JP7166942B2 - パルス信号生成回路、および当該パルス信号生成回路を備える画像形成装置 - Google Patents

パルス信号生成回路、および当該パルス信号生成回路を備える画像形成装置 Download PDF

Info

Publication number
JP7166942B2
JP7166942B2 JP2019007378A JP2019007378A JP7166942B2 JP 7166942 B2 JP7166942 B2 JP 7166942B2 JP 2019007378 A JP2019007378 A JP 2019007378A JP 2019007378 A JP2019007378 A JP 2019007378A JP 7166942 B2 JP7166942 B2 JP 7166942B2
Authority
JP
Japan
Prior art keywords
data
pulse signal
bit
pwm
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019007378A
Other languages
English (en)
Other versions
JP2020116751A (ja
Inventor
佳史 高尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019007378A priority Critical patent/JP7166942B2/ja
Priority to US16/740,247 priority patent/US10895820B2/en
Publication of JP2020116751A publication Critical patent/JP2020116751A/ja
Application granted granted Critical
Publication of JP7166942B2 publication Critical patent/JP7166942B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/80Details relating to power supplies, circuits boards, electrical connections
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/04Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
    • G03G15/043Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material with means for controlling illumination or exposure

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Laser Beam Printer (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)

Description

本発明は、PWM信号の生成方法に関する。
画像形成装置においては、感光体を露光するためのレーザ光の制御、モータ制御、センサを用いたフィードバック制御において基準電圧が必要となる。基準電圧を生成するために、DAC(デジタル/アナログ変換回路)が用いられている。特に、PWM(パルス幅変調)信号を、抵抗RとコンデンサCのLPF(ローパスフィルタ)を通して、デジタル信号をアナログ信号に変換する方式のDA変換が知られている(例えば、特許文献1)。PWM信号を用いたデジタル/アナログ変換処理は、PWM信号のパルス幅に応じた出力電圧を簡単な構成で生成できるため、画像形成装置において広く用いられている。
特開2005-178041号公報
PWM信号を出力する集積回路(以下、IC)としてあげられるのは、CPUや機能モジュールを1チップ化したASICである。これらICは、内部カウンタを動作させ、設定値とカウンタのカウント値とを比較する構成を備える。そして、これらICは、設定値とカウント値が一致したタイミングで出力レベル(Hi/Lo)を切り替えることによって、設定値に対応した幅のパルスを出力する。ICの内部での演算やパルスの出力は、CPUやASICに入力される基準CLKに同期して行われる。画像形成装置においては、プロセススピードの高速化などに伴いDA変換で要求される応答性と分解能が高くなっている。
本発明パルス信号生成回路は、パルス信号を生成するパルス信号生成回路であって、前記パルス信号の立ち上がりを示す立ち上がりデータ、および前記パルス信号の立ち下がりを示す立ち下がりデータを複数のビットデータを含むビットパターンとして生成し、前記立ち上がりデータと前記立ち下がりデータとを用いた論理演算によってパターンデータを生成するデータ生成回路と、クロック信号を生成するクロック信号生成部と、前記パターンデータがセットされるシフトレジスタと、を備え、前記クロック信号に同期して前記シフトレジスタが前記パターンデータを1ビットずつ出力することによってパルス信号を生成する。
本実施例によれば、パルス信号の立ち上がりを示す立ち上がりデータとパルス信号の立ち下がりを示す立ち下がりデータを論理演算することによってパターンデータを生成することによってパルス信号を生成することができる。
画像形成装置 レーザユニット レーザ出力のシェーディング PWM信号と基準電圧を得るための構成例 PWM出力と基準電圧を得るための構成例 PWM出力設定レジスタの構成例 低速クロック部と高速クロック部のタイミングチャート 位相データデコードテーブル 立ち上がりエッジ出力を説明する図 立ち下がりエッジ出力を説明する図 凸波形のPWM信号を説明する図 モータ制御構成を説明する図 制御CLK周波数とモータ電流を説明する図 モータの電流制御信号としてPWM出力を用いる構成 PWM波形とリップル電圧を説明する図 電流制御信号の応答性を説明する図 高圧制御の構成例 一次転写高圧部の構成を示す図
[実施例1]
(画像形成装置)
図1は本実施例に係る画像形成装置100の全体構成を示す断面図であり、電子写真方式のフルカラープリンタの概略構成を示している。図1に示す画像形成装置100において、各色(イエロー、マゼンタ、シアン、ブラック)にそれぞれ対応する感光体であるところの感光ドラム101a~101dは帯電装置102a~102dによって帯電される。帯電された各感光ドラムはレーザ発光素子を光源とするレーザスキャナユニット200a~200d(光走査装置)から出射されるレーザ光(光ビーム)により露光される。感光ドラムにはレーザ光によって露光されることによって静電潜像が形成される。各色に対応する現像器103a~103dは、トナーを用いて各感光ドラム101a~101dに形成された静電潜像を現像する。そして、各感光ドラム101a~101d上に現像された各色のトナー像は、転写ブレード104a~104dに印加される転写バイアスによって中間転写ベルト105に転写される。中間転写ベルト105に転写されなかったトナー像は、画像汚れを引き起こす原因になるため、感光ドラムクリーナ4a~4dにおいて除去される。中間転写ベルト105上に転写されたトナー像は、二次転写ローラ106で記録紙に4色が一括転写される。その後、トナー像を担持した記録紙Sは定着装置107を通過して定着処理が施された後、排紙ローラ108等によって装置外に排出される。
上記の記録紙Sは給紙カセット109もしくは手差しトレイ110などから給紙され、レジローラ111で搬送タイミングが調整され、二次転写ローラ106と二次転写内ローラ21へ搬送される。両面印刷時には、定着装置107を通った記録紙Sは両面反転パス112の方向に導かれて逆方向に反転搬送され、両面パス113へ搬送される。両面パス113を通った記録紙Sは再び縦パスローラ114を通り、1面目と同様に2面目の画像を作像、転写、定着されて排出される。以上の動作によりコピーを得ることができる。
(レーザスキャナユニット)
図2を用いてそのレーザスキャナユニット200及び本体制御部、画像制御部の動作の詳細を説明する。ここでは図示しないCPUが各制御部をコントロールしている。
本実施例におけるレーザ光源1000は、端面発光型半導体レーザであり、内蔵されたレーザ素子は双方向にレーザ光を出射する。また、レーザ光源1000は、フォトダイオード(PD)1003を内蔵している。レーザ素子に対して一方側に出射されるレーザ光はフォトダイオード(PD)1003に入射する。フォトダイオードは入射光に応じた電流を出力する。この電流は不図示の固定抵抗によって電圧(PD信号)に変換される。PD信号はレーザドライバ1008に入力される。レーザドライバ1008は、PD信号に基づいてレーザ光源1000が出射するレーザ光を制御するAPC(Automatic Power Control)を実行する。
レーザ素子に対して他方側に出射されるレーザ光は、コリメータレンズ1001を介して収束されたレーザ光となり、ポリゴンミラー1002(回転多面鏡)の反射面に入射する。ポリゴンモーター制御部1009は、不図示のポリゴンモーターへ駆動信号(Acc/Dec)を出力する。駆動信号を受けたポリゴンモーターは、一体になったポリゴンミラー1002を反時計周りに回転駆動する。これにより、ポリゴンミラー1002の反射面によって偏向されたレーザ光は感光ドラム101上を走査する。また、走査されるレーザ光はBeam Detect(以下BD)センサ1004を走査する。レーザ光によって走査されることによってBDセンサ1004はBD信号を出力する。このBD信号は、ポリゴンモーター制御部1009へ入力され、ポリゴンミラー1002の回転が所望の周期で安定するようにフィードバック制御される。
BD信号の生成周期が目標周期の範囲に収束すると、画像制御部1007はポリゴンミラー1002が画像形成を実行するための目標速度に達してその速度で安定して回転していると判定する。ポリゴンミラー1002が安定して回転すると、画像制御部1007は内部において画像描画開始のタイミング信号(TOP信号を生成する。TOP信号が生成されると、画像制御部1007はそれに同期してレーザドライバ1008へポリゴンミラー1002の各反射面に応じた補正処理が加えられた画像データの出力を開始する。レーザドライバ1008は、入力される画像データに基づきレーザ光源1000を駆動する。ことにより、感光ドラム101上に画像を形成するためのレーザ光を発生させる。この点滅駆動されたレーザ光は、F-θレンズ1005を通過することでポリゴンミラー1002による角速度一定の走査から、感光ドラム101上で等速走査となるように補正される。補正されたレーザ光は、折り返しミラー1006を介して感光ドラム101上に静電潜像を形成する。後述するシェーディング回路は、レーザドライバ1008に内蔵されていても良い。一方で、シェーディング回路は、レーザドライバ1008とは別体としてレーザドライバ1008と同一基板にデスクリート部品として設けられて、レーザドライバ1008がレーザ光源1000に出力する電流値が変化するようにレーザドライバ1008に電気的に作用するようにしても良い。
ここで、本実施例に関わる感光ドラム101上を走査するレーザ光の光量とレーザ光の光量制御について説明する。レーザ光源から出射するレーザ光の光量を一定にした場合、感光ドラム101の表面に到達するレーザ光の光量は、レーザスキャナユニット200の光学性能によって変動する。例えば、F-θレンズの特性も走査中で均一でない、走査されるレーザ光の光路長が走査位置によって異なるなどの理由により、感光ドラム101の表面におけるレーザ光の光量は不均一となる。このような主走査方向におけるレーザ光の光量の不均一性を補正しないと、レーザ光の主走査方向において画像濃度が不均一になってしまう。
そこで、感光ドラム101の表面に到達するレーザ光の光量を略均一にするため、主走査方向におけるレーザ光の走査位置に応じてレーザ光の光量の補正(以下、シェーディング補正)を行う。シェーディング補正を実行するための補正データは、例えばレーザスキャナユニット200毎にシェーディング補正テーブルとしてメモリに保持される。メモリに保持された補正テーブルに基づいてシェーディング補正は実行される。
図3はシェーディング補正の概略を説明するための図である。図3に示す縦の破線は、シェーディング補正を実行する際における光量制御ブロック(セグメント)の境界を示している。すなわち、図3に示す縦の破線の間の領域が1ブロックとなる。光量制御ブロックの幅は各ブロック均一でも良いし、レーザスキャナユニット200の光学性能に応じて異ならせても良い。
上記のメモリには1ブロック毎に設定された補正データを補正テーブルとして保持されている。画像制御部1007は、主走査方向におけるレーザ光の走査位置に応じてレーザ光の補正テーブルから演算したレーザ出力制御電圧Vreflを出力する。レーザ出力制御電圧Vreflはレーザ制御部1008に入力される。レーザドライバ1008は、レーザ出力制御電圧Vreflに基づいてレーザ光源1000に対して供給する電流の値を制御する。レーザ光源1000は、レーザドライバ1008から供給される電流に応じた光量のレーザ光を出力する。このようにして、感光ドラム101上に到達させるレーザ光の光量を主走査方向におけるレーザ光の露光位置に応じて任意に変化させることができる。
図3に示す各ブロックに跨る細い点線の曲線は、シェーディング補正を実行しない場合における感光ドラム101上に到達するレーザ光の光量の変化を示している。それに対して、例えば、レーザ光の光量を各ブロックに跨る実線の曲線のように補正をすることによって、図3の太い点線に示すように感光ドラム101の表面に到達するレーザ光の光量は略均一になる。なお、レーザ光の光量を各ブロックに跨る実線の曲線のような光量変化は、画像制御部1007が各ブロックに対して設定された補正データと各ブロック内における露光位置の座標とに基づいて線形補間によって演算することにより生成することができる。
画像制御部1007にて生成されるレーザ出力制御電圧Vreflについて、図4、図5を用いて説明を行う。レーザ出力制御電圧Vreflの生成のために、画像形成装置にはPWM信号とローパスフィルタ602(平滑化回路。以下、LPF)を用いたDA変換回路が備えられる場合がある。図4は、従来の画像形成装置の回路構成を示したものである。集積回路502は、PWM信号生成部503を有している。PWM信号生成部503は、出力PWMの周期、ON時間、OFF時間等を設定できるレジスタ504、CLK同期のカウンタ505、PWMの出力レベル切り替えタイミングを生成する比較器506で構成される。また、PWM生成部503は同期回路構成である。図4のPWM生成部503は、外部から入力されたCLKをPLL回路507にて逓倍したCLK同期で動作する構成を示したものである。なお、本実施例での低速CLKは水晶発振器から生成される一定周波数のクロック信号であり、高速CLKは低速CLKをクロック信号生成部であるところのPLL517によって逓倍処理したクロック信号である。
ここで、画像形成の生産性を向上させるために、レーザ光の走査速度が高速に設定された画像形成装置がある。このような画像形成装置は、シェーディング補正を高精度に実行するためには、光量制御ブロックの分割数と1ブロック内でのレーザ出力生後電圧Vreflの分解能を同等以上にする必要がある。走査速度が高速化すると、光量制御ブロックを走査する時間が短くなる。すなわち、光量制御ブロック1ブロック当たりの制御時間が短くなることになるため、PWMを生成するCLKを高速化するなどして、光量制御の分解能を上げる必要がある。
CLKの高速化には、集積回路内にPLL回路を用い、集積回路に入力されたCLKを逓倍する方法がある。しかし、CLKを高速化しただけの場合、集積回路502内のカウンタ505においてデータの伝搬遅延を考慮する必要がある。例えばカウンタでは、桁上げもしくは桁下げでキャリーが発生する。4bitカウンタが2進数で(0111)のとき、1カウントアップする場合、bit0におけるキャリーがbit2に伝搬する。また、bit2におけるキャリーがbit3に伝搬し、bit3におけるキャリーがbit4に伝搬し、その結果2進数で(1000)という値となる。カウンタ505のbit数に比例してこの伝搬数は大きくなり遅延も比例して大きくなる。これを1CLK内に行う必要がある。よって、カウンタ505における伝搬遅延により、従来の構成ではCLKの高速化するとデータの更新が間に合わなくなる可能性があった。
それに対して、本実施例の基準電圧は次のような構成となっている。図5は、本実施例に係るレーザ出力制御電圧Vreflを得るための画像制御部1007の内部モジュール、およびレーザスキャナユニット200を示す図である。集積回路512は、内部モジュールとしてPWM信号生成部513を有している。パルス信号生成回路であるところの集積回路512内の破線内のモジュールは低速CLKによって動作する領域であり、それ以外は高速CLKによって動作する。PWM信号生成部513は、出力PWM信号の周期、ON時間、OFF時間等を設定できるレジスタ514、CLK同期のカウンタ515、カウンタ演算部516、PWMパターン生成を行うパターン生成部518を有する。カウンタ演算部516は、カウンタ515でのカウンタ目標値と、パターン生成部518でパルスパターンを生成するための位相データを算出する。パターン生成部518では、低速CLK毎に、パラレル-シリアル変換を実行するパラレル-シリアル変換部として機能するシフトレジスタ519からPWM信号を出力するためのパルスパターンを生成している。シフトレジスタ519は、パターン生成部518より出力されたパターンデータを1ビットずつシフトしながら出力する。シフトレジスタ519はPLL517より出力された高速CLKで動作する。すなわち、シフトレジスタ519にはパターン生成部518から低速CLKに応じてPWMパターンデータがパラレルに入力される。そして、シフトレジスタ519は、そのデータを高速CLKに応じて1ビットずつシリアルに出力する。なお、低速CLKと高速CLKは同期している。PWM信号の周期設定は、CPU500からレジスタ514に設定される。例えば、32bitのレジスタである場合、上位nbitを低速CLKでのカウント周期として、下位mbitを高速CLKでのパターン出力周期用に扱う。この時PLL517の逓倍数をPとした場合、式(1)の関係が成り立っていることが望ましい。
=P (1)
パターン生成部518でのパターンでの更新周期は、最短で低速CLK単位である。それに対して、シフトレジスタ519が、パターン生成部518から受け取ったパターンデータをすべて出力しきるのは、高速CLKでpclk分である。よって、低速CLKの周期毎にパターンデータを生成すると過不足なく高分解能なPWM信号の出力が可能となる。
図6は、レジスタ514のPWM出力に関わる設定部を表したものである。レジスタ設定は、周期設定レジスタREG_P(520,521)と立ち下がり設定レジスタREG_F(522,523)と立ち上がり設定レジスタREG_R(524,525)で構成されている。各設定レジスタは、32bitで構成され、下位4bitは高速部パターン生成用に用いられる。上位28bitは、低速CLKによるタイミングカウンタとして用いる。各設定値にコンペアマッチしたタイミングで、高分解能PWMパルスパターンを出力する。なお、ここで説明するレジスタ設定値のbit幅は例として示すものであり、レジスタ構成を限定するものではない。
図7は、PWM出力までのPWM信号生成部513内部の動作を示したものである。縦軸に示す低速部カウンタは、カウンタ515でのカウント値を表している。横軸は時間を示している。T1~T3は、PWM信号のHi/Lo切り替え目標値を表している。カウンタ演算部516では、高速CLKでの分解能でPWM信号の出力を行うための位相データd1~d3、d1’~d3’を算出する。T1~T3のタイミングでは、パターン生成部518は、シフトレジスタ519へ位相データを加味したPWMパルスパターンデータを出力する。それ以外の区間では、HiまたはLoのみのパターンを出力している。また、カウンタ演算部516では、PWM周期毎に位相データを加味したカウンタ目標値の算出を行う。最初のPWM区間(a)の位相データd3は、低速CLKにおいては、カウントできない端数データである。よって、次のPWM区間(b)のカウンタ目標値に位相データd3分を加算し、PWM周期が一定になるようにする。
図8は、パターン生成部518内に含まれるデコードテーブル503である。位相データd1~d3、d1’~d3’をPWMパターンデータに変換する。このテーブルにより、位相データ4bitは16bit(複数のビットデータを含むビットパターン)のデータ(デコードデータ)にデコードされる。このテーブルは、説明のため、下位ビットより1ビットずつ立ち上がりエッジがパルス出力されることを想定している。よって、テーブルの形を限定するものではない。
図9は、パターン生成部518の内部処理を示す図である。すなわち。図9は、立ち上がり位相データd1(立ち上がりデータ)と立ち上がり位相データd2(立ち下りデータ)が、パターン生成部518によってデコードテーブル503からパターンデータに変換され、PWMパターンとしてシフトレジスタ519に出力される処理を示している。立ち上がり位相データd1が、例えば4bitデータであり16進数表記で4hであり、立ち下がり位相データd2が0hだった場合を例に説明を行う。位相データd1が4hのため、デコードテーブル503より2進数のパターンデータ1111_1111_1111_0000bが選択される。位相データd2は0hのため、パターンデータ1111_1111_1111_1111bが選択される。この場合、低速CLKの1CLK分の中で、立ち上がりエッジのみが存在することを表している。選択された位相データd1と位相データd2は、論理演算素子であるANDゲート531によってPWMパターンデータ1111_1111_1111_0000bに変換される。PWMパターンデータ(パルスパターンデータ)は、シフトレジスタに格納され、高速CLKに同期して下位ビットより1ビットずつ出力される。その結果、高分解能な立ち上がりPWM信号を得ることができる。なお、位相データd1から生成される16bitのデータを第1のデコードデータとし、位相データd2から生成される16bitのデータを第2のデコードデータとする。
図10は、低速CLKの1CLK分の中で、立ち下がりエッジのみが存在する場合を説明する図である。立ち上がり位相データd1(立ち上がりデータ)が0h、立ち下がり位相データd2(立ち下がりデータ)が5h、だった場合を例に説明を行う。位相データd2が5hのため、デコードテーブル503より2進数のパターンデータ1111_1111_1110_0000bデータが選択される。なお、テーブルを本実施例のように1つにしている場合、テーブルから選択される立ち下がりタイミングとパターンが反転してしまう。そのため、立ち下がりデータとして選択された場合には、図8に示すデコードテーブル530のパターンデータを反転して用いる。例えば、パターン生成部518は、デコードテーブル530における5hのパターンデータ1111_1111_1110_0000bをパターンデータ0000_0000_0001_1111bに反転して処理を実行する。位相データd1は0hのため、パターンデータ1111_1111_1111_1111bが生成される。選択された位相データd1と位相データd2は、ANDゲート531によってPWMパターンデータ0000_0000_0001_1111bに変換される。PWMパターンデータは、シフトレジスタ519に格納され、高速CLKに同期して下位ビットより1ビットずつ出力される。その結果、高分解能な立ち上がりPWM信号を得ることができる。なお、変形例として、立ち下り位相データに対してデコードテーブル530を反転させた別のデコードテーブルを設けて良い。
図11は、低速CLKの1CLK分の中で、立ち上がりエッジと立ち下がりエッジが存在する凸波形の場合を説明する図である。立ち上がり位相データd1が5h、立ち下がり位相データd2がAh、だった場合を例に説明を行う。位相データd1は5hのため、パターンデータ1111_1111_1110_0000bが選択される。位相データd2がAhのため、デコードテーブル503より2進数のパターンデータ1111_1100_0000_0000bデータが選択される。選択された位相データd1と位相データd2は、ANDゲート531によってPWMパターンデータ0000_0011_1111_1111bに変換される。PWMパターンデータは、シフトレジスタに格納され、高速CLKに同期して下位ビットより1ビットずつ出力される。その結果、高分解能な立ち上がりPWM信号を得ることができる。なお、変形例として、立ち下り位相データに対してデコードテーブル530を反転させた別のデコードテーブルを設けて良い。
図12は、低速CLKの1CLK分の中で、立ち上がりエッジと立ち下がりエッジが存在する凹波形の場合を説明する図である。立ち上がり位相データd1がAh、立ち下がり位相データd2が5h、だった場合を例に説明を行う。位相データd1はAhのため、パターンデータ1111_1100_0000_0000bが選択される。位相データd2が5hのため、デコードテーブル503より2進数の1111_1111_1110_0000bデータが選択される。よって、0000_0000_0001_1111bが位相データd2のパターンデータとなる。選択された位相データd1と位相データd2は、凹波形を得るために論理演算素子であるORゲート532によってPWMパターンデータ1111_1100_0001_1111bに変換される。パターン生成部518がANDゲート531ではなくORゲート532を選択する条件は、「立ち上がり位相データd1>立ち下がり位相データd2」、または「立ち上がり位相データd1’>立ち下がり位相データd2’」である。
PWMパターンデータは、シフトレジスタ519に格納され、高速CLKに同期して下位ビットより1ビットずつ出力される。その結果、高分解能な凹波形PWMパターンを得ることができる。
以上のように、低速CLKにおいてカウントアップと位相データ演算を行うことで、キャリー発生時のデータ伝搬遅延の影響を抑えることができる。また、パターン生成時には、位相データをテーブルからパターンデータに変換し、論理ゲートによる処理をすることでキャリー演算をなくし、データ伝搬遅延の影響を抑えることができる。この方法により、高分解能なPWM出力が可能となる。その結果、図4の従来構成では200MHzの分解能でPWM出力が限界だったが、本構成では320MHzの分解能でPWM出力が可能となる。
PWM信号は、HiレベルとLoレベルが繰り返されるデジタル信号である。この信号一定にするためにLPF602を用いる。LPF602に用いる定数は出力されるPWM周波数をfpwmとすると、カットオフ周波数fcとの関係を式(2)のようにすることが望ましい。
fc<fpwm (2)
式(2)の条件を満たすことで、LPF602後のレーザ出力制御電圧Vreflの電圧リップルを抑えることができる。
以上のことから、画像形成装置100のプロセススピードを高速化した場合でも、PWM信号生成部513を低速CLKで動作する領域と、高速CLKで動作するシフトレジスタ519に分けることで、より高分解能なPWM出力を得ることが可能となる。その結果、シェーディング補正に必要なレーザ出力制御電圧Vreflの分解能を得ることができる。
レーザ出力制御電圧VreflはLPF602によって平滑化され、平滑化されて得られて基準電圧がレーザスキャナユニット200に備えられるレーザドライバ1008に作用する。すなわち、シェーディング補正においてVreflは主走査方向におけるレーザ光の露光位置に応じて変換し、それに応じてレーザドライバ1008からレーザ光源1000に供給される電流の値が変化することによってレーザ光の光量が補正される。
[実施例2]
図13は、実施例2のモータ制御部の構成を示す図である。本実施例では、ステッピングモータの制御を例に説明を行う。ステッピングモータ1301は、画像形成装置100の駆動部の各部に用いられている。ステッピングモータ1301の制御には、モータステップ制御用の制御CLK信号と、モータに流す電流を制御する電流制御信号を用いる。ステッピングモータは、モータ制御部へ入力される制御CLKに同期しステップ角を進めモータ軸を回転させる。モータに流す電流は、必要なトルクに対して調整するため、電流制御信号を基準としてモータ制御部1300が調整を行う。ステッピングモータ1301を回転させる場合、適正な電流を流す必要がある。電流が少なすぎる場合は、脱調し回転が停止し、電流が多すぎる場合は発熱が大きくなったり、振動を生んだりする場合がある。図14はステッピングモータ1301の制御CLK周波数とモータ電流の関係を示した図である。ステッピングモータ1301が加速・減速するときは、トルクが大きくなるため、電流値を大きく取る必要がある。また、定常回転動作時は、加速・減速時のトルクは必要なくなるため電流を絞ることができる。
本実施例において、実施例1で説明をしたPWM信号生成部513を電流制御信号Vrefmを生成する回路として転用する。PWM信号の出力に関する説明は実施例1の説明と同様である。
画像形成装置100で用いられるステッピングモータ1301は、ジョブ実行時に、回転と停止を繰り返している。ステッピングモータ1301の回転制御はCPU500によって行われ、紙搬送時のセンサ信号の状態などから判断している。センサ信号の状態によっては、緊急で停止させなければいけない場合が存在する。そのため、モータ停止時の電流設定は、ごく短い時間で行う必要がある。電流制御信号Vrefmの応答時間は、PWM信号の出力の周期と、LPF602によって決まる。LPF602の時定数が大きい場合は、応答時間は遅くなってしまう。一方、LPF602が小さい場合は、PWM信号のリップル電圧が大きくなるため、安定した電流を供給できず、ステッピングモータ1301が脱調する恐れがある。
図16は、PWM信号の出力と電流制御信号Vrefmのリップルを電圧表した図である。PWM出力周期Tpwmとフィルタの時定数によって、電流制御信号Vrefmの最大値Vo_maxと最小値Vo_minの値が決まる。また、PWM出力の分解能が高くなければ、電流制御信号Vrefmによる設定電流が荒くなってしまい、余分な電流を流す必要が発生する。そのためPWM信号の出力はより高分解能であることが望ましい。
図17は、高分解能PWM信号の出力と従来のPWM信号の出力において、電流制御信号Vrefmを同じリップル電圧以内にするためのフィルタを設定した場合の応答を示した図である。応答性を良化し、リップル電圧を一定レベルに抑えるためには、時定数を減らした割合分、PWM信号の出力周波数を上げる必要がある。例えば、時定数を半分にした場合は、周波数は2倍にする必要がある。
このような場合でも、PWM信号生成部513を低速CLKで動作する領域と、高速CLKで動作するシフトレジスタ519に分けることで、より高分解能なPWM信号を生成することが可能となる。その結果、電流制御電圧Vrefmの分解能を得ることができる。
[実施例3]
図18は、実施例3の一次転写高圧部の構成を示す図である。感光ドラム101上に現像された各色のトナー像は、転写ブレード104に印加される転写バイアスによって担持体ベルト105に転写される。図18においては、高圧生成部2001内の高圧トランス駆動のため、高圧制御CLKをCPU500より出力している。また、PWM信号をLPF602で平滑した高圧基準電圧Vrevhにより高圧出力電圧の制御を行う。転写バイアス電圧は抵抗2003,2004で分圧されCPU500のAD入力にフィードバックし、高圧基準電圧Vrefの調整を行っている。なお、本実施例では、高圧CLKの出力や転写バイアス電圧のフィードバックをCPU500としているが、限定するものではない。
高圧制御においては、PWM信号のパルス幅の精度が、画像の濃度ムラにつながる。例えば、転写バイアスのフィードバックによりPWM信号を1ずらしたときの高圧基準電圧Vrefhが大きいと、制御が切り替わったタイミングで画像上の色が変わり、品質が悪くなる。そのため、高分解能でPWM信号のパルス幅を制御可能となる。本実施例に関わる構成では、高圧基準電圧VrefhとしてPWM信号を用いる。PWM信号の生成方法に関する説明は実施例1に記載した通りである。
このような場合でも、PWM信号生成部513を低速CLKで動作する領域と、高速CLKで動作するシフトレジスタ519に分けることで、より高分解能でPWM信号を生成することが可能となる。その結果、高圧基準電圧Vrefhの制御分解能を向上させることができる。
513 PWM信号生成部
514 レジスタ
515 カウンタ
518 パターン生成部
519 シフトレジスタ

Claims (3)

  1. パルス信号を生成するパルス信号生成回路であって、
    前記パルス信号の立ち上がりを示す立ち上がりデータ、および前記パルス信号の立ち下がりを示す立ち下がりデータを複数のビットデータを含むビットパターンとして生成し、前記立ち上がりデータと前記立ち下がりデータとを用いた論理演算によって複数のビットデータを含むビットパターンを生成するパターン生成部と、
    クロック信号を生成するクロック信号生成部と、
    前記パターン生成部によって生成された前記ビットパターンがセットされるシフトレジスタと、を備え、
    前記クロック信号に同期して前記シフトレジスタが前記ビットパターンを1ビットずつ出力することによってパルス信号を生成するパルス信号生成回路。
  2. 前記パルス信号を平滑化して基準電圧を生成する平滑化回路を備える請求項1に記載の画像形成装置。
  3. レーザ光を出射するレーザ光源と、
    前記レーザ光源に電流を供給するレーザドライバと、を備え、
    前記レーザドライバには前記基準電圧が作用し、前記レーザドライバに作用する前記基準電圧に応じて前記レーザドライバから前記レーザ光源に供給される前記電流の値が変化することを特徴とする請求項2に記載の画像形成装置。
JP2019007378A 2019-01-18 2019-01-18 パルス信号生成回路、および当該パルス信号生成回路を備える画像形成装置 Active JP7166942B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019007378A JP7166942B2 (ja) 2019-01-18 2019-01-18 パルス信号生成回路、および当該パルス信号生成回路を備える画像形成装置
US16/740,247 US10895820B2 (en) 2019-01-18 2020-01-10 Pulse signal generation circuit and image forming apparatus including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019007378A JP7166942B2 (ja) 2019-01-18 2019-01-18 パルス信号生成回路、および当該パルス信号生成回路を備える画像形成装置

Publications (2)

Publication Number Publication Date
JP2020116751A JP2020116751A (ja) 2020-08-06
JP7166942B2 true JP7166942B2 (ja) 2022-11-08

Family

ID=71608957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019007378A Active JP7166942B2 (ja) 2019-01-18 2019-01-18 パルス信号生成回路、および当該パルス信号生成回路を備える画像形成装置

Country Status (2)

Country Link
US (1) US10895820B2 (ja)
JP (1) JP7166942B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022140034A (ja) * 2021-03-12 2022-09-26 キヤノン株式会社 Pll回路、半導体装置、機器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060187979A1 (en) 2005-02-24 2006-08-24 Kabushiki Kaisha Toshiba Laser control circuit and image forming apparatus
JP2011189514A (ja) 2010-03-11 2011-09-29 Ricoh Co Ltd 画素クロック生成装置、画像形成装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3812003B2 (ja) * 1996-09-20 2006-08-23 コニカミノルタホールディングス株式会社 画像形成装置
JP2005178041A (ja) 2003-12-16 2005-07-07 Ricoh Co Ltd 画像形成装置
JP6596814B2 (ja) * 2014-11-25 2019-10-30 株式会社リコー 画像形成装置
JP6765851B2 (ja) * 2016-05-13 2020-10-07 キヤノン株式会社 データ処理装置および画像形成装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060187979A1 (en) 2005-02-24 2006-08-24 Kabushiki Kaisha Toshiba Laser control circuit and image forming apparatus
JP2011189514A (ja) 2010-03-11 2011-09-29 Ricoh Co Ltd 画素クロック生成装置、画像形成装置

Also Published As

Publication number Publication date
JP2020116751A (ja) 2020-08-06
US10895820B2 (en) 2021-01-19
US20200233331A1 (en) 2020-07-23

Similar Documents

Publication Publication Date Title
US9665031B2 (en) Image forming apparatus that forms latent image by irradiating photosensitive member with light
JP5988815B2 (ja) 画像形成装置
JP2001174728A (ja) 光源の点灯制御方法、及び画像形成装置
JP5649287B2 (ja) 画像形成装置
US7652682B2 (en) Image forming apparatus
US10158782B2 (en) Data processing apparatus and image forming apparatus having shift register for parallel and serial signal conversions
JP7166942B2 (ja) パルス信号生成回路、および当該パルス信号生成回路を備える画像形成装置
JP4196828B2 (ja) 画像形成装置
JP7292975B2 (ja) 画像形成装置
JP5276351B2 (ja) 画像形成装置
JP2000246959A (ja) クロック発生回路および画像形成装置
JPH07253553A (ja) 光走査制御装置
JP2008281864A (ja) 画像形成装置
JP5675569B2 (ja) 画像形成装置
US8305412B2 (en) Image forming apparatus and light intensity control method
JP6429641B2 (ja) 画像形成装置およびデータ処理装置
JP3767274B2 (ja) 画像形成装置
JP2004306292A (ja) 画像形成装置
JP5923966B2 (ja) 光書込装置および画像形成装置
JP4367840B2 (ja) 画素クロック生成装置、光走査装置及び画像形成装置
JP6592831B2 (ja) モノクロ画像形成装置
JP6802676B2 (ja) 画像形成装置
JPH0990257A (ja) カラー画像形成装置
JP2019126120A (ja) モータドライバ制御装置、モータ制御装置、画像形成装置、およびモータドライバ制御方法
JP2005010495A (ja) 走査光学装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220112

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221026

R151 Written notification of patent or utility model registration

Ref document number: 7166942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151