変領域、配列番号26を含む軽鎖可変領域及び配列番号183を含む重鎖可変領域、配列番号27を含む軽鎖可変領域及び配列番号184を含む重鎖可変領域、配列番号28を含む軽鎖可変領域及び配列番号185を含む重鎖可変領域、配列番号29を含む軽鎖可変領域及び配列番号186を含む重鎖可変領域、配列番号30を含む軽鎖可変領域及び配列番号187を含む重鎖可変領域、配列番号31を含む軽鎖可変領域及び配列番号188を含む重鎖可変領域、配列番号32を含む軽鎖可変領域及び配列番号189を含む重鎖可変領域、配列番号33を含む軽鎖可変領域及び配列番号190を含む重鎖可変領域、配列番号34を含む軽鎖可変領域及び配列番号191を含む重鎖可変領域、配列番号35を含む軽鎖可変領域及び配列番号192を含む重鎖可変領域、配列番号36を含む軽鎖可変領域及び配列番号193を含む重鎖可変領域、配列番号37を含む軽鎖可変領域及び配列番号194を含む重鎖可変領域、配列番号38を含む軽鎖可変領域及び配列番号195を含む重鎖可変領域、配列番号39を含む軽鎖可変領域及び配列番号196を含む重鎖可変領域、配列番号40を含む軽鎖可変領域及び配列番号197を含む重鎖可変領域、配列番号41を含む軽鎖可変領域及び配列番号198を含む重鎖可変領域、配列番号42を含む軽鎖可変領域及び配列番号199を含む重鎖可変領域、配列番号43を含む軽鎖可変領域及び配列番号200を含む重鎖可変領域、配列番号44を含む軽鎖可変領域及び配列番号201を含む重鎖可変領域、配列番号45を含む軽鎖可変領域及び配列番号202を含む重鎖可変領域、配列番号46を含む軽鎖可変領域及び配列番号203を含む重鎖可変領域、配列番号47を含む軽鎖可変領域及び配列番号204を含む重鎖可変領域、配列番号48を含む軽鎖可変領域及び配列番号205を含む重鎖可変領域、配列番号49を含む軽鎖可変領域及び配列番号206を含む重鎖可変領域、配列番号50を含む軽鎖可変領域及び配列番号207を含む重鎖可変領域、配列番号51を含む軽鎖可変領域及び配列番号208を含む重鎖可変領域、配列番号52を含む軽鎖可変領域及び配列番号209を含む重鎖可変領域、配列番号53を含む軽鎖可変領域及び配列番号210を含む重鎖可変領域、配列番号54を含む軽鎖可変領域及び配列番号211を含む重鎖可変領域、配列番号55を含む軽鎖可変領域及び配列番号212を含む重鎖可変領域、配列番号56を含む軽鎖可変領域及び配列番号213を含む重鎖可変領域、配列番号57を含む軽鎖可変領域及び配列番号214を含む重鎖可変領域、配列番号58を含む軽鎖可変領域及び配列番号215を含む重鎖可変領域、配列番号59を含む軽鎖可変領域及び配列番号216を含む重鎖可変領域、配列番号60を含む軽鎖可変領域及び配列番号217を含む重鎖可変領域、配列番号61を含む軽鎖可変領域及び配列番号218を含む重鎖可変領域、配列番号62を含む軽鎖可変領域及び配列番号219を含む重鎖可変領域、配列番号63を含む軽鎖可変領域及び配列番号220を含む重鎖可変領域、配列番号64を含む軽鎖可変領域及び配列番号221を含む重鎖可変領域、配列番号65を含む軽鎖可変領域及び配列番号222を含む重鎖可変領域、配列番号66を含む軽鎖可変領域及び配列番号223を含む重鎖可変領域、配列番号67を含む軽鎖可変領域及び配列番号224を含む重鎖可変領域、配列番号68を含む軽鎖可変領域及び配列番号225を含む重鎖可変領域、配列番号69を含む軽鎖可変領域及び配列番号226を含む重鎖可変領域、配列番号70を含む軽鎖可変領域及び配列番号227を含む重鎖可変領域、配列番号71を含む軽鎖可変領域及び配列番号228を含む重鎖可変領域、配列番号72を含む軽鎖可変領域及び配列番号229を含む重鎖可変領域、配列番号73を含む軽鎖可変領域及び配列番号230を含む重鎖可変領域、配列番号74を含む軽鎖可変領域及び配列番号231を含む重鎖可変領域、配列番号75を含む軽鎖可変領域及び配列番号232を含む重鎖可変領域、配列番号76を含む軽鎖可変領域及び配列番号233を含む重鎖可変領域、配列番号77を含む軽鎖可変領域及び配列番号234を含む重鎖可変領域、配列番号78を含む軽鎖可変領域及び配列番号235を含む重鎖可変領域、配列番号79を含む軽鎖可変領域及び配列番号236を含む重鎖可変領域、配列番号80を含む軽鎖可変領域及び配列番号237を含む重鎖可変領域、配列番号81を含む軽鎖可変領域及び配列番号238を含む重鎖可変領域、配列番号82を含む軽鎖可変領域及び配列番号239を含む重鎖可変領域、配列番号83を含む軽鎖可変領域及び配列番号240を含む重鎖可変領域、配列番号84を含む軽鎖可変領域及び配列番号241を含む重鎖可変領域、配列番号85を含む軽鎖可変領域及び配列番号242を含む重鎖可変領域、配列番号86を含む軽鎖可変領域及び配列番号243を含む重鎖可変領域、配列番号87を含む軽鎖可変領域及び配列番号244を含む重鎖可変領域、配列番号88を含む軽鎖可変領域及び配列番号245を含む重鎖可変領域、配列番号89を含む軽鎖可変領域及び配列番号246を含む重鎖可変領域、配列番号90を含む軽鎖可変領域及び配列番号247を含む重鎖可変領域、配列番号91を含む軽鎖可変領域及び配列番号248を含む重鎖可変領域、配列番号92を含む軽鎖可変領域及び配列番号249を含む重鎖可変領域、配列番号93を含む軽鎖可変領域及び配列番号250を含む重鎖可変領域、配列番号94を含む軽鎖可変領域及び配列番号251を含む重鎖可変領域、配列番号95を含む軽鎖可変領域及び配列番号252を含む重鎖可変領域、配列番号96を含む軽鎖可変領域及び配列番号253を含む重鎖可変領域、配列番号97を含む軽鎖可変領域及び配列番号254を含む重鎖可変領域、配列番号98を含む軽鎖可変領域及び配列番号255を含む重鎖可変領域、配列番号99を含む軽鎖可変領域及び配列番号256を含む重鎖可変領域、配列番号100を含む軽鎖可変領域及び配列番号257を含む重鎖可変領域、配列番号101を含む軽鎖可変領域及び配列番号258を含む重鎖可変領域、配列番号102を含む軽鎖可変領域及び配列番号259を含む重鎖可変領域、配列番号103を含む軽鎖可変領域及び配列番号260を含む重鎖可変領域、配列番号104を含む軽鎖可変領域及び配列番号261を含む重鎖可変領域、配列番号105を含む軽鎖可変領域及び配列番号262を含む重鎖可変領域、配列番号106を含む軽鎖可変領域及び配列番号263を含む重鎖可変領域、配列番号107を含む軽鎖可変領域及び配列番号264を含む重鎖可変領域、配列番号108を含む軽鎖可変領域及び配列番号265を含む重鎖可変領域、配列番号109を含む軽鎖可変領域及び配列番号266を含む重鎖可変領域、配列番号110を含む軽鎖可変領域及び配列番号267を含む重鎖可変領域、配列番号111を含む軽鎖可変領域及び配列番号268を含む重鎖可変領域、配列番号112を含む軽鎖可変領域及び配列番号269を含む重鎖可変領域、配列番号113を含む軽鎖可変領域及び配列番号270を含む重鎖可変領域、配列番号114を含む軽鎖可変領域及び配列番号271を含む重鎖可変領域、配列番号115を含む軽鎖可変領域及び配列番号272を含む重鎖可変領域、配列番号116を含む軽鎖可変領域及び配列番号273を含む重鎖可変領域、配列番号117を含む軽鎖可変領域及び配列番号274を含む重鎖可変領域、配列番号118を含む軽鎖可変領域及び配列番号275を含む重鎖可変領域、配列番号119を含む軽鎖可変領域及び配列番号276を含む重鎖可変領域、配列番号120を含む軽鎖可変領域及び配列番号277を含む重鎖可変領域、配列番号121を含む軽鎖可変領域及び配列番号278を含む重鎖可変領域、配列番号122を含む軽鎖可変領域及び配列番号279を含む重鎖可変領域、配列番号123を含む軽鎖可変領域及び配列番号280を含む重鎖可変領域、配列番号124を含む軽鎖可変領域及び配列番号281を含む重鎖可変領域、配列番号125を含む軽鎖可変領域及び配列番号282を含む重鎖可変領域、配列番号126を含む軽鎖可変領域及び配列番号283を含む重鎖可変領域、配列番号127を含む軽鎖可変領域及び配列番号284を含む重鎖可変領域、配列番号128を含む軽鎖可変領域及び配列番号285を含む重鎖可変領域、配列番号129を含む軽鎖可変領域及び配列番号286を含む重鎖可変領域、配列番号130を含む軽鎖可変領域及び配列番号287を含む重鎖可変領域、配列番号131を含む軽鎖可変領域及び配列番号288を含む重鎖可変領域、配列番号132を含む軽鎖可変領域及び配列番号289を含む重鎖可変領域、配列番号133を含む軽鎖可変領域及び配列番号290を含む重鎖可変領域、配列番号134を含む軽鎖可変領域及び配列番号291を含む重鎖可変領域、配列番号135を含む軽鎖可変領域及び配列番号292を含む重鎖可変領域、配列番号136を含む軽鎖可変領域及び配列番号293を含む重鎖可変領域、配列番号137を含む軽鎖可変領域及び配列番号294を含む重鎖可変領域、配列番号138を含む軽鎖可変領域及び配列番号295を含む重鎖可変領域、配列番号139を含む軽鎖可変領域及び配列番号296を含む重鎖可変領域、配列番号140を含む軽鎖可変領域及び配列番号297を含む重鎖可変領域、配列番号141を含む軽鎖可変領域及び配列番号298を含む重鎖可変領域、配列番号142を含む軽鎖可変領域及び配列番号299を含む重鎖可変領域、配列番号143を含む軽鎖可変領域及び配列番号300を含む重鎖可変領域、配列番号144を含む軽鎖可変領域及び配列番号301を含む重鎖可変領域、配列番号145を含む軽鎖可変領域及び配列番号302を含む重鎖可変領域、配列番号146を含む軽鎖可変領域及び配列番号303を含む重鎖可変領域、配列番号147を含む軽鎖可変領域及び配列番号304を含む重鎖可変領域、配列番号148を含む軽鎖可変領域及び配列番号305を含む重鎖可変領域、配列番号149を含む軽鎖可変領域及び配列番号306を含む
重鎖可変領域、配列番号150を含む軽鎖可変領域及び配列番号307を含む重鎖可変領域、配列番号151を含む軽鎖可変領域及び配列番号308を含む重鎖可変領域、配列番号152を含む軽鎖可変領域及び配列番号309を含む重鎖可変領域、配列番号153を含む軽鎖可変領域及び配列番号310を含む重鎖可変領域、配列番号154を含む軽鎖可変領域及び配列番号311を含む重鎖可変領域、配列番号155を含む軽鎖可変領域及び配列番号312を含む重鎖可変領域、配列番号156を含む軽鎖可変領域及び配列番号313を含む重鎖可変領域、ならびに配列番号157を含む軽鎖可変領域及び配列番号314を含む重鎖可変領域からなる群から選択される軽鎖可変領域と重鎖可変領域との組み合わせを含み、その抗体又はその機能的断片は、参照配列である配列番号455に対する抗体軽鎖のD70、参照配列である配列番号612に対する抗体重鎖のE276及び参照配列である配列番号612に対する抗体重鎖のT363からなる群から選択される1つ以上のコンジュゲーション部位でシステイン又は非標準アミノ酸のアミノ酸置換を含む。。
1つの実施形態では、抗体又はその断片は、配列番号1571~1727からなる群から選択されるポリヌクレオチド配列によってコードされる軽鎖可変領域と、配列番号1728~1884からなる群から選択されるポリヌクレオチド配列によってコードされる重鎖可変領域とを含み、その抗体又はその機能的断片は、参照配列である配列番号455に対する抗体軽鎖のD70、参照配列である配列番号612に対する抗体重鎖のE276及び参照配列である配列番号612に対する抗体重鎖のT363からなる群から選択される1つ以上のコンジュゲーション部位でシステイン又は非標準アミノ酸のアミノ酸置換を含む。
1つの実施形態では、抗体又はその断片は、配列番号1571を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1728を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1572を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1729を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1573を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1730を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1574を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1731を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1575を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1732を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1576を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1733を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1577を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1734を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1578を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1735を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1579を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1736を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1580を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1737を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1581を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1738を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1582を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1739を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1583を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1740を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1584を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1741を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1585を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1742を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1586を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1743を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1587を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1744を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1588を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1745を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1589を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1746を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1590を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1747を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1591を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1748を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1592を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1749を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1593を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1750を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1594を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1751を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1595を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1752を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1596を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1753を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1597を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1754を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1598を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1755を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1599を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1756を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1600を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1757を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1601を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1758を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1602を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1759を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1603を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1760を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1604を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1761を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1605を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1762を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1606を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1763を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1607を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1764を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1608を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1765を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1609を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1766を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1610を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1767を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1611を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1768を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1612を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1769を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1613を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1770を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1614を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1771を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1615を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1772を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1616を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1773を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1617を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1774を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1618を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1775を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1619を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1776を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1620を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1777を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1621を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1778を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1622を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1779を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1623を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1780を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1624を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1781を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1625を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1782を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1626を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1783を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1627を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1784を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1628を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1785を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1629を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1786を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1630を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1787を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1631を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1788を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1632を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1789を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1633を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1790を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1634を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1791を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1635を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1792を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1636を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1793を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1637を含むポリヌクレオチ
ド配列によってコードされる軽鎖可変領域及び配列番号1794を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1638を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1795を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1639を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1796を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1640を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1797を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1641を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1798を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1642を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1799を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1643を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1800を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1644を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1801を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1645を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1802を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1646を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1803を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1647を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1804を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1648を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1805を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1649を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1806を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1650を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1807を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1651を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1808を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1652を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1809を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1653を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1810を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1654を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1811を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1655を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1812を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1656を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1813を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1657を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1814を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1658を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1815を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1659を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1816を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1660を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1817を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1661を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1818を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1662を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1819を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1663を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1820を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1664を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1821を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1665を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1822を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1666を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1823を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1667を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1824を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1668を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1825を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1669を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1826を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1670を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1827を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1671を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1828を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1672を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1829を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1673を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1830を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1674を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1831を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1675を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1832を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1676を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1833を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1677を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1834を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1678を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1835を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1679を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1836を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1680を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1837を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1681を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1838を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1682を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1839を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1683を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1840を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1684を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1841を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1685を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1842を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1686を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1843を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1687を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1844を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1688を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1845を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1689を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1846を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1690を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1847を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1691を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1848を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1692を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1849を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1693を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1850を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1694を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1851を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1695を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1852を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1696を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1853を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1697を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1854を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1698を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1855を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1699を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1856を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1700を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1857を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1701を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1858を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1702を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1859を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1703を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1860を含むポリヌクレオチ
ド配列によってコードされる重鎖可変領域、配列番号1704を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1861を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1705を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1862を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1706を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1863を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1707を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1864を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1708を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1865を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1709を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1866を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1710を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1867を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1711を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1868を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1712を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1869を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1713を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1870を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1714を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1871を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1715を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1872を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1716を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1873を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1717を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1874を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1718を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1875を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1719を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1876を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1720を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1877を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1721を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1878を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1722を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1879を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1723を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1880を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1724を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1881を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1725を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1882を含むポリヌクレオチド配列によってコードされる重鎖可変領域、配列番号1726を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1883を含むポリヌクレオチド配列によってコードされる重鎖可変領域、ならびに配列番号1727を含むポリヌクレオチド配列によってコードされる軽鎖可変領域及び配列番号1884を含むポリヌクレオチド配列によってコードされる重鎖可変領域からなる群から選択される軽鎖可変領域と重鎖可変領域との組み合わせを含み、その抗体又はその機能的断片は、参照配列である配列番号455に対する抗体軽鎖のD70、参照配列である配列番号612に対する抗体重鎖のE276及び参照配列である配列番号612に対する抗体重鎖のT363からなる群から選択される1つ以上のコンジュゲーション部位でシステイン又は非標準アミノ酸のアミノ酸置換を含む。
本発明は、少なくとも1つのコンジュゲーション部位を有する抗GIPR抗原結合タンパク質を含む組成物に関する。コンジュゲーション部位は、コンジュゲーション部位でのアミノ酸残基の側鎖を通した規定コンジュゲーション化学によって追加の機能的部分(例えば、GLP-1受容体アゴニスト)のコンジュゲーションに適用可能でなければならない。本発明に従って抗GIPR抗原結合タンパク質への高度に選択性の部位特異的コンジュゲーションを達成するには、多様な設計基準の考察を必要とする。第一に、好ましいコンジュゲーション又は結合化学が定義又は規定されなければならない。例えば、GLP-1受容体アゴニストなどの機能的部分は、当該技術分野において公知の様々なコンジュゲーション化学の組み合わせを通した抗GIPR抗原結合タンパク質の選択されたコンジュゲーション部位にコンジュゲート又は結合させることができる。例えば、抗GIPR抗原結合タンパク質上の接近可能なシステインチオールを標的とするマレイミド活性化コンジュゲーションパートナーは、1つの実施形態であるが、抗GIPR抗原結合タンパク質配列内の標準的又は非標準的、例えば非天然アミノ酸のいずれかの側鎖を標的とする多くのコンジュゲーション化学反応又は結合化学反応も本発明に従って使用することができる。
化学選択的コンジュゲーションのための化学反応には、銅(I)触媒アジド-アルキン[3+2]二極性付加環化、シュタウディンガーライゲーション、他のアシル転移プロセス(S→N;X→N)、オキシム化、ヒドラゾン結合形成及び他の適切な有機化学反応、例えば水溶性パラジウム触媒を使用するクロスカップリングなどが含まれる。(例えば、Bong et al.,Chemoselective Pd(0)-catalyzed peptide coupling in water,Organic Letters 3(16):2509-11(2001);Dibowski et al.,Bioconjugation of peptides by palladium-catalyzed C-C cross-coupling in water,Angew.Chem.Int.Ed.37(4):476-78(1998);DeVasher et al.,Aqueous-phase,palladium-catalyzed cross-coupling of aryl bromides under mild conditions,using water-soluble,sterically demanding alkylphosphines,J.Org.Chem.69:7919-27(2004);Shaugnessy et al.,J.Org.Chem,2003,68,6767-6774;Prescher,JA and Bertozzi CR,Chemistry in living system,Nature Chemical Biology 1(1);13-21(2005))。
上述したように、抗GIPR抗原結合タンパク質へのコンジュゲーション(又は共有結合)は、例えば、システイニル残基を含むがそれに限定されないコンジュゲーション部位でのアミノ酸残基の側鎖を通して行われる。選択される内部コンジュゲーション部位でのアミノ酸残基、例えばシステイニル残基は、天然Fcドメイン配列内の同一アミノ酸残基位置を占めるアミノ酸残基、又は置換又は挿入によってFcドメイン配列内に遺伝子組換えされ得るアミノ酸残基であってよい。
本発明のプロセス及び合成物の一部の実施形態におけるコンジュゲーション部位として特に有用な可能性がある非天然アミノ酸残基の他の例には、アジド含有アミノ酸残基、例えばアジドホモアラニン、p-アジド-フェニルアラニン;ケト含有アミノ酸残基、例えばp-アセチル-フェニルアラニン;アルキン含有アミノ酸残基、例えばp-エチニルフェニルアラニン、ホモプロパルギルグリシン、p-(プロプ-2-イニル)-チロシン;アルケン含有アミノ酸残基、例えばホモアリルグリシン;ハロゲン化アリール含有アミノ酸残基、例えばp-ヨードフェニルアラニン、p-ブロモフェニルアラニン;及び1,2-アミノチオール含有アミノ酸残基が含まれる。
非標準アミノ酸残基は、アミノ酸置換又は挿入によって組み込むことができる。非標準アミノ酸残基は、例えば、組換えにより発現する細胞などの生物学的系における合成よりむしろ化学的ペプチド合成によってペプチド内に組み込むことができるか、又は当業者であれば組換えにより発現する細胞を使用するタンパク質工学の公知の技術を使用することができる。(例えば、Link et al.,Non-canonical amino acids in protein engineering,Current Opinion in Biotechnology,14(6):603-609(2003);Schultz et al.,In vivo incorporation of unnatural amino acids、米国特許第7,045,337号明細書を参照されたい)。
全抗GIPR抗原結合タンパク質内のコンジュゲーション部位の配置の選択は、本発明に従って内部コンジュゲーション部位を選択することの別の重要な局面である。抗GIPR抗原結合タンパク質上の露出したアミノ酸残基のいずれも、強力に有用なコンジュゲーション部位であり得、及び抗GIPR抗原結合タンパク質配列の選択されたコンジュゲーション部位に既に存在していない場合、部位選択的結合のためにシステイン又は一部の他の反応性アミノ酸に突然変異させることができる。しかし、このアプローチは、コンジュゲートパートナーの活性を攪乱させるか、又は遺伝子組換え突然変異の反応性を制限する可能性がある潜在的立体障害を考慮に入れていない。
1つの実施形態では、抗GIPR抗原結合タンパク質は、抗体又はその機能的断片である。1つの実施形態では、抗GIPR抗体又はその機能的断片は、1つ以上のコンジュゲーション部位でシステイン又は非標準アミノ酸のアミノ酸置換を含む。それらのコンジュゲーション部位は、本質的に抗原結合タンパク質の任意の残基上にあってよい。所定の実施形態では、コンジュゲーション部位は、抗体又はその機能的断片のCL、CH1、CH2又はCH3領域内に所在する。所定の実施形態では、コンジュゲーション部位は、参照配列である配列番号455に対する抗体軽鎖のD70、参照配列である配列番号612に対する抗体重鎖のE276及び参照配列である配列番号612に対する抗体重鎖のT363からなる群から選択される。明確にするために、「参照配列である配列番号455に対する抗体軽鎖のD70」は、抗体5G12.006の軽鎖のAHoのD88位及び抗体5G12.006の軽鎖のKabatのD70位と同一置換位置であり、「参照配列である配列番号612に対する抗体重鎖のE276」は、抗体5G12.006の重鎖のAHoのE384位及び抗体5G12.006の重鎖のKabatのE285位と同一置換位置であり、及び「参照配列である配列番号612に対する抗体重鎖のT363」は、抗体5G12.006の重鎖のAHoのT487位及び抗体5G12.006の重鎖のKabatのT382位と同一置換位置である。
いくつかの抗原結合タンパク質は、表3に記載の抗体の1つを対象とする行の1つに記載の可変軽ドメイン及び可変重ドメインを含む。いくつかの場合、抗原結合タンパク質は、表3に記載の抗体の1つに由来する2つの同一の可変軽ドメイン及び2つの同一の可変重ドメインを含む。提供される抗原結合タンパク質のいくつかは、表3に記載の抗体の1つを対象とする行の1つに記載の可変軽ドメイン及び可変重ドメインを含むが、例外として、ドメインの1つ又は両方は、その表において特定される配列とは1つ、2つ、3つ、4つ、5つ、6つ、7つ、8つ、9つ、10、11、12、13、14、又は15のアミノ酸残基のみが異なり、そのような配列差異はそれぞれ独立して、単一のアミノ酸の欠失、挿入、又は置換のいずれかであり、こうした欠失、挿入及び/又は置換の結果として、表3において特定される可変ドメイン配列と比較して、1つ以下、2つ以下、3つ以下、4つ以下、5つ以下、6つ以下、7つ以下、8つ以下、9つ以下、10以下、11以下、12以下、13以下、14以下、又は15以下のアミノ酸が変更されている。1つの実施形態では、抗原結合タンパク質は、表3に由来する可変領域配列を含むが、N末端のメチオニンは欠失している。他の抗原結合タンパク質も、表3に記載の抗体の1つを対象とする行の1つに記載の可変軽ドメイン及び可変重ドメインを含むが、例外として、ドメインの1つ又は両方は、重鎖可変ドメイン及び/又は軽鎖可変ドメインが、表3において特定される重鎖可変ドメイン配列又は軽鎖可変ドメイン配列のアミノ酸配列との配列同一性が少なくとも70%、少なくとも75%、少なくとも80%、少なくとも85%、少なくとも90%、少なくとも95%、少なくとも96%、少なくとも97%、少なくとも98%、又は少なくとも99%であるアミノ酸配列を含むか、又はそれからなるという点において、その表において特定される配列と異なる。
別の態様では、抗原結合タンパク質は、表3に記載の抗体に由来する可変軽ドメイン又は可変重ドメインのみからなる。さらに別の態様では、抗原結合タンパク質は、表3に記載のものに由来する2つ以上の同一の可変重ドメイン又は2つ以上の同一の可変軽ドメインを含む。そのようなドメイン抗体は、以下により詳細に記載されるリンカーを介して共に融合又は連結することができる。ドメイン抗体は、1つ又は複数の分子(例えば、PEG又はアルブミン)に融合又は連結することで半減期を延長することもできる。
提供される他の抗原結合タンパク質は、表3に示される重鎖と軽鎖との組み合わせによって形成される抗体の変異体であり、こうした鎖のアミノ酸配列に対して、少なくとも70%、少なくとも75%、少なくとも80%、少なくとも85%、少なくとも90%、少なくとも95%、少なくとも96%、少なくとも97%、少なくとも98%、又は少なくとも99%の同一性をそれぞれが有する軽鎖及び/又は重鎖を含む。いくつかの場合、そのような抗体は、少なくとも1つの重鎖及び1つの軽鎖を含む一方、他の場合、変異形態は、2つの同一の軽鎖及び2つの同一の重鎖を含む。
重鎖可変領域の様々な組み合わせを軽鎖可変領域の様々な組み合わせのいずれかと組み合わせてよい。
追加の実施形態では、本明細書で提供される単離された抗原結合タンパク質は、表3に示される配列を含むヒト抗体であり、IgG型、IgG型、IgG型、又はIgG型のものである。
本明細書に開示の抗原結合タンパク質は、1つ又は複数のCDRがそこに移植、挿入及び/又は連結されたポリペプチドである。抗原結合タンパク質は、1つ、2つ、3つ、4つ、5つ、又は6つのCDRを有し得る。したがって、抗原結合タンパク質は、例えば、1つの重鎖CDR1(「CDRH1」)、及び/又は1つの重鎖CDR2(「CDRH2」)、及び/又は1つの重鎖CDR3(「CDRH3」)、及び/又は1つの軽鎖CDR1(「CDRL1」)、及び/又は1つの軽鎖CDR2(「CDRL2」)、及び/又は1つの軽鎖CDR3(「CDRL3」)を有し得る。いくつかの抗原結合タンパク質は、CDRH3とCDRL3との両方を含む。特定の軽鎖CDR及び重鎖CDRは、それぞれ表4A及び表4Bにおいて特定される。
所与の抗体の相補性決定領域(CDR)及びフレームワーク領域(FR)は、Kabat et al.in Sequences of Proteins of Immunological Interest,5th Ed.,US Dept.of Health and Human Services,PHS,NIH,NIH Publication no.91-3242,1991によって記載されるシステムを使用して特定してよい。本明細書に開示の特定の抗体は、表4A及び表4Bに示されるCDRの1つ又は複数のアミノ酸配列と同一であるか、又はそれとの実質的な配列同一性を有する1つ又は複数のアミノ酸配列を含む。こうしたCDRでは、上記のKabat et al.によって記載されるシステムが使用される。
天然起源の抗体に含まれるCDRの構造及び特性は上述されている。簡潔に記載すると、従来の抗体では、CDRは、抗原への結合及び認識を担う領域をそれが構成する場所である重鎖可変領域及び軽鎖可変領域においてフレームワーク内に組み込まれている。可変領域は、フレームワーク領域(前出のKabat et al.,1991によってフレームワーク領域1~4(FR1、FR2、FR3及びFR4)と命名されている。前出のChothia and Lesk,1987も併せて参照されたい)内に少なくとも3つの重鎖CDR又は軽鎖CDRを含む(前出のKabat et al.,1991,Sequences of Proteins of Immunological Interest,Public Health Service N.I.H.,Bethesda,MDを参照されたい。Chothia and Lesk,1987,J.Mol.Biol.196:901-917、Chothia et al.,1989,Nature 342:877-883も併せて参照されたい)。しかしながら、本明細書で提供されるCDRは、従来の抗体構造の抗原結合ドメインを定義するために使用してよいだけでなく、本明細書に記載の様々な他のポリペプチド構造に組み込んでもよい。
1つの実施形態では、抗体又はその断片は、CDRL1、CDRL2、CDRL3、CDRH1、CDRH2及びCDRH3を含み、その抗体又はその機能的断片は、参照配列である配列番号455に対する抗体軽鎖のD70、参照配列である配列番号612に対する抗体重鎖のE276及び参照配列である配列番号612に対する抗体重鎖のT363からなる群から選択される1つ以上のコンジュゲーション部位でシステイン又は非標準アミノ酸のアミノ酸置換を含む。1つの実施形態では、抗体又はその断片は、CDRL1、CDRL2、CDRL3、CDRH1、CDRH2及びCDRH3を含み、それぞれのCDRL1、CDRL2、CDRL3,CDRH1、CDRH2及びCDRH3は、それぞれ配列番号629、配列番号786、配列番号943、配列番号1100、配列番号1257及び配列番号1414と、配列番号630、配列番号787、配列番号944、配列番号1101、配列番号1258及び配列番号1415と、配列番号631、配列番号788、配列番号945、配列番号1102、配列番号1259及び配列番号1416と、配列番号632、配列番号789、配列番号946、配列番号1103、配列番号1260及び配列番号1417と、配列番号633、配列番号790、配列番号947、配列番号1104、配列番号1261及び配列番号1418と、配列番号634、配列番号791、配列番号948、配列番号1105、配列番号1262及び配列番号1419と、配列番号635、配列番号792、配列番号949、配列番号1106、配列番号1263及び配列番号1420と、配列番号636、配列番号793、配列番号950、配列番号1107、配列番号1264及び配列番号1421と、配列番号637、配列番号794、配列番号951、配列番号1108、配列番号1265及び配列番号1422と、配列番号638、配列番号795、配列番号952、配列番号1109、配列番号1266及び配列番号1423と、配列番号639、配列番号796、配列番号953、配列番号1110、配列番号1267及び配列番号1424と、配列番号640、配列番号797、配列番号954、配列番号1111、配列番号1268及び配列番号1425と、配列番号641、配列番号798、配列番号955、配列番号1112、配列番号1269及び配列番号1426と、配列番号642、配列番号799、配列番号956、配列番号1113、配列番号1270及び配列番号1427と、配列番号643、配列番号800、配列番号957、配列番号1114、配列番号1271及び配列番号1428と、配列番号644、配列番号801、配列番号958、配列番号1115、配列番号1272及び配列番号1429と、配列番号645、配列番号802、配列番号959、配列番号1116、配列番号1273及び配列番号1430と、配列番号646、配列番号803、配列番号960、配列番号1117、配列番号1274及び配列番号1431と、配列番号647、配列番号804、配列番号961、配列番号1118、配列番号1275及び配列番号1432と、配列番号648、配列番号805、配列番号962、配列番号1119、配列番号1276及び配列番号1433と、配列番号649、配列番号806、配列番号963、配列番号1120、配列番号1277及び配列番号1434と、配列番号650、配列番号807、配列番号964、配列番号1121、配列番号1278及び配列番号1435と、配列番号651、配列番号808、配列番号965、配列番号1122、配列番号1279及び配列番号1436と、配列番号652、配列番号809、配列番号966、配列番号1123、配列番号1280及び配列番号1437と、配列番号653、配列番号810、配列番号967、配列番号1124、配列番号1281及び配列番号1438と、配列番号654、配列番号811、配列番号968、配列番号1125、配列番号1282及び配列番号1439と、配列番号655、配列番号812、配列番号969、配列番号1126、配列番号1283及び配列番号1440と、配列番号656、配列番号813、配列番号970、配列番号1127、配列番号1284及び配列番号1441と、配列番号657、配列番号814、配列番号971、配列番号1128、配列番号1285及び配列番号1442と、配列番号658、配列番号815、配列番号972、配列番号1129、配列番号1286及び配列番号1443と、配列番号659、配列番号816、配列番号973、配列番号1130、配列番号1287及び配列番号1444と、配列番号660、配列番号817、配列番号974、配列番号1131、配列番号1288及び配列番号1445と、配列番号661、配列番号818、配列番号975、配列番号1132、配列番号1289及び配列番号1446と、配列番号662、配列番号819、配列番号976、配列番号1133、配列番号1290及び配列番号1447と、配列番号663、配列番号820、配列番号977、配列番号1134、配列番号1291及び配列番号1448と、配列番号664、配列番号821、配列番号978、配列番号1135、配列番号1292及び配列番号1449と、配列番号665、配列番号822、配列番号979、配列番号1136、配列番号1293及び配列番号1450と、配列番号666、配列番号823、配列番号980、配列番号1137、配列番号1294及び配列番号1451と、配列番号667、配列番号824、配列番号981、配列番号1138、配列番号1295及び配列番号1452と、配列番号668、配列番号825、配列番号982、配列番号1139、配列番号1296及び配列番号1453と、配列番号669、配列番号826、配列番号983、配列番号1140、配列番号1297及び配列番号1454と、配列番号670、配列番号827、配列番号984、配列番号1141、配列番号1298及び配列番号1455と、配列番号671、配列番号828、配列番号985、配列番号1142、配列番号1299及び配列番号1456と、配列番号672、配列番号829、配列番号986、配列番号1143、配列番号1300及び配列番号1457と、配列番号673、配列番号830、配列番号987、配列番号1144、配列番号1301及び配列番号1458と、配列番号674、配列番号831、配列番号988、配列番号1145、配列番号1302及び配列番号1459と、配列番号675、配列番号832、配列番号989、配列番号1146、配列番号1303及び配列番号1460と、配列番号676、配列番号833、配列番号990、配列番号1147、配列番号1304及び配列番号1461と、配列番号677、配列番号834、配列番号991、配列番号1148、配列番号1305及び配列番号1462と、配列番号678、配列番号835、配列番号992、配列番号1149、配列番号1306及び配列番号1463と、配列番号679、配列番号836、配列番号993、配列番号1150、配列番号1307及び配列番号1464と、配列番号680、配列番号837、配列番号994、配列番号1151、配列番号1308及び配列番号1465と、配列番号681、配列番号838、配列番号995、配列番号1152、配列番号1309及び配列番号1466と、配列番号682、配列番号839、配列番号996、配列番号1153、配列番号1310及び配列番号1467と、配列番号683、配列番号840、配列番号997、配列番号1154、配列番号1311及び配列番号1468と、配列番号684、配列番号841、配列番号998、配列番号1155、配列番号1312及び配列番号1469と、配列番号685、配列番号842、配列番号999、配列番号1156、配列番号1313及び配列番号1470と、配列番号686、配列番号843、配列番号1000、配列番号1157、配列番号1314及び配列番号1471と、配列番号687、配列番号844、配列番号1001、配列番号1158、配列番号1315及び配列番号1472と、配列番号688、配列番号845、配列番号1002、配列番号1159、配列番号1316及び配列番号1473と、配列番号689、配列番号846、配列番号1003、配列番号1160、配列番号1317及び配列番号1474と、配列番号690、配列番号847、配列番号1004、配列番号1161、配列番号1318及び配列番号1475と、配列番号691、配列番号848、配列番号1005、配列番号1162、配列番号1319及び配列番号1476と、配列番号692、配列番号849、配列番号1006、配列番号1163、配列番号1320及び配列番号1477と、配列番号693、配列番号850、配列番号1007、配列番号1164、配列番号1321及び配列番号1478と、配列番号694、配列番号851、配列番号1008、配列番号1165、配列番号1322及び配列番号1479と、配列番号695、配列番号852、配列番号1009、配列番号1166、配列番号1323及び配列番号1480と、配列番号696、配列番号853、配列番号1010、配列番号1167、配列番号1324及び配列番号1481と、配列番号697、配列番号854、配列番号1011、配列番号1168、配列番号1325及び配列番号1482と、配列番号698、配列番号855、配列番号1012、配列番号1169、配列番号1326及び配列番号1483と、配列番号699、配列番号856、配列番号1013、配列番号1170、配列番号1327及び配列番号1484と、配列番号700、配列番号857、配列番号1014、配列番号1171、配列番号1328及び配列番号1485と、配列番号701、配列番号858、配列番号1015、配列番号1172、配列番号1329及び配列番号1486と、配列番号702、配列番号859、配列番号1016、配列番号1173、配列番号1330及び配列番号1487と、配列番号703、配列番号860、配列番号1017、配列番号1174、配列番号1331及び配列番号1488と、配列番号704、配列番号861、配列番号1018、配列番号1175、配列番号1332及び配列番号1489と、配列番号705、配列番号862、配列番号1019、配列番号1176、配列番号1333及び配列番号1490と、配列番号706、配列番号863、配列番号1020、配列番号1177、配列番号1334及び配列番号1491と、配列番号707、配列番号864、配列番号1021、配列番号1178、配列番号1335及び配列番号1492と、配列番号708、配列番号865、配列番号1022、配列番号1179、配列番号1336及び配列番号1493と、配列番号709、配列番号866、配列番号1023、配列番号1180、配列番号1337及び配列番号1494と、配列番号710、配列番号867、配列番号1024、配列番号1181、配列番号1338及び配列番号1495と、配列番号711、配列番号868、配列番号1025、配列番号1182、配列番号1339及び配列番号1496と、配列番号712、配列番号869、配列番号1026、配列番号1183、配列番号1340及び配列番号1497と、配列番号713、配列番号870、配列番号1027、配列番号1184、配列番号1341及び配列番号1498と、配列番号714、配列番号871、配列番号1028、配列番号1185、配列番号1342及び配列番号1499と、配列番号715、
配列番号872、配列番号1029、配列番号1186、配列番号1343及び配列番号1500と、配列番号716、配列番号873、配列番号1030、配列番号1187、配列番号1344及び配列番号1501と、配列番号717、配列番号874、配列番号1031、配列番号1188、配列番号1345及び配列番号1502と、配列番号718、配列番号875、配列番号1032、配列番号1189、配列番号1346及び配列番号1503と、配列番号719、配列番号876、配列番号1033、配列番号1190、配列番号1347及び配列番号1504と、配列番号720、配列番号877、配列番号1034、配列番号1191、配列番号1348及び配列番号1505と、配列番号721、配列番号878、配列番号1035、配列番号1192、配列番号1349及び配列番号1506と、配列番号722、配列番号879、配列番号1036、配列番号1193、配列番号1350及び配列番号1507と、配列番号723、配列番号880、配列番号1037、配列番号1194、配列番号1351及び配列番号1508と、配列番号724、配列番号881、配列番号1038、配列番号1195、配列番号1352及び配列番号1509と、配列番号725、配列番号882、配列番号1039、配列番号1196、配列番号1353及び配列番号1510と、配列番号726、配列番号883、配列番号1040、配列番号1197、配列番号1354及び配列番号1511と、配列番号727、配列番号884、配列番号1041、配列番号1198、配列番号1355及び配列番号1512と、配列番号728、配列番号885、配列番号1042、配列番号1199、配列番号1356及び配列番号1513と、配列番号729、配列番号886、配列番号1043、配列番号1200、配列番号1357及び配列番号1514と、配列番号730、配列番号887、配列番号1044、配列番号1201、配列番号1358及び配列番号1515と、配列番号731、配列番号888、配列番号1045、配列番号1202、配列番号1359及び配列番号1516と、配列番号732、配列番号889、配列番号1046、配列番号1203、配列番号1360及び配列番号1517と、配列番号733、配列番号890、配列番号1047、配列番号1204、配列番号1361及び配列番号1518と、配列番号734、配列番号891、配列番号1048、配列番号1205、配列番号1362及び配列番号1519と、配列番号735、配列番号892、配列番号1049、配列番号1206、配列番号1363及び配列番号1520と、配列番号736、配列番号893、配列番号1050、配列番号1207、配列番号1364及び配列番号1521と、配列番号737、配列番号894、配列番号1051、配列番号1208、配列番号1365及び配列番号1522と、配列番号738、配列番号895、配列番号1052、配列番号1209、配列番号1366及び配列番号1523と、配列番号739、配列番号896、配列番号1053、配列番号1210、配列番号1367及び配列番号1524と、配列番号740、配列番号897、配列番号1054、配列番号1211、配列番号1368及び配列番号1525と、配列番号741、配列番号898、配列番号1055、配列番号1212、配列番号1369及び配列番号1526と、配列番号742、配列番号899、配列番号1056、配列番号1213、配列番号1370及び配列番号1527と、配列番号743、配列番号900、配列番号1057、配列番号1214、配列番号1371及び配列番号1528と、配列番号744、配列番号901、配列番号1058、配列番号1215、配列番号1372及び配列番号1529と、配列番号745、配列番号902、配列番号1059、配列番号1216、配列番号1373及び配列番号1530と、配列番号746、配列番号903、配列番号1060、配列番号1217、配列番号1374及び配列番号1531と、配列番号747、配列番号904、配列番号1061、配列番号1218、配列番号1375及び配列番号1532と、配列番号748、配列番号905、配列番号1062、配列番号1219、配列番号1376及び配列番号1533と、配列番号749、配列番号906、配列番号1063、配列番号1220、配列番号1377及び配列番号1534と、配列番号750、配列番号907、配列番号1064、配列番号1221、配列番号1378及び配列番号1535と、配列番号751、配列番号908、配列番号1065、配列番号1222、配列番号1379及び配列番号1536と、配列番号752、配列番号909、配列番号1066、配列番号1223、配列番号1380及び配列番号1537と、配列番号753、配列番号910、配列番号1067、配列番号1224、配列番号1381及び配列番号1538と、配列番号754、配列番号911、配列番号1068、配列番号1225、配列番号1382及び配列番号1539と、配列番号755、配列番号912、配列番号1069、配列番号1226、配列番号1383及び配列番号1540と、配列番号756、配列番号913、配列番号1070、配列番号1227、配列番号1384及び配列番号1541と、配列番号757、配列番号914、配列番号1071、配列番号1228、配列番号1385及び配列番号1542と、配列番号758、配列番号915、配列番号1072、配列番号1229、配列番号1386及び配列番号1543と、配列番号759、配列番号916、配列番号1073、配列番号1230、配列番号1387及び配列番号1544と、配列番号760、配列番号917、配列番号1074、配列番号1231、配列番号1388及び配列番号1545と、配列番号761、配列番号918、配列番号1075、配列番号1232、配列番号1389及び配列番号1546と、配列番号762、配列番号919、配列番号1076、配列番号1233、配列番号1390及び配列番号1547と、配列番号763、配列番号920、配列番号1077、配列番号1234、配列番号1391及び配列番号1548と、配列番号764、配列番号921、配列番号1078、配列番号1235、配列番号1392及び配列番号1549と、配列番号765、配列番号922、配列番号1079、配列番号1236、配列番号1393及び配列番号1550と、配列番号766、配列番号923、配列番号1080、配列番号1237、配列番号1394及び配列番号1551と、配列番号767、配列番号924、配列番号1081、配列番号1238、配列番号1395及び配列番号1552と、配列番号768、配列番号925、配列番号1082、配列番号1239、配列番号1396及び配列番号1553と、配列番号769、配列番号926、配列番号1083、配列番号1240、配列番号1397及び配列番号1554と、配列番号770、配列番号927、配列番号1084、配列番号1241、配列番号1398及び配列番号1555と、配列番号771、配列番号928、配列番号1085、配列番号1242、配列番号1399及び配列番号1556と、配列番号772、配列番号929、配列番号1086、配列番号1243、配列番号1400及び配列番号1557と、配列番号773、配列番号930、配列番号1087、配列番号1244、配列番号1401及び配列番号1558と、配列番号774、配列番号931、配列番号1088、配列番号1245、配列番号1402及び配列番号1559と、配列番号775、配列番号932、配列番号1089、配列番号1246、配列番号1403及び配列番号1560と、配列番号776、配列番号933、配列番号1090、配列番号1247、配列番号1404及び配列番号1561と、配列番号777、配列番号934、配列番号1091、配列番号1248、配列番号1405及び配列番号1562と、配列番号778、配列番号935、配列番号1092、配列番号1249、配列番号1406及び配列番号1563と、配列番号779、配列番号936、配列番号1093、配列番号1250、配列番号1407及び配列番号1564と、配列番号780、配列番号937、配列番号1094、配列番号1251、配列番号1408及び配列番号1565と、配列番号781、配列番号938、配列番号1095、配列番号1252、配列番号1409及び配列番号1566と、配列番号782、配列番号939、配列番号1096、配列番号1253、配列番号1410及び配列番号1567と、配列番号783、配列番号940、配列番号1097、配列番号1254、配列番号1411及び配列番号1568と、配列番号784、配列番号941、配列番号1098、配列番号1255、配列番号1412及び配列番号1569と、配列番号785、配列番号942、配列番号1099、配列番号1256、配列番号1413及び配列番号1570とからなる群から選択される配列を含み、その抗体又はその機能的断片は、参照配列である配列番号455に対する抗体軽鎖のD70、参照配列である配列番号612に対する抗体重鎖のE276及び参照配列である配列番号612に対する抗体重鎖のT363からなる群から選択される1つ以上のコンジュゲーション部位でシステイン又は非標準アミノ酸のアミノ酸置換を含む。
1つの実施形態では、抗体又はその断片は、CDRL1、CDRL2、CDRL3、CDRH1、CDRH2及びCDRH3を含み、その抗体又はその機能的断片は、ポリヌクレオチドによってコードされる、参照配列である配列番号455に対する抗体軽鎖のD70、参照配列である配列番号612に対する抗体重鎖のE276及び参照配列である配列番号612に対する抗体重鎖のT363からなる群から選択される1つ以上のコンジュゲーション部位でシステイン又は非標準アミノ酸のアミノ酸置換を含む。1つの実施形態では、抗体又はその断片は、CDRL1、CDRL2、CDRL3、CDRH1、CDRH2及びCDRH3を含み、その抗体又はその機能的断片は、参照配列である配列番号455に対する抗体軽鎖のD70、参照配列である配列番号612に対する抗体重鎖のE276及び参照配列である配列番号612に対する抗体重鎖のT363からなる群から選択される1つ以上のコンジュゲーション部位でシステイン又は非標準アミノ酸のアミノ酸置換を含み、それぞれのCDRL1、CDRL2、CDRL3、CDRH1、CDRH2及びCDRH3は、それぞれ配列番号2199、配列番号2356、配列番号2513、配列番号2670、配列番号2827及び配列番号2984と、配列番号2200、配列番号2357、配列番号2514、配列番号2671、配列番号2828及び配列番号2985と、配列番号2201、配列番号2358、配列番号2515、配列番号2672、配列番号2829及び配列番号2986と、配列番号2202、配列番号2359、配列番号2516、配列番号2673、配列番号2830及び配列番号2987と、配列番号2203、配列番号2360、配列番号2517、配列番号2674、配列番号2831及び配列番号2988と、配列番号2204、配列番号2361、配列番号2518、配列番号2675、配列番号2832及び配列番号2989と、配列番号2205、配列番号2362、配列番号2519、配列番号2676、配列番号2833及び配列番号2990と、配列番号2206、配列番号2363、配列番号2520、配列番号2677、配列番号2834及び配列番号2991と、配列番号2207、配列番号2364、配列番号2521、配列番号2678、配列番号2835及び配列番号2992と、配列番号2208、配列番号2365、配列番号2522、配列番号2679、配列番号2836及び配列番号2993と、配列番号2209、配列番号2366、配列番号2523、配列番号2680、配列番号2837及び配列番号2994と、配列番号2210、配列番号2367、配列番号2524、配列番号2681、配列番号2838及び配列番号2995と、配列番号2211、配列番号2368、配列番号2525、配列番号2682、配列番号2839及び配列番号2996と、配列番号2212、配列番号2369、配列番号2526、配列番号2683、配列番号2840及び配列番号2997と、配列番号2213、配列番号2370、配列番号2527、配列番号2684、配列番号2841及び配列番号2998と、配列番号2214、配列番号2371、配列番号2528、配列番号2685、配列番号2842及び配列番号2999と、配列番号2215、配列番号2372、配列番号2529、配列番号2686、配列番号2843及び配列番号3000と、配列番号2216、配列番号2373、配列番号2530、配列番号2687、配列番号2844及び配列番号3001と、配列番号2217、配列番号2374、配列番号2531、配列番号2688、配列番号2845及び配列番号3002と、配列番号2218、配列番号2375、配列番号2532、配列番号2689、配列番号2846及び配列番号3003と、配列番号2219、配列番号2376、配列番号2533、配列番号2690、配列番号2847及び配列番号3004と、配列番号2220、配列番号2377、配列番号2534、配列番号2691、配列番号2848及び配列番号3005と、配列番号2221、配列番号2378、配列番号2535、配列番号2692、配列番号2849及び配列番号3006と、配列番号2222、配列番号2379、配列番号2536、配列番号2693、配列番号2850及び配列番号3007と、配列番号2223、配列番号2380、配列番号2537、配列番号2694、配列番号2851及び配列番号3008と、配列番号2224、配列番号2381、配列番号2538、配列番号2695、配列番号2852及び配列番号3009と、配列番号2225、配列番号2382、配列番号2539、配列番号2696、配列番号2853及び配列番号3010と、配列番号2226、配列番号2383、配列番号2540、配列番号2697、配列番号2854及び配列番号3011と、配列番号2227、配列番号2384、配列番号2541、配列番号2698、配列番号2855及び配列番号3012と、配列番号2228、配列番号2385、配列番号2542、配列番号2699、配列番号2856及び配列番号3013と、配列番号2229、配列番号2386、配列番号2543、配列番号2700、配列番号2857及び配列番号3014と、配列番号2230、配列番号2387、配列番号2544、配列番号2701、配列番号2858及び配列番号3015と、配列番号2231、配列番号2388、配列番号2545、配列番号2702、配列番号2859及び配列番号3016と、配列番号2232、配列番号2389、配列番号2546、配列番号2703、配列番号2860及び配列番号3017と、配列番号2233、配列番号2390、配列番号2547、配列番号2704、配列番号2861及び配列番号3018と、配列番号2234、配列番号2391、配列番号2548、配列番号2705、配列番号2862及び配列番号3019と、配列番号2235、配列番号2392、配列番号2549、配列番号2706、配列番号2863及び配列番号3020と、配列番号2236、配列番号2393、配列番号2550、配列番号2707、配列番号2864及び配列番号3021と、配列番号2237、配列番号2394、配列番号2551、配列番号2708、配列番号2865及び配列番号3022と、配列番号2238、配列番号2395、配列番号2552、配列番号2709、配列番号2866及び配列番号3023と、配列番号2239、配列番号2396、配列番号2553、配列番号2710、配列番号2867及び配列番号3024と、配列番号2240、配列番号2397、配列番号2554、配列番号2711、配列番号2868及び配列番号3025と、配列番号2241、配列番号2398、配列番号2555、配列番号2712、配列番号2869及び配列番号3026と、配列番号2242、配列番号2399、配列番号2556、配列番号2713、配列番号2870及び配列番号3027と、配列番号2243、配列番号2400、配列番号2557、配列番号2714、配列番号2871及び配列番号3028と、配列番号2244、配列番号2401、配列番号2558、配列番号2715、配列番号2872及び配列番号3029と、配列番号2245、配列番号2402、配列番号2559、配列番号2716、配列番号2873及び配列番号3030と、配列番号2246、配列番号2403、配列番号2560、配列番号2717、配列番号2874及び配列番号3031と、配列番号2247、配列番号2404、配列番号2561、配列番号2718、配列番号2875及び配列番号3032と、配列番号2248、配列番号2405、配列番号2562、配列番号2719、配列番号2876及び配列番号3033と、配列番号2249、配列番号2406、配列番号2563、配列番号2720、配列番号2877及び配列番号3034と、配列番号2250、配列番号2407、配列番号2564、配列番号2721、配列番号2878及び配列番号3035と、配列番号2251、配列番号2408、配列番号2565、配列番号2722、配列番号2879及び配列番号3036と、配列番号2252、配列番号2409、配列番号2566、配列番号2723、配列番号2880及び配列番号3037と、配列番号2253、配列番号2410、配列番号2567、配列番号2724、配列番号2881及び配列番号3038と、配列番号2254、配列番号2411、配列番号2568、配列番号2725、配列番号2882及び配列番号3039と、配列番号2255、配列番号2412、配列番号2569、配列番号2726、配列番号2883及び配列番号3040と、配列番号2256、配列番号2413、配列番号2570、配列番号2727、配列番号2884及び配列番号3041と、配列番号2257、配列番号2414、配列番号2571、配列番号2728、配列番号2885及び配列番号3042と、配列番号2258、配列番号2415、配列番号2572、配列番号2729、配列番号2886及び配列番号3043と、配列番号2259、配列番号2416、配列番号2573、配列番号2730、配列番号2887及び配列番号3044と、配列番号2260、配列番号2417、配列番号2574、配列番号2731、配列番号2888及び配列番号3045と、配列番号2261、配列番号2418、配列番号2575、配列番号2732、配列番号2889及び配列番号3046と、配列番号2262、配列番号2419、配列番号2576、配列番号2733、配列番号2890及び配列番号3047と、配列番号2263、配列番号2420、配列番号2577、配列番号2734、配列番号2891及び配列番号3048と、配列番号2264、配列番号2421、配列番号2578、配列番号2735、配列番号2892及び配列番号3049と、配列番号2265、配列番号2422、配列番号2579、配列番号2736、配列番号2893及び配列番号3050と、配列番号2266、配列番号2423、配列番号2580、配列番号2737、配列番号2894及び配列番号3051と、配列番号2267、配列番号2424、配列番号2581、配列番号2738、配列番号2895及び配列番号3052と、配列番号2268、配列番号2425、配列番号2582、配列番号2739、配列番号2896及び配列番号3053と、配列番号2269、配列番号2426、配列番号2583、配列番号2740、配列番号2897及び配列番号3054と、配列番号2270、配列番号2427、配列番号2584、配列番号2741、配列番号2898及び配列番号3055と、配列番号2271、配列番号2428、配列番号2585、配列番号2742、配列番号2899及び配列番号3056と、配列番号2272、配列番号2429、配列番号2586、配列番号2743、配列番号2900及び配列番号3057と、配列番号2273、配列番号2430、配列番号2587、配列番号2744、配列番号2901及び配列番号3058と、配列番号2274、配列番号2431、配列番号2588、配列番号2745、配列番号2902及び配列番号3059と、配列番号2275、配列番号2432、配列番号2589、配列番号2746、配列番号2903及び配列番号3060と、配列番号2276、配列番号2433、配列番号2590、配列番号2747、配列番号2904及び配列番号3061と、配列番号2277、配列番号2434、配列番号2591、配列番号2748、配列番号2905及び配列番号3062と、配列番号2278、配列番号2435、配列番号2592、配列番号2749、配列番号2906及び配列番号3063と、配列番号2279、配列番号2436、配列番号2593、配列番号2750、配列番号2907及び配列番号3064と、配列番号2280、配列番号2437、配列番号2594、配列番号2751、配列番号2908及び配列番号3065と、配列番号2281、配列番号2438、配列番号2595、配列番号2752、配列
番号2909及び配列番号3066と、配列番号2282、配列番号2439、配列番号2596、配列番号2753、配列番号2910及び配列番号3067と、配列番号2283、配列番号2440、配列番号2597、配列番号2754、配列番号2911及び配列番号3068と、配列番号2284、配列番号2441、配列番号2598、配列番号2755、配列番号2912及び配列番号3069と、配列番号2285、配列番号2442、配列番号2599、配列番号2756、配列番号2913及び配列番号3070と、配列番号2286、配列番号2443、配列番号2600、配列番号2757、配列番号2914及び配列番号3071と、配列番号2287、配列番号2444、配列番号2601、配列番号2758、配列番号2915及び配列番号3072と、配列番号2288、配列番号2445、配列番号2602、配列番号2759、配列番号2916及び配列番号3073と、配列番号2289、配列番号2446、配列番号2603、配列番号2760、配列番号2917及び配列番号3074と、配列番号2290、配列番号2447、配列番号2604、配列番号2761、配列番号2918及び配列番号3075と、配列番号2291、配列番号2448、配列番号2605、配列番号2762、配列番号2919及び配列番号3076と、配列番号2292、配列番号2449、配列番号2606、配列番号2763、配列番号2920及び配列番号3077と、配列番号2293、配列番号2450、配列番号2607、配列番号2764、配列番号2921及び配列番号3078と、配列番号2294、配列番号2451、配列番号2608、配列番号2765、配列番号2922及び配列番号3079と、配列番号2295、配列番号2452、配列番号2609、配列番号2766、配列番号2923及び配列番号3080と、配列番号2296、配列番号2453、配列番号2610、配列番号2767、配列番号2924及び配列番号3081と、配列番号2297、配列番号2454、配列番号2611、配列番号2768、配列番号2925及び配列番号3082と、配列番号2298、配列番号2455、配列番号2612、配列番号2769、配列番号2926及び配列番号3083と、配列番号2299、配列番号2456、配列番号2613、配列番号2770、配列番号2927及び配列番号3084と、配列番号2300、配列番号2457、配列番号2614、配列番号2771、配列番号2928及び配列番号3085と、配列番号2301、配列番号2458、配列番号2615、配列番号2772、配列番号2929及び配列番号3086と、配列番号2302、配列番号2459、配列番号2616、配列番号2773、配列番号2930及び配列番号3087と、配列番号2303、配列番号2460、配列番号2617、配列番号2774、配列番号2931及び配列番号3088と、配列番号2304、配列番号2461、配列番号2618、配列番号2775、配列番号2932及び配列番号3089と、配列番号2305、配列番号2462、配列番号2619、配列番号2776、配列番号2933及び配列番号3090と、配列番号2306、配列番号2463、配列番号2620、配列番号2777、配列番号2934及び配列番号3091と、配列番号2307、配列番号2464、配列番号2621、配列番号2778、配列番号2935及び配列番号3092と、配列番号2308、配列番号2465、配列番号2622、配列番号2779、配列番号2936及び配列番号3093と、配列番号2309、配列番号2466、配列番号2623、配列番号2780、配列番号2937及び配列番号3094と、配列番号2310、配列番号2467、配列番号2624、配列番号2781、配列番号2938及び配列番号3095と、配列番号2311、配列番号2468、配列番号2625、配列番号2782、配列番号2939及び配列番号3096と、配列番号2312、配列番号2469、配列番号2626、配列番号2783、配列番号2940及び配列番号3097と、配列番号2313、配列番号2470、配列番号2627、配列番号2784、配列番号2941及び配列番号3098と、配列番号2314、配列番号2471、配列番号2628、配列番号2785、配列番号2942及び配列番号3099と、配列番号2315、配列番号2472、配列番号2629、配列番号2786、配列番号2943及び配列番号3100と、配列番号2316、配列番号2473、配列番号2630、配列番号2787、配列番号2944及び配列番号3101と、配列番号2317、配列番号2474、配列番号2631、配列番号2788、配列番号2945及び配列番号3102と、配列番号2318、配列番号2475、配列番号2632、配列番号2789、配列番号2946及び配列番号3103と、配列番号2319、配列番号2476、配列番号2633、配列番号2790、配列番号2947及び配列番号3104と、配列番号2320、配列番号2477、配列番号2634、配列番号2791、配列番号2948及び配列番号3105と、配列番号2321、配列番号2478、配列番号2635、配列番号2792、配列番号2949及び配列番号3106と、配列番号2322、配列番号2479、配列番号2636、配列番号2793、配列番号2950及び配列番号3107と、配列番号2323、配列番号2480、配列番号2637、配列番号2794、配列番号2951及び配列番号3108と、配列番号2324、配列番号2481、配列番号2638、配列番号2795、配列番号2952及び配列番号3109と、配列番号2325、配列番号2482、配列番号2639、配列番号2796、配列番号2953及び配列番号3110と、配列番号2326、配列番号2483、配列番号2640、配列番号2797、配列番号2954及び配列番号3111と、配列番号2327、配列番号2484、配列番号2641、配列番号2798、配列番号2955及び配列番号3112と、配列番号2328、配列番号2485、配列番号2642、配列番号2799、配列番号2956及び配列番号3113と、配列番号2329、配列番号2486、配列番号2643、配列番号2800、配列番号2957及び配列番号3114と、配列番号2330、配列番号2487、配列番号2644、配列番号2801、配列番号2958及び配列番号3115と、配列番号2331、配列番号2488、配列番号2645、配列番号2802、配列番号2959及び配列番号3116と、配列番号2332、配列番号2489、配列番号2646、配列番号2803、配列番号2960及び配列番号3117と、配列番号2333、配列番号2490、配列番号2647、配列番号2804、配列番号2961及び配列番号3118と、配列番号2334、配列番号2491、配列番号2648、配列番号2805、配列番号2962及び配列番号3119と、配列番号2335、配列番号2492、配列番号2649、配列番号2806、配列番号2963及び配列番号3120と、配列番号2336、配列番号2493、配列番号2650、配列番号2807、配列番号2964及び配列番号3121と、配列番号2337、配列番号2494、配列番号2651、配列番号2808、配列番号2965及び配列番号3122と、配列番号2338、配列番号2495、配列番号2652、配列番号2809、配列番号2966及び配列番号3123と、配列番号2339、配列番号2496、配列番号2653、配列番号2810、配列番号2967及び配列番号3124と、配列番号2340、配列番号2497、配列番号2654、配列番号2811、配列番号2968及び配列番号3125と、配列番号2341、配列番号2498、配列番号2655、配列番号2812、配列番号2969及び配列番号3126と、配列番号2342、配列番号2499、配列番号2656、配列番号2813、配列番号2970及び配列番号3127と、配列番号2343、配列番号2500、配列番号2657配列番号2814、配列番号2971及び配列番号3128と、配列番号2344、配列番号2501、配列番号2658、配列番号2815、配列番号2972及び配列番号3129と、配列番号2345、配列番号2502、配列番号2659、配列番号2816、配列番号2973及び配列番号3130と、配列番号2346、配列番号2503、配列番号266、配列番号2817、配列番号2974及び配列番号3131と、配列番号2347、配列番号2504、配列番号2661、配列番号2818、配列番号2975及び配列番号3132と、配列番号2348、配列番号2505、配列番号2662、配列番号2819、配列番号2976及び配列番号3133と、配列番号2349、配列番号2506、配列番号2663、配列番号2820、配列番号2977及び配列番号3134と、配列番号2350、配列番号2507、配列番号2664、配列番号2821、配列番号2978及び配列番号3135と、配列番号2351、配列番号2508、配列番号2665、配列番号2822、配列番号2979及び配列番号3136と、配列番号2352、配列番号2509、配列番号2666、配列番号2823、配列番号2980及び配列番号3137と、配列番号2353、配列番号2510、配列番号2667、配列番号2824、配列番号2981及び配列番号3138と、配列番号2354、配列番号2511、配列番号2668、配列番号2825、配列番号2982及び配列番号3139と、配列番号2355、配列番号2512、配列番号2669、配列番号2826、配列番号2983及び配列番号3140とからなる群から選択される配列によってコードされる。
別の態様では、抗原結合タンパク質は、表4A及び表4Bに記載のCDRの変異形態を1つ、2つ、3つ、4つ、5つ、又は6つ含み、これらはそれぞれ、表4A及び表4Bに記載のCDR配列に対して、少なくとも80%、少なくとも85%、少なくとも90%、少なくとも95%、少なくとも96%、少なくとも97%、少なくとも98%、又は少なくとも99%の配列同一性を有する。いくつかの抗原結合タンパク質は、表4A及び表4Bに記載のCDRを1つ、2つ、3つ、4つ、5つ、又は6つ含み、これらはそれぞれ又はまとめて、この表に記載のCDRとは1つ以下、2つ以下、3つ以下、4つ以下、又は5つ以下のアミノ酸が異なる。
様々な他の実施形態では、抗原結合タンパク質は、そのような抗体に由来する。例えば、1つの態様では、抗原結合タンパク質は、表4A及び表4Bに記載の特定の抗体のいずれかを対象とする行の1つに記載のCDRを1つ、2つ、3つ、4つ、5つ、又は6つすべて含む。別の態様では、抗原結合タンパク質は、表4A及び表4Bの抗体を対象とする行の1つに記載のCDRの変異形態を1つ、2つ、3つ、4つ、5つ、又は6つ含み、CDRはそれぞれ、表4A及び表4Bに記載のCDR配列に対して、少なくとも80%、少なくとも85%、少なくとも90%、少なくとも95%、少なくとも96%、少なくとも97%、少なくとも98%、又は少なくとも99%の配列同一性を有する。いくつかの抗原結合タンパク質は、表4A及び表4Bの行の1つに記載のCDRを1つ、2つ、3つ、4つ、5つ、又は6つ含み、これらはそれぞれ、これらの表に記載のCDRとは1つ以下、2つ以下、3つ以下、4つ以下、又は5つ以下のアミノ酸が異なる。別の態様では、抗原結合タンパク質は、表4A及び表4Bの行に記載のCDRを6つすべて含み、CDRに対するアミノ酸の変更総数は、まとめて1つ以下、2つ以下、3つ以下、4つ以下、又は5つ以下のアミノ酸である。
1つの実施形態では、抗体又はその断片は、配列番号472~628からなる群から選択される配列を含む軽鎖と、配列番号472~628からなる群から選択される配列を含む重鎖とを含み、その抗体又はその機能的断片は、参照配列である配列番号455に対する抗体軽鎖のD70、参照配列である配列番号612に対する抗体重鎖のE276及び参照配列である配列番号612に対する抗体重鎖のT363からなる群から選択される1つ以上のコンジュゲーション部位でシステイン又は非標準アミノ酸のアミノ酸置換を含む。1つの実施形態では、抗体又はその断片は、配列番号315を含む軽鎖及び配列番号472を含む重鎖、配列番号316を含む軽鎖及び配列番号473を含む重鎖、配列番号317を含む軽鎖及び配列番号474を含む重鎖、配列番号318を含む軽鎖及び配列番号475を含む重鎖、配列番号319を含む軽鎖及び配列番号476を含む重鎖、配列番号320を含む軽鎖及び配列番号477を含む重鎖、配列番号321を含む軽鎖及び配列番号478を含む重鎖、配列番号322を含む軽鎖及び配列番号479を含む重鎖、配列番号323を含む軽鎖及び配列番号480を含む重鎖、配列番号324を含む軽鎖及び配列番号481を含む重鎖、配列番号325を含む軽鎖及び配列番号482を含む重鎖、配列番号326を含む軽鎖及び配列番号483を含む重鎖、配列番号327を含む軽鎖及び配列番号484を含む重鎖、配列番号328を含む軽鎖及び配列番号485を含む重鎖、配列番号329を含む軽鎖及び配列番号486を含む重鎖、配列番号330を含む軽鎖及び配列番号487を含む重鎖、配列番号331を含む軽鎖及び配列番号488を含む重鎖、配列番号332を含む軽鎖及び配列番号489を含む重鎖、配列番号333を含む軽鎖及び配列番号490を含む重鎖、配列番号334を含む軽鎖及び配列番号491を含む重鎖、配列番号335を含む軽鎖及び配列番号492を含む重鎖、配列番号336を含む軽鎖及び配列番号493を含む重鎖、配列番号337を含む軽鎖及び配列番号494を含む重鎖、配列番号338を含む軽鎖及び配列番号495を含む重鎖、配列番号339を含む軽鎖及び配列番号496を含む重鎖、配列番号340を含む軽鎖及び配列番号497を含む重鎖、配列番号341を含む軽鎖及び配列番号498を含む重鎖、配列番号342を含む軽鎖及び配列番号499を含む重鎖、配列番号343を含む軽鎖及び配列番号500を含む重鎖、配列番号344を含む軽鎖及び配列番号501を含む重鎖、配列番号345を含む軽鎖及び配列番号502を含む重鎖、配列番号346を含む軽鎖及び配列番号503を含む重鎖、配列番号347を含む軽鎖及び配列番号504を含む重鎖、配列番号348を含む軽鎖及び配列番号505を含む重鎖、配列番号349を含む軽鎖及び配列番号506を含む重鎖、配列番号350を含む軽鎖及び配列番号507を含む重鎖、配列番号351を含む軽鎖及び配列番号508を含む重鎖、配列番号352を含む軽鎖及び配列番号509を含む重鎖、配列番号353を含む軽鎖及び配列番号510を含む重鎖、配列番号354を含む軽鎖及び配列番号511を含む重鎖、配列番号355を含む軽鎖及び配列番号512を含む重鎖、配列番号356を含む軽鎖及び配列番号513を含む重鎖、配列番号357を含む軽鎖及び配列番号514を含む重鎖、配列番号358を含む軽鎖及び配列番号515を含む重鎖、配列番号359を含む軽鎖及び配列番号516を含む重鎖、配列番号360を含む軽鎖及び配列番号517を含む重鎖、配列番号361を含む軽鎖及び配列番号518を含む重鎖、配列番号362を含む軽鎖及び配列番号519を含む重鎖、配列番号363を含む軽鎖及び配列番号520を含む重鎖、配列番号364を含む軽鎖及び配列番号521を含む重鎖、配列番号365を含む軽鎖及び配列番号522を含む重鎖、配列番号366を含む軽鎖及び配列番号523を含む重鎖、配列番号367を含む軽鎖及び配列番号524を含む重鎖、配列番号368を含む軽鎖及び配列番号525を含む重鎖、配列番号369を含む軽鎖及び配列番号526を含む重鎖、配列番号370を含む軽鎖及び配列番号527を含む重鎖、配列番号371を含む軽鎖及び配列番号528を含む重鎖、配列番号372を含む軽鎖及び配列番号529を含む重鎖、配列番号373を含む軽鎖及び配列番号530を含む重鎖、配列番号374を含む軽鎖及び配列番号531を含む重鎖、配列番号375を含む軽鎖及び配列番号532を含む重鎖、配列番号376を含む軽鎖及び配列番号533を含む重鎖、配列番号377を含む軽鎖及び配列番号534を含む重鎖、配列番号378を含む軽鎖及び配列番号535を含む重鎖、配列番号379を含む軽鎖及び配列番号536を含む重鎖、配列番号380を含む軽鎖及び配列番号537を含む重鎖、配列番号381を含む軽鎖及び配列番号538を含む重鎖、配列番号382を含む軽鎖及び配列番号539を含む重鎖、配列番号383を含む軽鎖及び配列番号540を含む重鎖、配列番号384を含む軽鎖及び配列番号541を含む重鎖、配列番号385を含む軽鎖及び配列番号542を含む重鎖、配列番号386を含む軽鎖及び配列番号543を含む重鎖、配列番号387を含む軽鎖及び配列番号544を含む重鎖、配列番号388を含む軽鎖及び配列番号545を含む重鎖、配列番号389を含む軽鎖及び配列番号546を含む重鎖、配列番号390を含む軽鎖及び配列番号547を含む重鎖、配列番号391を含む軽鎖及び配列番号548を含む重鎖、配列番号392を含む軽鎖及び配列番号549を含む重鎖、配列番号393を含む軽鎖及び配列番号550を含む重鎖、配列番号394を含む軽鎖及び配列番号551を含む重鎖、配列番号395を含む軽鎖及び配列番号552を含む重鎖、配列番号396を含む軽鎖及び配列番号553を含む重鎖、配列番号397を含む軽鎖及び配列番号554を含む重鎖、配列番号398を含む軽鎖及び配列番号555を含む重鎖、配列番号399を含む軽鎖及び配列番号556を含む重鎖、配列番号400を含む軽鎖及び配列番号557を含む重鎖、配列番号401を含む軽鎖及び配列番号558を含む重鎖、配列番号402を含む軽鎖及び配列番号559を含む重鎖、配列番号403を含む軽鎖及び配列番号560を含む重鎖、配列番号404を含む軽鎖及び配列番号561を含む重鎖、配列番号405を含む軽鎖及び配列番号562を含む重鎖、配列番号406を含む軽鎖及び配列番号563を含む重鎖、配列番号407を含む軽鎖及び配列番号564を含む重鎖、配列番号408を含む軽鎖及び配列番号565を含む重鎖、配列番号409を含む軽鎖及び配列番号566を含む重鎖、配列番号410を含む軽鎖及び配列番号567を含む重鎖、配列番号411を含む軽鎖及び配列番号568を含む重鎖、配列番号412を含む軽鎖及び配列番号569を含む重鎖、配列番号413を含む軽鎖及び配列番号570を含む重鎖、配列番号414を含む軽鎖及び配列番号571を含む重鎖、配列番号415を含む軽鎖及び配列番号572を含む重鎖、配列番号416を含む軽鎖及び配列番号573を含む重鎖、配列番号417を含む軽鎖及び配列番号574を含む重鎖、配列番号418を含む軽鎖及び配列番号575を含む重鎖、配列番号419を含む軽鎖及び配列番号576を含む重鎖、配列番号420を含む軽鎖及び配列番号577を含む重鎖、配列番号421を含む軽鎖及び配列番号578を含む重鎖、配列番号422を含む軽鎖及び配列番号579を含む重鎖、配列番号423を含む軽鎖及び配列番号580を含む重鎖、配列番号424を含む軽鎖及び配列番号581を含む重鎖、配列番号425を含む軽鎖及び配列番号582を含む重鎖、配列番号426を含む軽鎖及び配列番号583を含む重鎖、配列番号427を含む軽鎖及び配列番号584を含む重鎖、配列番号428を含む軽鎖及び配列番号585を含む重鎖、配列番号429を含む軽鎖及び配列番号586を含む重鎖、配列番号430を含む軽鎖及び配列番号587を含む重鎖、配列番号431を含む軽鎖及び配列番号588を含む重鎖、配列番号432を含む軽鎖及び配列番号589を含む重鎖、配列番号433を含む軽鎖及び配列番号590を含む重鎖、配列番号434を含む軽鎖及び配列番号591を含む重鎖、配列番号435を含む軽鎖及び配列番号592を含む重鎖、配列番号436を含む軽鎖及び配列番号593を含む重鎖、配列番号437を含む軽鎖及び配列番号594を含む重鎖、配列番号438を含む軽鎖及び配列番号595を含む重鎖、配列番号439を含む軽鎖及び配列番号596を含む重鎖、配列番号440を含む軽鎖及び配列番号597を含む重鎖、配列番号441を含む軽鎖及び配列番号598を含む重鎖、配列番号442を含む軽鎖及び配列番号599を含む重鎖、配列番号443を含む軽鎖及び配列番号600を含む重鎖、配列番号444を含む軽鎖及び配列番号601を含む重鎖、配列番号445を含む軽鎖及び配列番号602を含む重鎖、配列番号446を含む軽鎖及び配列番号603を含む重鎖、配列番号447を含む軽鎖及び配列番号604を含む重鎖、配列番号448を含む軽鎖及び配列番号605を含む重鎖、配列番号449を含む軽鎖及び配列番号606を含む重鎖、配列番号450を含む軽鎖及び配列番号607を含む重鎖、配列番号451を含む軽鎖及び配列番号608を含む重鎖、配列番号452を含む軽鎖及び配列番号609を含む重鎖、配列番号453を含む軽鎖及び配列番号610を含む重鎖、配列番号454を含む軽鎖及び配列番号611を含む重鎖、配列番号455を含む軽鎖及び配列番号612を含む重鎖、配列番号456を含む軽鎖及び配列番号613を含む重鎖、配列番号457を含む軽鎖及び配列番号614を含む重鎖、配列番号458を含む軽鎖及び配列番号615を含む重鎖、配列番号459を含む軽鎖及び配列番号616を含む重鎖、配列番号460を含む軽鎖及び配列番号617を含む重鎖、配列番号461を含む軽鎖及び配列番号618を含む重鎖、配列番号462を含む軽鎖及び配列番号619を含む重鎖、配列番号463を含む軽鎖及び配列番号620を含む重鎖、配列番号464を含む軽鎖及び配列番号621を含む重鎖、配列番号465を含む軽鎖及び配列番号622を含む重鎖、配列番号466を含む軽鎖及び配列番号623を含む重鎖、配列番号467を含む軽鎖及び配列番号624を含む重鎖、配列番号468を含む軽鎖及び配列番号625を含む重鎖、配列番号469を含む軽鎖及び配列番号626を含む重鎖、配列番号470を含む軽鎖及び配列番号627を含む重鎖、ならびに配列番号471を含む軽鎖及び配列番号628を含む重鎖からなる群から選択される軽鎖と重鎖との組み合わせを含み、その抗体又はその機能的断片は、参照配列である配列番号455に対する抗体軽鎖のD70、参照配列である配列番号612に対する抗体重鎖のE276及び参照配列である配列番号612に対する抗体重鎖のT363からなる群から選択される1つ以上のコンジュゲーション部位でシステイン又は非標準アミノ酸のアミノ酸置換を含む。
1つの実施形態では、抗体又はその断片は、配列番号1885~2014からなる群から選択されるポリヌクレオチド配列によってコードされる軽鎖と、配列番号2042~2198からなる群から選択される配列を含む重鎖とを含み、その抗体又はその機能的断片は、参照配列である配列番号455に対する抗体軽鎖のD70、参照配列である配列番号612に対する抗体重鎖のE276及び参照配列である配列番号612に対する抗体重鎖のT363からなる群から選択される1つ以上のコンジュゲーション部位でシステイン又は非標準アミノ酸のアミノ酸置換を含む。1つの実施形態では、抗体又はその断片は、軽鎖及び重鎖の組み合わせを含み、抗体又はその機能的断片は、配列番号1885を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2042を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1886を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2043を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1887を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2044を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1888を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2045を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1889を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2046を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1890を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2047を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1891を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2048を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1892を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2049を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1893を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2050を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1894を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2051を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1895を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2052を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1896を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2053を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1897を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2054を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1898を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2055を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1899を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2056を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1900を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2057を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1901を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2058を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1902を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2059を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1903を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2060を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1904を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2061を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1905を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2062を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1906を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2063を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1907を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2064を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1908を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2065を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1909を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2066を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1910を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2067を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1911を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2068を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1912を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2069を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1913を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2070を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1914を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2071を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1915を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2072を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1916を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2073を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1917を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2074を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1918を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2075を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1919を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2076を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1920を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2077を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1921を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2078を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1922を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2079を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1923を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2080を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1924を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2081を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1925を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2082を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1926を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2083を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1927を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2084を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1928を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2085を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1929を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2086を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1930を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2087を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1931を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2088を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1932を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2089を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1933を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2090を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1934を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2091を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1935を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2092を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1936を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2093を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1937を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2094を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1938を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2095を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1939を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2096を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1940を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2097を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1941を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2098を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1942を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2099を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1943を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2100を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1944を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2101を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1945を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2102を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1946を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2103を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1947を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2104を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1948を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2105を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1949を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2106を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1950を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2107を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1951を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2108を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1952を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2109を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1953を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2110を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1954を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2111を含むポリヌクレオ
チド配列によってコードされる重鎖、配列番号1955を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2112を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1956を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2113を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1957を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2114を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1958を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2115を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1959を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2116を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1960を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2117を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1961を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2118を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1962を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2119を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1963を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2120を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1964を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2121を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1965を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2122を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1966を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2123を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1967を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2124を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1968を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2125を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1969を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2126を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1970を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2127を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1971を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2128を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1972を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2129を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1973を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2130を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1974を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2131を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1975を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2132を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1976を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2133を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1977を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2134を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1978を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2135を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1979を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2136を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1980を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2137を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1981を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2138を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1982を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2139を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1983を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2140を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1984を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2141を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1985を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2142を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1986を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2143を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1987を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2144を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1988を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2145を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1989を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2146を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1990を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2147を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1991を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2148を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1992を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2149を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1993を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2150を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1994を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2151を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1995を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2152を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1996を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2153を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1997を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2154を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1998を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2155を含むポリヌクレオチド配列によってコードされる重鎖、配列番号1999を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2156を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2000を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2157を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2001を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2158を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2002を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2159を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2003を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2160を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2004を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2161を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2005を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2162を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2006を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2163を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2007を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2164を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2008を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2165を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2009を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2166を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2010を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2167を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2011を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2168を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2012を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2169を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2013を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2170を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2014を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2171を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2015を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2172を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2016を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2173を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2017を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2174を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2018を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2175を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2019を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2176を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2020を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2177を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2021を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2178を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2022を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2179を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2023を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2180を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2024を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2181を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2025を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2182を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2026を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2183を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2027を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2184を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2028を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2185を含むポリヌクレオチド配列によってコードされる重
鎖、配列番号2029を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2186を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2030を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2187を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2031を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2188を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2032を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2189を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2033を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2190を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2034を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2191を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2035を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2192を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2036を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2193を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2037を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2194を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2038を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2195を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2039を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2196を含むポリヌクレオチド配列によってコードされる重鎖、配列番号2040を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2197を含むポリヌクレオチド配列によってコードされる重鎖、ならびに配列番号2041を含むポリヌクレオチド配列によってコードされる軽鎖及び配列番号2198を含むポリヌクレオチド配列によってコードされる重鎖からなる群から選択される、参照配列である配列番号455に対する抗体軽鎖のD70、参照配列である配列番号612に対する抗体重鎖のE276及び参照配列である配列番号612に対する抗体重鎖のT363からなる群から選択される1つ以上のコンジュゲーション部位でシステイン又は非標準アミノ酸のアミノ酸置換を含む。
別の態様では、抗原結合タンパク質は、表5に記載の抗体の1つを対象とする行の1つに記載の全長軽鎖及び全長重鎖を含む。提供される抗原結合タンパク質のいくつかは、表5に記載の抗体の1つを対象とする行の1つに記載の全長軽鎖及び全長重鎖を含むが、例外として、鎖の1つ又は両方は、その表において特定される配列とは1つ、2つ、3つ、4つ、5つ、6つ、7つ、8つ、9つ、10、11、12、13、14、又は15のアミノ酸残基のみが異なり、そのような配列差異はそれぞれ独立して、単一のアミノ酸の欠失、挿入、又は置換のいずれかであり、こうした欠失、挿入及び/又は置換の結果として、表5において特定される全長配列と比較して、1つ以下、2つ以下、3つ以下、4つ以下、5つ以下、6つ以下、7つ以下、8つ以下、9つ以下、10以下、11以下、12以下、13以下、14以下、又は15以下のアミノ酸が変更されている。1つの実施形態では、抗原結合タンパク質は、表5に由来する全長軽鎖及び/又は全長重鎖を含むが、N末端のメチオニンは欠失している。1つの実施形態では、抗原結合タンパク質は、表5に由来する全長軽鎖及び/又は全長重鎖を含むが、C末端のリジンは欠失している。他の抗原結合タンパク質も、表5に記載の抗体の1つを対象とする行の1つに記載の全長軽鎖及び全長重鎖を含むが、例外として、鎖の1つ又は両方は、軽鎖及び/又は重鎖が、表5において特定される軽鎖配列又は重鎖配列のアミノ酸配列との配列同一性が少なくとも70%、少なくとも75%、少なくとも80%、少なくとも85%、少なくとも90%、少なくとも95%、少なくとも96%、少なくとも97%、少なくとも98%、又は少なくとも99%であるアミノ酸配列を含むか、又はそれからなるという点において、その表において特定される配列と異なる。
別の実施形態では、抗原結合タンパク質は、表5に示される軽鎖ポリペプチド又は重鎖ポリペプチドのみからなる。
さらに別の態様では、表3、表4A、表4B及び表5に記載のCDR、可変ドメイン及び/又は全長配列を含む抗原結合タンパク質は、モノクローナル抗体、キメラ抗体、ヒト化抗体、ヒト抗体、多特異性抗体、又はこうしたものの抗体断片である。別の実施形態では、本明細書で提供される単離された抗原結合タンパク質の抗体断片は、表5に記載の配列を有する抗体に基づくFab断片、Fab’断片、F(ab’)断片、Fv断片、ダイアボディ(diabody)、又はscFvである。
さらに別の態様では、表5において提供される単離された抗原結合タンパク質は、標識基にカップリングさせることができ、本明細書で提供される単離された抗原結合タンパク質の1つである抗原結合タンパク質と、GIPRへの結合について競合させることができる。
別の実施形態では、ヒトGIPR(例えば、配列番号3141)への特異的結合について、上記の例示の抗体又は機能性断片の1つと競合する抗原結合タンパク質が提供される。そのような抗原結合タンパク質は、本明細書に記載の抗原結合タンパク質の1つと同一のエピトープに結合し得るか、又は重複エピトープに結合し得る。例示の抗原結合タンパク質と競合する抗原結合タンパク質及び断片は、類似の機能特性を示すと予想される。例示の抗原結合タンパク質及び断片には、表3、表4A、表4B及び表5に含まれる重鎖及び軽鎖、可変領域ドメイン、ならびにCDRを有するものを含む、上記のものが含まれる。したがって、特定の例として、提供される抗原結合タンパク質には、
表4A及び表4Bに記載の抗体のいずれかを対象として記載されるCDRを6つすべて有する抗体と競合するもの、
表3に記載に記載の抗体のいずれかを対象として記載されるVH及びVLを有する抗体と競合するもの、又は
表5に記載の抗体のいずれかを対象として特定される2つの軽鎖及び2つの重鎖を有する抗体と競合するもの
が含まれる。
提供される抗原結合タンパク質には、GIPRに結合するモノクローナル抗体が含まれる。モノクローナル抗体は、当該技術分野において知られる任意の手法を使用して生成してよく、例えば、免疫化スケジュールの完了後に遺伝子導入動物から収集した脾臓細胞を不死化することによって生成してよい。脾臓細胞は、当該技術分野において知られる任意の手法を使用して不死化することができ、例えば、脾臓細胞を骨髄腫細胞と融合してハイブリドーマを生成することよって不死化することができる。ハイブリドーマを生成する融合手順において使用するための骨髄腫細胞は、好ましくは、非抗体産生性であり、高い融合効率を有し、所望の融合細胞(ハイブリドーマ)のみの増殖を支持する特定の選択培地において増殖することが不可能になる酵素欠損を有する。マウス融合における使用に適した細胞株の例には、Sp-20、P3-X63/Ag8、P3-X63-Ag8.653、NS1/1.Ag41、Sp210-Ag14、FO、NSO/U、MPC-11、MPC11-X45-GTG1.7及びS194/5XXO Bulが含まれ、ラット融合において使用される細胞株の例には、R210.RCY3、Y3-Ag1.2.3、IR983F及び4B210が含まれる。細胞融合に有用な他の細胞株は、U-266、GM1500-GRG2、LICR-LON-HMy2及びUC729-6である。
いくつかの場合、GIPR免疫原での動物(例えば、ヒト免疫グロブリン配列を有する遺伝子導入動物)の免疫化と、免疫化した動物からの脾臓細胞の収集と、収集した脾臓細胞を骨髄腫細胞株へと融合することによるハイブリドーマ細胞の生成と、ハイブリドーマ細胞からのハイブリドーマ細胞株の確立と、GIPRポリペプチドに結合する抗体を産生するハイブリドーマ細胞株の同定と、によってハイブリドーマ細胞株が生成される。そのようなハイブリドーマ細胞株及びそれが産生する抗GIPRモノクローナル抗体は、本出願の態様である。
ハイブリドーマ細胞株によって分泌されるモノクローナル抗体は、当該技術分野において知られる任意の手法を使用して精製することができる。ハイブリドーマ又はmAbは、さらにスクリーニングすることで、GIPR活性を増加させる能力などの特定の特性を有するmAbを同定してよい。
前述の配列に基づくキメラ抗体及びヒト化抗体も提供される。治療剤として使用するためのモノクローナル抗体は、使用前に様々な方法で改変してよい。1つの例は、キメラ抗体であり、キメラ抗体は、機能性の免疫グロブリン軽鎖もしくは免疫グロブリン重鎖又はその免疫学的に機能性の部分を生成するために共有結合で連結される異なる抗体に由来するタンパク質セグメントからなる抗体である。一般に、こうした重鎖及び/又は軽鎖の一部は、特定の種に由来する抗体、又は特定の抗体クラスもしくは抗体サブクラスに属する抗体における対応配列と同一又は相同的である一方、鎖の残部は、別の種に由来する抗体、又は別の抗体クラスもしくは抗体サブクラスに属する抗体における対応配列と同一又は相同的である。キメラ抗体に関する方法については、例えば、米国特許第4,816,567号明細書及びMorrison et al.,1985,Proc.Natl.Acad.Sci.USA 81:6851-6855を参照されたい。これらの文献は、参照によって本明細書に組み込まれる。CDR移植については、例えば、米国特許第6,180,370号明細書、同第5,693,762号明細書、同第5,693,761号明細書、同第5,585,089号明細書及び同第5,530,101号明細書に記載されている。
一般に、キメラ抗体を調製する目標は、意図される患者種に由来するアミノ酸の数が最大化したキメラを創出することである。1つの例は、「CDR移植」抗体であり、この抗体は、特定の種に由来する相補性決定領域(CDR)、又は特定の抗体クラスもしくは抗体サブクラスに属する相補性決定領域(CDR)を1つ又は複数含む一方、抗体鎖の残部は、別の種に由来する抗体、又は別の抗体クラスもしくは抗体サブクラスに属する抗体における対応配列と同一又は相同的である。ヒトにおける使用について、げっ歯類抗体に由来する可変領域又はげっ歯類抗体から選択されるCDRがヒト抗体に移植されることが多く、これによりヒト抗体の天然起源の可変領域又はCDRが交換される。
キメラ抗体の有用な型の1つは、「ヒト化」抗体である。一般に、ヒト化抗体は、非ヒト動物において最初に産生したモノクローナル抗体から生成される。このモノクローナル抗体における特定のアミノ酸残基は、対応アイソタイプのヒト抗体における対応残基に相同的となるように改変され、改変されるこうしたアミノ酸残基は、典型的には、抗体の非抗原認識部分に由来するものである。ヒト化は、例えば、ヒト抗体の対応領域をげっ歯類可変領域の少なくとも一部で置換することによる様々な方法を使用して実施することができる(例えば、米国特許第5,585,089号明細書及び同第5,693,762号明細書、Jones et al.,1986,Nature 321:522-525、Riechmann et al.,1988,Nature 332:323-27、Verhoeyen et al.,1988,Science 239:1534-1536を参照されたい)。
1つの態様では、本明細書で提供される抗体の軽鎖可変領域及び重鎖可変領域のCDRは、同一又は異なる系統種に由来する抗体に由来するフレームワーク領域(FR)に移植される。例えば、重鎖可変領域及び軽鎖可変領域であるV1、V2、V3、V4、V5、V6、V7、V8、V9、V10、V11、V12及び/又はV1及びV2のCDRをコンセンサスヒトFRに移植することができる。コンセンサスヒトFRを創出するために、ヒトのいくつかの重鎖アミノ酸配列又は軽鎖アミノ酸配列に由来するFRのアライメントをとることでコンセンサスアミノ酸配列を同定してよい。他の実施形態では、本明細書に開示の重鎖又は軽鎖のFRは、異なる重鎖又は軽鎖に由来するFRと交換される。1つの態様では、GIPR抗体の重鎖及び軽鎖のFRにおける希少アミノ酸は交換されず、残りのFRアミノ酸が交換される。「希少アミノ酸」は、FRにおいて通常ではそれが見られない位置に存在する特定のアミノ酸である。あるいは、1つの重鎖又は軽鎖から移植される可変領域を、本明細書に開示のその特定の重鎖又は軽鎖の定常領域と異なる定常領域と共に使用してよい。他の実施形態では、移植される可変領域は、一本鎖Fv抗体の一部である。
特定の実施形態では、ヒト以外の種に由来する定常領域をヒト可変領域と共に使用することでハイブリッド抗体を生成することができる。
完全ヒトGIPR抗体も提供される。抗原にヒトを曝露することなく所与の抗原に特異的な完全ヒト抗体を調製するための方法が利用可能である(「完全ヒト抗体」)。完全ヒト抗体の生成を実行するために提供される特定の手段の1つは、マウス体液性免疫系の「ヒト化」である。内在性のIg遺伝子が不活性化したマウスへのヒト免疫グロブリン(Ig)遺伝子座の導入は、任意の所望抗原で免疫化することができる動物であるマウスにおいて完全ヒトモノクローナル抗体(mAb)を産生させる手段の1つである。完全ヒト抗体を使用することで、マウスのmAb又はマウス由来のmAbを治療剤としてヒトに投与することによって生じることがあり得る免疫原性及びアレルギー性の応答を最小化することができる。
完全ヒト抗体は、内在性の免疫グロブリンを産生せず、ヒト抗体のレパートリーを産生する能力を有する遺伝子導入動物(通常はマウス)を免疫化することによって産生することができる。これを目的とする抗原は、典型的には、6つ以上の連続アミノ酸を有し、任意選択でハプテンなどの担体に複合化される。例えば、Jakobovits et al.,1993,Proc.Natl.Acad.Sci.USA 90:2551-2555、Jakobovits et al.,1993,Nature 362:255-258及びBruggermann et al.,1993,Year in Immunol.7:33を参照されたい。そのような方法の1つの例では、遺伝子導入動物は、マウスの重免疫グロブリン鎖及び軽免疫グロブリン鎖をそこにコードする内在性のマウス免疫グロブリン遺伝子座を無能化し、ヒトの重鎖タンパク質及び軽鎖タンパク質をコードする遺伝子座を含むヒトゲノムDNAをマウスゲノムの大型断片に挿入することによって作製される。部分的に改変された動物は、ヒト免疫グロブリン遺伝子座の補完が完全には至っておらず、その後に交雑させることで所望の免疫系改変のすべてを有する動物が得られる。免疫原が投与されると、こうした遺伝子導入動物は、その免疫原に免疫特異的な抗体を産生するが、こうした抗体は、可変領域を含めて、マウスのアミノ酸配列ではなく、ヒトのアミノ酸配列を有する。そのような方法の追加詳細については、例えば、国際公開第96/33735号パンフレット及び国際公開第94/02602号パンフレットを参照されたい。ヒト抗体の調製するための遺伝子導入マウスに関する追加の方法は、米国特許第5,545,807号明細書、同第6,713,610号明細書、同第6,673,986号明細書、同第6,162,963号明細書、同第5,545,807号明細書、同第6,300,129号明細書、同第6,255,458号明細書、同第5,877,397号明細書、同第5,874,299号明細書及び同第5,545,806号明細書、PCT公開国際公開第91/10741号パンフレット、国際公開第90/04036号パンフレットならびに欧州特許第546073B1号明細書及び欧州特許出願公開第546073A1号明細書に記載されている。
上記の遺伝子導入マウスは、本明細書では「HuMab」マウスと称され、内在性の[ミュー]鎖及び[カッパー]鎖の遺伝子座を不活性化する標的化変異と共に、ヒトの重鎖([ミュー]及び[ガンマ])ならびに[カッパー]軽鎖の非再編成免疫グロブリン配列をコードするヒト免疫グロブリン遺伝子の小遺伝子座(minilocus)を含む(Lonberg et al.,1994,Nature 368:856-859)。したがって、このマウスでは、マウスのIgM又は[カッパー]の発現及び免疫化に応じたその発現が低減されており、導入されたヒトの重鎖導入遺伝子及び軽鎖導入遺伝子は、クラス転換及び体細胞変異を受けることで高親和性のヒトIgG[カッパー]モノクローナル抗体を生成する(前出のLonberg et al.、Lonberg and Huszar,1995,Intern.Rev.Immunol.13:65-93、Harding and Lonberg,1995,Ann.N.Y Acad.Sci.764:536-546)。HuMabマウスの調製は、Taylor et al.,1992,Nucleic Acids Research 20:6287-6295、Chen et al.,1993,International Immunology 5:647-656、Tuaillon et al.,1994,J.Immunol.152:2912-2920、Lonberg et al.,1994,Nature 368:856-859、Lonberg,1994,Handbook of Exp.Pharmacology 113:49-101、Taylor et al.,1994,International Immunology 6:579-591、Lonberg and Huszar,1995,Intern.Rev.Immunol.13:65-93、Harding and Lonberg,1995,Ann.N.Y Acad.Sci.764:536-546、Fishwild et al.,1996,Nature Biotechnology 14:845-851に詳細に記載されており、これらの参考文献は、参照によってそれらの全体があらゆる目的を対象として本明細書に組み込まれる。さらに、米国特許第5,545,806号明細書、同第5,569,825号明細書、同第5,625,126号明細書、同第5,633,425号明細書、同第5,789,650号明細書、同第5,877,397号明細書、同第5,661,016号明細書、同第5,814,318号明細書、同第5,874,299号明細書及び同第5,770,429号明細書ならびに米国特許第5,545,807号明細書、国際公開第93/1227号パンフレット、国際公開第92/22646号パンフレット及び国際公開第92/03918号パンフレットを参照されたい。これらすべての文献の開示内容は、参照によってそれらの全体があらゆる目的を対象として本明細書に組み込まれる。こうした遺伝子導入マウスにおけるヒト抗体の産生を利用する技術は、国際公開第98/24893号パンフレット及びMendez et al.,1997,Nature Genetics 15:146-156においても開示されており、これらの文献は、参照によって本明細書に組み込まれる。例えば、GIPRに対するヒトモノクローナル抗体を生成するためにHCo7及びHCo12という遺伝子導入マウス系統を使用することができる。遺伝子導入マウスを使用するヒト抗体の産生に関する詳細は、以下にさらに提供される。
ハイブリドーマ技術を使用することで、上記のものなどの遺伝子導入マウスから所望の特異性を有する抗原特異的ヒトmAbを産生及び選択することができる。そのような抗体は、適切なベクター及び宿主細胞を使用してクローニング及び発現させてよい。あるいは、抗体は、培養したハイブリドーマ細胞から収集することができる。
完全ヒト抗体は、ファージディスプレイライブラリーから得ることもできる(Hoogenboom et al.,1991,J.Mol.Biol.227:381及びMarks et al.,1991,J.Mol.Biol.222:581に開示されている)。ファージディスプレイ手法は、糸状バクテリオファージの表面での抗体レパートリーのディスプレイと、選択される抗原に対するその結合によるファージのその後の選択とを介して免疫選択を模倣している。そのような手法の1つは、PCT公開国際公開第99/10494号パンフレット(参照によって本明細書に組み込まれる)に記載されている。
GIPR結合タンパク質は、上記のCDR、可変領域及び/又は全長鎖を有するGIPR抗原結合タンパク質の構造に基づく変異体、模倣体、誘導体、又はオリゴマーでもあり得る。
1つの実施形態では、例えば、抗原結合タンパク質は、上に開示される抗原結合タンパク質の変異形態である。例えば、抗原結合タンパク質のいくつかは、重鎖もしくは軽鎖、可変領域、又はCDRの1つ又は複数に保存的アミノ酸置換を1つ又は複数有する。
天然起源のアミノ酸は、下記の共通の側鎖特性に基づくクラスに分類し得る:
1)疎水性:ノルロイシン、Met、Ala、Val、Leu、Ile、
2)中性の親水性:Cys、Ser、Thr、Asn、Gln、
3)酸性:Asp、Glu、
4)塩基性:His、Lys、Arg、
5)鎖の配向に影響する残基:Gly、Pro、及び
6)芳香族:Trp、Tyr、Phe。
保存的アミノ酸置換は、こうしたクラスの1つのメンバーと、同一クラスの別のメンバーとの交換を伴い得る。保存的アミノ酸置換は、非天然起源のアミノ酸残基も包含し得、こうした非天然起源のアミノ酸残基は、典型的には、生物学的な系における合成によってではなく、化学的なペプチド合成によって組み込まれる。こうしたものには、ペプチド模倣体及びアミノ酸部分が逆転又は反転した他の形態が含まれる。
非保存的置換は、上記のクラスの1つのメンバーと、別のクラスに由来するメンバーとの交換を伴い得る。そのような置換残基は、抗体におけるヒト抗体と相同的な領域に導入するか、又はその分子の非相同的な領域に導入してよい。
特定の実施形態によれば、そのような変更を実施する場合、アミノ酸のハイドロパシー指数を考慮してよい。タンパク質のハイドロパシープロファイルは、それぞれのアミノ酸に数値(「ハイドロパシー指数」)を割り当てた後、ペプチド鎖に沿ってこうした値を反復して平均化することによって計算される。それぞれのアミノ酸には、その疎水性及び電荷特性に基づいてハイドロパシー指数が割り当てられており、それらは、イソロイシン(+4.5)、バリン(+4.2)、ロイシン(+3.8)、フェニルアラニン(+2.8)、システイン/シスチン(+2.5)、メチオニン(+1.9)、アラニン(+1.8)、グリシン(-0.4)、スレオニン(-0.7)、セリン(-0.8)、トリプトファン(-0.9)、チロシン(-1.3)、プロリン(-1.6)、ヒスチジン(-3.2)、グルタメート(-3.5)、グルタミン(-3.5)、アスパルテート(-3.5)、アスパラギン(-3.5)、リジン(-3.9)及びアルギニン(-4.5)である。
タンパク質に対して相互作用的な生物学的機能を付与する際のハイドロパシープロファイルの重要性は、当該技術分野において理解されている(例えば、Kyte et al.,1982,J.Mol.Biol.157:105-131を参照されたい)。特定のアミノ酸は、類似のハイドロパシー指数又はハイドロパシースコアを有する他のアミノ酸の代わりとなり得、依然として類似の生物学的活性を保持し得ることが知られている。特定の実施形態では、ハイドロパシー指数に基づく変更を実施する場合、そのハイドロパシー指数が±2以内のアミノ酸の置換が含められる。いくつかの態様では、±1以内のものが含められ、他の態様では、±0.5以内のものが含められる。
同様のアミノ酸の置換は、親水性に基づいて効率的に実施できることも当該技術分野において理解されており、特に、それによって創出される生物学的に機能性のタンパク質又はペプチドの意図が、今回の場合のように免疫学的な実施形態における使用である場合、当該技術分野においてそのように理解されている。特定の実施形態では、タンパク質の局所的な最大平均親水性は、その隣接アミノ酸の親水性によって支配されており、その免疫原性及び抗原結合又は免疫原性、すなわちタンパク質の生物学的特性と相関する。
下記のアミノ酸残基には、下記の親水性値が割り当てられている:アルギニン(+3.0)、リジン(+3.0)、アスパルテート(+3.0±1)、グルタメート(+3.0±1)、セリン(+0.3)、アスパラギン(+0.2)、グルタミン(+0.2)、グリシン(0)、スレオニン(-0.4)、プロリン(-0.5±1)、アラニン(-0.5)、ヒスチジン(-0.5)、システイン(-1.0)、メチオニン(-1.3)、バリン(-1.5)、ロイシン(-1.8)、イソロイシン(-1.8)、チロシン(-2.3)、フェニルアラニン(-2.5)及びトリプトファン(-3.4)。特定の実施形態では、類似の親水性値に基づく変更を実施する場合、その親水性値が±2以内のアミノ酸の置換が含められる。他の実施形態では、±1以内のものが含められ、さらに他の実施形態では、±0.5以内のものが含められる。いくつかの場合、親水性に基づいて一次アミノ酸配列からエピトープを同定してもよい。こうした領域は、「エピトープコア領域」とも称される。
表6には例示の保存的アミノ酸置換が示される。
Figure 0007175899000420
当業者であれば、よく知られる手法を使用して、本明細書に示されるポリペプチドの適切な変異体を決定することができるであろう。活性に重要ではないと考えられる領域を標的とすることによって活性を損なうことなく変更し得る分子の適切な領域を当業者であれば同定し得る。類似のポリペプチドの間で保存されている分子の残基及び部分も当業者であれば同定することができるであろう。追加の実施形態では、生物学的活性又は構造に重要ではあり得ない領域でも、生物学的活性を損なうことなく、又はポリペプチド構造に有害な影響を与えることなく、保存的アミノ酸置換に供し得る。
さらに、類似のポリペプチドにおける活性又は構造に重要な残基を同定する構造-機能試験を当業者であれば評価することができる。そのような比較を考慮することで、類似のタンパク質における活性又は構造に重要なアミノ酸残基に対応するアミノ酸残基のタンパク質における重要性を予測することができる。重要であると予測されるそのようなアミノ酸残基に対して化学的に類似のアミノ酸置換を当業者であれば選択し得る。
類似のポリペプチドにおける三次元構造及びその構造に関するアミノ酸配列も当業者であれば分析することができる。そのような情報を考慮することで、その三次元構造に関して抗体のアミノ酸残基のアライメントを当業者であれば予測し得る。タンパク質の表面に存在すると予測されるアミノ酸残基は、他の分子との重要な相互作用に関与し得るため、そのような残基に根本的な変化が生じない選択を当業者であればなし得る。さらに、それぞれの所望のアミノ酸残基の位置に単一アミノ酸置換を含む試験変異体を当業者であれば生成し得る。その後、こうした変異体は、GIPR活性のためのアッセイを使用してスクリーニングされ、したがって、どのアミノ酸を変更することができ、どのアミノ酸を変更してはならないのかということに関する情報を得ることができる。換言すれば、そのような日常的な実験から集まる情報に基づくと、単独の置換又は他の変異と組み合わせた置換の追加実施を避けるべきアミノ酸位置を当業者であれば容易に決定することができる。
二次構造の予測に多くの科学刊行物が投入されてきた。Moult,1996,Curr.Op.in Biotech.7:422-427、Chou et al.,1974,Biochem.13:222-245、Chou et al.,1974,Biochemistry 113:211-222、Chou et al.,1978,Adv.Enzymol.Relat.Areas Mol.Biol.47:45-148、Chou et al.,1979,Ann.Rev.Biochem.47:251-276及びChou et al.,1979,Biophys.J.26:367-384を参照されたい。さらに、現在は、二次構造の予測支援にコンピュータープログラムが利用可能である。二次構造の予測方法の1つは、ホモロジーモデリングに基づくものである。例えば、30%を超える配列同一性又は40%を超える類似性を有する2つのポリペプチド又はタンパク質は、類似の構造トポロジーを有し得る。タンパク質構造データベース(PDB)が最近充実したことで、ポリペプチド構造又はタンパク質構造に含まれるフォールドの潜在数を含めて、二次構造の予測性が向上してきた。Holm et al.,1999,Nucl.Acid.Res.27:244-247を参照されたい。所与のポリペプチド又はタンパク質に存在するフォールドの数は限られており、決定的な数の構造が解明されると、構造予測の正確性は劇的に向上することが示唆されている(Brenner et al.,1997,Curr.Op.Struct.Biol.7:369-376)。
二次構造の追加の予測方法には、「スレッディング」(Jones,1997,Curr.Opin.Struct.Biol.7:377-387、Sippl et al.,1996,Structure 4:15-19)、「プロファイル解析」(Bowie et al.,1991,Science 253:164-170、Gribskov et al.,1990,Meth.Enzym.183:146-159、Gribskov et al.,1987,Proc.Nat.Acad.Sci.84:4355-4358)及び「evolutionary linkage(進化的関連)」(前出のHolm,1999及び前出のBrenner,1997を参照されたい)が含まれる。
いくつかの実施形態では、(1)タンパク質分解に対する感受性の低減、(2)酸化に対する感受性の低減、(3)タンパク質複合体を形成するための結合親和性の改変、(4)リガンドもしくは抗原への結合親和性の改変、及び/又は(4)そのようなポリペプチドに対する他の物理化学的特性又は機能特性の付与もしくは改変、が生じるアミノ酸置換が実施される。例えば、天然起源の配列において単一又は複数のアミノ酸置換(特定の実施形態では、保存的アミノ酸置換)を実施してよい。置換は、抗体において分子間の接触部を形成するドメインの外側に位置する部分において実施することができる。そのような実施形態では、親配列の構造特性を実質的に変更しない保存的アミノ酸置換(例えば、親又は天然の抗原結合タンパク質を特徴付ける二次構造を損なわない1つ又は複数のアミノ酸の交換)を使用することができる。当該技術分野において認識されているポリペプチドの二次構造及び三次構造の例は、Proteins,Structures and Molecular Principles(Creighton,Ed.),1984,W.H.New York:Freeman and Company、Introduction to Protein Structure(Branden and Tooze,eds.),1991,New York:Garland Publishing及びThornton et al.,1991,Nature 354:105に記載されており、これらの文献はそれぞれ、参照によって本明細書に組み込まれる。
好ましい抗体変異体には、システイン変異体が追加で含まれ、システイン変異体では、親又は天然のアミノ酸配列における1つ又は複数のシステイン残基が、欠失しているか、又は別のアミノ酸(例えば、セリン)で置換されている。抗体が生物学的に活性な立体構造へとリフォールディングされなくてはならないときにシステイン変異体はとりわけ有用である。システイン変異体が有するシステイン残基の数は、天然の抗体と比較して少なくあり得、典型的には、さらに不対システインから生じる相互作用を最小化する数であり得る。
開示の重鎖及び軽鎖、可変領域ドメイン、ならびにCDRは、GIPRに特異的に結合することができる抗原結合領域を含むポリペプチドの調製に使用することができる。例えば、1つ又は複数のCDRを分子(例えば、ポリペプチド)に共有結合又は非共有結合で組み込むことで免疫接着物を調製することができる。より大きいポリペプチド鎖の一部としてCDRを免疫接着物に組み込んでよく、免疫接着物においてCDRを別のポリペプチド鎖に共有結合で連結してよく、又はCDRを免疫接着物に非共有結合で組み込んでよい。CDRにより、目的とする特定の抗原(例えば、GIPRポリペプチド又はそのエピトープ)に免疫接着物が特異的に結合することが可能になる。
本明細書に記載の可変領域ドメイン及びCDRに基づく模倣体(例えば、「peptide mimetic(ペプチド模倣体)」又は「peptidomimetic(ペプチド模倣体)」)も提供される。こうした類似体は、ペプチド、非ペプチド、又はペプチド領域と非ペプチド領域との組み合わせであり得る。Fauchere,1986,Adv.Drug Res.15:29、Veber and Freidinger,1985,TINS p.392及びEvans et al.,1987,J.Med.Chem.30:1229(これらの文献は、あらゆる目的を対象として参照によって本明細書に組み込まれる)。治療的に有用なペプチドと構造的に類似したペプチド模倣体を、類似の治療効果又は予防効果を得るために使用してよい。そのような化合物は、コンピューター化分子モデリングの支援を得て開発されることが多い。一般に、ペプチド模倣体は、所望の生物学的活性(本明細書ではGIPRに特異的に結合する能力など)を示す抗体と構造的に類似しているが、当該技術分野においてよく知られる方法により、-CHNH-、-CHS-、-CH-CH-、-CH-CH-(シス及びトランス)、-COCH-、-CH(OH)CH-及びCHSO-から選択される結合によって任意選択で交換されたペプチド結合を1つ又は複数有するタンパク質である。特定の実施形態では、安定性が向上したタンパク質を生成するために、同一の型のD-アミノ酸(例えば、L-リジンの代わりにD-リジン)で、コンセンサス配列の1つ又は複数のアミノ酸を系統的に置換してよい。さらに、コンセンサス配列又は実質的に同一のコンセンサス配列変種を含む規制ペプチドを、当該技術分野において知られる方法(Rizo and Gierasch,1992,Ann.Rev.Biochem.61:387)、この文献は、参照によって本明細書に組み込まれる)によって生成してよく、例えば、ペプチドを環化する分子内ジスルフィド架橋を形成する能力を有する内部システイン残基を付加することによって生成してよい。
本明細書に記載の抗原結合タンパク質の誘導体も提供される。誘導体化された抗原結合タンパク質は、抗体又は断片に対して特定用途における半減期の増加などの所望の特性を付与する任意の分子又は物質を含み得る。誘導体化された抗原結合タンパク質は、例えば、検出可能(又は標識)部分(例えば、放射性分子、比色分析分子、抗原性分子、もしくは酵素分子、検出可能なビーズ(磁性もしくは高電子密度の(例えば、金)ビーズなど)、又は別の分子に結合する分子(例えば、ビオチンもしくはストレプトアビジン))、治療的又は診断的な部分(例えば、放射性部分、細胞傷害性部分、又は医薬的に活性な部分)、あるいは特定用途(例えば、ヒト対象などの対象への投与、又は他のインビボもしくはインビトロでの使用)のための抗原結合タンパク質の安定性を向上させる分子を含み得る。抗原結合タンパク質の誘導化に使用することができる分子の例には、アルブミン(例えば、ヒト血清アルブミン)及びポリエチレングリコール(PEG)が含まれる。抗原結合タンパク質のアルブミン連結誘導体及びPEG化誘導体は、当該技術分野においてよく知られる手法を使用して調製することができる。特定の抗原結合タンパク質は、peg化された本明細書に記載の一本鎖ポリペプチドを含む。1つの実施形態では、抗原結合タンパク質は、トランスサイレチン(TTR)又はTTR変異体に複合化あるいは連結される。TTR又はTTR変異体は、例えば、デキストラン、ポリ(n-ビニルピロリドン)、ポリエチレングリコール、プロプロピレングリコール(propropylene glycol)ホモポリマー、ポリプロピレンオキシド/エチレンオキシドコポリマー、ポリオキシエチル化ポリオール及びポリビニルアルコールからなる群から選択される化学物質で化学的に改変することができる。
他の誘導体には、GIPR抗原結合タンパク質のN末端又はC末端に異種性ポリペプチドを融合して含めた組換え融合タンパク質の発現などによる、GIPR抗原結合タンパク質と他のタンパク質又はポリペプチドとの共有結合性又は集合性の複合体が含まれる。例えば、複合化されるペプチドは、例えば、酵母アルファ因子リーダーなどの異種性のシグナル(もしくはリーダー)ポリペプチド、又はエピトープタグなどのペプチドであり得る。GIPR抗原結合タンパク質を含む融合タンパク質は、GIPR抗原結合タンパク質の精製又は同定を容易にするために付加されたペプチド(例えば、ポリ-His)を含み得る。GIPR抗原結合タンパク質は、Hopp et al.,1988,Bio/Technology6:1204及び米国特許第5,011,912号明細書に記載のFLAGペプチドにも連結することができる。FLAGペプチドは、高度に抗原性であり、特異的なモノクローナル抗体(mAb)が可逆的に結合するエピトープを提供することで迅速なアッセイを可能にすると共に、発現する組換えタンパク質の精製を容易にする。所与のポリペプチドにFLAGペプチドが融合した融合タンパク質の調製に有用な試薬は市販されている(Sigma,St.Louis,MO)。
いくつかの実施形態では、抗原結合タンパク質は、1つ又は複数の標識を含む。「標識基」又は「標識」という用語は、任意の検出可能な標識を意味する。適切な標識基の例には、限定はされないが、下記のものが含まれる:放射性同位体もしくは放射性核種(例えば、H、14C、15N、35S、90Y、99Tc、111In、125I、131I)、蛍光基(例えば、FITC、ローダミン、ランタニドリン光体)、酵素基(例えば、西洋ワサビペルオキシダーゼ、β-ガラクトシダーゼ、ルシフェラーゼ、アルカリホスファターゼ)、化学発光基、ビオチン基、又は二次レポーターによって認識される所定のポリペプチドエピトープ(例えば、ロイシンジッパー対配列、二次抗体向けの結合部位、金属結合ドメイン、エピトープタグ)。いくつかの実施形態では、標識基は、潜在的な立体障害を低減するために様々な長さのスペーサーアームを介して抗原結合タンパク質にカップリングされる。タンパク質の標識方法は、当該技術分野において様々なものが知られており、そうしたものを適切となるように使用してよい。
「エフェクター基」という用語は、抗原結合タンパク質にカップリングされ、細胞傷害性物質として作用する任意の基を意味する。適切なエフェクター基の例は、放射性同位体又は放射性核種(例えば、H、14C、15N、35S、90Y、99Tc、111In、125I、131I)である。他の適切な基には、毒素、治療基、化学療法基が含まれる。適切な基の例には、カリチアマイシン、アウリスタチン、ゲルダナマイシン及びマイタンシンが含まれる。いくつかの実施形態では、エフェクター基は、潜在的な立体障害を低減するために様々な長さのスペーサーアームを介して抗原結合タンパク質にカップリングされる。
一般に、標識は、それが検出されることになるアッセイに応じて様々なクラスに分類される:a)同位体標識(放射性又は重同位体であり得る)、b)磁性標識(例えば、磁性粒子)、c)酸化還元活性部分、d)光学色素;酵素基(例えば、西洋ワサビペルオキシダーゼ、β-ガラクトシダーゼ、ルシフェラーゼ、アルカリホスファターゼ)、e)ビオチン化された基、及びf)二次レポーターによって認識される所定のポリペプチドエピトープ(例えば、ロイシンジッパー対配列、二次抗体向けの結合部位、金属結合ドメイン、エピトープタグ等)。いくつかの実施形態では、標識基は、潜在的な立体障害を低減するために様々な長さのスペーサーアームを介して抗原結合タンパク質にカップリングされる。タンパク質の標識方法は、当該技術分野において様々なものが知られている。
特定の標識には、光学色素が含まれ、こうした光学色素には、限定はされないが、発色団、リン光体及びフルオロフォアが含まれ、後者は多くの場合に特異的である。フルオロフォアは、「小分子」蛍光体又はタンパク質性蛍光体のいずれかであり得る。
「蛍光標識」は、その固有の蛍光特性を介して検出し得る任意の分子が意図される。適切な蛍光標識には、限定はされないが、フルオレセイン、ローダミン、テトラメチルローダミン、エオシン、エリスロシン、クマリン、メチル-クマリン、ピレン、マラカイトグリーン(Malacite green)、スチルベン、ルシファーイエロー(Lucifer Yellow)、Cascade BlueJ、Texas Red、IAEDANS、EDANS、BODIPY FL、LC Red640、Cy5、Cy5.5、LC Red705、Oregon green、Alexa-Fluor色素(Alexa Fluor 350、Alexa Fluor 430、Alexa Fluor488、Alexa Fluor546、Alexa Fluor568、Alexa Fluor594、Alexa Fluor633、Alexa Fluor660、Alexa Fluor680)、Cascade Blue、Cascade Yellow及びR-フィコエリトリン(PE)(Molecular Probes、Eugene、OR)、FITC、ローダミン、ならびにTexas Red(Pierce、Rockford、IL)、Cy5、Cy5.5、Cy7(Amersham Life Science、Pittsburgh、PA)が含まれる。フルオロフォアを含む、適切な光学色素については、Molecular Probes Handbook by Richard P.Hauglandに記載されており、この文献は参照によって本明細書に明確に組み込まれる。
適切なタンパク質性蛍光標識には、限定はされないが、Renilla種、Ptilosarcus種、又はAequorea種のGFPを含む、緑色蛍光タンパク質(Chalfie et al.,1994,Science 263:802-805)、EGFP(Clontech Labs.,Inc.,Genbank受入番号U55762)、青色蛍光タンパク質(BFP、Quantum Biotechnologies,Inc.,Quebec,Canada;Stauber,1998,Biotechniques 24:462-471、Heim et al.,1996,Curr.Biol.6:178-182)、高感度黄色蛍光タンパク質(EYFP、Clontech Labs.,Inc.)、ルシフェラーゼ(Ichiki et al.,1993,J.Immunol.150:5408-5417)、βガラクトシダーゼ(Nolan et al.,1988,Proc.Natl.Acad.Sci.U.S.A.85:2603-2607)及びウミシイタケのもの(Renilla)(国際公開第92/15673号パンフレット、国際公開第95/07463号パンフレット、国際公開第98/14605号パンフレット、国際公開第98/26277号パンフレット、国際公開第99/49019号パンフレット、米国特許第5292658号明細書、同第5418155号明細書、同第5683888号明細書、同第5741668号明細書、同第5777079号明細書、同第5804387号明細書、同第5874304号明細書、同第5876995号明細書、同第5925558号明細書)も含まれる。
本明細書に記載の抗原結合タンパク質又はその一部をコードする核酸も提供され、こうした核酸には、抗体の1つもしくは両方の鎖、又はその断片、誘導体、変異タンパク質、もしくは変異体をコードする核酸と、重鎖可変領域又はCDRのみをコードするポリヌクレオチドと、ポリペプチドをコードするポリヌクレオチドの同定、分析、変異導入、又は増幅のためのハイブリダイゼーションプローブ、PCRプライマー、又はシークエンシングプライマーとしての使用に十分なポリヌクレオチドと、ポリヌクレオチドの発現を阻害するためのアンチセンス核酸と、こうしたものの相補配列と、が含まれる。核酸は、任意の長さであり得る。核酸は、例えば、5、10、15、20、25、30、35、40、45、50、75、100、125、150、175、200、250、300、350、400、450、500、750、1,000、1,500、3,000、5,000、又はそれを超える数のヌクレオチド長であり得、及び/又は例えば、調節配列などの追加の配列を1つもしくは複数含み得、及び/又は例えば、ベクターなど、より長い核酸の一部であり得る。核酸は、一本鎖又は二本鎖であり得、RNA及び/又はDNAヌクレオチド、及びその人工的な変異体(例えば、ペプチド核酸)を含み得る。本明細書で提供される任意の可変領域をこうした定常領域に付加することで完全な重鎖配列及び軽鎖配列を形成し得る。しかしながら、こうした定常領域配列は、特定の例として提供されるにすぎないことを理解されるべきである。いくつかの実施形態では、可変領域配列は、当該技術分野において知られる他の定常領域配列に連結される。
特定の抗原結合タンパク質又はその一部(例えば、全長抗体、重鎖もしくは軽鎖、可変ドメイン、又はCDRH1、CDRH2、CDRH3、CDRL1、CDRL2、もしくはCDRL3)をコードする核酸は、GIPR又はその免疫原性断片で免疫化したマウスのB細胞から単離してよい。核酸は、ポリメラーゼ連鎖反応(PCR)などの通常の手順によって単離してよい。ファージディスプレイは、それによって抗体及び他の抗原結合タンパク質の誘導体を調製し得る既知の手法の別の例である。1つの手法では、目的とする抗原結合タンパク質の構成要素であるポリペプチドは、任意の適切な組換え発現系において発現され、発現したポリペプチドは、会合によって抗原結合タンパク質を形成することが可能である。
1つの態様では、特定のハイブリダイゼーション条件下で他の核酸にハイブリダイズする核酸がさらに提供される。核酸のハイブリダイズ法は、当該技術分野においてよく知られている。例えば、Current Protocols in Molecular Biology,John Wiley & Sons,N.Y.(1989),6.3.1-6.3.6を参照されたい。本明細書に定義される中程度に厳密なハイブリダイゼーション条件では、5x塩化ナトリウム/クエン酸ナトリウム(SSC)、0.5%のSDS、1.0mMのEDTA(pH8.0)を含む事前洗浄液、約50%ホルムアミド、6xSSCを含むハイブリダイゼーション緩衝液及び約55℃のハイブリダイゼーション温度(又は約50%のホルムアミドを含むものなど、他の類似のハイブリダイゼーション溶液が42℃のハイブリダイゼーション温度で使用される)、ならびに0.5xSSC、0.1%のSDSにおいて60℃で行う洗浄条件が使用される。厳密なハイブリダイゼーション条件では、6xSSCにおいて45℃でハイブリダイゼーションが実施された後、0.1xSSC、0.2%のSDSにおいて68℃で1回又は複数回の洗浄が実施される。さらに、当業者であれば、ハイブリダイゼーションの厳密性が増加又は減少するようにハイブリダイゼーション条件及び/又は洗浄条件を操作することができ、その結果、互いに少なくとも65%、少なくとも70%、少なくとも75%、少なくとも80%、少なくとも85%、少なくとも90%、少なくとも95%、少なくとも98%、又は少なくとも99%同一のヌクレオチド配列を含む核酸は、典型的には、互いにハイブリダイズした状態を保持する。
ハイブリダイゼーション条件の選択に影響する基本パラメーター及び適切な条件を考案するためのガイダンスは、例えば、Sambrook,Fritsch,and Maniatis(前出の2001,Molecular Cloning:A Laboratory Manual,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.及びCurrent Protocols in Molecular Biology,1995,Ausubel et al.,eds.,John Wiley & Sons,Inc.,sections 2.10 and 6.3-6.4)によって示されており、例えば、核酸の長さ及び/又は塩基組成に基づいて当業者が容易に決定することができる。
核酸への変異導入によって変更を導入することができ、それによってその核酸がコードするポリペプチド(例えば、抗体又は抗体誘導体)のアミノ酸配列に変更が生じる。変異は、当該技術分野において知られる任意の手法を使用して導入することができる。1つの実施形態では、例えば、部位特異的変異導入プロトコールを使用して1つ又は複数の特定のアミノ酸残基が変更される。別の実施形態では、例えば、ランダム変異導入プロトコールを使用し、1つ又は複数の無作為に選択される残基が変更される。実施方法はどうあれ、変異ポリペプチドを発現させ、その所望の特性をスクリーニングすることができる。
変異は、それがコードするポリペプチドの生物学的活性を顕著に改変することなく核酸に導入することができる。例えば、非必須アミノ酸残基位置でのアミノ酸置換につながるヌクレオチド置換を実施することができる。あるいは、それがコードするポリペプチドの生物学的活性を選択的に変更する1つ又は複数の変異を核酸に導入することができる。例えば、変異によって生物学的活性を量的又は質的に変更することができる。量的な変更の例には、活性の増加、低減、又は除去が含まれる。質的な変更の例には、抗体の抗原特異性の変更が含まれる。1つの実施形態では、本明細書に記載の抗原結合タンパク質のいずれかをコードする核酸は、当該技術分野においてよく確立された分子生物学手法を使用して変異導入することでアミノ酸配列を改変することができる。
別の態様では、核酸配列の検出のためのプライマー又はハイブリダイゼーションプローブとしての使用に適した核酸分子が提供される。核酸分子は、全長ポリペプチドをコードする核酸配列の一部のみを含み得、例えば、プローブもしくはプライマーとして使用することができる断片、又はポリペプチドの活性部分をコードする断片である。
核酸の配列に基づくプローブは、核酸又は類似の核酸の検出に使用することができ、こうした類似の核酸は、例えば、1つのポリペプチドをコードする複数の転写物である。プローブは、例えば、放射性同位体、蛍光化合物、酵素、又は酵素の補因子などの標識基を含み得る。そのようなプローブは、ポリペプチドを発現する細胞の同定に使用することができる。
別の態様では、ポリペプチド又はその一部(例えば、1つもしくは複数のCDR又は1つもしくは複数の可変領域ドメインを含む断片)をコードする核酸を含むベクターが提供される。ベクターの例には、限定はされないが、プラスミド、ウイルスベクター、非エピソーム哺乳類ベクター及び発現ベクター(例えば、組換え発現ベクター)が含まれる。組換え発現ベクターは、宿主細胞における核酸の発現に適した形態の核酸を含み得る。組換え発現ベクターは、発現に使用されることになる宿主細胞に基づいて選択される1つ又は複数の調節配列を含み、こうした調節配列は、発現することになる核酸配列に機能可能なように連結される。調節配列には、多くの型の宿主細胞においてヌクレオチド配列の恒常的な発現を誘導するもの(例えば、SV40初期遺伝子エンハンサー、ラウス肉腫ウイルスプロモーター及びサイトメガロウイルスプロモーター)、特定の宿主細胞のみにおいてヌクレオチド配列の発現を誘導するもの(例えば、組織特異的調節配列であり、Voss et al.,1986,Trends Biochem.Sci.11:287、Maniatis et al.,1987,Science 236:1237を参照されたい。この文献は、それらの全体が参照によって本明細書に組み込まれる)、ならびに特定の処理又は条件に応じてヌクレオチド配列の誘導性の発現を誘導するもの(例えば、哺乳類細胞におけるメタロチオニン(metallothionin)プロモーター、ならびに原核生物系と真核生物系との両方におけるテトラサイクリン(tet)応答性及び/又はストレプトマイシン応答性プロモーター(同文献を参照されたい)が含まれる。発現ベクターの設計は、形質転換されることになる宿主細胞の選択、所望のタンパク質の発現レベルなどの因子に依存し得ることを当業者であれば理解するであろう。発現ベクターは、宿主細胞に導入することにより、本明細書に記載の核酸によってコードされる融合タンパク質又はペプチドを含む、タンパク質又はペプチドを生成することができる。
別の態様では、組換え発現ベクターが導入された宿主細胞が提供される。宿主細胞は、任意の原核細胞(例えば、E.coli)又は真核細胞(例えば、酵母、昆虫、もしくは哺乳類細胞(例えば、CHO細胞))であり得る。ベクターDNAは、通常の形質転換手法又は遺伝子導入手法を介して原核細胞又は真核細胞に導入することができる。哺乳類細胞の安定した遺伝子導入は、使用される発現ベクター及び遺伝子導入手法に依存し、僅かな細胞画分のみでそのゲノムへの外来DNAの組み込みが生じ得ることが知られている。こうした組み込み体を同定及び選択するために、選択可能マーカー(例えば、抗生物質耐性のためのもの)をコードする遺伝子が、目的とする遺伝子と共に宿主細胞に導入されることが一般的である。好ましい選択可能マーカーには、G418、ハイグロマイシン及びメトトレキサートなどの薬物に対する耐性を付与するものが含まれる。導入核酸が安定的に遺伝子導入された細胞は、数ある方法の中でも特に、薬物選択によって同定することができる(例えば、選択可能マーカー遺伝子が組み込まれた細胞は生き延びることになるが、他の細胞は死に至る)。
上記のポリヌクレオチドを少なくとも1つ含む、プラスミド、発現ベクター、転写カセット、又は発現カセットの形態の発現系及び構築物、ならびにそのような発現系又は構築物を含む宿主細胞も本明細書で提供される。
本明細書で提供される抗原結合タンパク質は、多くの通常の手法のいずれによって調製してもよい。例えば、GIPR抗原結合タンパク質は、当該技術分野において知られる任意の手法を使用して組換え発現系によって生成し得る。例えば、Monoclonal Antibodies,Hybridomas:A New Dimension in Biological Analyses,Kennet et al.(eds.)Plenum Press,New York(1980)及びAntibodies:A Laboratory Manual,Harlow and Lane(eds.),Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.(1988)を参照されたい。
抗原結合タンパク質は、ハイブリドーマ細胞株(例えば、具体的には、抗体をハイブリドーマにおいて発現させてよい)又はハイブリドーマ以外の細胞株において発現させることができる。抗体をコードする発現構築物は、哺乳類宿主細胞、昆虫宿主細胞、又は微生物宿主細胞の形質転換に使用することができる。形質転換は、宿主細胞にポリヌクレオチドを導入するための任意の既知の方法を使用して実施することができ、こうした方法には、例えば、当該技術分野において知られる遺伝子導入手順によってウイルス又はバクテリオファージにポリヌクレオチドをパッケージングし、その構築物で宿主細胞の形質導入を行うものが含まれ、こうした方法は、米国特許第4,399,216号明細書、同第4,912,040号明細書、同第4,740,461号明細書、同第4,959,455号明細書によって例示されている。使用される最適な形質転換手順は、形質転換される宿主細胞がどの型かということに依存することになる。哺乳類細胞への異種性ポリヌクレオチドの導入方法は当該技術分野においてよく知られており、こうした導入方法には、限定はされないが、デキストラン介在型遺伝子導入、リン酸カルシウム沈殿、ポリブレン介在型遺伝子導入、プロトプラスト融合、電気穿孔、リポソームへのポリヌクレオチドの封入、核酸と正に荷電した脂質との混合及び核へのDNAの直接的なマイクロインジェクションが含まれる。
組換え発現構築物は、典型的には、下記のものの1つ又は複数を含むポリペプチドをコードする核酸分子を含む:本明細書で提供されるCDRの1つもしくは複数、軽鎖定常領域、軽鎖可変領域、重鎖定常領域(例えば、C1、C2及び/又はC3)及び/又はGIPR抗原結合タンパク質の別の骨格部分。こうした核酸配列は、標準的な核酸連結手法を使用して適切な発現ベクターに挿入される。1つの実施形態では、重鎖定常領域又は軽鎖定常領域は、抗GIPR特異的な重鎖可変領域又は軽鎖可変領域のC末端に付加され、発現ベクターに連結される。ベクターは、典型的には、用いられる特定の宿主細胞において機能性となるように選択される(すなわち、ベクターは、宿主の細胞機構と適合し、遺伝子の増幅及び/又は発現を可能にし得る)。いくつかの実施形態では、ジヒドロ葉酸還元酵素などのタンパク質レポーターを使用するタンパク質-断片補完アッセイを用いるベクターが使用される(例えば、米国特許第6,270,964号明細書を参照されたい。この文献は、参照によって本明細書に組み込まれる)。適切な発現ベクターは、例えば、Invitrogen Life Technologies又はBD Biosciences(以前は「Clontech」)から購入することができる。抗体及び断片のクローニング及び発現に有用な他のベクターには、Bianchi and McGrew,2003,Biotech.Biotechnol.Bioeng.84:439-44に記載のものが含まれ、この文献は、参照によって本明細書に組み込まれる。追加の適切な発現ベクターは、例えば、Methods Enzymol.,vol.185(D.V.Goeddel,ed.),1990,New York:Academic Pressにおいて議論されている。
典型的には、宿主細胞のいずれかにおいて使用される発現ベクターは、プラスミドを維持するための配列と、外来性ヌクレオチド配列のクローニング及び発現のための配列とを含むことになる。そのような配列は、まとめて「隣接配列」と称され、特定の実施形態では、典型的には、下記のヌクレオチド配列の1つ又は複数を含むことになる:プロモーター、1つ又は複数のエンハンサー配列、複製起点、転写終結配列、ドナースプライス部位及びアクセプタープライス部位を含む完全イントロン配列、ポリペプチドの分泌のためのリーダー配列をコードする配列、リボソーム結合部位、ポリアデニル化配列、発現することになるポリペプチドをコードする核酸を挿入するためのポリリンカー領域、ならびに選択可能マーカー要素。こうした配列はそれぞれ、以下に議論される。
任意選択で、ベクターは、「タグ」をコードする配列、すなわちGIPR抗原結合タンパク質をコードする配列の5’末端又は3’末端に位置するオリゴヌクレオチド分子を含み得、こうしたオリゴヌクレオチド配列は、ポリHis(ヘキサHisなど)をコードするか、又はそれに対する市販の抗体が存在する、FLAG(登録商標)、HA(インフルエンザウイルスのヘマグルチニン)、もしくはmycなどの別の「タグ」をコードする。このタグは、典型的には、ポリペプチドの発現に際してポリペプチドに融合され、宿主細胞からのGIPR抗原結合タンパク質の親和性精製又は検出のための手段として役立てることができる。親和性精製は、例えば、タグに対する抗体を親和性マトリックスとして使用するカラムクロマトグラフィーによって達成することができる。その後、任意選択で、切断のために特定のペプチダーゼを使用するなど、様々な手段によって精製GIPR抗原結合タンパク質からタグを除去することができる。
隣接配列は、同種性(すなわち宿主細胞と同一の種及び/又は株に由来する)、異種性(すなわち宿主細胞の種又は株以外の種に由来する)、ハイブリッド(すなわち複数の供給源に由来する隣接配列の組み合わせ)、合成のもの、あるいは天然のものであり得る。したがって、隣接配列の供給源は、任意の原核生物もしくは真核生物、任意の脊椎生物もしくは無脊椎生物、又は任意の植物であり得るが、但し、隣接配列が宿主の細胞機構において機能性であり、宿主の細胞機構によって活性化可能であることが条件である。
ベクターにおいて有用な隣接配列は、当該技術分野においてよく知られるいくつかの方法のいずれによって得てもよい。典型的には、本明細書で有用な隣接配列は、マッピング及び/又は制限エンドヌクレアーゼ消化によって事前に同定されていることになるため、適切な制限エンドヌクレアーゼを使用し、適切な組織源から単離することができる。場合により、隣接配列のヌクレオチド配列のすべてが既知であり得る。この場合、核酸合成又はクローニングのための本明細書に記載の方法を使用して隣接配列を合成してよい。
隣接配列のすべてが既知であるか、又はその一部のみが既知であるかを問わず、ポリメラーゼ連鎖反応(PCR)を使用して隣接配列を得てよく、及び/又は同一もしくは別の種に由来するオリゴヌクレオチド及び/又は隣接配列断片などの適切なプローブを用いたゲノムライブラリーのスクリーニングによって隣接配列を得てよい。隣接配列が未知である場合、隣接配列を含むDNAの断片は、例えば、コード配列又は1つもしくは複数の別の遺伝子さえ含み得るDNAの大型断片から単離してよい。制限エンドヌクレアーゼで消化することで適切なDNA断片を生成した後、アガロースゲルによる精製、Qiagen(登録商標)のカラムクロマトグラフィー(Chatsworth,CA)、又は当業者に知られる他の方法を使用して単離することによって単離を達成してよい。当業者であればこの目的を達成するための適切な酵素の選択を容易に考えつくであろう。
複製起点は、典型的には、商業的に購入された原核生物発現ベクターの一部であり、起点は、宿主細胞におけるベクターの増幅に役立つ。選択するベクターが複製部位の起点を含まないのであれば、既知の配列に基づいて化学的に合成し、ベクターに連結してよい。例えば、プラスミドpBR322(New England Biolabs,Beverly,MA)に由来する複製起点は、ほとんどのグラム陰性細菌に適しており、様々なウイルス性の起点(例えば、SV40、ポリオーマ、アデノウイルス、水疱性口内炎ウイルス(VSV)、又はHPVもしくはBPVなどのパピローマウイルス)が哺乳類細胞におけるベクターのクローニングに有用である。一般に、複製要素の起点は、哺乳類の発現ベクターには不要である(例えば、SV40の起点は、それがウイルス性の初期プロモーターも含むという理由のみで使用されることが多い)。
転写終結配列は、典型的には、ポリペプチドをコードする領域の末端に対して3’側に位置し、転写の終結に役立つ。通常、原核細胞における転写終結配列は、G-C含量の高い断片であり、ポリ-T配列が後に続く。この配列は、ライブラリーから容易にクローニングされるか、又はさらにベクターの一部として商業的に購入される一方、本明細書に記載のものなど、核酸合成のための方法を使用しても容易に合成することもできる。
選択可能マーカー遺伝子は、選択培地において増殖する宿主細胞の生存及び増殖に必要なタンパク質をコードする。典型的な選択マーカー遺伝子は、(a)原核宿主細胞について、例えば、アンピシリン、テトラサイクリン、もしくはカナマイシンなどの抗生物質もしくは他の毒素に対する耐性を付与するタンパク質、(b)細胞の栄養要求性の欠損を補完するタンパク質、又は(c)複合培地もしくは定義培地からは利用不可能な重要栄養素を供給するタンパク質をコードする。特定の選択可能マーカーは、カナマイシン耐性遺伝子、アンピシリン耐性遺伝子及びテトラサイクリン耐性遺伝子である。好都合なことに、原核宿主細胞と真核宿主細胞との両方における選択にネオマイシン耐性遺伝子を使用してもよい。
発現することになる遺伝子の増幅に他の選択可能遺伝子を使用してよい。増幅は、増殖又は細胞の生存に重要なタンパク質の産生に必要な遺伝子が、組換え細胞の後継世代の染色体内に直列で反復して生じるプロセスである。哺乳類細胞に適した選択可能マーカーの例には、ジヒドロ葉酸還元酵素(DHFR)遺伝子及びプロモーターの存在しないチミジンキナーゼ遺伝子が含まれる。哺乳類細胞の形質転換体は、ベクターに選択可能遺伝子が存在するという理由で形質転換体のみが独特に生存適応する選択圧力下に置かれる。培地中の選択薬剤濃度を連続的に増加させる条件下で形質転換細胞を培養することによって選択圧力をかけ、それによって選択可能遺伝子と、GIPRポリペプチドに結合する抗原結合タンパク質などの別の遺伝子をコードするDNAと、の両方が増幅される。結果として、増幅されたDNAから合成される抗原結合タンパク質などのポリペプチドの量が増加する。
リボソーム結合部位は、通常、mRNAの翻訳の開始に必要であり、シャイン・ダルガーノ配列(原核生物)又はコザック配列(真核生物)によって特徴付けられる。要素は、典型的には、プロモーターに対しては3’側に位置し、発現することになるポリペプチドのコード配列に対しては5’側に位置する。
真核宿主細胞発現系においてグリコシル化が望まれる場合など、場合により、グリコシル化又は収量を改善するために様々なプレ配列又はプロ配列の操作を実施してよい。例えば、特定のシグナルペプチドのペプチダーゼ切断部位を改変するか、又はプロ配列を追加してよく、こうしたことは、グリコシル化にも影響を与え得る。最終的なタンパク質産物は、発現に伴って完全には除去されずに残存し得た1つ又は複数の追加のアミノ酸を(成熟タンパク質の最初のアミノ酸に対して)-1の位置に有し得る。例えば、最終的なタンパク質産物には、ペプチダーゼ切断部位に見られるアミノ酸残基がアミノ末端に1つ又は2つ付加されて存在し得る。あるいは、酵素による切断部位をいくつか使用すると、成熟ポリペプチド内のそのような領域を酵素が切断するのであれば、結果的に所望のポリペプチドが僅かに切り詰められた形態で生じ得る。
発現及びクローニングは、典型的には、宿主生物によって認識され、GIPR抗原結合タンパク質をコードする分子に機能可能なように連結されたプロモーターを含むことになる。プロモーターは、構造遺伝子(一般に、約100~1000bp以内)の開始コドンの上流(すなわち5’側)に位置し、構造遺伝子の転写を制御する非転写配列である。プロモーターは、慣例的に、誘導性プロモーター及び恒常性プロモーターという2つのクラスのうちの1つに分類される。誘導性プロモーターは、栄養素の有無又は温度変化など、培養条件の何らかの変化に応じて、その制御下のDNAからの転写のレベルの増加を引き起こす。一方、恒常性プロモーターは、それが機能可能なように連結された遺伝子を一様に転写し、すなわち、遺伝子の発現は、ほとんど制御されないか、又は全く制御されない。様々な潜在的宿主細胞によって認識されるプロモーターは、非常に多くのものがよく知られている。制限酵素消化によって供給源のDNAからプロモーターを取り出し、所望のプロモーター配列をベクターに挿入することにより、GIPR抗原結合タンパク質を構成する重鎖又は軽鎖をコードするDNAに対して適切なプロモーターが機能可能なように連結される。
酵母宿主での使用に適したプロモーターも当該技術分野においてよく知られている。酵母エンハンサーは、酵母プロモーターと共に有利に使用される。哺乳類宿主細胞での使用に適したプロモーターはよく知られており、こうしたプロモーターには、限定はされないが、ポリオーマウイルス、鶏痘ウイルス、アデノウイルス(アデノウイルス2型など)、ウシパピローマウイルス、トリ肉腫ウイルス、サイトメガロウイルス、レトロウイルス、B型肝炎ウイルス及びサルウイルス40(SV40)などのウイルスのゲノムから得られたものが含まれる。他の適切な哺乳類プロモーターには、例えば、熱ショックプロモーター及びアクチンプロモーターなどの異種性の哺乳類プロモーターが含まれる。
GIPR抗原結合タンパク質を構成する軽鎖又は重鎖をコードするDNAの、高等真核生物による転写を増加させるために、ベクターにエンハンサー配列を挿入してよい。エンハンサーは、プロモーターに作用することで転写を増加させるシス作用性のDNA要素であり、通常、その長さは約10~300bpである。エンハンサーは、転写単位の5’側と3’側との両方の位置に見出されており、配向及び位置に相対的に依存性である。哺乳類遺伝子(例えば、グロビン、エラスターゼ、アルブミン、アルファ-胎児タンパク質及びインスリン)由来の利用可能なエンハンサー配列がいくつか知られている。しかしながら、典型的には、ウイルスに由来するエンハンサーが使用される。SV40のエンハンサー、サイトメガロウイルスの初期プロモーターのエンハンサー、ポリオーマのエンハンサー及びアデノウイルスのエンハンサーが当該技術分野において知られており、こうしたエンハンサーは、真核生物プロモーターを活性化するための増進要素の例である。エンハンサーは、ベクターにおいてコード配列の5’側又は3’側のいずれに位置してもよいが、典型的には、プロモーターの5’側の部位に位置する。細胞外への抗体の分泌を促進するために、適切な天然又は異種性のシグナル配列(リーダー配列又はシグナルペプチド)をコードする配列を発現ベクターに組み込むことができる。シグナルペプチド又はリーダーの選択は、抗体が産生することになる宿主細胞の型に依存し、天然のシグナル配列を異種性のシグナル配列と交換することができる。哺乳類宿主細胞において機能性であるシグナルペプチドの例には、下記のものが含まれる:米国特許第4,965,195号明細書に記載のインターロイキン-7(IL-7)のシグナル配列、Cosman et al.,1984,Nature 312:768に記載のインターロイキン-2受容体のシグナル配列、欧州特許第0367566号明細書に記載のインターロイキン-4受容体のシグナルペプチド、米国特許第4,968,607号明細書に記載のI型のインターロイキン-1受容体のシグナルペプチド、欧州特許第0460846号明細書に記載のII型のインターロイキン-1受容体のシグナルペプチド。
1つの実施形態では、リーダー配列は、配列番号3158(atggacatga gagtgcctgc acagctgctg ggcctgctgc tgctgtggct gagaggcgcc agatgc)によってコードされる配列番号3157(MDMRVPAQLL GLLLLWLRGA RC)を含む。別の実施形態では、リーダー配列は、配列番号3160(atggcctggg ctctgctgct cctcaccctc ctcactcagg gcacagggtc ctgggcc)によってコードされる配列番号3159(MAWALLLLTL LTQGTGSWA)を含む。
提供される発現ベクターは、市販のベクターなどの出発ベクターから構築してよい。そのようなベクターは、所望の隣接配列のすべてを含んでも含まなくてもよい。本明細書に記載の隣接配列の1つ又は複数がベクターに最初から存在しない場合、それらを個々に得てベクターに連結してよい。それぞれの隣接配列の取得に使用される方法は、当業者によく知られている。
ベクターを構築し、GIPR抗原結合配列を構成する軽鎖、重鎖、又は軽鎖及び重鎖をコードする核酸分子をベクターの適切な部位に挿入した後、増幅及び/又はポリペプチド発現のための適切な宿主細胞に完成ベクターを挿入してよい。抗原結合タンパク質のための発現ベクターでの選択宿主細胞への形質転換は、遺伝子導入、感染、リン酸カルシウムによる共沈、電気穿孔、マイクロインジェクション、リポフェクション、DEAE-デキストラン介在型遺伝子導入、又は他の既知の手法を含む、よく知られる方法によって達成してよい。選択される方法は、使用されることになる宿主細胞の型に一部依存することになる。こうした方法及び他の適切な方法は、当業者によく知られており、例えば、前出のSambrook et al.,2001に示されている。
宿主細胞は、適切な条件下で培養されると、抗原結合タンパク質を合成し、こうした抗原結合タンパク質は、(宿主細胞がそれを培地に分泌するのであれば)培地から続けて収集するか、又は(それが分泌されないのであれば)それを産生する宿主細胞から直接的に収集することができる。適切な宿主細胞の選択は、様々な因子に依存することになり、こうした因子は、所望の発現レベル、活性に望ましいか又は必須のポリペプチド修飾(グリコシル化又はリン酸化など)及び生物学的に活性な分子へのフォールディングのし易さなどである。
発現のための宿主として利用可能な哺乳類細胞株は、当該技術分野においてよく知られており、こうした哺乳類細胞株には、限定はされないが、American Type Culture Collection(ATCC)から利用可能な不死化細胞株(限定はされないが、チャイニーズハムスター卵巣(CHO)細胞、HeLa細胞、ベビーハムスター腎臓(BHK)細胞、サル腎臓細胞(COS)、ヒト肝細胞癌細胞(例えば、Hep G2)及び多くの他の細胞株を含む)が含まれる。特定の実施形態では、GIPR結合特性を有する抗原結合タンパク質をどの細胞株が高レベルで発現し、恒常的に産生するかを決定することによって細胞株を選択してよい。別の実施形態では、それ自体の抗体は産生しないが、異種性抗体を産生及び分泌する能力を有するB細胞系譜由来の細胞株を選択することができる。
1つの実施形態では、本発明は、表2、表3、表4及び表5において特定されるポリヌクレオチドの1つ又は複数を発現する細胞によって産生される抗原結合タンパク質を対象とする。
1つの態様では、GIPR結合タンパク質は、長期治療のために投与される。別の態様では、結合タンパク質は、救急治療のために投与される。
GIPR抗原結合タンパク質を含む医薬組成物も提供され、こうした医薬組成物は、本明細書に開示の予防方法及び治療方法のいずれにおいても利用することができる。1つの実施形態では、治療的に有効な量の1つ又は複数の抗原結合タンパク質、ならびに医薬的に許容可能な希釈剤、担体、可溶化剤、乳化剤、保存剤及び/又は補助剤も提供される。許容可能な製剤材料は、用いられる投与量及び濃度でレシピエントに無毒なものである。
特定の実施形態では、医薬組成物は、組成物の、例えば、pH、モル浸透圧濃度、粘性、透明性、色調、等張性、匂い、無菌性、安定性、溶解速度もしくは放出速度、吸収性、又は透過性の改変、維持、又は保存を目的とする製剤材料を含み得る。そのような実施形態では、適切な製剤材料には、限定はされないが、アミノ酸(グリシン、グルタミン、アスパラギン、アルギニン、もしくはリジンなど)、抗微生物剤、抗酸化剤(アスコルビン酸、亜硫酸ナトリウム、もしくは亜硫酸水素ナトリウムなど)、緩衝剤(ホウ酸塩、炭酸水素塩、Tris-HCl、クエン酸塩、リン酸塩、もしくは他の有機酸など)、嵩増し剤(マンニトールもしくはグリシンなど)、キレート剤(エチレンジアミン四酢酸(EDTA)など)、複合化剤(カフェイン、ポリビニルピロリドン、ベータ-シクロデキストリン、もしくはヒドロキシプロピル-ベータ-シクロデキストリンなど)、増量剤、単糖、二糖及び他の糖質(グルコース、マンノース、もしくはデキストリンなど)、タンパク質(血清アルブミン、ゼラチン、もしくは免疫グロブリンなど)、着色剤、香味剤及び希釈剤、乳化剤、親水性ポリマー(ポリビニルピロリドンなど)、低分子量ポリペプチド、造塩対イオン(ナトリウムなど)、保存剤(塩化ベンザルコニウム、安息香酸、サリチル酸、チメロサール、フェネチルアルコール、メチルパラベン、プロピルパラベン、クロルヘキシジン、ソルビン酸、もしくは過酸化水素など)、溶剤(グリセリン、プロピレングリコール、もしくはポリエチレングリコールなど)、糖アルコール(マンニトールもしくはソルビトールなど)、懸濁剤、サーファクタントもしくは湿潤剤(プルロニック(pluronic)、PEG、ソルビタンエステル、ポリソルベート(ポリソルベート20など)、ポリソルベート、トリトン(triton)、トロメタミン、レシチン、コレステロール、チロキサパール(tyloxapal)など)、安定性増進剤(スクロースもしくはソルビトールなど)、浸透圧増進剤(ハロゲン化アルカリ金属などであり、好ましくは、塩化ナトリウムもしくは塩化カリウム、マンニトールソルビトール)、送達媒体、希釈剤、賦形剤及び/又は医薬補助剤が含まれる。REMINGTON’S PHARMACEUTICAL SCIENCES,18”Edition,(A.R.Genrmo,ed.),1990,Mack Publishing Companyでは、医薬組成物に組み込むことができる適切な薬剤についての追加の詳細及び選択肢が提供されている。
特定の実施形態では、最適な医薬組成物は、例えば、意図される投与経路、送達形式及び所望の投与量に応じて当業者によって決定されることになる。例えば、前出のREMINGTON’S PHARMACEUTICAL SCIENCESを参照されたい。特定の実施形態では、そのような組成物は、開示の抗原結合タンパク質の物理的状態、安定性、インビボでの放出速度及びインビボでの排出速度に影響し得る。特定の実施形態では、医薬組成物における主要な媒体又は担体は、水性又は非水性のいずれかの性質を有し得る。例えば、適切な媒体又は担体は、注射用水又は生理食塩水であり得る。特定の実施形態では、GIPR抗原結合タンパク質組成物は、所望の純度を有する選択組成物と、任意選択の製剤化薬剤(前出のREMINGTON’S PHARMACEUTICAL SCIENCES)とを混合することにより、凍結乾燥ケーキ又は水性溶液の形態における保存を目的として調製してよい。さらに、特定の実施形態では、GIPR抗原結合タンパク質は、スクロースなどの適切な賦形剤を使用し、凍結乾燥物として製剤化してよい。
医薬組成物は、非経口送達を目的として選択することができる。あるいは、組成物は、吸入、又は経口など、消化管を介した送達を目的として選択してよい。そのような医薬的に許容可能な組成物の調製は、当該技術分野において知られた技術である。
製剤構成成分は、好ましくは、投与部位に許容可能な濃度で存在する。特定の実施形態では、生理学的pH又は若干低めのpH、典型的には、約5~約8のpH範囲内に組成物を維持するために緩衝剤が使用される。
非経口投与が企図されるとき、治療組成物は、医薬的に許容可能な媒体に所望のヒトGIPR抗原結合タンパク質を含む発熱物質非含有の非経口的に許容可能な水性溶液の形態で提供してよい。非経口注射に特に適した媒体は、GIPR抗原結合タンパク質が、適切に保存処理がなされた無菌等張液として製剤化される無菌蒸留水である。特定の実施形態では、調製には、薬剤と共に所望の分子を製剤化することが必要であり得、こうした薬剤は、デポ注射を介して送達され得る製品の制御放出又は持続放出を提供し得る注射用微粒子、生物侵食性粒子、ポリマー化合物(ポリ乳酸もしくはポリグリコール酸など)、ビーズ、又はリポソームなどである。特定の実施形態では、ヒアルロン酸を使用し、循環期間の持続促進作用を付与してもよい。特定の実施形態では、所望の抗原結合タンパク質を導入するために埋め込み可能な薬物送達機器を使用してよい。
特定の医薬組成物は、吸入を目的として製剤化される。いくつかの実施形態では、GIPR抗原結合タンパク質は、乾燥した吸入可能な粉末として製剤化される。特定の実施形態では、GIPR抗原結合タンパク質吸入溶液は、エアロゾル送達のための噴霧剤と共に製剤化してもよい。特定の実施形態では、溶液を噴霧してよい。経肺の投与、ひいては製剤化方法は、国際特許出願PCT/米国特許出願公開第94/001875号明細書(参照によって組み込まれる)にさらに記載されており、この文献では、化学的に改変されたタンパク質の経肺送達について記載されている。いくつかの製剤は、経口的に投与することができる。この様式で投与されるGIPR抗原結合タンパク質は、錠剤及びカプセルなどの固形剤形の配合において習慣的に使用される担体と共に、又はこうした担体を使用せずに製剤化することができる。特定の実施形態では、消化管において生物学的利用率が最大化し、全身循環前分解(pre-systemic degradation)が最小化する時点で製剤の活性部分が放出されるようにカプセルを設計してよい。GIPR抗原結合タンパク質の吸収を促進するために追加の薬剤を含めることができる。希釈剤、香味剤、低融点ワックス、植物油、滑沢剤、懸濁剤、錠剤崩壊剤及び結合剤を用いてもよい。
いくつかの医薬組成物は、錠剤の製造に適した無毒の賦形剤と共に1つ又は複数のGIPR抗原結合タンパク質を有効量で混合物中に含む。無菌水又は別の適切な媒体に錠剤を溶解することによって単位用量形態で溶液を調製してよい。適切な賦形剤には、限定はされないが、炭酸カルシウム、炭酸ナトリウムもしくは炭酸水素塩、ラクトース、又はリン酸カルシウムなどの不活性な希釈剤、あるいはデンプン、ゼラチン、又はアカシアなどの結合剤、あるいはステアリン酸マグネシウム、ステアリン酸、又はタルクなどの滑沢剤が含まれる。
医薬組成物には、持続送達製剤又は制御送達製剤にGIPR結合タンパク質を含めた製剤が追加で含まれることが当業者には明らかであろう。リポソーム担体、生物侵食性微粒子又は多孔性ビーズ及びデポ注射など、様々な他の持続送達手段又は制御送達手段の製剤化手法も当業者に知られている。例えば、国際特許出願PCT/米国特許出願公開第93/00829号明細書(参照によって組み込まれる)を参照されたい。この文献では、医薬組成物を送達するための多孔性ポリマー微粒子の制御放出について記載されている。持続放出調製物は、例えば、フィルム又はマイクロカプセルなどの成形物品の形態の半透性ポリマーマトリックスを含み得る。持続放出マトリックスには、ポリエステル、ヒドロゲル、ポリ乳酸(米国特許第3,773,919号明細書及び欧州特許出願公開欧州特許第058481号明細書において開示されており、これらの文献はそれぞれ、参照によって組み込まれる)、L-グルタミン酸とガンマエチル-L-グルタメートとのコポリマー(Sidman et al.,1983,Biopolymers 2:547-556)、ポリ(2-ヒドロキシエチル-イネタクリレート(inethacrylate))(Langer et al.,1981,J.Biomed.Mater.Res.15:167-277及びLanger,1982,Chem.Tech.12:98-105)、エチレンビニルアセテート(前出のLanger et al.,1981)、又はポリ-D(-)-3-ヒドロキシブタン酸(欧州特許出願公開欧州特許第133,988号明細書)が含まれ得る。持続放出組成物は、当該技術分野において知られるいくつかの方法のいずれかによって調製することができるリポソームも含み得る。例えば、Eppstein et al.,1985,Proc.Natl.Acad.Sci.U.S.A.82:3688-3692、欧州特許出願公開欧州特許第036,676号明細書、欧州特許第088,046号明細書及び欧州特許第143,949号明細書を参照されたい。これらの文献は、参照によって組み込まれる。
インビボ投与に使用される医薬組成物は、典型的には、無菌調製物として提供される。無菌化は、無菌濾過膜を介す濾過によって達成することができる。組成物が凍結乾燥されるとき、この方法を使用する無菌化は、凍結乾燥及び再構成の前又は後のいずれかに実施してよい。非経口投与のための組成物は、凍結乾燥形態又は溶液で保存することができる。非経口組成物は、一般に、無菌のアクセスポートを有する容器に充填され、こうした容器は、例えば、静脈注射用溶液バッグ、又は皮下注射針によって貫通可能なストッパーを有するバイアルである。
特定の製剤では、抗原結合タンパク質の濃度は、少なくとも10mg/mL、少なくとも20mg/mL、少なくとも30mg/mL、少なくとも40mg/mL、少なくとも50mg/mL、少なくとも60mg/mL、少なくとも70mg/mL、少なくとも80mg/mL、少なくとも90mg/mL、少なくとも100mg/mL、又は少なくとも150mg/mLである。1つの実施形態では、医薬組成物は、抗原結合タンパク質、緩衝剤及びポリソルベートを含む。他の実施形態では、医薬組成物は、抗原結合タンパク質、緩衝剤、スクロース及びポリソルベートを含む。医薬組成物の例は、50~100mg/mLの抗原結合タンパク質、5~20mMの酢酸ナトリウム、5~10%w/vのスクロース及び0.002~0.008%w/vのポリソルベートを含むものである。特定の組成物は、例えば、65~75mg/mLの抗原結合タンパク質を含む9~11mMの酢酸ナトリウム緩衝液、8~10%w/vのスクロース及び0.005~0.006%w/vのポリソルベートを含む。特定のそのような製剤のpHは、4.5~6の範囲である。他の製剤のpHは、5.0~5.5(例えば、pHは、5.0、5.2、又は5.4)である。
医薬組成物が製剤化されると、溶液、懸濁液、ゲル、乳濁液、固体、結晶、又は脱水粉末もしくは凍結乾燥粉末として無菌バイアルにおいてそれを保存してよい。そのような製剤は、即時使用が可能な形態か、又は投与前に再構成される形態(例えば、凍結乾燥品)のいずれで保存してもよい。単一用量の投与単位を得るためのキットも提供される。特定のキットは、乾燥タンパク質を含む第1の容器と、水性製剤を含む第2の容器とを含む。特定の実施形態では、単一チャンバー及び複数チャンバーを有する充填済シリンジ(例えば、液体シリンジ及び凍結乾燥シリンジ(lyosyringe))を含むキットが提供される。用いられることになるGIPR抗原結合タンパク質含有医薬組成物の治療的に有効な量は、例えば、治療の内容及び目的に依存することになる。治療に適した投与量レベルは、送達される分子、GIPR抗原結合タンパク質が使用される徴候、投与経路、ならびに患者のサイズ(体重、体表、もしくは臓器サイズ)及び/又は状態(年齢及び総体的な健康)に一部は応じて変わることになると当業者であれば理解するであろう。特定の実施形態では、臨床医は、最適な治療効果を得るために、投与量の力価を判断し、投与経路を改変してよい。
投与頻度は、使用される製剤における特定のGIPR抗原結合タンパク質の薬物動態パラメーターに依存することになる。典型的には、臨床医は、所望の効果を達成する投与量に達するまで組成物を投与する。したがって、組成物は、単一用量として投与するか、又は一定期間にわたって2つ以上の用量(所望の分子を同一量で含んでいても含んでいなくてもよい)として投与するか、又は埋め込み機器もしくはカテーテルを介する連続注入として投与してよい。適切な投与量は、適切な用量応答データを使用して確認してよい。特定の実施形態では、抗原結合タンパク質は、長期間にわたって患者に投与することができる。特定の実施形態では、抗原結合タンパク質は、2週間ごと、1ヶ月ごと、2ヶ月ごと、3ヶ月ごと、4ヶ月ごと、5ヶ月ごと、又は6ヶ月ごとに投与される。
医薬組成物の投与経路は、例えば、経口によるもの、静脈内経路、腹腔内経路、脳内(実質内)経路、脳室内経路、筋肉内経路、眼内経路、動脈内経路、門脈内経路、又は病巣内経路による注射を介すもの、持続放出システム又は埋め込み機器によるものなどの既知の方法に従う。特定の実施形態では、組成物は、ボーラス注射によって投与するか、注入によって連続投与するか、又は埋め込み機器によって投与してよい。
組成物は、所望の分子が吸着又は封入された膜、スポンジ、又は別の適切な材料の埋め込みを介して局所的に投与してもよい。特定の実施形態では、埋め込み機器が使用される場合、機器は、任意の適切な組織又は臓器に埋め込んでよく、所望の分子の送達は、拡散、持続放出型ボーラス、又は連続投与を介するものであり得る。
開示のエクスビボに従ってGIPR抗原結合タンパク質医薬組成物を使用することが望ましくもあり得る。そのような場合、患者から取り出された細胞、組織、又は臓器は、GIPR抗原結合タンパク質医薬組成物へと曝露される。その後、続いて細胞、組織及び/又は臓器は、患者に移植されて戻される。
医師であれば、特定の患者の個々のプロファイルに応じて適切な治療指標及び標的脂質レベルを選択することができるであろう。高脂血症の治療の指針となる広く受け入れられた基準の1つは、Third Report of the National Cholesterol Education Program(NCEP)Expert Panel on Detection,Evaluation,and Treatment of the High Blood Cholesterol in Adults(Adult Treatment Panel III)Final Report,National Institutes of Health,NIH Publication No.02-5215(2002)であり、この文献の印刷刊行物は、その全体が参照によって本明細書に組み込まれる。
特定の用量の効力は、バイオマーカーの参照、又は特定の生理的パラメーターの改善によって評価することができる。適切なバイオマーカーの例には、血漿脂質に対する遊離コレステロールの比率、膜タンパク質に対する遊離コレステロールの比率、スフィンゴミエリンに対するホスファチジルコリンの比率、又はHDL-Cレベルが含まれる。
本明細書では、GIPR抗原結合タンパク質と、1つ又は複数の追加の治療剤とを含む組成物、ならびに本明細書に開示の予防方法及び治療方法において使用するための、そのような薬剤と、GIPR抗原結合タンパク質との同時又は連続的な投与方法も提供される。1つ又は複数の追加の薬剤は、GIPR抗原結合タンパク質と共に同時製剤化するか、又はGIPR抗原結合タンパク質と共に同時投与することができる。一般に、治療方法、組成物及び化合物は、同時に投与されている追加の薬剤と共に、様々な疾患病状の治療において他の治療方法と組み合わせて用いてもよい。
1つの態様では、本発明は、代謝障害を有する対象を治療する方法であって、GIPR機能を阻害するGIPRアンタゴニストと、GIPRアンタゴニストにコンジュゲートされているGLP-1受容体アゴニストとを含む組成物を対象に投与する工程を含む方法に向けられる。1つの実施形態では、GIPRアンタゴニストは、GIPRへのGIP結合を阻害する。
1つの態様では、本発明は、代謝障害を有する対象を治療する方法であって、ヒトGIPRに特異的に結合する抗体又はその機能的断片であって、1つ以上のコンジュゲーション部位でシステイン又は非標準アミノ酸のアミノ酸置換を含む抗体又はその機能的断片と、GLP-1受容体アゴニストであって、1つ以上のコンジュゲーション部位で置換されたシステイン残基又は非標準アミノ酸残基の側鎖を通して抗体又はその機能的断片にコンジュゲートされているGLP-1受容体アゴニストとを含む組成物を対象に投与する工程を含む方法に向けられる。
1つの態様では、本発明は、代謝障害を有する対象を治療する方法であって、治療有効量のGLP-1受容体アゴニストと、GIPRのアミノ酸配列と少なくとも90%のアミノ酸配列同一性を有するアミノ酸配列を有するタンパク質に特異的に結合する治療有効量のGIPRアンタゴニストであって、GLP-1受容体アゴニストにコンジュゲートされているGIPRアンタゴニストとを対象に投与する工程を含む方法に向けられる。そのようなコンジュゲート分子は、「抗GIPR/GLP-1R二重特異性コンジュゲート」、「抗GIPR/GLP-1Rペプチドコンジュゲート」、「抗GIPR/GLP-1Rコンジュゲート」又はさらに「二重特異性コンジュゲート」と呼ぶことができる。
1つの態様では、本発明は、GLP-1受容体アゴニストにコンジュゲートされたGIPRアンタゴニストを細胞に投与する工程により、それらが共発現すると細胞内へのGIPR及びGLP-1R内在化を促進する方法に向けられる。1つの実施形態では、GIPR及びGLP-1Rは、内在化されている間に共局在化する。
1つの態様では、本発明は、GLP-1受容体アゴニストにコンジュゲートされたGIPRアンタゴニストを細胞に投与する工程により、細胞内でのカルシウム流出を刺激する方法に向けられる。
1つの態様では、本発明は、GLP-1受容体アゴニストにコンジュゲートされたGIPRアンタゴニストを細胞に投与する工程により、細胞内でのβ-アレスチン動員を促進する方法に向けられる。
1つの態様では、本発明は、GLP-1受容体アゴニストにコンジュゲートされたGIPRアンタゴニストを細胞に投与する工程により、細胞からのインスリン分泌を刺激する方法に向けられる。1つの実施形態では、細胞は、ヒト膵臓小島である。
「GLP-1受容体アゴニスト」は、GLP-1受容体活性を有する化合物を指す。そのような化合物の例には、エキセンディン、エキセンディン類似体、エキセンディンアゴニスト、GLP-1(7-37)、GLP-1(7-37)類似体、GLP-1(7-37)アゴニスト及び同様のものが含まれる。GLP-1受容体アゴニスト化合物は、任意選択でアミド化してよい。「GLP-1受容体アゴニスト」及び「GLP-1受容体アゴニスト化合物」という用語は、同一の意味を有する。
「エキセンディン」という用語は、アメリカドクトカゲの唾液分泌物に見られる天然起源(又は天然起源のものの合成バージョン)のエキセンディンペプチドを含む。特定の目的エキセンディンには、エキセンディン-3及びエキセンディン-4が含まれる。本明細書に記載の方法において使用するためのエキセンディン、エキセンディン類似体及びエキセンディンアゴニストは、任意選択でアミド化してよく、酸の形態、医薬的に許容可能な塩の形態、又はその分子の任意の他の生理学的活性な形態でもあり得る。
1つの実施形態では、GLP-1受容体アゴニストは、GLP-1(7-37)又はGLP-1(7-37)類似体である。
1つの実施形態では、GLP-1受容体アゴニストは、エキセナチド、リラグルチド、リキシセナチド、アルビグルチド、デュラグルチド、セマグルチド及びタスポグルチドからなる群から選択される。
1つの態様では、本発明は、少なくとも1種のGIPRアンタゴニストの投与と組み合わせて治療有効量の少なくとも1種のGLP-1受容体アゴニストを対象に投与する工程を含む治療方法であって、GIPRアンタゴニストは、代謝障害の症状を有する対象に投与されると持続性の有益な作用を提供するGLP-1受容体アゴニストにコンジュゲートされている、治療方法に向けられる。
1つの実施形態では、少なくとも1つのGIPRアンタゴニストの投与と組み合わせた少なくとも1つのGLP-1受容体アゴニストの投与は、代謝障害の少なくとも1つの症状に持続型の有益作用を与える。
1つの実施形態では、治療的に有効な量のGLP-1受容体アゴニストと、治療的に有効な量のGIPRアンタゴニストとは、対象への投与の前に統合される。
1つの実施形態では、治療的に有効な量のGLP-1受容体アゴニストと、治療的に有効な量のGIPRアンタゴニストとは、連続的に対象に投与される。
1つの実施形態では、GLP-1受容体アゴニストの治療的に有効な量と、GIPRアンタゴニストの治療的に有効な量とは、相乗的に有効な量である。
エキセンディン-4(HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH(配列番号3163))は、アメリカドクトカゲ(Heloderma suspectum)の唾液に見られるペプチドであり、エキセンディン-3(HSDGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH(配列番号3164))は、メキシコドクトカゲ(Heloderma horridum)の唾液に見られるペプチドである。エキセンディンは、グルカゴン様ペプチド(GLP)ファミリーのいくつかのメンバーに対して幾分かのアミノ酸配列類似性を有する。例えば、エキセンディン-4は、グルカゴン様ペプチド-1(GLP-1)(7-37)(HAEGTFTSDVSSYLEGQAAKEFIAWLVKGRG(配列番号3184))と約53%の配列同一性を有する。しかしながら、エキセンディン-4は、異なる遺伝子から転写され、GLP-1が発現する哺乳類プログルカゴン遺伝子のアメリカドクトカゲ相同体ではない。さらに、GLP-1の構造の配列改変によって合成のエキセンディン-4ペプチドの構造が創出されなかったことから、エキセンディン-4は、GLP-1(7-37)の類似体ではない。Nielsen et al.,Current Opinion in Investigational Drugs,4(4):401-405(2003)。
合成のエキセンディン-4は、エキセナチドとしても知られており、BYETTA(登録商標)(Amylin Pharmaceuticals,Inc.and Eli Lilly and Company)として市販されている。エキセナチドの週1回の製剤が国際公開第2005/102293号パンフレットに記載されており、この文献の開示内容は、参照によって本明細書に組み込まれる。
「エキセンディン類似体」は、エキセンディン参照ペプチドの生物学的活性を誘発するペプチドを指し、こうしたペプチドは、受容体結合及び/又は競合試験など、当該技術分野において知られる尺度によって評価すると、エキセンディン参照ペプチド(例えば、エキセンディン-4)以上の効力を有するか、又はエキセンディン参照ペプチドと比較して5桁以内(プラスもしくはマイナス)の効力を有することが好ましく、こうした試験は、例えば、Hargrove et al.,Regulatory Peptides,141:113-119(2007)によって記載されており、この文献の開示内容は、参照によって本明細書に組み込まれる。好ましくは、エキセンディン 類似体は、そのようなアッセイにおいて1μM未満の親和性で結合することになり、より好ましくは、3nM未満、1nM未満、又は0.1nM未満の親和性で結合することになる。「エキセンディン類似体」という用語は、「エキセンディンアゴニスト」とも称され得る。好ましい実施形態では、エキセンディン類似体は、エキセンディン-4類似体である。
エキセンディン類似体には、化学的に誘導体化又は改変された本明細書に記載のペプチドも含まれ、こうしたペプチドは、例えば、非天然アミノ酸残基(例えば、タウリン、β-アミノ酸残基、γ-アミノ酸残基及びD-アミノ酸残基)を有するペプチド、アミド、エステル及びC末端ケトン改変などのC末端官能基改変を有するペプチド、ならびにアシル化アミン、シッフ塩基、又は例えば、アミノ酸であるピログルタミン酸において見られるような環化などのN末端官能基改変を有するペプチドである。エキセンディン類似体は、ペプチド模倣体などの他の化学部分も含み得る。
エキセンディン及びエキセンディン類似体の例は、エキセンディン-4(配列番号3163)、エキセンディン-3(配列番号3164)、Leu14-エキセンディン-4(配列番号3165)、Leu14,Phe25-エキセンディン-4(配列番号3166)、Leu14,Ala19,Phe25-エキセンディン-4(配列番号3167)、エキセンディン-4(1-30)(配列番号3168)、Leu14-エキセンディン-4(1-30)(配列番号3169)、Leu14,Phe25-エキセンディン-4(1-30)(配列番号3170)、Leu14,Ala19,Phe25-エキセンディン-4(1-30)(配列番号3171)、エキセンディン-4(1-28)(配列番号3172)、Leu14-エキセンディン-4(1-28)(配列番号3173)、Leu14,Phe25-エキセンディン-4(1-28)(配列番号3174)、Leu14,Ala19,Phe25-エキセンディン-4(1-28)(配列番号3175)、Leu14,Lys17,20,Ala19,Glu21,Phe25,Gln28-エキセンディン-4(配列番号3176)、Leu14,Lys17,20,Ala19,Glu21,Gln28-エキセンディン-4(配列番号3177)、オクチルGly14,Gln28-エキセンディン-4(配列番号3178)、Leu14,Gln28,オクチルGly34-エキセンディン-4(配列番号3179)、Phe,Leu14,Gln28,Lys33,Glu34,Ile35,36,Ser37-エキセンディン-4(1-37)(配列番号3180)、Phe,Leu14,Lys17,20,Ala19,Glu21,Gln28-エキセンディン-4(配列番号3181)、Val11,Ile13,Leu14,Ala16,Lys21,Phe25-エキセンディン-4(配列番号3182)、エキセンディン-4-Lys40(配列番号3183)、リキシセナチド(Sanofi-Aventis/Zealand Pharma)、CJC-1134(ConjuChem,Inc.)、[N-(17-カルボキシヘプタデカン酸)Lys20]エキセンディン-4-NH(配列番号3208)、[N-(17-カルボキシヘプタ-デカノイル)Lys32]エキセンディン-4-NH(配列番号3209)、[デスアミノ-His,N-(17-カルボキシヘプタデカノイル)Lys20]エキセンディン-4-NH(配列番号3210)、[Arg12,27,NLe14,N-(17-カルボキシ-ヘプタデカノイル)Lys32]エキセンディン-4-NH(配列番号3211)、[N-(19-カルボキシ-ノナデカノイルアミノ)Lys20]-エキセンディン-4-NH(配列番号3212)、[N-(15-カルボキシペンタデカノイルアミノ)Lys20]-エキセンディン-4-NH(配列番号3213)、[N-(13-カルボキシトリデカノイルアミノ)Lys20]エキセンディン-4-NH(配列番号3214)、[N-(11-カルボキシ-ウンデカノイル-アミノ)Lys20]エキセンディン-4-NH(配列番号3215)、エキセンディン-4-Lys40(e-MPA)-NH(配列番号3216)、エキセンディン-4-Lys40(e-AEEA-AEEA-MPA)-NH(配列番号3217)、エキセンディン-4-Lys40(e-AEEA-MPA)-NH(配列番号3218)、エキセンディン-4-Lys40(e-MPA)-アルブミン(配列番号3219)、エキセンディン-4-Lys40(e-AEEA-AEEA-MPA)-アルブミン(配列番号3220)、エキセンディン-4-Lys40(e-AEEA-MPA)-アルブミン(配列番号3221)及び同様のものである。AEEAは、[2-(2-アミノ)エトキシ)]酢酸を指す。EDAは、エチレンジアミンを指す。MPAは、マレイミドプロピオン酸を指す。エキセンディン及びエキセンディン類似体は、任意選択でアミド化してよい。
1つの実施形態では、GLP-1受容体アゴニスト化合物は、エキセンディン-4(配列番号3163)に対して少なくとも80%の配列同一性を有するエキセンディン-4類似体、エキセンディン-4(配列番号3163)に対して少なくとも85%の配列同一性を有するエキセンディン-4類似体、エキセンディン-4(配列番号3163)に対して少なくとも90%の配列同一性を有するエキセンディン-4類似体、又はエキセンディン-4(配列番号3163)に対して少なくとも95%の配列同一性を有するエキセンディン-4類似体である。
本明細書に記載の方法において有用な他のエキセンディン及びエキセンディン類似体には、国際公開第98/05351号パンフレット、国際公開第99/07404号パンフレット、国際公開第99/25727号パンフレット、国際公開第99/25728号パンフレット、国際公開第99/40788号パンフレット、国際公開第00/41546号パンフレット、国際公開第00/41548号パンフレット、国際公開第00/73331号パンフレット、国際公開第01/51078号パンフレット、国際公開第03/099314号パンフレット、米国特許第6,956,026号明細書、米国特許第6,506,724号明細書、米国特許第6,703,359号明細書、米国特許第6,858,576号明細書、米国特許第6,872,700号明細書、米国特許第6,902,744号明細書、米国特許第7,157,555号明細書、米国特許第7,223,725号明細書、米国特許第7,220,721号明細書、米国特許出願公開第2003/0036504号明細書及び米国特許出願公開第2006/0094652号明細書に記載のものが含まれ、これらの文献の開示内容は、それらの全体が参照によって本明細書に組み込まれる。
「GLP-1(7-37)類似体」は、受容体結合アッセイ又はインビボの血中グルコースアッセイなど、当該技術分野において知られる尺度によって評価すると、GLP-1(7-37)のものと類似の生物学的活性を誘発するペプチドを指し、こうしたアッセイは、例えば、Hargrove et al.,Regulatory Peptides,141:113-119(2007)によって記載されており、この文献の開示内容は、参照によって本明細書に組み込まれる。1つの実施形態では、「GLP-1(7-37)類似体」という用語は、GLP-1(7-37)のアミノ酸配列と比較すると、1つ、2つ、3つ、4つ、5つ、6つ、7つ、又は8つのアミノ酸置換、アミノ酸挿入、アミノ酸欠失、又はそれらの2つ以上の組み合わせを有するアミノ酸配列を有するペプチドを指す。1つの実施形態では、GLP-1(7-37)類似体は、GLP-1(7-36)-NHである。GLP-1(7-37)類似体には、アミド化形態、酸の形態、医薬的に許容可能な塩の形態及びその分子の任意の他の生理学的活性な形態が含まれる。一部の実施形態では、GLP-1受容体アゴニストを記載するために単純な命名法が使用されるが、例えば、[Aib8]GLP-1(7-37)は、第8位にある天然型AlaがAibで置換されているGLP-1(7-37)の類似体を指定する。
GLP-1(7-37)及びGLP-1(7-37)類似体の例には、GLP-1(7-37)(配列番号3184)、GLP-1(7-36)-NH(配列番号3185)、リラグルチド(Novo Nordiskから供給されるVICTOZA(登録商標))、アルビグルチド(GlaxoSmithKlineから供給されるSYNCRIA(登録商標))、タスポグルチド(Hoffman La-Roche)、デュラグルチド(LY2189265(Eli Lilly and Company)としても知られる)、LY2428757(Eli Lilly and Company)、デスアミノ-His,Arg26,Lys34(Nε-(γ-Glu(N-α-ヘキサデカノイル)))-GLP-1(7-37)(配列番号3222として開示のコアペプチド)、デスアミノ-His,Arg26,Lys34(Nε-オクタノイル)-GLP-1(7-37)(配列番号3223)、Arg26,34,Lys38(Nε-(ω-カルボキシペンタデカノイル))-GLP-1(7-38)(配列番号3224)、Arg26,34,Lys36(Nε-(γ-Glu(N-α-ヘキサデカノイル)))-GLP-1(7-36)(配列番号3225として開示のコアペプチド)、Aib8,35,Arg26,34,Phe31-GLP-1(7-36))(配列番号3186)、HXaaEGTFTSDVSSYLEXaa22Xaa23AAKEFIXaa30WLXaa33Xaa34G Xaa36Xaa37(式中、Xaaは、A、V又はGであり、Xaa22は、G、K又はEであり、Xaa23は、Q又はKであり、Xaa30は、A又はEであり、Xaa33は、V又はKであり、Xaa34は、K、N又はRであり、Xaa36は、R又はGであり、及びXaa37は、G、H、P又は非存在である)(配列番号3187)、Arg34-GLP-1(7-37)(配列番号3188)、Glu30-GLP-1(7-37)(配列番号3189)、Lys22-GLP-1(7-37)(配列番号3190)、Gly8,36,Glu22-GLP-1(7-37)(配列番号3191)、Val,Glu22,Gly36-GLP-1(7-37)(配列番号3192)、Gly8,36,Glu22,Lys33,Asn34-GLP-1(7-37)(配列番号3193)、Val,Glu22,Lys33,Asn34,Gly36-GLP-1(7-37)(配列番号3194)、Gly8,36,Glu22,Pro37-GLP-1(7-37)(配列番号3195)、Val,Glu22,Gly36Pro37-GLP-1(7-37)(配列番号3196)、Gly8,36,Glu22,Lys33,Asn34,Pro37-GLP-1(7-37)(配列番号3197)、Val,Glu22,Lys33,Asn34,Gly36,Pro37-GLP-1(7-37)(配列番号3198)、Gly8,36,Glu22-GLP-1(7-36)(配列番号3199)、Val,Glu22,Gly36-GLP-1(7-36)(配列番号3200)、Val,Glu22,Asn34,Gly36-GLP-1(7-36)(配列番号3201)、Gly8,36,Glu22,Asn34-GLP-1(7-36)(配列番号3202)が含まれる。GLP-1(7-37)及びGLP-1(7-37)類似体はそれぞれ、任意選択でアミド化してよい。
本発明の合成物のGLP-1受容体アゴニストは、公知の有機化学技術によって1つ以上のアミノ酸残基で化学的に誘導体化することもできる。「化学的誘導体」又は「化学的に誘導体化された」は、機能的側基の反応によって化学的に誘導体化された1つ以上の残基を有する対象ペプチドを意味する。そのような誘導体化分子としては、例えば、遊離アミノ基が、アミン塩酸塩、p-トルエンスルホニル基、カルボベンズオキシ基、t-ブチルオキシカルボニル基、クロロアセチル基又はホルミル基を形成するために誘導体化されているそれらの分子が挙げられる。遊離カルボキシル基は、塩類、メチルエステル及びエチルエステル又は他のタイプのエステル又はヒドラジドを形成するために誘導体化することができる。遊離ヒドロキシル基は、O-アシル又はO-アルキル誘導体を形成するために誘導体化することができる。ヒスチジンのイミダゾール窒素は、N-im-ベンジルヒスチジンを形成するために誘導体化することができる。さらに、化学的誘導体として挙げられるのは、L型又はD型のいずれであっても、20個の標準アミノ酸の1つ以上の天然型アミノ酸誘導体を含有するそれらのペプチドである。例えば、4-ヒドロキシプロリンは、プロリンと置換されてよく、5-ヒドロキシリシンは、リシンと置換されてよく、3-メチルヒスチジンは、ヒスチジンと置換されてよく、ホモセリンは、セリンと置換されてよく、及びオルニチンは、リシンと置換されてよい。
有用な誘導体化としては、一部の実施形態では、ビヒクルとのコンジュゲーションがN末端遊離アミノ基で発生することが防止されるように、ペプチドのアミノ末端が化学的に遮断される誘導体化が挙げられる。さらにそのような修飾には、毒素ペプチド類似体の例えば酵素的タンパク質分解に対する感受性の減少などの修飾の他の有益な作用がある可能性がある。N末端は、置換アミンにアシル化もしくは修飾するか、又は例えば芳香族部分(例えば、インドール酸、ベンジル(BzlもしくはBn)、ジベンジル(DiBzlもしくはBn)又はベンジルオキシカルボニル(CbzもしくはZ))、N,N-ジメチルグリシンもしくはクレアチンなどの別の官能基を用いて誘導体化することができる。例えば、一部の実施形態では、例えば、ホルミル、アセチル(Ac)、プロパノイル、ブタニル、ヘプタニル、ヘキサノイル、オクタノイル又はノナノイルなどを含むがそれらに限定されないアシル部分は、ペプチドのN末端に共有結合により連結させることができ、これは、ペプチドへのビヒクルのコンジュゲーション中の望ましくない副反応を防止できる。他の典型的なN末端誘導体基には、-NRR(-NH以外)、-NRC(O)R、-NRC(O)OR、-NRS(O)、-NHC(O)NHR、スクシンイミド又はベンジルオキシカルボニル-NH-(Cbz-NH-)(式中、R及びRは、それぞれ独立して水素又は低級アルキルであり、フェニル環は、C~Cアルキル、C-Cアルコキシ、クロロ及びブロモから選択される1~3個の置換基で置換されてよい)が含まれる。
一部の実施形態では、アミノ酸残基間の1つ以上のペプチジル[-C(O)NR-]連結(結合)は、非ペプチジル連結によって置換することができる。典型的な非ペプチジル連結は、-CH-カルバメート[-CH-OC(O)NR-]、ホスホン酸塩、-CH-スルホンアミド[-CH-S(O)NR-]、尿素[-NHC(O)NH-]、-CH-第2級アミン及びアルキル化ペプチド[-C(O)NR-(式中、Rは、低級アルキルである)]である。
一部の実施形態では、1つ以上の個別アミノ酸残基は、誘導体化することができる。例えば、実施例によって下記で詳述するように、選択された側鎖又は末端残基と特異的に反応する様々な誘導体化剤が公知である。
リシニル残基及びアミノ末端残基は、リシニル残基の電荷を逆転させるコハク酸又は他のカルボン酸無水物と反応させることができる。α-アミノ含有残基を誘導体化するための他の好適な試薬には、イミドエステル類、例えばメチルピコリンイミデート;リン酸ピリドキサル;ピリドキサル;クロロホウ化水素;トリニトロベンゼンスルホン酸;O-メチルイソ尿素;2,4ペンタンジオン;及びグリオキシレートとのトランスアミナーゼ触媒反応が含まれる。
アルギニル残基は、フェニルグリオキサル、2,3-ブタンジオン、1,2-シクロヘキサンジオン及びニンヒドリンを含む数種の従来型試薬のいずれか1つ又は組み合わせとの反応によって修飾することができる。アルギニル残基の誘導体化は、グアニジン官能基の高pKaのために反応をアルカリ条件下で実施することが必要である。さらに、これらの試薬は、リシンの基類及びアルギニンε-アミノ基と反応することができる。
チロシル残基の特異的修飾について広範に研究されてきたが、芳香族ジアゾニウム化合物又はテトラニトロメタンとの反応によってチロシル残基中にスペクトル標識を導入することに特別な関心が高まっている。最も一般的には、N-アセチルイミダゾール及びテトラニトロメタンがO-アセチルチロシル種及び3-ニトロ誘導体のそれぞれを形成するために使用される。
カルボキシル側鎖基(アスパルチル又はグルタミル)は、例えば、1-シクロヘキシル-3-(2-モルホリニル-(4-エチル)カルボジイミド又は1-エチル-3-(4-アゾニア-4,4-ジメチルペンチル)カルボジイミドなどのカルボジイミド(R’-N=C=N-R’)との反応によって選択的に修飾することができる。さらに、アスパルチル残基及びグルタミル残基は、アンモニウムイオンとの反応により、アスパラギニル残基及びグルタミニル残基に変換させることができる。
グルタミニル残基及びアスパラギニル残基は、対応するグルタミル残基及びアスパルチル残基に脱アミド化することができる。あるいは、これらの残基は、弱酸性条件下で脱アミド化される。これらの残基のいずれの形態も本発明の範囲内に含まれる。
システイニル残基は、ジスルフィド結合を排除するため又はその逆に架橋結合を安定化させるためのいずれかでアミノ酸残基又は他の部分によって置換され得る。(例えば、Bhatnagar et al.,J.Med.Chem.,39:3814-3819(1996)を参照されたい)。
他の考えられる修飾には、プロリン及びリシンのヒドロキシル化、セリル残基又はトレオニル残基のヒドロキシル基のリン酸化、Cys中の硫黄原子の酸化、リシン側鎖、アルギン側鎖及びヒスチジン側鎖のα-アミノ基のメチル化が含まれる。Creighton,Proteins:Structure and Molecule Properties(W.H.Freeman & Co.,San Francisco),79-86(1983)。
誘導体化の上記の実施例は、網羅的な処置ではなく、単に例示的であることを意図している。
1つの実施形態では、GLP-1(7-37)又はGLP-1(7-37)類似体は、免疫グロブリン(例えば、IgG、IgE、IgG及び同様のもの)のFc部分に(直接又は連結基によって)共有結合で連結される。例えば、
Figure 0007175899000421
(式中、Xaa16は、P又はEであり、Xaa17は、F、V又はAであり、Xaa18は、L、E又はAであり、Xaa80は、N又はAであり、及びXaa230は、K又は非存在である)(配列番号3203)の配列を含む免疫グロブリンのFc部分に配列番号25~40のいずれか1つを共有結合で連結してよい。連結基は、任意の化学部分(例えば、アミノ酸及び/又は化学基)であり得る。1つの実施形態では、連結基は、(-GGGGS-)(配列番号3204)(xは、1、2、3、4、5、又は6であり、好ましくは、2、3、又は4であり、より好ましくは、3である)である。1つの実施形態では、
Figure 0007175899000422
のアミノ酸配列を含む免疫グロブリンのFc部分にGLP-1(7-37)類似体が共有結合で連結される。
別の実施形態では、GLP-1(7-37)又はGLP-1(7-37)類似体を1つ又は2つのポリエチレングリコール分子に(直接又は連結基を介して)共有結合で連結してよい。例えば、GLP-1(7-37)類似体は、HXaaEGTFTSDVSSYLEXaa22QAAKEFIAWLXaa33KGGPSSGAPPPC4546-Z(Xaaは、D-Ala、G、V、L、I、S、又はTであり、Xaa22は、G、E、D、又はKであり、Xaa33は、V又はIであり、かつZは、OH又はNHである)(配列番号3206)というアミノ酸配列を含み得、任意選択で、(i)1つのポリエチレングリコール部分が共有結合でC45に付加されるか、(ii)1つのポリエチレングリコール部分が共有結合でC46に付加されるか、又は(iii)1つのポリエチレングリコール部分がC45に付加され、かつ1つのポリエチレングリコール部分がC46に付加される。1つの実施形態では、GLP-1(7-37)類似体は、HVEGTFTSDVSSYLEEQAAKEFIAWLIKGGPSSGAPPPC4546-NH(配列番号3207)であり、任意選択で、(i)1つのポリエチレングリコール部分が共有結合でCに付加されるか、(ii)1つのポリエチレングリコール部分が共有結合でC46に付加されるか、又は(iii)1つのポリエチレングリコール部分がC45に付加され、かつ1つのポリエチレングリコール部分がC46に付加される。
コンジュゲーションのための第1級アミン部分を提供できるGLP-1受容体アゴニストのアミノ酸残基には、リシン、ホモリシン、オルニチン、α,β-ジアミノプロピオン酸(Dap)、α,β-ジアミノプロピオン酸(Dpr)ならびにα,γ-ジアミノ酪酸(Dab)、アミノ酪酸(Abu)及びα-アミノ-イソ酪酸(Aib)の残基が含まれる。ポリペプチドN末端は、アミド化ポリペプチドC末端と同様にコンジュゲーションのために有用なα-アミノ基も提供する。所定の実施形態では、GLP-1(7-37)又はGLP-1(7-37)類似体は、抗体又はその断片にK26(配列番号3184の20位)、K34(配列番号3184の28位)、K36(配列番号3184の30位;例えば、R36K突然変異を介して)、K37(配列番号3184の31位;例えば、G37K突然変異を介して)、K39(例えば、39位でリシンを有するGLP-1(7-37)又はGLP-1(7-37)類似体への2つのアミノ酸の付加を介して)又は前記類似体のC末端アミン基に対応する残基でコンジュゲートされている。第2級アミン部分を提供できるアミノ酸残基には、ε-N-アルキルリシン、α-N-アルキルリシン、δ-N-アルキルオルニチン、α-N-アルキルオルニチン又はN末端プロリンが含まれ、アルキルは、C~Cである。
本明細書で使用する「リンカー部分」は、本発明の組成物中に含有される毒素ペプチド類似体又は他のポリペプチド鎖(例えば、免疫グロブリンHC又はLC又は免疫グロブリンFcドメイン)のアミノ酸残基に共有結合されている生物学的に許容されるペプチジル又は非ペプチジル有機基を意味しており、そのリンカー部分は、その毒素ペプチド類似体又は他のポリペプチド鎖を組成物中の別のペプチド又はポリペプチド鎖又は半減期延長部分に共有的に結合又はコンジュゲートされる。本組成物の一部の実施形態では、本明細書で記載する半減期延長部分は、毒素ペプチド類似体自体のアミノ酸残基又は任意選択で毒素ペプチド類似体のアミノ酸残基に共有結合されているペプチジル又は非ペプチジルリンカー部分(芳香属又はアリールリンカーを含むがそれらに限定されない)にコンジュゲートされている、すなわち直接的に共有結合されている。任意のリンカー部分の存在は、任意選択的である。存在する場合、その化学的構造は、主として、本発明の組成物の分子の1つ以上の他の機能的部分に関連して1つの機能的部分をポジショニング、結合、接続するか又は表示もしく位置を最適化するためのスペーサーとして役立つため、決定的に重要ではない。リンカー部分の存在は、本発明の組成物の一部の実施形態の薬理学的活性を最適化する際に有用な可能性がある。リンカーは、存在する場合、ペプチド結合によって一緒に連結されたアミノ酸を構築することができる。リンカー部分は、存在する場合、独立して又は任意の他のリンカーもしくは本発明の組成物中に存在する可能性のあるリンカーと同一であっても異なっていてもよい。一部の実施形態では、リンカーは、本発明の毒素ペプチド類似体の多価ディスプレイを促進する多価リンカーであってよい。そのような生物学的に活性な化合物の多価ディスプレイは、親和力を通して結合親和性及び/又は効力を増加させることができる。治療薬のインビボ特性は、ポリマー又はタンパク質へのコンジュゲーションを通して(すなわち特異的標的化、半減期延長、分布プロファイルなど)変化させることができる。
ペプチジルリンカー。上述のように、リンカー部分は、存在する場合(毒素ペプチド類似体の第1級アミノ酸配列内であっても、又は毒素ペプチド類似体へ半減期延長部分を付加させるためのリンカーとしてのいずれであっても)、実際には「ペプチジル」であってよく(すなわちペプチド結合によって一緒に連結されたアミノ酸から構築される)、及び好ましくは1~約40のアミノ酸残基まで、より好ましくは1~約20のアミノ酸残基まで、及び最も好ましくは1~約10のアミノ酸残基までの長さで構築されてよい。必ずではないが、好ましくは、リンカー内のアミノ酸残基は、特に20の標準アミノ酸、より好ましくはシステイン、グリシン、アラニン、プロリン、アスパラギン、グルタミン及び/又はセリンからのものである。さらにより好ましくは、ペプチジルリンカーは、例えば、ペプチド結合によって連結されたグリシン、セリン及びアラニンなど、立体障害のない多数のアミノ酸から構築される。さらに、存在する場合、インビボで循環中の急速なタンパク質分解性代謝回転を回避するペプチジルリンカーが選択されることも望ましい。これらのアミノ酸の一部は、当業者であれば明確に理解するようにグリコシル化されてよい。例えば、シアリル化部位を構成する有用なリンカー配列は、XNXG(配列番号3250)(式中、X、X、X及びXは、それぞれ独立して任意のアミノ酸残基である)である。
他の実施形態では、ペプチジルリンカー部分の1~40のアミノ酸は、グリシン、アラニン、プロリン、アスパラギン、グルタミン及びリシンから選択される。好ましくは、リンカーは、例えば、グリシン及びアラニンなど、立体障害のない大多数のアミノ酸から構築される。したがって、好ましいリンカーには、ポリグリシン類、ポリセリン類及びポリアラニン類又はこれらの任意の組み合わせが含まれる。一部の典型的なペプチジルリンカーは、ポリ(Gly)1~8、特に(Gly)(配列番号3251)、(Gly)(配列番号480)、(Gly)(配列番号3251)及び(Gly)(配列番号3252)ならびにGlySer及びポリ(Gly)Ser、例えば「L15」(GGGGSGGGGSGGGGS;配列番号3253)、ポリ(Gly-Ala)2~4及びポリ(Ala)1~8である。ペプチジルリンカーの他の特定の例には、(Gly)Lys(配列番号3254)及び(Gly)LysArg(配列番号3255)が含まれる。有用なペプチジルリンカーの他の例は下記である:有用なペプチジルリンカーの他の例は下記である:
(Gly)Lys(Gly)(配列番号3256);
(Gly)AsnGlySer(Gly)(配列番号3257);
(Gly)Cys(Gly)(配列番号3258);及び
GlyProAsnGlyGly(配列番号3259)。
上記の命名法を説明するために、例えば、(Gly)Lys(Gly)は、Gly-Gly-Gly-Lys-Gly-Gly-Gly-Gly(配列番号3260)を意味する。Gly及びAlaの他の組み合わせも有用である。
他の好ましいリンカーは、本明細書で「L5」(GGGGS;又は「GS」;配列番号3261)、「L10」(GGGGSGGGGS;配列番号3262);「L20」(GGGGSGGGGSGGGGSGGGGS;配列番号3263);「L25」(GGGGSGGGGSGGGGSGGGGSGGGGS;配列番号3264)として同定されたリンカー及び下記の実施例において使用した任意のリンカーである。
ペプチドリンカー部分を含む本発明の組成物の一部の実施形態では、酸性残基、例えばグルタミン酸又はアスパラギン酸残基は、リンカー部分のアミノ酸配列内に配置される。例としては、下記のペプチジルリンカー配列が挙げられる:
GGEGGG(配列番号3265);
GGEEEGGG(配列番号3266);
GEEEG(配列番号3267);
GEEE(配列番号3268);
GGDGGG(配列番号3269);
GGDDDGG(配列番号3270);
GDDDG(配列番号3271);
GDDD(配列番号3272);
GGGGSDDSDEGSDGEDGGGGS(配列番号3273);
WEWEW(配列番号3274);
FEFEF(配列番号3275);
EEEWWW(配列番号3276);
EEEFFF(配列番号3277);
WWEEEWW(配列番号3278);又は
FFEEEFF(配列番号3279)。
他の実施形態では、リンカーは、リン酸化部位、例えばXYXG(配列番号3280)(式中、X、X、X及びXは、それぞれ独立して任意のアミノ酸残基であり);XSXG(配列番号3281)(式中、X、X、X及びXは、それぞれ独立して任意のアミノ酸残基であり;又はXTXG(配列番号3282)(式中、X、X、X及びX5は、それぞれ独立して任意のアミノ酸残基である)を構成する。
本明細書に記載したリンカーは、典型である。本発明の範囲内のペプチジルリンカーは、はるかに長い可能性があり、他の残基を含む可能性がある。ペプチジルリンカーは、例えば、システイン、別のチオール又は半減期延長部分とコンジュゲーションするための求核剤を含有することができる。別の実施形態では、リンカーは、システインもしくはホモシステイン残基、又はマレイミド、ヨードアセトアミドもしくはチオエステルにコンジュゲーションするための他の2-アミノ-エタンチオールもしくは3-アミノ-プロパンチオール部分、官能化半減期延長部分を含有する。
別の有用なペプチジルリンカーは、ランダムGly/Ser/Thr配列、例えば1kDaのPEG分子のサイズとほぼ同じと推定されるGSGSATGGSGSTASSGSGSATH(配列番号3283)又はHGSGSATGGSGSTASSGSGSAT(配列番号3284)などを含む大きい柔軟なリンカーである。あるいは、有用なペプチジルリンカーは、剛性螺旋構造(例えば、剛性リンカー:-AEAAAKEAAAKEAAAKAGG-//配列番号3285)を形成するために当該技術分野において公知のアミノ酸配列を含んでいてよい。さらに、ペプチジルリンカーは、例えば、式-CH-CH-CH-CH-CH-CH-の6炭素の脂肪族分子などの非ペプチジルセグメントも含むことができる。ペプチジルリンカーは、本明細書に記載した誘導体を形成するために変化させることができる。
非ペプチジルリンカー。任意選択で、非ペプチジルリンカー部分は、半減期延長部分を半減期延長部分コンジュゲート毒素ペプチド類似体のペプチド部分にコンジュゲートさせるためにも有用である。例えば、-NH-(CH-C(O)-(式中、s=2~20である)などのアルキルリンカーを使用できる。これらのアルキルリンカーは、例えば、低級アルキル(例えば、C~C)低級アシル、ハロゲン(例えば、Cl、Br)、CN、NH、フェニルなどの任意の非立体障害基によってさらに置換されてもよい。典型的な非ペプチジルリンカーは、PEGリンカー(例えば、下記に示す):
Figure 0007175899000423
(式中、nは、リンカーが約100~約5000ダルトン(Da)、好ましくは約100~約500Daの分子量を有するようなnである)である。
1つの実施形態では、非ペプチジルリンカーは、アリールである。リンカーは、本明細書に記載した方法と同一方法で誘導体を形成するために変化させることができる。「アリール」は、フェニル又は飽和、部分飽和又は不飽和の3員、4員又は5員の炭素架橋と近接融合したフェニルであり、フェニル又は架橋は、C1~8アルキル、C1~4ハロアルキル又はハロから選択される0、1、2又は3つの置換基によって置換されている。「ヘテロアリール」は、不飽和5、6又は7員の単環式又は部分飽和又は不飽和の6員、7員、8員、9員、10員又は11員の二環式環であり、少なくとも1つの環は、不飽和であり、単環及び二環式環は、N、O及びSから選択される1、2、3又は4個の原子を含有し、その環は、C1~8アルキル、C1~4ハロアルキル又はハロから選択される0、1、2又は3つの置換基によって置換されている。
例えば非ペプチジルリンカー又は非ペプチド半減期延長部分などの本発明の合成物の非ペプチド部分は、従来型有機化学反応によって合成することができる。
多価リンカーの他の実施形態は、制御された長さの剛性ポリ複素環式コアを含む。リンカーは、直交結合化学(すなわちアジド「クリック」、アミド結合、マレイミド又はハロアセトアミドとのアルキル化によるチオエーテル形成、オキシム形成、還元的アミノ化など)に適応するために片方の末端で化学的に識別される。
上記は単なる例示であり、本発明によって任意選択で使用できる様々な種類のリンカーの徹底的な処理ではない。
1つの実施形態では、GLP-1受容体アゴニスト化合物は、GLP-1(7-37)(配列番号3184)に対して少なくとも80%の配列同一性を有するペプチド、GLP-1(7-37)(配列番号3184)に対して少なくとも85%の配列同一性を有するペプチド、GLP-1(7-37)(配列番号3184)に対して少なくとも90%の配列同一性を有するペプチド、又はGLP-1(7-37)(配列番号3184)に対して少なくとも95%の配列同一性を有するペプチドである。
GLP-1受容体アゴニスト化合物は、当該技術分野においてよく知られるプロセスによって調製してよく、こうしたプロセスは、例えば、Eng et al.,J.Biol.Chem.,265:20259-62(1990)に記載のペプチド精製、Raufman et al.,J.Biol.Chem.,267:21432-37(1992)に記載の標準的な固相ペプチド合成手法、Sambrook et al.,Molecular Cloning:A Laboratory Manual,2d Ed.,Cold Spring Harbor(1989)に記載の組換えDNA手法及び同様のものである。
Figure 0007175899000424
Figure 0007175899000425
Figure 0007175899000426
Figure 0007175899000427
Figure 0007175899000428
Figure 0007175899000429
Figure 0007175899000430
AEEAは、[2-(2-アミノ)エトキシ)]酢酸を指す。
EDAは、エチレンジアミンを指す。
MPAは、マレイミドプロピオン酸を指す。
本開示は、本明細書に記載のGLP-1受容体アゴニスト化合物及び医薬的に許容可能な担体を含む医薬組成物も提供する。GLP-1受容体アゴニスト化合物は、治療的に有効な量で医薬組成物に存在し得、治療効力に必要なGLP-1受容体アゴニスト化合物の最小血漿レベルを与える量で存在し得る。そのような医薬組成物は、当該技術分野において知られており、例えば、米国特許第7,521,423号明細書、米国特許第7,456,254号明細書、国際公開第2000/037098号パンフレット、国際公開第2005/021022号パンフレット、国際公開第2005/102293号パンフレット、国際公開第2006/068910号パンフレット、国際公開第2006/125763号パンフレット、国際公開第2009/068910号パンフレット、米国特許出願公開第2004/0106547号明細書及び同様のものに記載されており、これらの文献の開示内容は、参照によって本明細書に組み込まれる。
本明細書に記載のGLP-1受容体アゴニスト化合物を含む医薬組成物は、非経口(例えば、皮下、静脈内、筋肉内)、連続注入(例えば、静脈内点滴、静脈内ボーラス、静脈内注入)、局所、経鼻、又は経口による投与などの末梢投与を目的として提供してよい。適切な医薬的に許容可能な担体及びその製剤化は、Remington’s Pharmaceutical Sciences by Martin;and Wang et al.,Journal of Parenteral Science and Technology,Technical Report No.10,Supp.42:2S(1988)などの標準的な製剤専門書に記載されている。本明細書に記載のGLP-1受容体アゴニスト化合物は、注射又は注入のための非経口組成物において提供することができる。GLP-1受容体アゴニスト化合物は、例えば、水、植物油(例えば、ゴマ油、ピーナッツ油、オリーブ油及び同様のもの)などの不活性な油、又は他の医薬的に許容可能な担体に懸濁することができる。1つの実施形態では、化合物は、例えば、pHが約3.0~8.0又は約3.0~5.0の等張緩衝液などの水性担体に懸濁される。組成物は、通常の無菌化手法によって無菌化してよく、又は濾過によって無菌化してよい。組成物は、生理学的条件に近づくように、必要に応じてpH緩衝剤など、医薬的に許容可能な補助物質を含み得る。
有用な緩衝剤には、例えば、酢酸緩衝剤が含まれる。皮下注射、経皮注射、又は他の送達方法を実施した後、数時間又は数日にわたって血流に調節物が治療的に有効な量で送達されるように、リポジトリ又は「デポ」の形態の徐放調製物を使用してよい。所望の等張性は、塩化ナトリウム、又はデキストロース、ホウ酸、酒石酸ナトリウム、プロピレングリコール、ポリオール(マンニトール及びソルビトールなど)などの他の医薬的に許容可能な薬剤、又は他の無機溶質もしくは有機溶質を使用して達成してよい。1つの実施形態では、静脈内注入について、製剤は、(i)GLP-1受容体アゴニスト化合物、(2)無菌水、及び任意選択で、(3)塩化ナトリウム、デキストロース、又はそれらの組み合わせを含み得る。
GLP-1受容体アゴニスト化合物の投与を促進にするために担体又は賦形剤を使用することもできる。担体及び賦形剤の例には、炭酸カルシウム、リン酸カルシウム、ラクトース、グルコース、もしくはスクロースなどの様々な糖、又は様々な型のデンプン、セルロース誘導体、ゼラチン、植物油、ポリエチレングリコール及び生理学的に適合する溶剤が含まれる。
GLP-1受容体アゴニスト化合物は、医薬的に許容可能な塩(例えば、酸付加塩)及び/又はその複合化物として製剤化することもできる。医薬的に許容可能な塩は、それが投与される濃度で無毒な塩である。医薬的に許容可能な塩には、硫酸塩、塩酸塩、リン酸塩、スルファミン酸塩、酢酸塩、クエン酸塩、乳酸塩、酒石酸塩、メタンスルホン酸塩、エタンスルホン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸塩、シクロヘキシルスルファミン酸塩及びキナ酸塩を含むものなどの酸付加塩が含まれる。医薬的に許容可能な塩は、塩酸、硫酸、リン酸、スルファミン酸、酢酸、クエン酸、乳酸、酒石酸、マロン酸、メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、シクロヘキシルスルファミン酸及びキナ酸などの酸から得ることができる。そのような塩は、例えば、塩が不溶な溶剤もしくは媒体又はその後に減圧もしくは凍結乾燥によって除去される水などの溶剤において、遊離の酸又は塩基の形態の産物と、1当量又は複数当量の適切な塩基又は酸とを反応させることによって調製するか、あるいは適切なイオン交換樹脂で、現存する塩のイオンを別のイオンと交換することによって調製してよい。
GLP-1受容体アゴニスト化合物の医薬製剤の例は、米国特許第7,521,423号明細書、米国特許第7,456,254号明細書、米国特許出願公開第2004/0106547号明細書、国際公開第2006/068910号パンフレット、国際公開第2006/125763号パンフレット及び同様のものに記載されており、これらの文献の開示内容は、参照によって本明細書に組み込まれる。
本明細書に記載の方法において使用するための本明細書に記載のGLP-1受容体アゴニスト化合物の治療的に有効な量は、典型的には、約0.01μg~約5mg、約0.1μg~約2.5mg、約1μg~約1mg、約1μg~約50μg、又は約1μg~約25μgとなる。あるいは、GLP-1受容体アゴニスト化合物の治療的に有効な量は、70kgの患者重量に基づくと約0.001μg~約100μgであるか、又は70kgの患者重量に基づくと約0.01μg~約50μgであり得る。こうした治療的に有効な用量の投与頻度は、製剤に応じて、1回/日、2回/日、3回/日、1回/週、2回/週、又は1回/月であり得る。投与されることになる正確な用量は、例えば、即時放出製剤又は持続放出製剤などの製剤によって決定される。経皮剤形、経鼻剤形、又は経口剤形について、投与量は、約5倍~約10倍に増やしてよい。
特定の実施形態では、GLP-1受容体アゴニストは、GIPR抗原結合タンパク質と同時に投与されることになる。1つの実施形態では、GLP-1受容体アゴニストは、GIPR抗原結合タンパク質の後に投与されることになる。1つの実施形態では、GLP-1受容体アゴニストは、GIPR抗原結合タンパク質の前に投与されることになる。特定の実施形態では、対象又は患者は、GIPR抗原結合タンパク質での追加治療を受ける前に、GLP-1受容体アゴニストで既に治療されていることになる。
本明細書で提供されるGIPR抗原結合タンパク質は、生体試料におけるGIPRの検出に有用である。例えば、GIPR抗原結合タンパク質は、例えば、血清における発現GIPRを検出及び/又は定量化するための結合アッセイなどの診断アッセイにおいて使用することができる。
記載の抗原結合タンパク質は、GIPRと関連する疾患及び/又は病状を検出、診断、又は監視する診断目的で使用することができる。開示の抗原結合タンパク質は、当業者に知られる古典的な免疫組織学的方法(例えば、Tijssen,1993,Practice and Theory of Enzyme Immunoassays,Vol15(Eds R.H.Burdon and P.H.van Knippenberg,Elsevier,Amsterdam)、Zola,1987,Monoclonal Antibodies:A Manual of Techniques,pp.147-158(CRC Press,Inc.)、Jalkanen et al.,1985,J.Cell.Biol.101:976-985、Jalkanen et al.,1987,J.Cell Biol.105:3087-3096)を使用し、試料におけるGIPRの存在を検出するための手段を提供する。GIPRの検出は、インビボ又はインビトロで実施することができる。
本明細書で提供される診断用途には、GIPRの発現を検出するための抗原結合タンパク質の使用が含まれる。GIPRの存在の検出において有用な方法の例には、酵素結合免疫吸着測定法(ELISA)及び放射免疫測定法(RIA)などの免疫アッセイが含まれる。
診断用途について、抗原結合タンパク質は、典型的には、検出可能な標識基で標識されることになる。適切な標識基には、限定はされないが、下記のものが含まれる:放射性同位体もしくは放射性核種(例えば、H、14C、15N、35S、90Y、99Tc、111In、125I、131I)、蛍光基(例えば、FITC、ローダミン、ランタニドリン光体)、酵素基(例えば、西洋ワサビペルオキシダーゼ、β-ガラクトシダーゼ、ルシフェラーゼ、アルカリホスファターゼ)、化学発光基、ビオチン基、又は二次レポーターによって認識される所定のポリペプチドエピトープ(例えば、ロイシンジッパー対配列、二次抗体向けの結合部位、金属結合ドメイン、エピトープタグ)。いくつかの実施形態では、標識基は、潜在的な立体障害を低減するために様々な長さのスペーサーアームを介して抗原結合タンパク質にカップリングされる。タンパク質の標識方法は、当該技術分野において様々なものが知られており、そうしたものを使用してよい。
いくつかの実施形態では、GIPR抗原結合タンパク質は、当該技術分野において知られる手法を使用して単離及び測定される。例えば、Harlow and Lane,1988,Antibodies:A Laboratory Manual,New York:Cold Spring Harbor(ed.1991 and periodic supplements)、John E.Coligan,ed.,1993,Current Protocols In Immunology New York:John Wiley & Sonsを参照されたい。
本開示の別の態様では、GIPRへの結合について、提供される抗原結合タンパク質と競合する試験分子の存在の検出が提供される。そのようなアッセイの1つの例では、試験分子の存在下又は非存在下で、一定量のGIPRを含む溶液における遊離の抗原結合タンパク質の量の検出が行われることが想定される。遊離の抗原結合タンパク質(すなわちGIPRに結合していない抗原結合タンパク質)の量が増加するのであれば、GIPRへの結合について試験分子が抗原結合タンパク質と競合する能力を有すると示されることになる。1つの実施形態では、抗原結合タンパク質が標識基で標識される。あるいは、試験分子が標識され、抗原結合タンパク質の存在下及び非存在下で、遊離の試験分子の量が監視される。
GIPR結合タンパク質は、代謝病状又は代謝障害の治療、診断、又は寛解に使用することができる。1つの実施形態では、治療されることになる代謝障害は、例えば、2型糖尿病などの糖尿病である。別の実施形態では、代謝病状又は代謝障害は、肥満である。他の実施形態では、代謝病状又は代謝障害は、脂質異常症、グルコースレベルの上昇、インスリンレベルの上昇、又は糖尿病性腎症である。例えば、GIPR結合ペプチドを使用して治療又は寛解させることができる代謝病状又は代謝障害には、125mg/dL以上(例えば、130mg/dL、135mg/dL、140mg/dL、145mg/dL、150mg/dL、155mg/dL、160mg/dL、165mg/dL、170mg/dL、175mg/dL、180mg/dL、185mg/dL、190mg/dL、195mg/dL、200mg/dL、又は200mg/dL超)の絶食時血中グルコースレベルを有するヒト対象の状態が含まれる。血中グルコースレベルは、摂食状態もしくは絶食状態において決定するか、又は無作為に決定することができる。代謝病状又は代謝障害は、対象が代謝病状を発症する危険が増加した状態も含み得る。ヒト対象について、そのような病状には、100mg/dLの絶食時血中グルコースレベルが含まれる。GIPR結合タンパク質を含む医薬組成物を使用して治療することができる病状は、American Diabetes Association Standards of Medical Care in Diabetes Care-2011,American Diabetes Association,Diabetes Care Vol.34,No.Supplement 1,S11-S61,2010においても見つけることができ、この文献は、参照によって本明細書に組み込まれる。
応用において、治療的に有効な用量のGIPR結合タンパク質を、それを必要とする患者に投与することにより、2型糖尿病、グルコースレベルの上昇、インスリンレベルの上昇、脂質異常症、肥満、又は糖尿病性腎症などの代謝障害又は代謝病状を治療することができる。投与は、静脈内(IV)注射、腹腔内(IP)注射、皮下注射、筋肉内注射、又は錠剤もしくは液体製剤の形態で経口的に行われるものなどにより、本明細書に記載のように実施することができる。状況により、GIPR結合タンパク質の治療的に有効又は好ましい用量は、臨床医によって決定することができる。GIPR結合タンパク質の治療的に有効な用量は、数ある中でも特に、投与スケジュール、投与される薬剤の単位用量、GIPR結合タンパク質が他の治療剤と組み合わせて投与されるかどうかということ、レシピエントの免疫状態及び健康に依存することになる。本明細書で使用される「治療的に有効な用量」という用語は、研究者、医師、又は他の臨床医によって探究されている組織系、動物、又はヒトにおいて、治療中の疾患又は障害の症状の軽減又は寛解を含む、生物学的又は薬用的な応答を誘発するGIPR結合タンパク質の量、すなわち観測可能なレベルの1つ又は複数の所望の生物学的又は薬用的な応答を支持するGIPR結合タンパク質の量を意味し、こうした応答は、例えば、血中のグルコース、インスリン、トリグリセリド、もしくはコレステロールのレベルの低下、体重の減少、又は耐糖能、エネルギー消費、もしくはインスリン感受性の改善である。
GIPR結合タンパク質の治療的に有効な用量は、所望の結果によっても変わり得ることに留意されたい。したがって、例えば、指示される血中グルコースレベルが低い状況では、それに応じてGIPR結合タンパク質の用量は、望まれる血中グルコースレベルが比較的低い用量と比較して高いものとなる。逆に、指示される血中グルコースレベルが高い状況では、それに応じてGIPR結合タンパク質の用量は、望まれる血中グルコースレベルが比較的高い用量と比較して低いものとなる。
様々な実施形態において、対象は、100mg/dL以上の血中グルコースレベルを有するヒトであり、GIPR結合タンパク質で治療することができる。
1つの実施形態では、本開示の方法は、対象におけるグルコース、インスリン、コレステロール、脂質など、1つ又は複数の代謝的に関連する化合物のベースラインレベルの最初の測定を含む。その後、GIPR結合タンパク質を含む医薬組成物が対象に投与される。所望の期間の後、対象における1つ又は複数の代謝的に関連する化合物(例えば、血中のグルコース、インスリン、コレステロール、脂質)のレベルが再度測定される。その後、対象における代謝的に関連する化合物の相対変化を決定するために、2つのレベルを比較することができる。その比較の結果に応じてGIPR結合タンパク質を含む別用量の医薬組成物を投与することで、1つ又は複数の代謝的に関連する化合物の所望のレベルを達成することができる。
GIPR結合タンパク質を含む医薬組成物は、別の化合物と同時投与できることに留意されたい。GIPR結合タンパク質と同時投与される化合物の独自性及び特性は、治療又は寛解することになる病状の性質に依存することになる。GIPR結合タンパク質を含む医薬組成物と組み合わせて投与することができる化合物の例の非限定リストには、ロシグリチゾン(rosiglitizone)、ピオグリチゾン(pioglitizone)、レパグリニド、ナテグリチニド(nateglitinide)、メトホルミン、エキセナチド、シタグリプチン(stiagliptin)、プラムリンチド、グリピジド、グリメピリリドアカルボース(glimeprirideacarbose)及びミグリトールが含まれる。
開示の方法を実施するためのキットも提供される。そのようなキットは、本明細書で提供されるペプチド又はタンパク質をコードする核酸、そのような核酸を含むベクター及び細胞、ならびにそのような核酸を含む化合物を含む医薬組成物を含む、本明細書に記載のものなどの医薬組成物を含み得、こうしたものは、無菌の容器において提供することができる。任意選択で、提供される医薬組成物の代謝障害の治療における利用方法に関する説明を含めることもでき、又はこうした説明を患者もしくは医療サービス提供者が利用できるようにすることもできる。
1つの態様では、キットは、(a)治療的に有効な量のGIPR結合タンパク質を含む医薬組成物と、(b)医薬組成物のための1つ又は複数の容器とを含む。そのようなキットは、それを使用するための説明も含み得、説明は、治療中の代謝障害に的確なものとなるように変更することができる。説明は、キットにおいて提供される材料の使用及び性質を説明するものであり得る。特定の実施形態では、キットは、グルコースレベルの上昇、インスリンレベルの上昇、肥満、2型糖尿病、脂質異常症、又は糖尿病性腎症などの代謝障害を治療するための投与を実施するための、患者向けの説明を含む。
説明は、紙又はプラスチックなどの基材に印刷されたものであり得ると共に、添付文書としてキットに存在し得、キット又はその構成要素の容器のラベル(例えば、パッケージと関連するもの)等に存在し得る。他の実施形態では、説明は、例えば、CD-ROM、ディスケット等の適切なコンピューター可読記憶媒体に存在する電子的な記憶データファイルとして存在する。さらに他の実施形態では、キットには実際の説明は存在せず、インターネットを利用するなど、リモートソースから説明を入手する手段が提供される。この実施形態の例は、説明が閲覧可能なウェブアドレス及び/又は説明がダウンロード可能なウェブアドレスを含むキットである。
キットの構成要素のいくつか又はすべてが、無菌性を維持するための適切なパッケージに梱包されることが望ましい場合が多いであろう。キットの構成要素は、取り扱いが容易な単一単位を提供するキット格納要素に梱包することができ、この場合、例えば、箱又は類似構造などのキット格納要素は、例えば、キットの構成要素のいくつか又はすべての無菌性をさらに保つための気密容器であってもなくてもよい。
実施例1
ビス-システアミン-キャップド抗-GIPRシスmAb(2gスケール)の生成
抗GIPR/GLP-1ペプチドコンジュゲートの生成についての反応スキームを図1に示す。特異的システイン突然変異(抗GIPRシスmAb、2g)を有する抗GIPRモノクローナル抗体は、15~20時間にわたり40mMのHEPESバッファー(pH7.5~8.5)中の800mLの2.5mMのシスタミン及び2.5mMのシステアミンの溶液と共にインキュベートした。この反応混合物を0.22μmフィルターに通して濾過し、1200mLの100mMの酢酸ナトリウムバッファー(pH5)中に希釈した。カチオン交換クロマトグラフィーを使用して、反応混合物からビス-システアミン-キャップド抗GIPRシスmAbを精製した。最初に、100mMの酢酸ナトリウムバッファー(pH5)中で希釈した2Lの反応混合物を20mL/分で240mLのSP HPカラム上に装填した。カラムを2カラム体積の100mMの酢酸ナトリウム(pH5)、次に0~20%の勾配の1.2MのNaCl(pH5)を含む100mMの酢酸ナトリウムを用いて洗浄した。ビス-システアミン-キャップド抗GIPRシスmAbを含有する主要ピークを収集し、タンジェンシャルフロー濾過を使用して9%のスクロース(pH5.2)を含む10mMの酢酸ナトリウムへバッファー交換した。
実施例2
抗GIPR/GLP-1ペプチドコンジュゲートの生成
ビス-システアミン-キャップド抗GIPRシスmAb(9%のスクロースを含む10mMの酢酸ナトリウム中で6mg/mL)は、60~90分間にわたり室温で3~4等量のトリス(2-カルボキシエチル)ホスフィン(TCEP)を使用して部分的に還元させた。TCEPを除去し、部分還元したシスmAbは、2mMのエチレンジアミン四酢酸(EDTA)(pH7.5)を含有する50mMのリン酸ナトリウムバッファーにバッファー交換した。部分的還元シスmAbに6~10等量のデヒドロアスコルビン酸(DHAA)を加え、微量の部分還元mAb種のみが観察されるまで室温で酸化を実施した(30~120分間)。dhAAを除去せずに、3~8等量のブロモアセチル-GLP-1ペプチドをこの反応混合物に加え、室温で15~20時間インキュベートした。全試薬を除去し、抗GIPR/GLP-1ペプチドコンジュゲート生成物は、スピン濃縮又はタンジェンシャルフロー濾過を使用して最終調製物へバッファー交換した。
Figure 0007175899000431
Figure 0007175899000432
Figure 0007175899000433
Figure 0007175899000434
Figure 0007175899000435
実施例3
インビトロ及びインビボアッセイのための方法
GLP-1受容体アゴニストの活性
ヒトGLP-1R単独又はGLP-1R及びGIPR(M1)の両方を安定性で発現するCHOK1細胞を使用して、均質時間分解蛍光(HTRF)アッセイ(CISBIO製、製品番号62AM4PEJ)においてペプチド/コンジュゲート誘導性cAMP産生を測定した。連続希釈ペプチド/コンジュゲート(3×10-7M~3×10-14M)は、37℃で15分間にわたりアッセイバッファー(F12培地中に0.1%のBSA、500μMのIBMX)中で40,000個の細胞と共にインキュベートした。細胞は、次にcAMP-d2及びcAMPクリプテートを含有する溶解バッファー(CISBIO製)を用いて溶解させ、室温で1時間インキュベートし、その後、Evisionプレートリーダー(PerkinElmer製)中で測定した。cAMPレベルを665/620nmの蛍光比として表示し、図2A~2E及び図3に示す。
実施例4
GIPRアンタゴニスト活性
ヒトGIPRを安定性で発現するHEK293T細胞を使用してHTRFアッセイ(Cisbio製、製品番号62AM4PEJ)においてペプチド/コンジュゲート誘導性cAMP生成を測定した。連続希釈コンジュゲート又はGIPR抗体(3×10-6M~1×10-11M)は、37℃で30分間にわたりアッセイバッファー(F12培地中に、0.1%のBSA、500μMのIBMX)中で30,000個の細胞と共にインキュベートし、その後、0.05nMの最終濃度でGIPを用いて処理した。細胞は、37℃で30分間にわたりインキュベートし、次にcAMP-d2及びcAMPクリプテートを含有する溶解バッファー(CISBIO製)中において室温で1時間溶解させた。蛍光をEvisionプレートリーダー(PerkinElmer製)中で測定し、cAMPレベルを665/620nmの比で表示し、図2A~2E及び図に示す。
実施例5
二重特異性マウスのインビボ試験のための材料及び方法
主として二重特異性分子のGLP-1活性をスクリーニングするために、糖尿病性マウスを選択した。分子は、それらが注射後の様々な時点に血漿グルコースレベルを低減させる能力に基づいて選択した。さらに、図4A~4Iに示すように、GLP-1活性、GIPR阻害又はその両方の組み合わせを示す、それぞれの共投与又は二重特異性分子からのいずれかからの体重減少又は体重増加の阻害についても測定した。雄のdb/dbマウス(#642)は、Jackson Laboratories(Bar Harbor、ME)から入手し、8~9週齢で送達された。到着後、マウスは1ケージ当たり4匹ずつの群毎で収容し、12時間明周期(AM6:30~PM6:30)及び暗周期(PM6:30~AM6:30)で管理された環境条件下で維持した。マウスには齧歯類標準飼料(2020x Harlan Teklad製)を与え、飲用水を自由に摂取させた。
他の試験では、グルコース耐性試験を使用して、GLP-1類似体の効力をランク付けした(図5A~5C)。C57Bl6マウスを1~2週間かけて環境条件に馴化させた。投与前にマウスを取り扱い、体重測定を実施した。投与前日、血漿グルコース測定のために、齧歯類血漿のために設計された携帯型グルコメーターを使用して覚醒マウスの後眼窩洞から出血させた。投与当日、ベースライン時血漿グルコース及び体重測定を実施した。血漿グルコース及び体重についてのケージ平均値を使用して、ケージを治療群に階層化した。マウスは、それらのホームケージ内で維持した。試験製剤の投与後、血漿グルコースは、様々な時点(1、3及び6時間後)又は(4時間後)で、かつ血漿グルコース及び体重測定は、その後、24時間毎に実施した。血漿グルコースレベルは、レベルがほぼベースラインレベルに戻るまで測定し、体重測定は、体重増加の速度がビヒクル治療コントロール群と類似になるまで実施した。
飼料誘導性肥満性マウス(DIO)は、図6に示すように様々な分子を用いた治療からの体重減少作用を測定するためのモデルとしても使用した。
雄性c57bl6マウスは、Harlan Laboratoriesから入手し、26日齢で送達された。マウスは、1ケージ当たり2~4匹のマウスからなる同腹子と共に群毎に収容した。1週間の馴化後、マウスの飼養は、高脂肪飼料(HFD:D12492、Research Diets、New Brunswick、NJ)の飼養レジメンで開始するか、又は標準齧歯類飼料(2020x、Harlan Laboratories製)で維持した。12週間の飼養後、1匹ずつ収容したマウスをルーチンの取り扱い、飼料摂取量測定及び1日1回の食塩液注射(IP)に馴化させた。血液は、覚醒DIOマウスの後眼窩洞から採取した。少量の血液を齧歯類血漿のために設計された携帯型グルコメーター上に直接配置し、残りの血液は、プロテアーゼ阻害剤カクテル(Roche Diagnostics製、Indianapolis、IN)を含むEDTA充填採血チューブ内に入れた。遠心分離後、血漿を-80Cで保存した。マウスは、体重及び血漿グルコース測定値に基づいて治療群に階層化した。マウスは、ビヒクル(Q3D)、GIPR Ab(2.5又は10mg/kg、Q3D)、GLP-1ペプチド(0.06mg/kg、QD)、デュラグルチド(1mg/kg、Q3D)又は二重特異性コンジュゲート(2.5又は10mg/kg、Q3D)を用いて治療した。2群の追加のマウスは、GLP-1及びGIPR Abと、上記の用量及び投与頻度(GIPR(2.5mg/kg)+GLP-1ペプチド及びGIPR(2.5mg/kg)+デュラグルチド)との組み合わせ治療を受容した。GLP-1ペプチド投与群とは別に、他の全マウスには、それらの各試験製剤が投与されなかった場合には食塩液が注射された。体重は、1日1回測定し、3日間にわたる蓄積飼料摂取量を1日1回の飼料摂取値について平均化した。飼料摂取量は、0~3日間及び6~9日間の試験日間で測定した。血液採取は、試験第9日の注射1時間後に実施し、末梢血採取は、試験第12日、前回の試験製剤の投与1又は3日後に実施した。
血漿インスリンは、製造業者(ALPCO社、Salem、NH)の取扱説明書に従ってマウス用ELISAキットを用いて測定した。血漿グルコース、コレステロール、トリグリセリド、非エステル化脂肪酸、AST及びALTは、Olympus AU400e Chemistry Analyzer(Olympus America、Center Valley、PA)を使用して測定した。
実施例6
二重特異性カニクイザルインビボ試験のための材料及び方法
試験で未使用の雄の特発性肥満性カニクイザル(9~14歳)は、試験開始前に実験手順に馴化/訓練し、全分類パラメーター(体重及び血液化学)について群間で同等分布となるように各群n=サル10匹を含む7つの治療群に分類した。サルには、次に6週間にわたり週1回、ビヒクル又はGLP-1R-GIPRコンジュゲート(1264、1273、1248又は1257)を注射した。6週間の治療期間後、サルは、4週間のウォッシュアウト期を体験した。試験の訓練/治療/ウォッシュアウト期間中、総エネルギー摂取量を1日1回監視した。体重、血液化学及び薬物曝露について、図7~21に示すように、週1回又は1週おきに監視した。
実施例7
GIP及びGLP-1放射リガンド競合結合アッセイのための材料及び方法
huGIPR及びhuGLP-1Rを過剰発現する哺乳動物細胞系から膜を調製し、アッセイバッファー:50mMのHEPES(7.4)、5mMのMgCl、1mMのCaCl、0.2%のBSA及びプロテアーゼ阻害剤タブレット「EDTA Free」中において典型的には-80℃で保存した。未標識GIP及びGLP-1ペプチドは、Phoenix Pharmaceuticalsから入手し、放射標識125I-GIP及び125I-GLP-1はPerkin Elmer社から発注された。一次反応は、96ウエル細胞培養丸底プレート(Costar製)内で撹拌しながら2時間、室温で実施した。細胞膜濃度を0.6mg/mLで固定し、放射リガンドを0.1nMの濃度で使用した。試験製剤は、6種の濃度で2回ずつ滴定した。一次プレートは、Filtermate Harvester(Perkin Elmer製)を使用して2時間後に50mMの氷温TRIS(pH7.4)を用いて採取し、細胞膜をPEI処理GF/C UniFilterプレート(Perkin Elmer製)上に捕捉した。真空炉を使用してプレートを15分間乾燥させ、Microscint 20を各ウエルに添加し、その後、Perkin Elmer製TopCount NXT HTS機器上で計数した。特異的結合は、総数及び非特異的数の差を計算して決定した。非特異的ウエルは、1μMの低温リガンドを含有していた。データを分析し、図22に示すようにGraphPad Prism 7を使用してプロットした。
実施例8
内在化アッセイ
GLP-1R及びGIPRの内在化は、ヒトGLP-1R及びGIPRの両方を発現するCHOK1細胞中で評価した。細胞を96ウエルプレート中で細胞25,000個/ウエルの密度でプレーティングし、37℃、5%のCOで一晩培養した。細胞は、処理前の4時間にわたり0.1%のBSAを含むF12培地(Thermo Fisher製)中で血清飢餓させた。細胞は、30分間又は各図に明記した時間にわたり、20nM又は用量漸増希釈したGLP-1、GIP又は二重特異性コンジュゲートを用いて処理した。細胞は、4%のホルムアルデヒドを用いて洗浄及び固定し、0.1%のtriton-X 100を用いて透過化処理した。GIPR又はGLP-1Rを検出するために、細胞は、最初に室温で1時間にわたりOdysseyブロッキングバッファー(LiCor製)を用いて遮断し、2μg/mLのマウス抗ヒトGLP-1R(R&D systems製)又は5μg/mLの抗ヒトGIPR抗体(R&D Systems)と共に4℃で一晩インキュベートし、その後、GLP-1R又はGIPR検出のためのAlexaFluor-555又はAlexa-Fluor 647コンジュゲート抗マウス二次抗体(Thermo Fisher製)のそれぞれと共にインキュベートした。画像(図23)は、Operettaハイコンテンツイメージングシステム(Perkin Elmer製)を用いて捕捉し、Harmonyソフトウェア(Perkin Elmer製)を使用して分析して、内在化の程度についての読み出しパラメーターとしての細胞内GLP-1R含量(総スポット面積)を定量した(図24)。
実施例9
GLP-1R、GIPR及び二重特異性コンジュゲートは、内在化されると共局在化する
GIPR及びSNAP-GLP-1Rを発現するU2OS細胞を96ウエルプレート中に細胞15,000個/ウエルの密度でプレーティングし、37℃、5%のCOで一晩培養した。処理前に、細胞は、0.1%のBSAを含むMcCoyの5A培地(Thermo Fisher製)中で3.5時間にわたり飢餓させた。処理前に、U2OS細胞の表面上のGLP-1Rは、Alexa-Fluor 564を用いて標識し、30分間にわたりSNAP-Surface Alexa-fluor 564基質(New England Biolabs製)と共にインキュベートした。細胞は、次に過剰な標識を除去するために洗浄し、30分間にわたり5nMの二重特異性コンジュゲートを用いて処理した。3回の洗浄後、細胞は、4%のホルムアルデヒドを用いて固定し、PBS中の0.1%のtriton-X 100を用いて透過化処理した。GIPRを検出するために、細胞は、最初に室温で1時間にわたりOdysseyブロッキングバッファー(LiCor製)を用いて遮断し、次に5μg/mLのマウス抗ヒトGIPR(R&D systems製)と共に4℃で一晩インキュベートし、その後、Alexa-Fluor 647コンジュゲート抗マウス二次抗体(Thermo Fisher製)と共に室温で1時間にわたってインキュベートした。二重特異性コンジュゲートは、Alexa-Fluor標識抗ヒトFc抗体を使用して検出した。核検出のためにHoechst 33342(Thermo Fisher製)を使用した。画像は、図25に示すようにOperetta CLSハイコンテンツイメージングシステム(Perkin Elmer製)を使用して捕捉した。
実施例10
GloSensor cAMPアッセイ
GloSensor cAMPアッセイは、製造業者(Promega社)のプロトコールに従って実施した。手短には、ChoK1ヒトGLP-1R/GIPR発現細胞を96ウエルプレート中の細胞15,000個/ウエルで播種し、加湿した37℃、5%のCOインキュベーター内で16時間にわたりインキュベートした。細胞は、FuGENE HDを用いて24時間にわたり100ngのpGloSensor-22F cAMPプラスミドを用いて一過性トランスフェクトした。細胞は、次に室温で2時間にわたりCO独立培地(Invitrogen製)中の0.1%のBSA、2%のGloSensor cAMP試薬を用いて平衡化させた。細胞は、0.43Mのスクロース(Sigma製)を用いて又は用いずに15分間にわたりプレインキュベートした。スクロースを含む又は含まない条件下で1248を添加する前の10分間に基礎発光測定を実施した。1248の添加直後に、60秒間毎に0.1~1秒間の積分時間を使用して動的発光を測定した。データは、GraphPad Prismソフトウェアを使用して分析し、図26に提示する。
実施例11
FACS分析
CHOK1-GLP-1R H20、293T-GIPRクローン10及びCHOK1-GLP-1R/GIPR細胞を1%のFBS、0.05%のアジ化ナトリウムを含有する100μLのF12アッセイ培地中で細胞1×10個の密度で懸濁させ、10μg/mLの指示抗体又は抗GIPR/GLP-1R二重特異性コンジュゲートと共に4℃で1時間インキュベートした。細胞は、アッセイバッファーを用いて1回洗浄し、次に4℃で30分間にわたり10μg/mLのAlexa Fluor 647-ヤギ抗ヒトFc(Jackson製)と共にインキュベートした。BD LSR IIフローサイトメーター(BD Biosciences製)を用いて蛍光を測定し、図27に示す。
実施例12
カルシウム流出アッセイ
GIPR及びGLP-1-Rを発現するCHOK1細胞を96ウエルのクリアボトム黒プレート中で細胞30,000個/ウエルの密度でプレーティングし、37℃、5%のCOで一晩培養した。細胞は、2時間にわたり20mMのHEPESを含むF12培地(Thermo Fisher製)中で血清飢餓させた。次に、細胞は、カルシウム感受性色素を含有するバッファー(BD Biosciences製)と共に装填し、室温で1時間インキュベートし、その後、用量漸増希釈したGLP-1又は二重特異性コンジュゲートを用いて処理した。FLIPR(Molecular Devices製)を使用するために、細胞内カルシウム含量の変化を監視した。各ウエル内の最高ピーク高さは、図28に示すように代表的なカルシウム流出として記録した。
実施例13
β-アレスチンアッセイ
DiscoverXからのProLink(商標)標識GLP-1R及びGIPRを発現するCHOK1 Pathhunter細胞は、未標識GIPR又はGLP-1Rのそれぞれを用いてトランスフェクトした。細胞は、アッセイ培地(F12/0.1%BSA)中で細胞20,000個/ウエルの密度でプレーティングし、37℃で一晩インキュベートした。細胞は、90分間にわたり用量漸増希釈したGLP-1、GIP又は二重特異性コンジュゲートを用いて処理した。作業用検出溶液(DiscoverX)を次に細胞に加え、室温の暗所で60分間インキュベートした。β-アレスチン動員を表す化学発光シグナルは、Envisionを用いて測定し、図29に示す。
実施例14
ヒト膵島微小組織のグルコース刺激インスリン分泌(GSIS)アッセイ
ヒト膵島微小組織は、96ウエルフォーマットでInSphero社から購入した。微小組織は、InSpheroアッセイ培地中で16時間にわたりインキュベートした。それらは、次に1時間にわたり2.8mMのグルコースと共に新鮮KREBSバッファー(129mMのNaCl、4.8mMのKCl、1.2mMのKHPO、1.2mMのMgSO-7HO、10mMのHEPES、1.3mMのCaCl、0.5%のBSA、pH7.4)中で処理した。KREBSバッファーによる2回の洗浄後、それらは、次にKREBSバッファー単独、GLP-1(Phoenix Pharmaceuticals製)を含む又は含まないKREBSバッファー中の2.8mM又は11mMのグルコース及び1248の用量反応を用いて16時間にわたりインキュベートした。上清を収集し、製造業者(Mercodia社)のプロトコールに従ってインスリン分泌について分析した。光学密度をTECANマイクロプレートリーダー上において450nmで読み取り、図30に示す。

Claims (12)

  1. a)配列番号3141、配列番号3143及び配列番号3145からなる群から選択される配列を含むヒトGIPRに特異的に結合する抗体又はその機能的断片であって、
    CDRL1、CDRL2、CDRL3、CDRH1、CDRH2及びCDRH3を含み、ここで、各CDRL1、CDRL2、CDRL3、CDRH1、CDRH2及びCDRH3は、それぞれ、配列番号702、配列番号859、配列番号1016、配列番号1173、配列番号1330及び配列番号1487からなる群から選択される配列を含み、
    参照配列である配列番号455に対する抗体軽鎖のD70、
    参照配列である配列番号612に対する抗体重鎖のE276、及び
    参照配列である配列番号612に対する抗体重鎖のT363
    からなる群から選択される1つ以上のコンジュゲーション部位でシステイン又は非標準アミノ酸のアミノ酸置換を含む、抗体又はその機能的断片と、
    b)GLP-1受容体アゴニストであって、[Aib;Tyr16;Glu22;Gly36]GLP-1_(7-37) (配列番号3244)を含み、前記1つ以上のコンジュゲーション部位で置換されたシステイン残基又は非標準アミノ酸残基の側鎖を通して、前記抗体又はその機能的断片にコンジュゲートされているGLP-1受容体アゴニストと
    を含む組成物。
  2. 前記抗体又はその機能的断片は、モノクローナル抗体、組換え抗体、ヒト抗体、ヒト化抗体、キメラ抗体、多重特異性抗体又はその抗体断片である、請求項1に記載の組成物。
  3. 前記抗体又はその機能的断片は、ヒト抗体である、請求項2に記載の組成物。
  4. 前記抗体又はその機能的断片は、モノクローナル抗体である、請求項2に記載の組成物。
  5. 前記抗体又はその機能的断片は、IgG1型、IgG2型、IgG3型又はIgG4型のものである、請求項2に記載の組成物。
  6. 前記抗体又はその機能的断片は、前記IgG1型又は前記IgG2型のものである、請求項5に記載の組成物。
  7. 前記抗体又はその機能的断片は、ヒトGIPRの細胞外部分へのGIPの結合を阻害する、請求項2に記載の組成物。
  8. 前記抗体又はその機能的断片は、抗体又はその断片であり、前記抗体又はその断片は、配列番号74を含む軽鎖可変領域と、配列番号231を含む重鎖可変領域とを含み、
    前記抗体又はその機能的断片は、参照配列である配列番号612に対する抗体重鎖のE276でシステイン又は非標準アミノ酸のアミノ酸置換を含む、請求項2に記載の組成物。
  9. 前記抗体又はその機能的断片は、抗体であり、前記抗体は、配列番号388を含む軽鎖及び配列番号545を含む重鎖を含み、前記抗体又はその機能的断片は、参照配列である配列番号612に対する抗体重鎖のE276でシステイン又は非標準アミノ酸のアミノ酸置換を含む、請求項2に記載の組成物。
  10. 前記GLP-1受容体アゴニストは、前記アゴニストのC末端アミン基で前記抗体又はその断片にコンジュゲートされている、請求項1に記載の組成物。
  11. 前記GLP-1受容体アゴニストは、(GlySer)、(GlySer)、(GlySer)、(GlySer)、(GlySer)、(GlySer)、(GlySer)、(GlySer)、(GlySer)及び(GlySer)からなる群から選択される配列を含むペプチドリンカーを介して前記抗体又はその断片にコンジュゲートされている、請求項1に記載の組成物。
  12. 代謝障害を有する対象を治療するための請求項1~11のいずれか一項に記載の組成物。
JP2019538424A 2017-01-17 2018-01-16 胃抑制ペプチド受容体(gipr)に対するアンタゴニストにコンジュゲートされたglp-1受容体アゴニストを使用して代謝障害を治療又は改善する方法 Active JP7175899B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022141970A JP2022184880A (ja) 2017-01-17 2022-09-07 胃抑制ペプチド受容体(gipr)に対するアンタゴニストにコンジュゲートされたglp-1受容体アゴニストを使用して代謝障害を治療又は改善する方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762447332P 2017-01-17 2017-01-17
US62/447,332 2017-01-17
PCT/US2018/013918 WO2018136440A1 (en) 2017-01-17 2018-01-16 Method of treating or ameliorating metabolic disorders using glp-1 receptor agonists conjugated to antagonists for gastric inhibitory peptide receptor (gipr)

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022141970A Division JP2022184880A (ja) 2017-01-17 2022-09-07 胃抑制ペプチド受容体(gipr)に対するアンタゴニストにコンジュゲートされたglp-1受容体アゴニストを使用して代謝障害を治療又は改善する方法

Publications (3)

Publication Number Publication Date
JP2020506900A JP2020506900A (ja) 2020-03-05
JP2020506900A5 JP2020506900A5 (ja) 2021-02-25
JP7175899B2 true JP7175899B2 (ja) 2022-11-21

Family

ID=61832572

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019538424A Active JP7175899B2 (ja) 2017-01-17 2018-01-16 胃抑制ペプチド受容体(gipr)に対するアンタゴニストにコンジュゲートされたglp-1受容体アゴニストを使用して代謝障害を治療又は改善する方法
JP2022141970A Pending JP2022184880A (ja) 2017-01-17 2022-09-07 胃抑制ペプチド受容体(gipr)に対するアンタゴニストにコンジュゲートされたglp-1受容体アゴニストを使用して代謝障害を治療又は改善する方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022141970A Pending JP2022184880A (ja) 2017-01-17 2022-09-07 胃抑制ペプチド受容体(gipr)に対するアンタゴニストにコンジュゲートされたglp-1受容体アゴニストを使用して代謝障害を治療又は改善する方法

Country Status (25)

Country Link
US (2) US10905772B2 (ja)
EP (1) EP3570885A1 (ja)
JP (2) JP7175899B2 (ja)
KR (1) KR20190104158A (ja)
CN (1) CN110662558B (ja)
AR (1) AR110751A1 (ja)
AU (1) AU2018210858A1 (ja)
BR (1) BR112019014588A2 (ja)
CA (1) CA3049023A1 (ja)
CL (1) CL2019001963A1 (ja)
CO (1) CO2019007685A2 (ja)
CR (2) CR20190380A (ja)
EA (1) EA201991721A1 (ja)
IL (1) IL267660A (ja)
JO (1) JOP20190177A1 (ja)
MA (1) MA47314A (ja)
MX (1) MX2019008462A (ja)
NZ (1) NZ754937A (ja)
PE (1) PE20191467A1 (ja)
PH (1) PH12019501656A1 (ja)
SA (1) SA519402246B1 (ja)
SG (1) SG11201906525SA (ja)
TW (1) TWI708613B (ja)
UY (1) UY37568A (ja)
WO (1) WO2018136440A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ743474A (en) 2015-12-23 2023-03-31 Amgen Inc Method of treating or ameliorating metabolic disorders using binding proteins for gastric inhibitory peptide receptor (gipr) in combination with glp-1 agonists
JOP20190177A1 (ar) 2017-01-17 2019-07-16 Amgen Inc طريقة لعلاج أو تحسين اضطرابات أيضية باستخدام مساعدات مستقبل glp-1 مقترنة بمناهضات لمستقبل ببتيد مثبط معوي (gipr)
AU2018288852A1 (en) * 2017-06-21 2020-01-02 Amgen Inc. Method of treating or ameliorating metabolic disorders using antagonistic binding proteins for gastric inhibitory peptide receptor (GIPR)/GLP-1 receptor agonist fusion proteins
MX2020001327A (es) * 2017-08-04 2020-03-20 Amgen Inc Metodo de conjugacion de cys-acm.
US20220152154A1 (en) 2019-03-08 2022-05-19 Amgen Inc. Growth differentiation factor 15 combination therapy
CN112521501A (zh) * 2019-09-18 2021-03-19 鸿运华宁(杭州)生物医药有限公司 Gipr抗体及其与glp-1的融合蛋白质,以及其药物组合物和应用
WO2022056494A1 (en) * 2020-09-14 2022-03-17 Regeneron Pharmaceuticals, Inc. Antibody-drug conjugates comprising glp1 peptidomimetics and uses thereof
AU2022276998A1 (en) 2021-05-21 2023-12-07 Yuhan Corporation Composition for combination therapy comprising growth differentiation factor-15 variant and glucagon-like peptide-1 receptor agonist
CA3221655A1 (en) * 2021-06-09 2022-12-15 Swiftnovo Therapeutics Inc. Therapeutics and methods for treating or ameliorating metabolic disorders
WO2023173132A1 (en) * 2022-03-11 2023-09-14 Regeneron Pharmaceuticals, Inc. Anti-glp1r antibody-drug conjugates comprising glp1 peptidomimetics and uses thereof
CN117659189A (zh) * 2022-09-08 2024-03-08 鸿运华宁(杭州)生物医药有限公司 Gipr抗体及其与fgf21的融合蛋白,以及其药物组合物和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514835A (ja) 2007-01-05 2010-05-06 コヴェックス・テクノロジーズ・アイルランド・リミテッド グルカゴン様タンパク質1受容体(glp−1r)アゴニスト化合物

Family Cites Families (131)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773919A (en) 1969-10-23 1973-11-20 Du Pont Polylactide-drug mixtures
US4263428A (en) 1978-03-24 1981-04-21 The Regents Of The University Of California Bis-anthracycline nucleic acid function inhibitors and improved method for administering the same
US4399216A (en) 1980-02-25 1983-08-16 The Trustees Of Columbia University Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials
IE52535B1 (en) 1981-02-16 1987-12-09 Ici Plc Continuous release pharmaceutical compositions
DE3374837D1 (en) 1982-02-17 1988-01-21 Ciba Geigy Ag Lipids in the aqueous phase
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
HUT35524A (en) 1983-08-02 1985-07-29 Hoechst Ag Process for preparing pharmaceutical compositions containing regulatory /regulative/ peptides providing for the retarded release of the active substance
US4615885A (en) 1983-11-01 1986-10-07 Terumo Kabushiki Kaisha Pharmaceutical composition containing urokinase
US4740461A (en) 1983-12-27 1988-04-26 Genetics Institute, Inc. Vectors and methods for transformation of eucaryotic cells
US4959455A (en) 1986-07-14 1990-09-25 Genetics Institute, Inc. Primate hematopoietic growth factors IL-3 and pharmaceutical compositions
US5260203A (en) 1986-09-02 1993-11-09 Enzon, Inc. Single polypeptide chain binding molecules
US4946778A (en) 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
DE3785186T2 (de) 1986-09-02 1993-07-15 Enzon Lab Inc Bindungsmolekuele mit einzelpolypeptidkette.
US4912040A (en) 1986-11-14 1990-03-27 Genetics Institute, Inc. Eucaryotic expression system
US5011912A (en) 1986-12-19 1991-04-30 Immunex Corporation Hybridoma and monoclonal antibody for use in an immunoaffinity purification system
US4965195A (en) 1987-10-26 1990-10-23 Immunex Corp. Interleukin-7
US4968607A (en) 1987-11-25 1990-11-06 Immunex Corporation Interleukin-1 receptors
GB8823869D0 (en) 1988-10-12 1988-11-16 Medical Res Council Production of antibodies
WO1990005183A1 (en) 1988-10-31 1990-05-17 Immunex Corporation Interleukin-4 receptors
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US5683888A (en) 1989-07-22 1997-11-04 University Of Wales College Of Medicine Modified bioluminescent proteins and their use
US5292658A (en) 1989-12-29 1994-03-08 University Of Georgia Research Foundation, Inc. Boyd Graduate Studies Research Center Cloning and expressions of Renilla luciferase
JP3068180B2 (ja) 1990-01-12 2000-07-24 アブジェニックス インコーポレイテッド 異種抗体の生成
US6673986B1 (en) 1990-01-12 2004-01-06 Abgenix, Inc. Generation of xenogeneic antibodies
US6713610B1 (en) 1990-01-12 2004-03-30 Raju Kucherlapati Human antibodies derived from immunized xenomice
US5545618A (en) 1990-01-24 1996-08-13 Buckley; Douglas I. GLP-1 analogs useful for diabetes treatment
WO1991018982A1 (en) 1990-06-05 1991-12-12 Immunex Corporation Type ii interleukin-1 receptors
US5877397A (en) 1990-08-29 1999-03-02 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5789650A (en) 1990-08-29 1998-08-04 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
US5874299A (en) 1990-08-29 1999-02-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US6255458B1 (en) 1990-08-29 2001-07-03 Genpharm International High affinity human antibodies and human antibodies against digoxin
ATE158021T1 (de) 1990-08-29 1997-09-15 Genpharm Int Produktion und nützung nicht-menschliche transgentiere zur produktion heterologe antikörper
US5633425A (en) 1990-08-29 1997-05-27 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5545806A (en) 1990-08-29 1996-08-13 Genpharm International, Inc. Ransgenic non-human animals for producing heterologous antibodies
US6300129B1 (en) 1990-08-29 2001-10-09 Genpharm International Transgenic non-human animals for producing heterologous antibodies
US5661016A (en) 1990-08-29 1997-08-26 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5770429A (en) 1990-08-29 1998-06-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5814318A (en) 1990-08-29 1998-09-29 Genpharm International Inc. Transgenic non-human animals for producing heterologous antibodies
US5625126A (en) 1990-08-29 1997-04-29 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
DK0575319T3 (da) 1991-03-11 2000-07-10 Univ Georgia Res Found Kloning og ekspression af Renilla-luciferase
US6565841B1 (en) 1991-03-15 2003-05-20 Amgen, Inc. Pulmonary administration of granulocyte colony stimulating factor
EP0590076A4 (en) 1991-06-14 1997-02-12 Dnx Corp Production of human hemoglobin in transgenic pigs
JPH06508880A (ja) 1991-07-08 1994-10-06 ユニバーシティ オブ マサチューセッツ アット アムハースト サーモトロピック液晶セグメント化ブロックコポリマー
US5470582A (en) 1992-02-07 1995-11-28 Syntex (U.S.A.) Inc. Controlled delivery of pharmaceuticals from preformed porous polymeric microparticles
ES2301158T3 (es) 1992-07-24 2008-06-16 Amgen Fremont Inc. Produccion de anticuerpos xenogenicos.
WO1995007463A1 (en) 1993-09-10 1995-03-16 The Trustees Of Columbia University In The City Of New York Uses of green fluorescent protein
WO1995021191A1 (en) 1994-02-04 1995-08-10 William Ward Bioluminescent indicator based upon the expression of a gene for a modified green-fluorescent protein
US5777079A (en) 1994-11-10 1998-07-07 The Regents Of The University Of California Modified green fluorescent proteins
CA2761116A1 (en) 1995-04-27 1996-10-31 Amgen Fremont Inc. Human antibodies derived from immunized xenomice
US5874304A (en) 1996-01-18 1999-02-23 University Of Florida Research Foundation, Inc. Humanized green fluorescent protein genes and methods
US5804387A (en) 1996-02-01 1998-09-08 The Board Of Trustees Of The Leland Stanford Junior University FACS-optimized mutants of the green fluorescent protein (GFP)
US5876995A (en) 1996-02-06 1999-03-02 Bryan; Bruce Bioluminescent novelty items
US5925558A (en) 1996-07-16 1999-07-20 The Regents Of The University Of California Assays for protein kinases using fluorescent protein substrates
ATE493998T1 (de) 1996-08-08 2011-01-15 Amylin Pharmaceuticals Inc Pharmazeutische zusammensetzung mit einem exendin-4-peptid
US5976796A (en) 1996-10-04 1999-11-02 Loma Linda University Construction and expression of renilla luciferase and green fluorescent protein fusion genes
KR20080059467A (ko) 1996-12-03 2008-06-27 아브게닉스, 인크. 복수의 vh 및 vk 부위를 함유하는 사람 면역글로불린유전자좌를 갖는 형질전환된 포유류 및 이로부터 생성된항체
WO1998024464A1 (en) 1996-12-03 1998-06-11 Trustees Of Boston University Specific antagonists for glucose-dependent insulinotropic polypeptide (gip)
US7091183B1 (en) 1996-12-03 2006-08-15 Boston Medical Center Corporation Specific antagonists for glucose-dependent insulinotropic polypeptide (GIP)
IL129767A0 (en) 1996-12-12 2000-02-29 Prolume Ltd Apparatus and method for detecting and identifying infectious agents
ATE304864T1 (de) 1997-01-07 2005-10-15 Amylin Pharmaceuticals Inc Verwendung von exedinen und deren antagonisten zur verminderung der lebensmittelaufnahme
CA2196496A1 (en) 1997-01-31 1998-07-31 Stephen William Watson Michnick Protein fragment complementation assay for the detection of protein-protein interactions
US6753165B1 (en) 1999-01-14 2004-06-22 Bolder Biotechnology, Inc. Methods for making proteins containing free cysteine residues
US7157555B1 (en) 1997-08-08 2007-01-02 Amylin Pharmaceuticals, Inc. Exendin agonist compounds
JP2001513512A (ja) 1997-08-08 2001-09-04 アミリン・ファーマシューティカルズ,インコーポレイテッド 新規なエキセンディン作動剤化合物
US6342220B1 (en) 1997-08-25 2002-01-29 Genentech, Inc. Agonist antibodies
DE69839021T3 (de) 1997-11-14 2013-08-08 Amylin Pharmaceuticals, Llc Neuartige exendin agonisten
US7223725B1 (en) 1997-11-14 2007-05-29 Amylin Pharmaceuticals, Inc. Exendin agonist compounds
US7220721B1 (en) 1997-11-14 2007-05-22 Amylin Pharmaceuticals, Inc. Exendin agonist peptides
DE69838916T2 (de) 1997-11-14 2008-12-18 Amylin Pharmaceuticals, Inc., San Diego Neuartige exendin agonisten
US6703359B1 (en) 1998-02-13 2004-03-09 Amylin Pharmaceuticals, Inc. Inotropic and diuretic effects of exendin and GLP-1
AU759058C (en) 1998-02-13 2005-09-15 Amylin Pharmaceuticals, Inc. Inotropic and diuretic effects of exendin and GLP-1
US6232107B1 (en) 1998-03-27 2001-05-15 Bruce J. Bryan Luciferases, fluorescent proteins, nucleic acids encoding the luciferases and fluorescent proteins and the use thereof in diagnostics, high throughput screening and novelty items
EP1119625B1 (en) 1998-10-07 2005-06-29 Medical College Of Georgia Research Institute, Inc. Glucose-dependent insulinotropic peptide for use as an osteotropic hormone
CZ303120B6 (cs) 1998-12-07 2012-04-11 Societe De Conseils De Recherches Et Dapplications Scientifiques S. A. Sloucenina a farmaceutický prostredek
CA2358107C (en) 1998-12-22 2011-08-23 Eli Lilly And Company Shelf-stable formulation of glucagon-like peptide-1
PT1140145E (pt) 1999-01-14 2005-11-30 Amylin Pharmaceuticals Inc Formulacoes novas de agonistas de exendina e metodos para a sua administracao
EP1143989B1 (en) 1999-01-14 2006-12-13 Amylin Pharmaceuticals, Inc. Exendins for glucagon suppression
US20030087820A1 (en) 1999-01-14 2003-05-08 Young Andrew A. Novel exendin agonist formulations and methods of administration thereof
US20050272652A1 (en) 1999-03-29 2005-12-08 Gault Victor A Peptide analogues of GIP for treatment of diabetes, insulin resistance and obesity
DK1171465T3 (da) 1999-03-29 2004-12-13 Uutech Ltd Analoger til gastroinhibitorisk peptid og deres anvendelse til behandling af diabetes
US6506724B1 (en) 1999-06-01 2003-01-14 Amylin Pharmaceuticals, Inc. Use of exendins and agonists thereof for the treatment of gestational diabetes mellitus
US6833268B1 (en) 1999-06-10 2004-12-21 Abgenix, Inc. Transgenic animals for producing specific isotypes of human antibodies via non-cognate switch regions
US6528486B1 (en) 1999-07-12 2003-03-04 Zealand Pharma A/S Peptide agonists of GLP-1 activity
CA2396157A1 (en) 2000-01-10 2001-07-19 Amylin Pharmaceuticals, Inc. Use of exendins and agonists thereof for modulation of triglyceride levels and treatment of dyslipidemia
DK1257577T3 (da) 2000-01-27 2004-08-02 Lilly Co Eli Fremgangsmåde til oplösning af glucagon som peptidforbindelse
AU5675701A (en) 2000-05-16 2001-11-26 Sanwa Kagaku Kenkyusho Co Agents for preventing or ameliorating insulin resistance and/or obesity
IL158419A0 (en) 2001-04-19 2004-05-12 Scripps Research Inst Methods and composition for the production of orthoganal trna-aminoacyl trna synthetase pairs
US20050159379A1 (en) 2001-05-18 2005-07-21 Sirna Therapeutics, Inc RNA interference mediated inhibition of gastric inhibitory polypeptide (GIP) and gastric inhibitory polypeptide receptor (GIPR) gene expression using short interfering nucleic acid (siNA)
JP4566459B2 (ja) 2001-06-07 2010-10-20 株式会社日立製作所 表示装置
CN1332711C (zh) 2002-02-20 2007-08-22 埃米球科技有限公司 施用glp-1分子的方法
JPWO2003097031A1 (ja) 2002-05-22 2005-09-15 株式会社三和化学研究所 メチリデンヒドラジド化合物を有効成分とする、肥満の予防又は改善剤
US20040029805A1 (en) 2002-06-15 2004-02-12 Wolfe M. Michael Prevention and treatment of nonalcoholic fatty liver disease (NAFLD) by antagonism of the receptor to glucose-dependent insulinotropic polypeptide (GIP)
JP2006213598A (ja) 2003-03-19 2006-08-17 Sanwa Kagaku Kenkyusho Co Ltd ピラゾロピリミジン化合物及びその用途
CN101974090B (zh) 2003-06-12 2015-06-17 伊莱利利公司 Glp-1类似物融合蛋白质
WO2005021022A2 (en) 2003-09-01 2005-03-10 Novo Nordisk A/S Stable formulations of peptides
EP2417980A1 (en) 2004-02-11 2012-02-15 Amylin Pharmaceuticals Inc. Hybrid polypeptides with selectable properties
US7456254B2 (en) 2004-04-15 2008-11-25 Alkermes, Inc. Polymer-based sustained release device
US7991890B2 (en) 2004-09-30 2011-08-02 Microsoft Corporation Game console communication with a device
EP1809335A2 (en) 2004-10-25 2007-07-25 Cytos Biotechnology AG Gastric inhibitory polypeptide (gip) antigen arrays and uses thereof
EP1831252B1 (en) 2004-12-22 2009-07-01 Eli Lilly And Company Glp-1 analog fusion protein formulations
US20060275288A1 (en) 2005-01-20 2006-12-07 Grihalde Nelson D GLP-1 receptor agonist and allosteric modulator monoclonal antibodies and uses thereof
MX2007009760A (es) 2005-02-11 2007-11-07 Amylin Pharmaceuticals Inc Polipeptidos del analogo e hibrido del peptido inhibidor gastrico con propiedades seleccionables.
US8263545B2 (en) 2005-02-11 2012-09-11 Amylin Pharmaceuticals, Inc. GIP analog and hybrid polypeptides with selectable properties
WO2006119905A1 (en) 2005-05-11 2006-11-16 Sanofi-Aventis Use of a gip promoter polymorphism
WO2006125763A1 (en) 2005-05-25 2006-11-30 Novo Nordisk A/S Stabilized polypeptide formulations
CA2622069A1 (en) * 2005-09-08 2007-03-15 Uutech Limited Treatment of diabetes related obesity
US20090186817A1 (en) 2006-03-21 2009-07-23 Amylin Pharmaceuticals, Inc. Peptide-peptidase inhibitor conjugates and methods of using same
WO2008006113A2 (en) 2006-07-07 2008-01-10 The Texas A & M University System Novel belactosin derivatives as therapeutic agents/biological probes and their synthesis
WO2008019143A2 (en) 2006-08-04 2008-02-14 Amylin Pharmaceuticals, Inc Use of exendins and glp-i receptor agonists for altering lipoprotein particle size and subclass composition
US8497240B2 (en) 2006-08-17 2013-07-30 Amylin Pharmaceuticals, Llc DPP-IV resistant GIP hybrid polypeptides with selectable properties
CA2660835A1 (en) 2006-08-17 2008-02-21 Amylin Pharmaceuticals, Inc. Dpp-iv resistant gip hybrid polypeptides with selectable propperties
US20090144162A1 (en) 2007-11-29 2009-06-04 Neil Milne Transaction Security Method and Apparatus
GB0814068D0 (en) 2008-08-01 2008-09-10 Univ Ulster Active immunisation against GIP
CA2733006A1 (en) 2008-08-07 2010-02-11 Ipsen Pharma S.A.S. Analogues of glucose-dependent insulinotropic polypeptide (gip) modified at n-terminal
AU2009280012B2 (en) 2008-08-07 2012-12-06 Ipsen Pharma S.A.S. Truncated analogues of glucose-dependent insulinotropic polypeptide
WO2010016936A1 (en) 2008-08-07 2010-02-11 Ipsen Pharma S.A.S. Pharmaceutical compositions of analogues of glucose-dependent insulinotropic polypeptide
CN103641906A (zh) 2008-08-07 2014-03-19 益普生制药股份有限公司 葡萄糖依赖性促胰岛素多肽类似物
WO2010016940A2 (en) 2008-08-07 2010-02-11 Ipsen Pharma S.A.S. Analogues of glucose-dependent insulinotropic polypeptide
US20120157379A1 (en) 2009-07-31 2012-06-21 Sheau Yu Hsu Gastric Inhibitory Peptide Variants and Their Uses
RU2012136450A (ru) 2010-01-27 2014-03-10 Индиана Юниверсити Рисерч Энд Текнолоджи Корпорейшн Конъюгаты антагонист глюкагона - агонист gip и композиции для лечения метаболических расстройств и ожирения
US9023986B2 (en) 2010-10-25 2015-05-05 Hoffmann-La Roche Inc. Glucose-dependent insulinotropic peptide analogs
SG191194A1 (en) 2010-12-22 2013-07-31 Univ Indiana Res & Tech Corp Glucagon analogs exhibiting gip receptor activity
EP2685257A4 (en) 2011-03-08 2014-10-01 Sanwa Kagaku Kenkyusho Co METHOD OF ANALYSIS
KR102002783B1 (ko) 2011-06-10 2019-07-24 베이징 한미 파마슈티컬 컴퍼니 리미티드 포도당 의존성 인슐리노트로핀 폴리펩타이드 유사물질, 이의 약학적 조성물 및 응용
US20160185837A1 (en) 2013-08-16 2016-06-30 Medimmune Limited Gip and glp-1 receptor dual-agonists for the treatment of diabetes
CA2932325A1 (en) * 2013-12-04 2015-06-11 Innovative Targeting Solutions Inc. G-protein coupled receptor agonists and methods
EP3079722B1 (en) 2013-12-13 2021-03-24 Novo Nordisk Health Care AG Method for thioether conjugation of proteins
MX2016008102A (es) 2013-12-17 2017-05-12 The Metrohealth System Composiciones y métodos para tratar la acumulacion de tejido graso.
TWI622596B (zh) 2015-10-26 2018-05-01 美國禮來大藥廠 升糖素受體促效劑
NZ743474A (en) * 2015-12-23 2023-03-31 Amgen Inc Method of treating or ameliorating metabolic disorders using binding proteins for gastric inhibitory peptide receptor (gipr) in combination with glp-1 agonists
JOP20190177A1 (ar) 2017-01-17 2019-07-16 Amgen Inc طريقة لعلاج أو تحسين اضطرابات أيضية باستخدام مساعدات مستقبل glp-1 مقترنة بمناهضات لمستقبل ببتيد مثبط معوي (gipr)

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514835A (ja) 2007-01-05 2010-05-06 コヴェックス・テクノロジーズ・アイルランド・リミテッド グルカゴン様タンパク質1受容体(glp−1r)アゴニスト化合物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BEHRENS, C. R. et al.,Methods for site-specific drug conjugation to antibodies,MAbs,2014年,Vol. 6,pp. 46 - 53
LEWIS, J. T. et al.,Glucose-dependent insulinotropic polypeptide confers early phase insulin release to oral glucose in rats: demonstration by a receptor antagonist,Endocrinology,2000年,Vol. 141,pp. 3710-3716

Also Published As

Publication number Publication date
US20210154318A1 (en) 2021-05-27
SA519402246B1 (ar) 2023-02-15
CL2019001963A1 (es) 2020-04-03
CR20190380A (es) 2019-11-07
CN110662558B (zh) 2024-04-09
MA47314A (fr) 2019-11-27
US10905772B2 (en) 2021-02-02
EP3570885A1 (en) 2019-11-27
TWI708613B (zh) 2020-11-01
NZ754937A (en) 2023-04-28
US20180311372A1 (en) 2018-11-01
BR112019014588A2 (pt) 2020-02-18
KR20190104158A (ko) 2019-09-06
TW201838648A (zh) 2018-11-01
MX2019008462A (es) 2019-11-21
JP2022184880A (ja) 2022-12-13
SG11201906525SA (en) 2019-08-27
CO2019007685A2 (es) 2019-07-31
CR20230302A (es) 2023-08-25
JOP20190177A1 (ar) 2019-07-16
JP2020506900A (ja) 2020-03-05
AU2018210858A1 (en) 2019-07-18
WO2018136440A1 (en) 2018-07-26
EA201991721A1 (ru) 2020-04-08
CN110662558A (zh) 2020-01-07
CA3049023A1 (en) 2018-07-26
AR110751A1 (es) 2019-05-02
UY37568A (es) 2018-07-31
PH12019501656A1 (en) 2019-10-28
IL267660A (en) 2019-08-29
PE20191467A1 (es) 2019-10-16

Similar Documents

Publication Publication Date Title
JP7175899B2 (ja) 胃抑制ペプチド受容体(gipr)に対するアンタゴニストにコンジュゲートされたglp-1受容体アゴニストを使用して代謝障害を治療又は改善する方法
EP3202787B1 (en) Human antigen binding proteins that bind beta-klotho, fgf receptors and complexes thereof
JP7250706B2 (ja) 胃抑制ペプチド受容体(gipr)に対するアンタゴニスト結合タンパク質/glp-1受容体アゴニスト融合タンパク質を使用した代謝障害の治療又は寛解方法
US11046774B2 (en) Method of treating or ameliorating metabolic disorders using binding proteins for gastric inhibitory peptide receptor (GIPR) in combination with GLP-1 agonists
JP7237853B2 (ja) 胃抑制ペプチド受容体(gipr)に対する結合タンパク質をglp-1アゴニストと組み合わせて使用する、代謝障害の治療方法又は寛解方法
EA040374B1 (ru) Способ лечения или облегчения метаболических нарушений с использованием белков, связывающих рецептор желудочного ингибиторного пептида (gipr), в комбинации с агонистами glp-1

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A529

Effective date: 20190829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220907

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220907

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220914

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221109

R150 Certificate of patent or registration of utility model

Ref document number: 7175899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150