JP7151111B2 - 電動機駆動装置 - Google Patents

電動機駆動装置 Download PDF

Info

Publication number
JP7151111B2
JP7151111B2 JP2018054637A JP2018054637A JP7151111B2 JP 7151111 B2 JP7151111 B2 JP 7151111B2 JP 2018054637 A JP2018054637 A JP 2018054637A JP 2018054637 A JP2018054637 A JP 2018054637A JP 7151111 B2 JP7151111 B2 JP 7151111B2
Authority
JP
Japan
Prior art keywords
power
inverter
phase
voltage
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018054637A
Other languages
English (en)
Other versions
JP2019170019A (ja
Inventor
晴香 岡
隆士 小俣
誠 中村
清隆 松原
大悟 野辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2018054637A priority Critical patent/JP7151111B2/ja
Priority to US16/360,593 priority patent/US11218106B2/en
Priority to CN201910219266.8A priority patent/CN110299887B/zh
Publication of JP2019170019A publication Critical patent/JP2019170019A/ja
Application granted granted Critical
Publication of JP7151111B2 publication Critical patent/JP7151111B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/20Estimation of torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2205/00Indexing scheme relating to controlling arrangements characterised by the control loops
    • H02P2205/05Torque loop, i.e. comparison of the motor torque with a torque reference
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Description

本発明は、2台のインバータで電動機を駆動する電動機駆動装置に関する。
従来、交流電動機のオープン巻線の両端にそれぞれ接続された2台のインバータの出力により交流電動機を駆動する技術が知られている。例えば特許文献1に開示されたインバータ装置は、2電源2インバータの電気回路構成において、互いに逆極性となる第1のインバータの出力と第2のインバータの出力とを合成する。
また、従来、2つの直流電源の一方から他方へ電力を移動させる技術が知られている。例えば特許文献2に開示された電力変換装置は、2電源及び単一インバータの電気回路構成において、インバータの共通の下アームに対し、一方の電源である燃料電池に接続された上アームと、他方の電源である二次電池に接続された上アームとが並列に接続されている。燃料電池及び二次電池から供給される電力は、分配目標値にしたがって制御される。
また、従来、例えば特許文献3に開示されているように、矩形波電圧の位相調整によってトルクフィードバック制御を実行する技術が知られている。
特許第3352182号公報 特開2007-14185号公報 特開2010-124544号公報
特許文献1には、2電源2インバータの電気回路構成での基本的な制御概念が記載されているに過ぎず、2つの電源間の電力移送や分配に関する言及は一切無い。特許文献2には、一方の電源から他方の電源に電力移送する技術が開示されているが、電力移送のパラメータとして電圧振幅が用いられている。そのため、特許文献3の矩形波電圧制御に適用しようとすると、電圧振幅が最大値で固定されるため、電力移送や分配を行うことができない。つまり、特許文献2には、電圧振幅でなく電圧位相をパラメータとして電力移送や分配を行うことについて全く言及されていない。
本発明は上述の課題に鑑みて創作されたものであり、その目的は、2電源2インバータの構成で電圧振幅が最大値に固定される制御において、2つの電源から2台のインバータへ供給される電力の分配を適切に制御する電動機駆動装置を提供することにある。
本発明による電動機駆動装置は、2つの電源が個別に接続される2台のインバータを用いて、端点同士がオープンである2相以上の巻線(81、82、83)を有する電動機(80)の駆動を制御する。この電動機駆動装置は、第1インバータ(60)と、第2インバータ(70)と、制御部(300、304)と、を備える。
第1インバータは、第1電源(11)から直流電力が入力され、巻線の各相に対応して設けられる複数の第1スイッチング素子(61~66)を有し、巻線の一端に接続される。第2インバータは、第2電源(12)から直流電力が入力され、巻線の各相に対応して設けられる複数の第2スイッチング素子(71~76)を有し、巻線の他端に接続される。
制御部は、トルク指令に基づき、第1インバータへの出力電圧指令である第1電圧指令を生成する第1インバータ制御回路(301)、及び、第2インバータへの出力電圧指令である第2電圧指令を生成する第2インバータ制御回路(302)、の2つのインバータ制御回路を有する。
本発明の一態様では、いずれか一方のインバータ制御回路は、トルクフィードバック制御時、2台のインバータに対する目標電力指令としての目標電力分配比率または目標電力量にしたがって、2つの電源から2台のインバータへ供給される電力の分配を制御する電力制御部(50)を有する。電力制御部を有するインバータ制御回路(302)が電力管理回路として設定され、他方のインバータ制御回路(301)が電力管理回路の制御の影響を受ける電力非管理回路として設定される。
電力管理回路の電力制御部は、2台のインバータの電力分配比率または電力量が目標電力指令に追従するよう、電力管理回路の電圧指令ベクトルの位相を進角または遅角させるように操作する。よって、本発明の電動機駆動装置は、電圧振幅が最大値に固定される制御においても、トルクを維持したまま2電源間での電力分配制御が可能となる。したがって、電源のSOCや電圧値を管理可能とし、一方の電源のSOC枯渇や電池劣化を適切に防止することができる。
この構成では、電力管理回路は、電力管理回路側インバータの分担電力量が目標電力指令となるように電圧指令を調整する。電力管理回路側インバータの電力量が目標電力指令に近づくと、その変化に応じて、電力非管理回路は、実トルクがトルク指令に追従するように電圧指令をフィードバック制御する。その結果、電力非管理回路の電力量も所望の値となり、目標の電力分配が実現される。
本発明の他の態様では、2つのインバータ制御回路は、いずれも電力制御部を有する。
各実施形態の電動機駆動装置が適用されるシステムの全体構成図。 第1~第3実施形態の制御部の概略構成図。 電力制御部を除く制御部の構成を示す詳細ブロック図。 電力制御部の信号入出力を記した概略ブロック図。 第1~第3実施形態の電力制御部の信号入出力を記した詳細ブロック図。 第1~第3実施形態の電力制御部による電力分配処理のフローチャート。 電力制御部による電力分配の基本理論を説明する図。 第1実施形態の電力制御部のブロック図。 第2実施形態の電力制御部のブロック図。 第3実施形態の電力制御部のブロック図。 第4実施形態の電力制御部の信号入出力を記したブロック図。 第4実施形態の電力制御部による電力分配処理のフローチャート。
以下、電動機駆動装置の複数の実施形態を図面に基づいて説明する。複数の実施形態において、実質的に同一の構成には同一の符号を付して説明を省略する。また、第1~第4実施形態を包括して「本実施形態」という。本実施形態の電動機駆動装置は、ハイブリッド自動車や電気自動車の動力源であるモータジェネレータ(以下、「MG」)を駆動するシステムにおいて、3相交流電動機であるMGの駆動を制御する装置である。実施形態中の「MG」及び「MG制御装置」は、「電動機」及び「電動機駆動装置」に相当する。
図1に、「2電源2インバータ」、すなわち、2つの電源11、12及び2台のインバータ60、70が用いられるシステムの全体構成を示す。MG80は、U相巻線81、V相巻線82及びW相巻線83を有する永久磁石式同期型の3相交流電動機である。ハイブリッド車両に適用される場合、MG80は、駆動輪を駆動するためのトルクを発生する電動機としての機能、及び、エンジンや駆動輪から伝わる車両の運動エネルギにより駆動されて発電可能な発電機としての機能を有する。
本実施形態のMG80は、3相巻線81、82、83の端点同士が結合されていないオープン巻線の構成である。第1インバータ60の各相出力端子は、3相巻線81、82、83の一端811、821、831に接続されており、第2インバータ70の各相出力端子は、3相巻線81、82、83の他端812、822、832に接続されている。回転角センサ85は、レゾルバ等により構成され、MG80の機械角θmを検出する。機械角θmは、制御部300の電気角演算部87で電気角θeに換算される。
第1電源11及び第2電源12は、互いに絶縁された独立した2つの電源であり、それぞれがニッケル水素、リチウムイオン等の二次電池や電気二重層キャパシタ等の充放電可能な蓄電装置である。例えば第1電源11に出力型のリチウムイオン電池を用い、第2電源12に容量型のリチウムイオン電池を用いるというような構成であってもよい。2台のインバータ60、70は、2つの電源11、12から個別に直流電力が入力される。第1電源11は、第1インバータ60を経由してMG80と電力を授受可能であり、第2電源12は、第2インバータ70を経由してMG80と電力を授受可能である。
MG80は、第1インバータ60を経由して第1電源11から電力が供給され、第2インバータ70を経由して第2電源12から電力が供給される。3相巻線81、82、83の第1インバータ60側には、U相電圧VU1、V相電圧VV1、W相電圧VW1が印加される。3相巻線81、82、83の第2インバータ70側には、U相電圧VU2、V相電圧VV2、W相電圧VW2が印加される。
例えば第1インバータ60からMG80への電力経路に、3相巻線81、82、83に通電される相電流を検出する電流センサ84が設けられる。図1の例では、V相電流Iv及びW相電流Iwが検出されるが、どの2相又は3相の電流が検出されてもよい。また、電流センサ84は、第2インバータ70からMG80への電力経路に設けられてもよく、第1インバータ60及び第2インバータ70の両方の経路に設けられてもよい。
第1コンデンサ16は、高電位側配線P1と低電位側配線N1との間に接続され、第2コンデンサ17は、高電位側配線P2と低電位側配線N2との間に接続される。第1電圧センサ18は、第1電源11から第1インバータ60に入力される入力電圧VH1を検出する。第2電圧センサ19は、第2電源12から第2インバータ70に入力される入力電圧VH2を検出する。
MG制御装置100は、第1インバータ60、第2インバータ70、制御部300及びドライブ回路67、77を備える。第1インバータ60は、巻線81、82、83の各相に対応して設けられ、ブリッジ接続される6つの第1スイッチング素子61~66を有する。スイッチング素子61、62、63は、それぞれU相、V相、W相の上アームのスイッチング素子であり、スイッチング素子64、65、66は、それぞれU相、V相、W相の下アームのスイッチング素子である。第2インバータ70は、巻線81、82、83の各相に対応して設けられ、ブリッジ接続される6つの第2スイッチング素子71~76を有する。スイッチング素子71、72、73は、それぞれU相、V相、W相の上アームのスイッチング素子であり、スイッチング素子74、75、76は、それぞれU相、V相、W相の下アームのスイッチング素子である。
各スイッチング素子61~66、71~76は、例えばIGBTで構成され、低電位側から高電位側へ向かう電流を許容する還流ダイオードが並列に接続されている。高電位側配線P1、P2と低電位側配線N1、N2との短絡を防止するため、各相の上アーム素子と下アーム素子とは、同時にオンせず、相補的にオンオフするように、すなわち、一方がオンのとき他方がオフするように制御される。
制御部300は、マイコン等により構成され、図示しないCPU、ROM、I/O、及び、これらの構成を接続するバスライン等を備えている。制御部300は、ROM等の実体的なメモリ装置(すなわち、読み出し可能非一時的有形記録媒体)に予め記憶されたプログラムをCPUで実行することによるソフトウェア処理や、専用の電子回路によるハードウェア処理による制御を実行する。
制御部300は、トルク指令trq*及び検出値の情報に基づき、第1インバータ60への出力電圧指令である第1電圧指令を生成する第1インバータ制御回路301、及び、第2インバータへの出力電圧指令である第2電圧指令を生成する第2インバータ制御回路302を有する。各インバータ制御回路301、302には、電気角θe、入力電圧VH1、VH2等の情報が入力される。後述のように本実施形態では、相電流Iv、Iwは、第1インバータ制御回路301のみ、又は、両インバータ制御回路301、302にフィードバックされる。第1ドライブ回路67は、第1インバータ制御回路301が生成した第1電圧指令に基づくゲート信号を第1インバータ60へ出力する。第2ドライブ回路77は、第2インバータ制御回路302が生成した第2電圧指令に基づくゲート信号を第2インバータ70へ出力する。
例えば特許文献1(特許第3352182号公報)には、2電源2インバータの構成で電動機を駆動するインバータ装置が開示されている。しかし、2電源2インバータの構成において2つのインバータ制御回路が電圧指令を成り行きで制御すると、対応する各電源からの入出力電力も成り行きで決まってしまい、場合によっては、一方の電源のSOC枯渇や電池劣化につながるおそれがある。
また、特許文献2(特開2007-14185号公報)には、一方の電源から他方の電源に電力移送する技術が開示されている。しかし、トルクフィードバック制御方式による矩形波電圧制御では、電圧振幅が最大値で固定されるため、電力移送や分配を行うことができない。
そこで本実施形態では、トルクフィードバック制御のように電圧振幅が最大値に固定される制御での2電源間の電力移送、分配に関し、電圧位相の変化に着目する。この着目は、複数のインバータにおいて、電流位相と電圧位相との差に基づく力率、及び電流振幅により入出力電力が決まること、並びに、複数のインバータ間の電流は共通であることを根拠とする。そして、電圧位相のみを電力移送、分配のパラメータとすることで、矩形波電圧制御でも2電源間での電力を調整可能とすることを目的とする。
[第1~第3実施形態]
第1~第3実施形態について、図2~図10を参照して説明する。まず、図2に制御部300の概略構成を示す。以下の図中、インバータを「INV」と記す。第1インバータ制御回路301及び第2インバータ制御回路302は、個別のマイコン内にそれぞれ設けられてもよく、共通の1つのマイコン内に設けられてもよい。各インバータ制御回路301、302は、2電源2インバータのシステムとして駆動するために、独立且つ協調した電圧指令を生成する。
制御部300が取得する情報として、MG80は共通であるため、角度(具体的には電気角θe)及び3相電流の検出値は共通でよい。ただし、破線で示すように、電流センサ84や回転角センサ85が複数設けられ、各インバータ制御回路301、302が対応する検出値を取得してもよい。なお、本実施形態では電流から推定したトルクをフィードバックしているが、直接トルクを検出する構成では、トルクの検出値も共通でよい。また、第2インバータ制御回路302は、フィードフォワード制御を行う場合、破線で示すように3相電流の検出値を取得しなくてもよい。
第1~第3実施形態の制御部300は、2つのインバータ制御回路のうち一方が電力制御部50を有する。図2の例では、第2インバータ制御回路302が、電力制御部50を有する「電力管理回路」として設定される。他方の第1インバータ制御回路301は電力制御部50を有しない「電力非管理回路」として設定される。電力管理回路としての第2インバータ制御回路302は、フィードフォワード(図中「FF」)制御又はフィードバック(図中「FB」)制御により電圧指令を生成する。電力非管理回路としての第1インバータ制御回路301は、フィードバック制御により電圧指令を生成する。なお、第1インバータ制御回路301と第2インバータ制御回路302とを入れ替えてもよい。
第2インバータ制御回路302の電力制御部50は、外部の上位ECUから目標電力指令を取得する。また、電力制御部50は、相手側の第1インバータ制御回路301がフィードバック制御で生成した電圧指令と、自分側の第2インバータ制御回路302がフィードフォワード制御又はフィードバック制御で生成した電圧指令とを取得する。電力制御部50は、これらの情報から、電力管理回路側の第2インバータ70が出力すべき分配後電圧指令を生成する。
電力制御部50は、電力管理回路側である第2インバータ70の分担電力量が目標電力指令となるように、第2インバータ制御回路302の電圧指令を調整する。第2インバータ70の電力量が目標電力指令に近づくと、その変化に応じて、電力非管理回路である第1インバータ制御回路301は、実トルクがトルク指令に追従するように電圧指令をフィードバック制御する。その結果、電力非管理回路側である第1インバータ60の電力量も所望の値となり、目標の電力分配が実現される。
続いて図3を参照し、電力制御部50を除くインバータ制御回路301、302の全体構成について説明する。第1インバータ制御回路301は、トルク減算器32、制御器33、電圧位相リミット部37、変調器38、dq変換部29等を含む。なお、電圧振幅の演算に係る構成は省略する。
また、電気角演算部87は、回転角センサ85が検出した機械角θmを電気角θeに換算する。回転数演算部88は、電気角θeを時間微分した電気角速度、又は電気角速度に係数を乗じた回転数ωに換算する。回転数ωは、第2実施形態の電力制御部50の演算に用いられる。なお、電気角演算部87及び回転数演算部88は、第1インバータ制御回路301以外の制御部300に設けられてもよい。図3中、インバータ制御回路301、302毎に用いられる値には、記号末尾に「1」又は「2」を付す。また、共通に入力される機械角θmには「1」又は「2」を付さない。
トルク指令trq*は、例えば上位ECUのトルク指令算出部31から入力される。dq変換部29は、電流センサ84から取得した相電流Iv、Iwを、電気角θeを用いてdq軸電流Id、Iqに座標変換し、フィードバックする。トルク推定部39は、dq軸電流Id、Iq、逆起電圧定数φ、dq軸インダクタンスLd、Lq、モータ80の極対数pに基づき、式(1)を用いてトルク推定値trq_estを算出する。
Figure 0007151111000001
トルク減算器32は、トルク指令trq*とトルク推定値trq_estとのトルク偏差Δtrqを算出する。制御器33は、トルク偏差Δtrqを0に近づけるように電圧位相Vθ1をPI演算する。電圧位相リミット部37は、電圧位相Vθ1を所定の制限値に制限する。変調器38は、各インバータ60、70から入力電圧VH1、VH2を取得し、矩形波制御により、第1インバータ60の各スイッチング素子61~66へのゲート信号UU1、UL1、VU1、VL1、WU1、WL1を生成する。
第2インバータ制御回路302がフィードバック制御を実行する場合、第1実施形態と同様の構成により、第2電圧指令ベクトルの位相Vθ2が演算される。また、第2電圧指令ベクトルの位相Vθ2は、フィードフォワード制御により演算されてもよい。
回転角センサ85から入力された機械角θmは、信号反転部86で反転された後、電気角演算部87で電気角(θe-180[deg])に換算される。また、第2インバータ制御回路302の変調器38は、入力電圧VH1、VH2を取得し、第1インバータ制御回路301に対し反転した矩形波制御により、第2インバータ60の各スイッチング素子61~66へのゲート信号UU2、UL2、VU2、VL2、WU2、WL2を生成する。以上が制御部300の構成の説明である。
次に、図4及び図5に電力制御部50の信号入出力を記したブロック図を示す。図4は基本構成を示す概略図であり、図5は、図3に基づいて電力制御部50を追加した詳細図である。図4の第1インバータ制御回路301側では、図3における制御器33をフィードバック演算部として示す。また、dq軸電流Id、Iqからトルク推定値trq_estを算出する構成を省略し、実トルクtrqがトルク偏差算出部32にフィードバックされるように図示する。図4の第2インバータ制御回路302側では、フィードフォワード又はフィードバック演算部のブロックを符号「34」で示す、
電力管理回路である第2インバータ制御回路302には電力制御部50が設けられる。電力制御部50には、第1インバータ制御回路301が生成した第1電圧指令、第2インバータ制御回路302が生成した第2電圧指令、各インバータ60、70の入力電力VH1、VH2、及び、目標電力指令として目標電力分配比率又は目標電力量が入力される。これらの情報に基づいて電力制御部50が生成した分配用の調整量は、調整量加算器36にて、フィードフォワード又はフィードバック演算部34が出力した第2電圧指令に加算される。
図5において、第1インバータ60の目標電力分配比率はpwr1_ratioの記号で表され、第2インバータ70の目標電力分配比率はpwr2_ratioの記号で表される。また、第1インバータ60の目標電力量はpwr1_out、又は「A[W]」の記号で表され、第2インバータ70の目標電力量はpwr2_out、又は「B[W]」の記号で表される。
図5に示すように、電力制御部50には、第1電圧指令ベクトルの位相Vθ1、第2電圧指令ベクトルの分配後の位相Vθ2#、共通の電流Id、Iq、各インバータ60、70の入力電力VH1、VH2、及び目標電力指令が入力される。電力制御部50が生成した位相調整量ΔVθ2は、調整量加算器36にて第2電圧指令ベクトルの位相Vθ2に加算される。こうして第2電圧指令ベクトルの位相Vθ2に位相調整量ΔVθ2が加算された値が、分配後の第2電圧指令ベクトルの位相Vθ2#として電圧位相リミット部37に出力される。
第1~第3実施形態の動作原理としては、電力制御側の第2インバータ制御回路302で生成した電圧指令ベクトルの位相Vθ2に分配用の位相調整量ΔVθ2を加算した電圧位相Vθ2#を指令として与える。その結果現れる変化に対しトルク管理側の第1インバータ制御回路301が反応し、実トルクtrqをトルク指令trq*に追従させるように制御することで、目標通りに各インバータ60、70の電力分配が達成される。
第2インバータ制御回路302がフィードフォワード制御を実行する場合、電力指令に対しより正確に制御することができる。第2インバータ制御回路302がフィードバック制御を実行する場合、トルク指令に対しより正確に制御することができる。第1~第3実施形態では、電力制御部50を有する一方のインバータ制御回路が電力管理回路として機能すると共に、他方の電力非管理回路がトルク維持機能を果たすため、双方の目標値に対し正確に動作することができ、また、出力値の予測が容易となる。
図6のフローチャートに第1~第3実施形態の電力制御部50による電力分配処理を示す。以下のフローチャートの説明で、記号「S」はステップを意味する。末尾に「A」を付したステップは、図12のフローチャ-トと相違するステップを示す。また、フローチャート中では、「電圧指令ベクトル」の「ベクトル」を省略する。
S41で電力制御部50は、トルク指令trq*及び目標電力指令を受領する。S42で第1インバータ制御回路301及び第2インバータ制御回路302は、トルク指令trq*からフィードバック制御で、それぞれ、第1電圧指令の位相Vθ1、振幅Vamp1、及び第2電圧指令の位相Vθ2、振幅Vamp2を生成する。
S44Aで第2インバータ制御回路302の電力制御部50は、第1電圧指令及び第2電圧指令と目標電力指令とから第2電圧指令ベクトルの位相調整量ΔVθ2を算出する。S45Aで第2インバータ制御回路302は、電圧位相Vθ2及び位相調整量ΔVθ2から得られた分配後の第2電圧指令ベクトルの位相Vθ2#により第2インバータ70を制御する。S46Aでは、第2インバータ70の電力変化を受けて、第1インバータ制御回路301がフィードバック制御を実行する。こうしてS47では、トルクを指令trq*に追従させつつ、第1インバータ60及び第2インバータ70の電力が分配される。
続いて図7を参照し、電力制御部50による電力分配の基本理論を説明する。本実施形態では、2台のインバータ60、70に対する要求電力指令値と現在の実電力値との大小関係から、電圧指令ベクトルの位相を進角又は遅角させ、MG出力に対して各インバータ60、70が分担する電力量を調整する。電圧位相を操作することで、電圧位相と電流位相との差に基づく力率を変化させ、2台のインバータ60、70間での電力分配が可能となる。
ここで、2電源2インバータシステムにおいて2台のインバータ60、70が協調動作し出力最大となるときの電圧位相は、特許文献1に開示されているように互いに逆極性、すなわち位相差が180°の状態である。そこで、例えば第1電圧指令ベクトルV1をそのまま図示し、第2電圧指令ベクトルV2を原点に対して反転して図示することで、両ベクトルの電圧位相が一致するように示される。
図7には、2電源の電圧を同等とし、電圧振幅を最大値に固定した場合における第1電圧指令ベクトルV1の位相Vθ1、及び、第2電圧指令ベクトルV2の位相Vθ2を操作する例を示す。電圧位相Vθ1、Vθ2は、q軸の正方向を基準として反時計回りに増加するように定義される。太線矢印で示す操作前の各電圧指令ベクトルV1、V2の位相Vθ1、Vθ2は一致している。なお、図示の都合上、電圧指令ベクトルV1とV2とをわずかにずらして記載している。
細線矢印は、操作後の各電圧指令ベクトルV1、V2を示す。本実施形態の電力分配処理により、第1電圧指令ベクトルV1は電圧位相調整量ΔVθ1だけ遅角され、第2電圧指令ベクトルV2は電圧位相調整量ΔVθ2だけ進角される。
2台のインバータ60、70の総電力Pwr_allは、電圧実効値Vmean、電流実効値Irms、力率角ψを用いて、式(2)の第1行に表される。第1行の式は、合成ベクトルの振幅Vamp、位相Vθ、及び共通の電流振幅Iampを用いて第2行の式に書き換えられる。さらに第2行の式は、各電圧指令ベクトルV1、V2の振幅Vamp1、Vamp2及び位相Vθ1、Vθ2を用いて第3行の式に書き換えられる。第3行の式の第1項及び第2項は、各インバータ60、70の電力分配を表す。よって、各電圧指令ベクトルV1、V2の電圧位相Vθ1、Vθ2を進角又は遅角させることにより、電力分配を調節可能である。
Figure 0007151111000002
次に第1~第3実施形態の電力制御部50の詳細な構成について、図8~図10を参照し、実施形態毎に説明する。各実施形態の電力制御部の符号は、「50」に続く3桁目に実施形態の番号を付す。
(第1実施形態)
図8に第1実施形態の電力制御部501の構成を示す。第1実施形態では、目標電力指令として、2台のインバータ60、70の合計電力量に対する第2インバータ70の電力量の目標電力分配比率が電力制御部501に入力される。また、目標電力分配比率に代えて、第2インバータ70の目標電力量が電力制御部501に入力されてもよい。第1実施形態では、電力分配比率または電力量の実値が目標電力分配比率または目標電力量に近づくように、電圧位相積分項Vθ2_intg又は電圧位相Vθ2に調整量を加算して電圧指令ベクトルの位相を操作する。第1実施形態では、複雑な式が無い単純なロジックで電力制御が可能である。
詳しくは、目標電力指令として、2台のインバータ60、70の合計電力量に対する第2インバータ70の電力量の目標電力分配比率(B[W]/(A+B)[W])が電力制御部501に入力され、フィルタ411で、急変を抑制するように緩変化処理される。フィルタ処理後、第2インバータ70の目標電力分配比率指令値pw2_ratio_comが電力比率比較部55に入力される。
電圧補正値算出部42は、第1dq軸電圧指令vd1、vq1及び第2dq軸電圧指令vd2、vq2、並びに、第1入力電圧VH1及び第2入力電圧VH2を取得する。電圧補正値算出部42は、式(3.1)により、各dq軸電圧指令vd1、vd2、vq1、vq2に、入力電圧の合計に対する各入力電圧VH1、VH2の比を乗じ、電圧補正値vd1_ratio、vd2_ratio、vq1_ratio、vq2_ratioを算出する。この電圧補正値は、実際の変調度に相当する値である。合成電圧算出部43は、式(3.2)により、合成電圧vd、vqを算出する。
Figure 0007151111000003
電力量算出部53は、電圧補正値算出部42で算出された電圧補正値vd2_ratio、vq2_ratio、合成電圧算出部43で算出された合成電圧vd、vq、及びdq軸電流Id、Iqから、式(4.1)により、第2インバータ70の電力量pw2及び合成電力量pwを算出する。電力比率算出部54は、式(4.2)により、第2インバータ70の電力分配比率の実値pw2_ratioを算出する。
Figure 0007151111000004
電力比率比較部55は、電力分配比率の実値pw2_ratioと目標電力分配比率指令値pw2_ratio_comとを比較する。電圧位相調整量決定部56は、比較結果に基づき、例えば正転力行時を想定すると、電圧位相調整量ΔVθ2として、以下のように「-α」又は「α」(α>0)を決定する。つまり、電力分配比率の実値が目標電力分配比率指令値より小さいとき電圧位相をαだけ遅角させ、電力分配比率の実値が目標電力分配比率指令値より大きいとき電圧位相をαだけ進角させる。
(1)pw2_ratio<pw2_ratio_comのとき、ΔVθ2=-α
(2)pw2_ratio>pw2_ratio_comのとき、ΔVθ2=α
ただし、力行又は回生、正転又は逆転に応じて、遅角、進角要件が入れ替わる場合もある。
調整量加算器36にて、フィードフォワード又はフィードバック演算部34が演算した電圧位相積分項Vθ2_intgに、電圧位相積分項の調整量ΔVθ2_intgが加算され、分配後の第2電圧指令ベクトルの位相Vθ2#として出力される。
(第2実施形態)
図9に第2実施形態の電力制御部502の構成を示す。電力制御部502は、目標電力分配比率または目標電力量とMG回転数とから要求トルクを算出し、さらにトルク式に基づき要求電圧位相を算出する。そして、電力制御部502は、実電圧位相が要求電圧位相に近づくように、電圧位相積分項Vθ2_intg又は電圧位相Vθ2に調整量を加算して電圧指令ベクトルの位相を操作する。第2実施形態では、目標電力指令を変換して要求電圧位相を算出するため、第1実施形態に比べ制御周期を短くし、応答性を向上させることができる。
詳しくは、目標電力指令として、第2インバータ70に対する目標電力量B[W]が電力制御部502に入力され、急変の影響を抑えるようにフィルタ412で処理される。フィルタ処理後の目標電力量B[W]、及び、MG回転数ωが要求トルク算出部57に入力される。
要求トルク算出部57は、式(5.1)により、第2インバータ70分の要求トルクtrq2_reqを算出し、要求電圧位相算出部58に出力する。要求電圧位相算出部58は、要求トルクtrq2_req、MG回転数ω及び第2電圧指令ベクトルの振幅Vamp2に基づき、式(5.2)により、要求電圧位相Vθ2_reqを算出する。
Figure 0007151111000005
電圧位相偏差算出器59は、第2電圧指令ベクトルの要求電圧位相Vθ2_reqから実電圧位相Vθ2を減算し、電圧位相偏差を算出する。電圧位相偏差はフィルタ595で応答性鈍化処理され、電圧位相積分項の調整量ΔVθ2_intg又は電圧位相調整量ΔVθ2が生成される。調整量加算器36にて、フィードフォワード又はフィードバック演算部34が演算した電圧位相積分項Vθ2_intg又は電圧位相Vθ2に、電圧位相積分項の調整量ΔVθ2_intg又は電圧位相調整量ΔVθ2が加算され、分配後の第2電圧指令ベクトルの位相Vθ2#として出力される。
(第3実施形態)
図10に第3実施形態の電力制御部503の構成を示す。電力制御部503は、目標電力分配比率または目標電力量と電流及び電圧とから要求電圧位相を算出する。そして、電力制御部503は、実電圧位相が要求電圧位相に近づくように、電圧位相積分項Vθ2_intg又は電圧位相Vθ2に調整量を加算して電圧指令ベクトルの位相を操作する。第3実施形態では第2実施形態と同様に、目標電力指令を変換して要求電圧位相を算出するため、第1実施形態に比べ制御周期を短くし、応答性を向上させることができる。
詳しくは、目標電力指令として、第2インバータ70に対する目標電力量B[W]が電力制御部503に入力され、急変の影響を抑えるようにフィルタ412で処理される。フィルタ処理後の目標電力量B[W]、電流振幅Iamp、電流位相Iθ、及び、第2電圧指令ベクトルの振幅Vamp2が要求電圧位相算出部58に入力される。要求電圧位相算出部58は、これらの情報に基づき、式(6)により、要求電圧位相Vθ2_reqを算出する。
Figure 0007151111000006
電圧位相偏差算出器59は、第2電圧指令ベクトルの要求電圧位相Vθ2_reqから実電圧位相Vθ2を減算し、電圧位相偏差を算出する。第3実施形態における以後の構成は、第2実施形態と同様である。
以上のように、第1~第3実施形態において一方の第2インバータ制御回路302は、目標電力指令にしたがって、2つの電源11、12から2台のインバータ60、70へ供給される電力の分配を制御する電力制御部501、502、503を有する。各実施形態では、トルクフィードバック制御時に電圧位相Vθの調整により、2電源の電力分配量を管理し2電源間の電力を調整する。これにより、電圧振幅が最大値に固定される制御においても、トルクを維持したまま2電源間での電力分配制御が可能となる。したがって、電源のSOCや電圧値を管理可能とし、一方の電源のSOC枯渇や電池劣化を適切に防止することができる。
[第4実施形態]
次に、第4実施形態について、第1~第3実施形態の図5、図6にそれぞれ対応する図11、図12を参照して説明する。第4実施形態の制御部304では、2つのインバータ制御回路301、302がいずれも電力制御部510、520を有する。第1インバータ制御回路301の電力制御部510及び第2インバータ制御回路302の電力制御部520には、いずれも、第1電圧指令ベクトルの分配後位相Vθ1#、第2電圧指令ベクトルの分配後位相Vθ2#、共通の電流Id、Iq、各インバータ60、70の入力電力VH1、VH2、及び目標電力指令が入力される。
電力制御部510、520は、それぞれ、第1電圧指令ベクトルの位相調整量ΔVθ1及び第2電圧指令ベクトルの位相調整量ΔVθ2を生成する。各インバータ制御回路301、302の調整量加算器36で、電圧位相Vθ1、Vθ2に位相調整量ΔVθ1、ΔVθ2が加算され、分配後の電圧位相Vθ1#、Vθ2#として電圧位相リミット部37に出力される。
図12のフローチャートは、第4実施形態の電力制御部510、520による電力分配処理を示し、図6に対しS44B、S45B、S46Bが異なる。S44Bで各インバータ制御回路301、302の電力制御部510、520は、第1電圧指令及び第2電圧指令と目標電力指令とから各インバータ60、70の電圧指令ベクトルの位相調整量ΔVθ1、ΔVθ2を算出する。
S45Bで各インバータ制御回路301、302は、電圧位相Vθ1、Vθ2及び位相調整量ΔVθ1、ΔVθ2から得られた分配後の各電圧指令ベクトルの位相Vθ1#、Vθ2#により各インバータ60、70を制御する。S46Bでは、各インバータ60、70の電力変化を受けて、各インバータ制御回路301、302がフィードバック制御を実行する。こうしてS47では、トルクを指令trq*に追従させつつ、第1インバータ60及び第2インバータ70の電力が分配される。
第4実施形態では、両方のインバータ制御回路301、302に電力制御部510、520を設けることにより、各インバータ60、70での電力移動量が小さくなり、電流進角により近い状態での制御が可能になる。また、電力管理回路と、トルクフィードバック制御を行う電力非管理回路との切替の必要がなくなり、力行時の充電や回生時の放電の際にインバータ60、70間での制御切替要求が不要となる。
(その他の実施形態)
(a)「電圧振幅が最大値に固定される制御」として一般に、変調率が1.27である矩形波制御が知られている。しかし、本発明は矩形波制御に限らず、例えば過変調制御における変調率の上限を1.20程度に固定するような制御にも適用可能である。
(b)独立した2電源が用いられる構成において、各電源は、両方ともバッテリやキャパシタで代表される二次電池である構成に限定されない。例えば、一方の電源が二次電池であり、他方の電源が燃料電池や発電機により構成されてもよい。
(c)電動機のオープン巻線の相数は、3相に限らず4相以上であってもよい。また、2相のオープン巻線がブリッジ接続された構成であってもよい。
(d)2電源2インバータ式の電動機駆動装置は、電気自動車、燃料電池車などの純電気車や、PHV(プラグインハイブリッド)、レンジエクステンダをはじめとする電気リッチなハイブリッドパワトレイン、さらには、12~48VのISG(Integrated Starter Generator)といった軽い電動化車両に至るまで適用される。この技術は、従来技術例であるリアクトルによる昇圧回路を一切使用せずに、高効率に高出力を実現する用途に適用可能な電圧型回路トポロジによるものであり、各車両において、従来の昇圧回路では熱的に成立困難な領域においても高出力化が求められる用途に適する。
以上、本発明は、上記実施形態になんら限定されるものではなく、その趣旨を逸脱しない範囲において種々の形態で実施可能である。
11・・・第1電源、 12・・・第2電源、
300、304・・・制御部、
301・・・第1インバータ制御回路、
302・・・第2インバータ制御回路、
50・・・電力制御部、
60・・・第1インバータ、 61~66・・・第1スイッチング素子、
70・・・第2インバータ、 71~76・・・第スイッチング素子、
80・・・MG(モータジェネレータ、電動機)、
81、82、83・・・3相巻線。

Claims (4)

  1. 2つの電源が個別に接続される2台のインバータを用いて、端点同士がオープンである2相以上の巻線(81、82、83)を有する電動機(80)の駆動を制御する電動機駆動装置であって、
    第1電源(11)から直流電力が入力され、前記巻線の各相に対応して設けられる複数の第1スイッチング素子(61~66)を有し、前記巻線の一端に接続される第1インバータ(60)と、
    第2電源(12)から直流電力が入力され、前記巻線の各相に対応して設けられる複数の第2スイッチング素子(71~76)を有し、前記巻線の他端に接続される第2インバータ(70)と、
    トルク指令に基づき、前記第1インバータへの出力電圧指令である第1電圧指令を生成する第1インバータ制御回路(301)、及び、前記第2インバータへの出力電圧指令である第2電圧指令を生成する第2インバータ制御回路(302)、の2つのインバータ制御回路を有する制御部(300)と、
    を備え、
    いずれか一方の前記インバータ制御回路は、トルクフィードバック制御時、前記2台のインバータに対する目標電力指令としての目標電力分配比率または目標電力量にしたがって、前記2つの電源から前記2台のインバータへ供給される電力の分配を制御する電力制御部(50)を有し、
    前記電力制御部を有する前記インバータ制御回路(302)が電力管理回路として設定され、他方の前記インバータ制御回路(301)が前記電力管理回路の制御の影響を受ける電力非管理回路として設定され、
    前記電力管理回路の前記電力制御部は、前記2台のインバータの電力分配比率または電力量が前記目標電力指令に追従するよう、前記電力管理回路の電圧指令ベクトルの位相を進角または遅角させるように操作する電動機駆動装置。
  2. 前記電力制御部は、前記2台のインバータの電力分配比率または電力量の実値が前記目標電力分配比率または前記目標電力量に近づくように電圧指令ベクトルの位相を操作する請求項1に記載の電動機駆動装置。
  3. 前記制御部は、トルクフィードバック制御において、前記第1インバータ又は前記第2インバータから前記電動機の前記巻線に通電される相電流を座標変換したdq軸電流に基づきトルク推定値を算出し、トルク指令と前記トルク推定値とのトルク偏差を0に近づけるように制御器(33)により電圧位相(Vθ2)を演算し、
    前記電力制御部は、前記目標電力分配比率または前記目標電力量と前記電動機の回転数とから要求電圧位相(Vθ2_req)を算出し、前記制御器が演算した電圧位相が前記要求電圧位相に近づくように電圧指令ベクトルの位相を操作する請求項1に記載の電動機駆動装置。
  4. 2つの電源が個別に接続される2台のインバータを用いて、端点同士がオープンである2相以上の巻線(81、82、83)を有する電動機(80)の駆動を制御する電動機駆動装置であって、
    第1電源(11)から直流電力が入力され、前記巻線の各相に対応して設けられる複数の第1スイッチング素子(61~66)を有し、前記巻線の一端に接続される第1インバータ(60)と、
    第2電源(12)から直流電力が入力され、前記巻線の各相に対応して設けられる複数の第2スイッチング素子(71~76)を有し、前記巻線の他端に接続される第2インバータ(70)と、
    トルク指令に基づき、前記第1インバータへの出力電圧指令である第1電圧指令を生成する第1インバータ制御回路(301)、及び、前記第2インバータへの出力電圧指令である第2電圧指令を生成する第2インバータ制御回路(302)、の2つのインバータ制御回路を有する制御部(304)と、
    を備え、
    前記2つのインバータ制御回路は、いずれも、トルクフィードバック制御時、前記2台のインバータに対する目標電力指令としての目標電力分配比率または目標電力量にしたがって、前記2つの電源から前記2台のインバータへ供給される電力の分配を制御する電力制御部(510、520)を有し、
    前記第1インバータ制御回路が有する前記電力制御部は、前記2台のインバータの電力分配比率または電力量が前記目標電力指令に追従するよう、前記第1インバータ制御回路の電圧指令ベクトルの位相を進角または遅角させるように操作し、
    前記第2インバータ制御回路が有する前記電力制御部は、前記2台のインバータの電力分配比率または電力量が前記目標電力指令に追従するよう、前記第2インバータ制御回路の電圧指令ベクトルの位相を進角または遅角させるように操作する電動機駆動装置。
JP2018054637A 2018-03-22 2018-03-22 電動機駆動装置 Active JP7151111B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018054637A JP7151111B2 (ja) 2018-03-22 2018-03-22 電動機駆動装置
US16/360,593 US11218106B2 (en) 2018-03-22 2019-03-21 Electric motor driving system
CN201910219266.8A CN110299887B (zh) 2018-03-22 2019-03-21 电动机驱动系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018054637A JP7151111B2 (ja) 2018-03-22 2018-03-22 電動機駆動装置

Publications (2)

Publication Number Publication Date
JP2019170019A JP2019170019A (ja) 2019-10-03
JP7151111B2 true JP7151111B2 (ja) 2022-10-12

Family

ID=67983772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018054637A Active JP7151111B2 (ja) 2018-03-22 2018-03-22 電動機駆動装置

Country Status (3)

Country Link
US (1) US11218106B2 (ja)
JP (1) JP7151111B2 (ja)
CN (1) CN110299887B (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6958132B2 (ja) * 2017-08-31 2021-11-02 株式会社デンソー 回転電機制御装置
JP7114968B2 (ja) 2018-03-22 2022-08-09 株式会社デンソー 電動機駆動装置
KR20220145653A (ko) * 2021-04-22 2022-10-31 현대자동차주식회사 전력 변환 장치
US12113464B2 (en) * 2022-06-16 2024-10-08 Eaton Intelligent Power Limited Adjustable frequency drives using normalized modulation control signals to compensate for phase imbalance and methods of operating the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000125411A (ja) 1998-10-13 2000-04-28 Toyota Motor Corp モータ駆動装置
JP3352182B2 (ja) 1993-11-09 2002-12-03 三菱電機株式会社 インバータ装置
JP2006238686A (ja) 2005-01-26 2006-09-07 General Motors Corp <Gm> ハイブリッド車のためのダブルエンド型インバータ駆動システムのトポロジー
JP2007014185A (ja) 2005-06-01 2007-01-18 Nissan Motor Co Ltd 電力変換装置
JP2008219956A (ja) 2007-02-28 2008-09-18 Mitsubishi Electric Corp 電動機駆動制御装置及び電動機
JP2010124544A (ja) 2008-11-17 2010-06-03 Toyota Motor Corp 交流電動機の制御装置
JP2010226899A (ja) 2009-03-25 2010-10-07 Nippon Muugu Kk 電動機システム
JP2014155337A (ja) 2013-02-08 2014-08-25 Denso Corp 交流電動機の制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2988812B2 (ja) 1993-05-20 1999-12-13 シャープ株式会社 強誘電性液晶の誘電率測定方法および測定装置
CN101396976B (zh) * 2007-09-25 2012-01-04 奇瑞汽车股份有限公司 一种混合动力汽车中电机控制方法及装置
US7800331B2 (en) * 2007-11-27 2010-09-21 Gm Global Technology Operations, Inc. Method and system for operating an electric motor coupled to multiple power supplies
US8648562B2 (en) * 2010-08-09 2014-02-11 Thomas A. Lipo Single power supply dual converter open-winding machine drive
JP5382069B2 (ja) * 2011-07-04 2014-01-08 株式会社安川電機 インバータ装置および電動機ドライブシステム
JP7114968B2 (ja) 2018-03-22 2022-08-09 株式会社デンソー 電動機駆動装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3352182B2 (ja) 1993-11-09 2002-12-03 三菱電機株式会社 インバータ装置
JP2000125411A (ja) 1998-10-13 2000-04-28 Toyota Motor Corp モータ駆動装置
JP2006238686A (ja) 2005-01-26 2006-09-07 General Motors Corp <Gm> ハイブリッド車のためのダブルエンド型インバータ駆動システムのトポロジー
JP2007014185A (ja) 2005-06-01 2007-01-18 Nissan Motor Co Ltd 電力変換装置
JP2008219956A (ja) 2007-02-28 2008-09-18 Mitsubishi Electric Corp 電動機駆動制御装置及び電動機
JP2010124544A (ja) 2008-11-17 2010-06-03 Toyota Motor Corp 交流電動機の制御装置
JP2010226899A (ja) 2009-03-25 2010-10-07 Nippon Muugu Kk 電動機システム
JP2014155337A (ja) 2013-02-08 2014-08-25 Denso Corp 交流電動機の制御装置

Also Published As

Publication number Publication date
US11218106B2 (en) 2022-01-04
CN110299887B (zh) 2023-07-18
CN110299887A (zh) 2019-10-01
JP2019170019A (ja) 2019-10-03
US20190296677A1 (en) 2019-09-26

Similar Documents

Publication Publication Date Title
JP7114968B2 (ja) 電動機駆動装置
JP7151111B2 (ja) 電動機駆動装置
JP4582168B2 (ja) 回転機の制御装置、及び回転機の制御システム
US9413281B2 (en) Apparatus for controlling AC motor
JP7040192B2 (ja) 電動機駆動装置
JP5633639B2 (ja) 電動機の制御装置およびそれを備える電動車両、ならびに電動機の制御方法
WO2010082368A1 (ja) 交流電動機の制御装置および電動車両
US20130169206A1 (en) Control device and control method for power control unit
US11711045B2 (en) Electric motor drive device
JP5947705B2 (ja) 交流電動機の制御システム
JP5884746B2 (ja) 交流電動機の制御装置
JP6743740B2 (ja) 車両
JP5803951B2 (ja) 回転電機駆動システム
JP6119585B2 (ja) 電動機駆動装置
JP5720644B2 (ja) 車両
US8278933B2 (en) Method and system for monitoring power electronics controllers in automotive electrical systems
JP2011067010A (ja) 車両のモータ駆動装置
WO2019102539A1 (ja) 回転電機制御装置及び電動車両
JP2015080290A (ja) モータ制御システム
JP2017093218A (ja) 交流電動機の制御システム
JP2022048448A (ja) 車両
JP2019170149A (ja) 電動機駆動装置
WO2020170983A1 (ja) 電動機駆動装置
JP7238424B2 (ja) 電動機駆動装置
JP2008172876A (ja) モータの駆動装置

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200826

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20201009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201009

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220912

R151 Written notification of patent or utility model registration

Ref document number: 7151111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151