JP7140899B2 - 電極群 - Google Patents

電極群 Download PDF

Info

Publication number
JP7140899B2
JP7140899B2 JP2021165535A JP2021165535A JP7140899B2 JP 7140899 B2 JP7140899 B2 JP 7140899B2 JP 2021165535 A JP2021165535 A JP 2021165535A JP 2021165535 A JP2021165535 A JP 2021165535A JP 7140899 B2 JP7140899 B2 JP 7140899B2
Authority
JP
Japan
Prior art keywords
electrode
thickness
positive electrode
active material
electrode group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021165535A
Other languages
English (en)
Other versions
JP2022003649A (ja
Inventor
政典 田中
達也 篠田
泰章 村司
誠 小林
功一 竹下
正浩 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2021165535A priority Critical patent/JP7140899B2/ja
Publication of JP2022003649A publication Critical patent/JP2022003649A/ja
Application granted granted Critical
Publication of JP7140899B2 publication Critical patent/JP7140899B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)

Description

本発明は電極群に関する。
近年、ハイブリッド電気自動車及びプラグイン電気自動車等の電気自動車が急速に普及している。これらの電気自動車の電源には、充放電可能な非水電解質電池として、リチウムイオン二次電池が主として用いられている。
リチウムイオン二次電池は、例えば、以下の方法で製造される。先ず、正極及び負極を準備する。正極及び負極は、それぞれ、集電体上に、リチウムイオンを吸蔵放出可能な正極及び負極活物質を含むスラリーを塗布し、塗膜を乾燥させて、正極及び負極活物質含有層を設けることにより形成され得る。このような正極及び負極を、これらの間にセパレータを介して捲回して、扁平形状の電極群を作製する。次いで、この電極群を、アルミニウムやアルミニウム合金などの金属製容器内に収納し、容器の開口部に封口板を溶接する。次いで、封口板に設けられた注液口から非水電解質を容器内に注液する。その後、注液口に封止部材を溶接して電池ユニットを得る。次いで、この電池ユニットに対して初充電やエージング処理を施すことにより、リチウムイオン二次電池を得ることができる。
このようにして得られるリチウムイオン二次電池のような非水電解質電池には、高い入出力性能が求められる。
特開2004-95357号公報 特開2012-182025号公報
本発明が解決しようとする課題は、高寿命を実現可能な電池及び電池パックを提供できる電極群を提供することにある。
実施形態によると、電極群が提供される。電極群は、正極と、負極と、絶縁層とを備える。正極及び負極は、絶縁層を介して扁平形状に捲回される。正極の厚さ及び負極の厚さは、互いに等しくてもよく、互いに異なっていてもよい。これら電極の各々の厚さTEは、0.03mm以上0.08mm以下である。第1方向は、捲回軸方向と直交する方向である。第2方向は、捲回軸方向に平行な方向である。第3方向は、第1方向及び第2方向に直交する方向である。電極の厚さTE(mm)と、電極群の第3方向に平行な方向の厚さTW(mm)と、電極群の第1方向に平行な方向の最内周高さHIC(mm)とは、下記式(1)を満たす。
0.02≦(TE×TW)/HIC≦0.04 (1)
実施形態に係る電池の一例を概略的に示す斜視図。 図1に示す電池の展開斜視図。 図2に示す電池が具備する電極群の展開斜視図。 図3に示す電極群の斜視図。 図4に示す電極群のV-V線に沿った断面図。 図3乃至図5に示す電極群が具備する正極の断面図。 実施形態に係る電池パックの電気回路の一例を示すブロック図。
(第1実施形態)
非水電解質電池は、優れた出力性能が求められることがある。非水電解質電池の出力性能を高める方法としては、活物質含有層の厚さを小さくすることが有効であると考えられる。すなわち、活物質含有層の厚みが小さいと、正極及び負極間のリチウムイオンの移動距離が短くなるとともに、正極及び負極の対向面積を増加させることができる。これにより、電極の内部抵抗を低めることができるため、非水電解質電池の出力性能が高まると考えられる。
しかしながら、このような知見に基づき、本発明者らが鋭意研究したところ、活物質含有層の厚みを小さくすると、非水電解質電池の出力性能は高められるものの、寿命性能が著しく低下するという問題が生じることが分かった。
この問題の原因について、本発明者らが更に研究したところ、この寿命性能の低下は、外装部材内の電極に撚れが生じることに由来していることが分かった。すなわち、非水電解質電池の電極においては、エージング処理や充放電により、非水電解質に含まれる非水溶媒や電解質塩の一部が分解して、ガスが発生することがある。このガスは、通常、活物質含有層やセパレータなどの多孔体を介して電極群の外部に放出され、電極群と外装部材との隙間に溜まり得る。この際、電極で発生したガスは、電極と対向電極との間の隙間を押し広げ得る。
ここで、電極の厚さが小さいと、電極の剛性が低い傾向にあるため、このガスの放出により、電極と対向電極との間の隙間が押し広げられ易くなる。その結果、電極に大きな撚れが生じ得る。このように電極に大きな撚れが生じたり、また、電極間に局所的に大きな隙間が存在すると、その箇所で電極間の反応が生じ無くなり公称容量が低下する。更に、電極間の反応が一部の箇所で集中的に生じ得る。これにより、電極の劣化や非水電解質の分解が促進されて、電池の寿命性能が低下する。また、内部抵抗が高まり、電池の公称容量も低下し得る。
実施形態に係る電池は、外装容器と、電極群と、封口板とを具備する。外装容器は、底壁と側壁とを備える。側壁は、底壁から第1方向に延びる。外装容器には、底壁と対向する開口部が設けられる。電極群は、正極と、負極と、絶縁層とを備える。正極及び負極は、絶縁層を介して扁平形状に捲回される。電極群は、外装容器内に捲回軸方向が第1方向と直交するように収容される。封口板は、外装容器の開口部に取り付けられる。正極の厚さ及び負極の厚さは、互いに等しくてもよく、互いに異なっていてもよい。これら電極の各々の厚さTEは、0.03mm以上0.08mm以下である。第2方向は、捲回軸方向に平行な方向である。第3方向は、第1方向及び第2方向に直交する方向である。電極の厚さTE(mm)と、電極群の第3方向に平行な方向の厚さTW(mm)と、電極群の第1方向に平行な方向の最内周高さHIC(mm)とは、下記式(1)を満たす。
0.02≦(TE×TW)/HIC≦0.04 (1)
実施形態に係る電池は、0.08mm以下という比較的厚みの小さい電極を備えている。実施形態に係る電池では、電極群の厚さTWと、電極群の最内周高さHICとを、上記式(1)を満たすように調整することにより、比較的厚みの小さい電極を備えていても、電極に撚れを生じにくくすることができる。これにより、実施形態に係る電池は、優れた寿命性能を達成することができる。また、実施形態に係る電池は、優れた寿命性能と、優れた入出力性能とを両立することができる。
以下、図面を参照しながら、実施形態に係る電池について詳細を説明する。
図1は、実施形態に係る電池の一例を概略的に示す斜視図である。
図1に示す電池20は、外装部材200と、図示しない電極群及び電解質と、正極端子6と、負極端子7と、絶縁ガスケット14及び15とを備えている。図1に示す電池20は、外装部材200内に図示しない電極群及び電解質が収容された角型電池である。外装部材200は、開口部を有する外装容器1と、外装容器1の開口部に取り付けられた封口板5とを備えている。封口板5には、注液口POが設けられている。注液口POは、図示しない封止部材により溶接されている。
外装部材200は、図1に示すように、角型形状を有している。外装部材200が角型形状を有していると、電池20の体積エネルギー密度を高めることができる。
外装容器1は、底壁と、一対の長辺側壁と、一対の短辺側壁とを備え、底壁と対向する開口部が設けられた角缶型形状を有している。底壁は、X軸方向と平行な一対の長辺と、Y軸方向と平行な一対の短辺とを有する長方形状である。一対の長辺側壁は、底壁の一対の長辺からZ軸方向に各々が延びている。一対の短辺側壁は、底壁の一対の短辺からZ軸方向に各々が延びている。なお、X軸方向及びY軸方向は、底壁と平行であって互いに交差する方向である。また、Z軸方向は、X軸方向及びY軸方向と直交する方向である。
ここで、X軸方向は、図示しない電極群の捲回軸と平行な方向であり、第2方向と平行な方向である。また、Y軸方向は、第3方向と平行な方向である。また、Z軸方向は、第1方向と平行な方向である。
外装容器1は、例えば、金属製の板からなる。金属としては、例えば、アルミニウム、アルミニウム合金、鉄、又はステンレスである。
外装容器1の長辺側壁を構成する板の厚さは、外装容器1の底壁を構成する板の厚さよりも小さく、かつ、外装容器1の短辺側壁を構成する板の厚さよりも小さいことが好ましい。すなわち、外装容器1の長辺側壁は、長方形状の外装部材200において、最も大きな面積を占める部分である。したがって、外装容器1の長辺側壁を構成する板の厚さが薄いと、電池20の放熱性を高めることができるため、寿命性能を高めることができる。外装容器1の長辺側壁を構成する板の厚さは、2.0mm以下であることが好ましく、1.0mm以下であることがより好ましく、0.7mm以下であることが更に好ましい。
一方、外装容器1の長辺側壁を構成する板の厚さが過剰に小さいと、外装容器1の剛性が低まり、外装容器1内でガスが発生した際に、電極群の形状を保持する力が弱く、電池特性が低下する恐れがある。外装容器1の長辺側壁を構成する板の厚さは、0.3mm以上であることが好ましく、0.5mm以上であることがより好ましい。
なお、外装容器1の底壁、長辺側壁、及び短辺側壁の板の厚さは、それぞれ、板の中央部の厚さをマイクロメーターで測定することにより得られる。すなわち、外装容器1の底壁の板の厚さは、以下の方法により得られる。先ず、底壁を構成する板を、X軸方向に沿って中央の位置で、YZ平面に平行に切断する。次いで、この切断面のY軸方向に沿って中央の位置で、板の厚さを測定して、外装容器1の底壁の板の厚さとする。外装容器1の長辺側壁を構成する板の厚さは、以下の方法により得られる。先ず、長辺側壁を構成する板を、Z軸方向に沿って中央の位置で、XY平面に平行に切断する。次いで、この切断面のX軸方向に沿って中央の位置で板の厚さを測定して、外装容器1の長辺側壁の板の厚さとする。外装容器1の短辺側壁を構成する板の厚さは、以下の方法により得られる。先ず、短辺側壁を構成する板を、Z軸方向に沿って中央の位置でXY平面に平行に切断する。次いで、この切断面のY軸方向に沿って中央の位置で板の厚さを測定して、外装容器1の短辺側壁の板の厚さとする。なお、マイクロメーターとしては、例えば、株式会社ミツトヨ製のクイックミニPK-1012CPX、又は、これと等価な機能を有する機器を用いる。
封口板5は、外装容器1の底壁と平行に位置する。封口板5は、外装容器1の材料と同一の材料からなる。封口板5は、外装容器1とは異なる材料からなっていてもよい。封口板5は、例えば、外装容器1の開口部に溶接により取り付けられている。封口板5の容器内側の主面には、図示しない絶縁シートが設けられている。封口板5には、外装部材200内で発生したガスを外部に放出するためのガス抜き孔やガス排出弁が設けられていてもよい。
正極端子6及び負極端子7は、それぞれ、絶縁ガスケット14及び15を介して封口板5に取り付けられている。正極端子6及び負極端子7は、封口板5にかしめ固定されていてもよい。正極端子6及び負極端子7の下端の図示しない突出部は、封口板5を貫通して、外装容器1の内部に向かって延びている。正極端子6及び負極端子7は、例えば、アルミニウム、アルミニウム合金、銅、又はニッケルなどの金属からなる。
絶縁ガスケット14及び15は、例えば、絶縁性材料からなる。絶縁性材料としては、例えば、樹脂である。なお、絶縁ガスケット14及び15は、省略してもよい。
外装部材200の第2方向に平行な方向の幅WCは、内部に収容される電極群のサイズに合わせて適切に選択されることが好ましい。外装部材200の幅WCの下限値は、一例によると、70mm以上であり、他の例によると、80mm以上である。また、外装部材200の幅WCの上限値は、一例によると、160mm以下であり、他の例によると、150mm以下である。
外装部材200の幅WCは、外装部材200のY軸方向及びZ軸方向において中央の位置において、一方の短辺側壁から他方の短辺側壁までのX軸方向の長さを測定することにより得られる。測定には、例えば、株式会社ミツトヨ製のクイックミニPK-1012CPXなどのマイクロメーター、又は、これと等価な機能を有する機器を用いる。
外装部材200の第3方向に平行な方向の厚さTCは、内部に収容される電極群のサイズに合わせて適切に選択されることが好ましい。外装部材200の厚さTCの下限値は、一例によると、10mm以上であり、他の例によると、14mm以上である。また、外装部材200の厚さTCの上限値は、一例によると、25mm以下であり、他の例によると、24mm以下である。外装部材200の厚さTCが大きいと、封口板5に固定される正極端子6及び負極端子7のサイズや、ガス排出弁のサイズを大きくすることができるため、電池20の安全性を高めることができる。
外装部材200の厚さTCは、外装部材200のX軸方向及びZ軸方向に沿って中央の位置において、一方の長辺側壁から他方の長辺側壁までのY軸方向の長さを測定することにより得られる。測定には、例えば、株式会社ミツトヨ製のクイックミニPK-1012CPXなどのマイクロメーター、又は、これと等価な機能を有する機器を用いる。
外装部材200の第1方向に平行な方向の高さHCは、内部に収容される電極群のサイズに合わせて適切に選択されることが好ましい。外装部材200の高さHCの下限値は、一例によると、40mm以上であり、他の例によると、45mm以上である。また、外装部材200の高さHCの上限値は、一例によると、85mm以下であり、他の例によると、80mm以下である。外装部材200の高さHCが小さいと、外装部材200の長辺側壁の面積を小さくすることができるため、電池20の剛性を高めることができる。
外装部材200の高さHCは、外装部材200のX軸方向及びY軸方向に沿って中央の位置において、底壁から封口板5までのZ軸方向の長さを測定することにより得られる。測定には、例えば、株式会社ミツトヨ製のクイックミニPK-1012CPXなどのマイクロメーター、又は、これと等価な機能を有する機器を用いる。
ここで、外装部材200は、電池20の充放電やエージング処理等により外装部材200内部で発生したガスにより膨れて変形することがある。特に、長辺側壁部分は内部のガスにより膨張し易いため、外装部材200の厚さTCは、膨張による影響を受け易い。したがって、外装部材200の幅WC、厚さTC、及び高さHCを測定する際には、外装部材200内部のガスを外部に放出するガス抜き処理を行った後に行う。
外装部材の厚さTCと高さHCとは、下記式(7)を満たすことが好ましい。
2.5≦HC/TC≦3.5 (7)
このような電池20は、従来の外装部材を用いた電池と比較して、高さHCが小さく、かつ、厚さTCが大きいといえる。このような電池20は、従来の電池と比較して、長辺側壁の面積が小さいため、外装部材200内部でガスが発生しても膨れにくく、変形を生じにくい。このような電池20は、寿命性能が高い傾向にある。
外装部材200の幅WCと厚さTCとは、下記式(8)を満たすことが好ましい。
4.5≦WC/TC≦6.5 (8)
このような電池20は、従来の外装部材を用いる電池と比較して、厚さTCが大きいといえる。このような電池20は、従来の電池と比較して、電極群が劣化しにくく寿命性能が高い傾向にある。
外装部材200の幅WCと高さHCとの比WC/HCは、1.3以上2.2以下であることが好ましい。このような外装部材200を用いると、電池20の寿命性能が高まる傾向にある。すなわち、従来の角型外装部材は、比WC/HCが1.3より低い。このような外装部材は、長辺側壁の面積が大きいため、放熱性に優れている。しかしながら、上述したように長辺側壁はガス発生時に膨張し易いため、内部に収容された電極群の電極間も膨張し易くなり、電極に撚れが生じ易くなる。
ここでは、角型形状を有する外装部材を例に挙げて説明したが、外装部材の形状は角型に限定されない。すなわち、外装容器1の底壁は、円形状であってもよく、楕円形状であってもよく、多角形状であってもよい。また、外装容器1の形状は、円柱状であってもよく、不定形であってもよい。
図2は、図1に示す電池の展開斜視図である。図2に示すように、電池20は、外装部材200内に、電極群2と、正極リード3と、負極リード4と、固定部材11及び12と、正極絶縁カバー25と、負極絶縁カバー26と、絶縁カバー固定テープ27及び28と、絶縁テープ30と、図示しない電解質とを収容している。
電極群2は、正極と、負極と、絶縁層とを具備する。電極群2は、正極及び負極を絶縁層を介して捲回軸に沿って扁平状に捲回したものである。電極群2の詳細は後述する。
固定部材11及び12は、それぞれ、電極群2のうち正極集電タブ8a及び負極集電タブ9aを部分的に固定している。固定部材11及び12の各々は、2つの挟持部を有している。2つの挟持部は、最内周面を介して向き合う捲回された複数の集電タブの一部を束ねている。正極集電タブ8a及び負極集電タブ9aについての詳細は後述する。固定部材11及び12は、例えば、アルミニウム、アルミニウム合金、銅、又はニッケルなどの金属からなる。なお、固定部材11及び12は、省略してもよい。
絶縁テープ30は、電極群2の正極集電タブ8a及び負極集電タブ9aを除く部分を被覆している。絶縁テープ30の基材としては、ポリエステル(PET)、ポリイミド、ポリフェニレンサルファイド(PPS)及びポリプロピレンからなる群より選ばれる少なくとも1種の樹脂を用いることができる。なお、絶縁テープ30は、省略してもよい。
正極リード3は、正極端子6及び正極集電タブ8aに電気的に接続される。正極リード3は、正極端子6に接続される接続プレート3aと、正極集電タブ8aに接続される第1、第2の挟持ストリップ3c、3dとを有する。接続プレート3aは、封口板5の容器内側の主面に設けられた図示しない絶縁シートを介して、封口板5に当接される。接続プレート3aに設けられた貫通孔3bには、正極端子6の突出部が嵌め込まれ、かしめ固定される。第1、第2の挟持ストリップ3c、3dは、接続プレート3aから二股に分岐し、固定部材11及び正極集電タブ8aを挟み込む。なお、正極リード3は、省略してもよい。
負極リード4は、負極端子7及び負極集電タブ9aに電気的に接続される。負極リード4は、負極端子7に接続される接続プレート4aと、負極集電タブ9aに接続される第1、第2の挟持ストリップ4c、4dとを有する。接続プレート4aは、封口板5の容器内側の主面に設けられた図示しない絶縁シートを介して、封口板5に当接される。接続プレート4aに設けられた貫通孔4bには、負極端子7の突出部が嵌め込まれ、かしめ固定される。第1、第2の挟持ストリップ4c、4dは、接続プレート4aから二股に分岐し、固定部材12及び負極集電タブ9aを挟み込む。なお、負極リード4は省略してもよい。
正極絶縁カバー25は、正極リード3の第1、第2の挟持ストリップ3c、3d、固定部材11、並びに正極集電タブ8aを挟み込むようにして、電極群2のX軸方向に沿った一方の側面を被覆する。正極絶縁カバー25は、互いに向き合う第1側壁25b及び第2側壁25cと、これらを連結する背面部材25dと、第1側壁に設けられた凸部25eと、第2側壁に設けられた凸部25fと、背面部材25dに設けられた凸部25gと、第1側壁25b、第2側壁25c及び背面部材25dの下端部から延伸する延伸部25hを含んでいる。凸部25e、25f、及び25gは、固定部材11の2つの挟持部を挟むようにして、電極群2のX軸方向の側面に嵌合される。延伸部25hには、X軸方向に延びる流路溝25iが設けられる。流路溝25iは、図示しない電解質を保持し得る。なお、正極絶縁カバー25は、省略してもよい。
負極絶縁カバー26は、正極絶縁カバー25と同様の構造の有している。負極絶縁カバー26は、負極リード4の第1、第2の挟持ストリップ4c、4d、固定部材12、並びに負極集電タブ9aを挟み込むようにして、電極群2のX軸方向に沿った他方の側面を被覆する。なお、負極絶縁カバー26は、省略してもよい。
絶縁カバー固定テープ27、28は、それぞれ、正極絶縁カバー25及び負極絶縁カバー26を、絶縁テープ30に固定する。なお、絶縁カバー固定テープ27、28は、省略してもよい。
図3は、図2に示す電池が具備する電極群の展開斜視図である。図3に示す電極群2は、一対の電極である正極8及び負極9と、絶縁層としてのセパレータ10a及び10bとを備えている。電極群2は、負極9と、セパレータ10aと、正極8と、セパレータ10bとが、この順に積層されたシート状の積層体を含む。電極群2は、セパレータ10bが最内周に位置するように、捲回軸WAに沿って積層体を扁平状に捲回したものである。捲回軸WAは、X軸方向と平行である。
正極8は、正極集電体8cと、正極活物質含有層8bと、正極集電タブ8aとを備えている。正極集電体8cは、Z軸方向と平行な一対の長辺と、X軸方向と平行な一対の短辺とを有する帯状形状を有している。正極活物質含有層8bは、正極集電体8cの少なくとも一方の主面のX軸方向において、一方の長辺から、一方の長辺と他方の長辺との間の位置まで設けられている。この一方の長辺から、一方の長辺と他方の長辺との間の位置までの長さを、正極活物質含有層8bの第2方向に平行な方向の幅WPEとする。すなわち、幅WPEは、正極活物質含有層8bの短辺の長さとも言える。また、正極活物質含有層8bは、正極集電体8cの少なくとも一方の主面のZ軸方向において、一方の短辺から他方の短辺まで設けられている。正極集電タブ8aは、正極集電体8c上において正極活物質含有層8bにより被覆されていない部分である。正極集電タブ8aは、X軸方向に沿って負極集電タブ9aとは異なる向きに延出している。
正極集電体8cは、例えば、アルミニウム、アルミニウム合金、銅、又はニッケルなどの金属箔である。なお、正極集電タブ8aは、正極集電体8cと一体化していなくてもよい。すなわち、正極集電体8cの一方の長辺に、金属箔を接合させることにより正極集電タブ8aとしてもよい。金属箔としては、正極集電体8cと同様のものを用いることができる。
正極活物質含有層8bは、正極集電体8cの両方の主面上に設けられていてもよく、一方の主面上に設けられていてもよい。正極活物質含有層8bは、正極活物質を含む。正極活物質含有層8bは、正極活物質の他に、導電剤及び結着剤を含んでもよい。
正極活物質としては、例えば、リチウム遷移金属複合酸化物を用いる。リチウム遷移金属複合酸化物は、例えば、LiCoO2、LiNi1-xCox2(0<x<0.3)、LiMnxNiyCoz2(0<x<0.5、0<y≦0.8、0≦z<0.5)、LiMn2-xx4(MはMg、Co、Al及びNiからなる群より選ばれる少なくとも1種の元素、0<x<0.2)、LiMPO4(MはFe、Co、Ni及びMnからなる群より選ばれる少なくとも1種の元素)などである。
正極活物質の二次粒子の平均粒径は、10μm以下であることが好ましく、6μm以下であることがより好ましい。正極活物質の二次粒子の平均粒径が小さいと、内部抵抗が小さいため、充放電に伴う放熱が小さくなる傾向にある。したがって、正極活物質の二次粒子の平均粒径が小さいと、電池20の寿命性能を高めることができる。
導電剤は、電極の電子伝導性を高める。導電剤としては、アセチレンブラック、カーボンブラック、黒鉛等の炭素質物を用いることができる。
結着剤は、活物質、導電剤及び集電体の密着性を高める。結着剤としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、及びフッ素系ゴム等を用いることができる。
正極活物質含有層において、正極活物質、導電剤及び結着剤の配合比は、正極活物質80~95質量%、導電剤3~18質量%、結着剤2~7質量%の範囲にすることが好ましい。
正極活物質含有層8bの密度は、2.7g/cm3以上3.3g/cm3以下であることが好ましい。正極活物質含有層8bの密度がこの範囲内にあると、電池20の寿命性能が高い傾向にある。すなわち、正極活物質含有層8bの密度が3.3g/cm3以下であると、ガス発生の際に正極に撚れが生じにくく、電極間の距離の広がりを抑制して、電池性能を向上することができる。また、正極活物質含有層8bの密度が2.7g/cm3以上であると、正極活物質粒子間の距離が適切になるため、内部抵抗が低まる傾向にある。
負極9は、負極集電体9cと、負極活物質含有層9bと、負極集電タブ9aとを備えている。負極集電体9cは、Z方向と平行な一対の長辺と、X方向と平行な一対の短辺とを有する帯状形状を有している。負極活物質含有層9bは、負極集電体9cの少なくとも一方の主面のX軸方向において、一方の長辺から、一方の長辺と他方の長辺との間の位置まで設けられている。この一方の長辺から、一方の長辺と他方の長辺との間の位置までの長さを、負極活物質含有層9bの第2方向に平行な方向の幅WNEとする。すなわち、幅WNEは、負極活物質含有層9bの短辺の長さとも言える。また、負極活物質含有層9bは、負極集電体9cの少なくとも一方の主面のZ軸方向において、一方の短辺から他方の短辺まで設けられている。負極集電タブ9aは、負極集電体9c上において負極活物質含有層9bにより被覆されていない部分である。負極集電タブ9aは、X軸方向に沿って正極集電タブ8aとは異なる向きに延出している。なお、負極集電タブ9aは、正極集電タブ8aと同じ向きに延出していてもよい。
負極集電体9cは、例えば、アルミニウム、アルミニウム合金、銅、又はニッケルなどの金属箔である。なお、負極集電タブ9aは、負極集電体9cと一体化していなくてもよい。すなわち、負極集電体9cの一方の長辺に、金属箔を接合させることにより負極集電タブ9aとしてもよい。金属箔としては、負極集電体9cと同様のものを用いることができる。
負極活物質含有層9bは、負極集電体9cの両方の主面上に設けられていてもよく、一方の主面上に設けられていてもよい。負極活物質含有層9bは、負極活物質を含む。負極活物質含有層9bは、負極活物質の他に、導電剤及び結着剤を含んでもよい。
負極活物質は、リチウムイオンを充放電可能な電位の下限値が1.0V(vs.Li/Li)以上である化合物を用いることが好ましい。このような化合物としては、リチウムチタン複合酸化物を用いることが好ましい。リチウムチタン複合酸化物は、充放電反応に伴う体積変化がほとんどない。したがって、リチウムチタン複合酸化物を負極活物質として用いると、電極の膨張収縮を抑えられる。それゆえ、リチウムチタン複合酸化物を負極活物質として用いると、ガス発生時に電極の撚れをより生じにくくすることができる。また、リチウムチタン複合酸化物は、充放電に伴う放熱が小さい。したがって、リチウムチタン複合酸化物を負極活物質として用いると、外装部材200の長辺側壁の面積が比較的小さく放熱性が低くても、電池20の寿命性能を高めることができる。
リチウムチタン複合酸化物としては、例えば、スピネル構造を有するLi4+xTi512(0≦x≦3)や、ラムステライド構造を有するLi2+yTi37(0≦y≦3)、及び直方晶型のチタン含有酸化物が挙げられる。直方晶型のチタン含有酸化物の例として、ナトリウム含有ニオブチタン複合酸化物が挙げられる。ナトリウム含有ニオブチタン複合酸化物の例に、一般式Li2+vNa2-wM1Ti6-y-zNbM214+δ(0≦v≦4、0<w<2、0≦x<2、0<y<6、0≦z<3、y+z<6、-0.5≦δ≦0.5、M1はCs,K,Sr,Ba,Caより選択される少なくとも1つを含み、M2はZr,Sn,V,Ta,Mo,W,Fe,Co,Mn,Alより選択される少なくとも1つを含む)で表される化合物が含まれる。
ナトリウム含有ニオブチタン複合酸化物を負極活物質として用いると、Li4+xTi512を用いた場合と比較して、負極電位を低めることができるため、電池20の電圧を高めることができる。
負極活物質の平均一次粒子径は、1μm以下であることが好ましい。負極活物質の一次粒子の平均粒径が小さいと、内部抵抗が低下するため、充放電に伴う放熱が小さくなる傾向にある。したがって、負極活物質の一次粒子の平均粒径が小さいと、電池20の寿命性能を高めることができる。
負極活物質含有層9bは、リチウムチタン複合酸化物以外の負極活物質を含んでいてもよい。このような他の負極活物質としては、グラファイトなどの炭素質物、スズ・シリコン系合金材料等を挙げることができる。
導電剤は、電極の電子伝導性を高める。導電剤としては、アセチレンブラック、カーボンブラック、黒鉛等を用いることができる。
結着剤は、活物質、導電剤及び集電体の密着性を高める。結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、スチレンブタジエンゴム等が挙げることができる。
負極活物質含有層9bにおいて、負極活物質、導電剤及び結着剤の配合比は、負極活物質73~98質量%、導電剤0~20質量%、結着剤2~7質量%の範囲にすることが好ましい。
セパレータ10a及び10bは、絶縁層として機能する。セパレータ10a及び10bは、例えば、多孔質膜又は不織布である。多孔質膜及び不織布は、それぞれ、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、及びセルロースからなる群より選択される少なくとも一種の化合物を含み得る。セパレータ10a及び10bは、正極8及び負極9の主面の少なくとも一部を被覆する有機繊維膜又は無機膜であってもよい。また、絶縁層としては、セパレータ10a及び10bの代わりに、固体電解質層を用いてもよい。
セパレータの厚みは、6μm以上15μm以下であることが好ましい。セパレータの厚みがこの範囲内にあると、電池20の安全性、容量、及び寿命性能を高めることができる。すなわち、セパレータの厚みが6μm以上であると、正極と負極とが短絡する確率が低くなり得るため、電池20の安全性及び信頼性が向上し得る。一方、セパレータの厚みが15μm以下であると、電池20内の副部材量の増加を抑えて、エネルギー密度を向上し得る。また、セパレータの厚みが15μm以下であると、外装部材200内において空隙が適度に存在するため、ガス発生時に電池20が膨張しにくくなり、電池特性が向上し得る。
図示しない電解質は、正極8、負極9、並びにセパレータ10a及び10bに保持され得る。電解質は、電解質塩と有機溶媒とを含む非水電解質であってもよい。すなわち、実施形態に係る電池は、非水電解質電池であってもよい。非水電解質は、液状であってもよく、ゲル状であってもよい。液状非水電解質は、電解質を有機溶媒に溶解することにより調製される。ゲル状非水電解質は、液状非水電解質を、高分子材料を用いてゲル化させることにより調製される。液状非水電解質における電解質塩の濃度は、例えば、0.5mol/L以上2.5mol/L以下である。
電解質としては、例えば、過塩素酸リチウム(LiCl4)、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタスルホン酸リチウム(LiCF3SO3)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CF3SO22]等のリチウム塩、あるいはこれらの混合物を挙げることができる。電解質としては、高電位でも酸化し難いものであることが好ましく、LiPF6が最も好ましい。
有機溶媒としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ビニレンカーボネート等の環状カーボネートや、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)等の鎖状カーボネートや、テトラヒドロフラン(THF)、2メチルテトラヒドロフラン(2MeTHF)、ジオキソラン(DOX)等の環状エーテルや、ジメトキシエタン(DME)、ジエトエタン(DEE)等の鎖状エーテルや、γ-ブチロラクトン(GBL)、アセトニトリル(AN)、およびスルホラン(SL)等が挙げられる。こうした有機溶媒は、単独でも2種以上の混合物として用いてもよい。
高分子材料としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリアクリロニトリル(PAN)、ポリエチレンオキサイド(PEO)等を挙げることができる。
なお、非水電解質として、リチウムイオンを含有した常温溶融塩(イオン性融体)等を用いてもよい。
電極群2の第2方向に平行な方向の塗工幅WWの下限値は、一例によると、85mm以上であり、他の例によると、90mm以上である。電極群2の塗工幅WWの上限値は、一例によると、130mm以下であり、他の例によると、125mm以下である。ここで、電極群2の塗工幅WWとは、正極活物質含有層の第2方向に平行な方向の幅WPE及び負極活物質含有層の第2方向に平行な方向の幅WNEのうち、より大きい方の活物質含有層の幅である。なお、正極活物質含有層の幅WPE及び負極活物質含有層の幅WNEは、同じ大きさである場合には、どちらか一方の幅を塗工幅WWとする。
電極群2の塗工幅WWは、以下の方法により得ることができる。先ず、アルゴンガスなどの不活性ガス雰囲気下において、電池20を解体して、電極群2を外装部材200内から取り出す。次いで、この電極群2を、メチルエチルカーボネートなどの有機溶媒に24時間浸漬させる。次いで、有機溶媒から電極群2を取り出し、更にメチルエチルカーボネートなどの有機溶媒に24時間浸漬させる。その後、有機溶媒から電極群2を取り出し、90℃の温度でこれを真空乾燥させて、電極群2から電解質を除去する。このようにして、洗浄後の電極群2を得る。
次に、洗浄後の電極群2を展開して、シート状の正極8及び負極9を取り出す。次いで、正極8及び負極9において、正極活物質含有層8b及び負極活物質含有層9bの第2方向に平行な方向の幅、すなわち、正極活物質含有層8b及び負極活物質含有層9bの短辺と平行な方向の幅をそれぞれ測定する。この測定は、正極活物質含有層8b及び負極活物質含有層9bにおいて、長辺方向に沿って均等な間隔を有するように設けられた5箇所で行い、これらの平均値を、それぞれ、正極活物質含有層の幅WPE、及び負極活物質含有層の幅WNEとする。そして、これらの幅WPE及び幅WNEのうち、より大きい方の幅を、電極群2の塗工幅WWとする。なお、測定には、例えば、株式会社ミツトヨ社製デンジマチックインジケーターID-H0530543シリーズ、又は、これと等価な機能を有する機器を用いる。
図4は、図3に示す電極群の斜視図である。
電極群2の第3方向に平行な方向の厚さTWの下限値は、一例によると、13mm以上であり、他の例によると、14mm以上である。電極群2の厚さTWの上限値は、一例によると、24mm以下であり、他の例によると、23mm以下である。電極群2の厚さTWが大きいと、電極群2の剛性が高まるため、ガス発生時に電極群2に変形が生じにくく、電池20の寿命性能が高まる傾向にある。
電極群2の厚さTWは、以下の方法で得ることができる。先ず、上述したのと同様の方法で、洗浄後の電極群2を得る。次いで、洗浄後の電極群2において、XZ平面に平行な一方の面が底面となるように、台の上にセットする。次いで、XZ平面に平行な他方の面上に、この面に対して100kPaの荷重となるように重りを載せる。次いで、電極群2のX軸方向及びZ軸方向において中央の位置で、一方の面から他方の面までの長さ、すなわち、Y軸方向の電極群2の長さをノギスで測定する。この長さを、電極群2の厚さTWとする。測定には、例えば、株式会社ミツトヨ社製デンジマチックインジケーターID-H0530543シリーズ、又は、これと等価な機能を有する機器を用いる。
電極群2の第1方向に平行な方向の高さHWの下限値は、一例によると、35mm以上であり、他の例によると、40mm以上である。電極群2の高さHWの上限値は、一例によると、75mm以下であり、他の例によると、73mm以下である。電極群2の高さHWが小さいと、電池20の寿命性能が高まる傾向にある。
電極群2の高さHWは、以下の方法で得ることができる。先ず、上述したのと同様の方法で、洗浄後の電極群2を、XZ平面に平行な一方の面が水平となるように、台の上にセットする。次いで、XZ平面に平行な他方の面上に、この面に対して100kPaの荷重となるように重りを載せる。次いで、X軸方向及びY軸方向において中央の位置で、Z軸方向の電極群2の長さをノギスで測定する。この長さを、電極群2の高さHWとする。測定には、例えば、株式会社ミツトヨ社製デンジマチックインジケーターID-H0530543シリーズ、又は、これと等価な機能を有する機器を用いる。
電池20の公称容量Aは、4Ah以上であることが好ましく、5Ah以上であることがより好ましい。すなわち、実施形態に係る電池20は、高容量電池として好適に用いることができる。公称容量Aの上限値は特にないが、一例によると、17Ahである。
電池20の公称容量は、以下の方法で得られる放電容量である。先ず、25℃の環境下で、電池を使用最大電圧まで0.05Cのレートで定電流充電する。次いで、使用最大電圧を維持した状態で電流値が0.01Cとなるまで更に充電する。その後、0.05Cのレートで終止電圧まで放電して、放電容量を得る。
なお、上述した「使用最大電圧」は、電池を、危険も欠陥もなしに使用できる最大の電圧であり、各電池に固有の値である。使用最大電圧は、例えば、電池の仕様書などに、「充電電圧」及び「安全保障最大電圧」などと記載されている電圧である。また、「終止電圧」は、電池を、正極及び負極の何れの過放電をも抑える、すなわち電池の劣化を抑えて使用することができる最低の使用電圧であり、各電池に固有の値である。
電池20において、対向面積S(m2)と、公称容量A(Ah)とは、下記式(6)を満たすことが好ましい。
3.5≦A/S≦10 (6)
このような電池20は、優れた寿命性能と、優れた出力性能とを両立することができる。すなわち、公称容量Aと対向面積Sとの比A/Sが3.5より小さいことは、電極の厚さTEが過剰に小さいことを示し得る。また、比A/Sが10より大きいことは、電極の厚さTEが過剰に大きいことを示し得る。比A/Sは、3.9以上10以下であることが好ましい。
ここで、対向面積Sは、一対の対向する正極8及び負極9において、正極活物質含有層8bの面積及び負極活物質含有層9bの面積のうち、一方の活物質含有層の面積である。すなわち、正極活物質含有層8bの面積及び負極活物質含有層9bの面積が異なる場合、対向面積Sは、より小さい方の活物質含有層の面積である。また、正極活物質含有層8bの面積及び負極活物質含有層9bの面積が等しい場合、対向面積Sは、一方の活物質含有層の面積である。
なお、正極活物質含有層8b及び負極活物質含有層9bが、各集電体の両方の主面上に設けられている場合、集電体の一方の主面上に設けられた活物質含有層の面積と、集電体の他方の主面上に設けられた活物質含有層の面積との合計値を、対向面積Sとする。
対向面積Sは、例えば、以下の方法により算出することができる。先ず、上述した方法で、洗浄後の電極群2を得る。次に、この電極群2を展開して、シート状の正極8及び負極9を取り出す。次いで、集電体の一方の主面上に設けられた正極活物質含有層8b及び負極活物質含有層9bの長辺の長さと短辺の長さとを測定して、正極活物質含有層8b及び負極活物質含有層9bの一方の面積をそれぞれ算出する。次いで、集電体の他方の主面上に設けられた正極活物質含有層8b及び負極活物質含有層9bの長辺の長さと短辺の長さとを測定して、正極活物質含有層8b及び負極活物質含有層9bの他方の面積をそれぞれ算出する。このようにして得られた一方の面積と、他方の面積との合計値を、それぞれ、正極活物質含有層8b及び負極活物質含有層9bの面積とする。なお、活物質含有層が一方の主面上にのみ設けられている場合には、他方の面積の算出は省略する。
そして、正極活物質含有層8bの面積及び負極活物質含有層9bの面積が互いに異なる場合、より小さい方の面積を対向面積Sとする。また、正極活物質含有層8bの面積及び負極活物質含有層9bの面積が互いに等しい場合、一方の面積を対向面積Sとする。なお、測定には、例えば、株式会社ミツトヨ社製デンジマチックインジケーターID-H0530543シリーズ、又は、これと等価な機能を有する機器を用いる。
図5は、図4に示す電極群のV-V線に沿った断面図である。図5に示す断面図は、電極群2をYZ平面と平行に切断して得られる断面図である。図5において、太い実線は正極8を示し、点線は負極9を示し、細い実線はセパレータ10a及び10bを示している。
図5に示すように、電極群2の最も内側の面、すなわち、最内周面は、セパレータ10bの一部10b-1及び負極9の一部9-1により構成されている。最内周面で囲まれた部分は、Y軸方向及びZ軸方向と直交する方向、すなわち、X軸方向に沿って貫通孔を形成している。この貫通孔は、電極群2のX軸方向に沿って中央の位置において、セパレータの一部10b-1同士及びセパレータの一部10b-1と負極9の一部9-1とが接触することにより、塞がれていてもよい。
電極群2の第1方向に平行な方向の最内周高さHICの下限値は、一例によると、26mm以上である。高さHICの上限値は、一例によると、53mm以下である。最内周高さHICは、電極群2において、電極が湾曲せずにZ軸方向に延びている部分、すなわち、ストレート部の長さとほぼ等しい。このストレート部に位置する電極は、電極群2においてストレート部以外の部分、すなわち、R部に位置する電極と比較して、電極群内でのガス発生時に電極に撚れが生じ易い傾向にある。したがって、電極群2の最内周高さHICを小さくし、電極群2においてストレート部が占める割合を低めると、より電極に撚れが生じにくくなる。
ここで、最内周高さHICは、図5に示す点P1を通りY軸方向と平行な直線と、点P2を通りY軸方向と平行な直線との間の距離である。点P1及びP2は、最内周面において、Z軸方向に沿って互いに最も離れた位置にある。
電極群2の最内周高さHICは、以下の方法により求めることができる。先ず、上述した方法で、洗浄後の電極群2を得る。次に、この電極群2をYZ面と平行に、5箇所で切断する。次いで、この切断面において最内周に位置するセパレータ10bの折れ目を目視で確認する。すなわち、セパレータ10bにおいて、捲回された際に大きな外力により折れ曲がった箇所は、折り目として目視で確認することができる。電極群2の巻き始めの部分の折り目を点P1とし、巻き始めの次の折り目を点P2とする。次いで、点P1を通りY軸方向と平行な直線と、点P2を通りY軸方向と平行な直線との間の距離をノギスで測定する。この操作を5箇所の切断面で行い、これらの平均値を電極群2の最内周高さHICとする。測定には、例えば、株式会社ミツトヨ社製デンジマチックインジケーターID-H0530543シリーズ、又は、これと等価な機能を有する機器を用いる。
なお、ここでは、電極群2の最内周にセパレータ10bが位置するとして説明したが、最内周には、正極が位置していてもよく、負極が位置していてもよい。この場合には、電極群2の最内周に位置する正極又は負極において、電極群2の巻き始めの折り目及び巻き始めの折り目の次の折り目を確認することにより、セパレータ10bを例に挙げて説明したのと同様の方法で、最内周の高さHICを得ることができる。
電極群2の厚さTW(mm)と、電極群2の最内周の高さHIC(mm)とは、下記式(5)を満たすことが好ましい。
1.8≦HIC/TW≦3.2 (5)
このような電池20は、優れた寿命性能を実現することができる。すなわち、電極群2の最内周の高さHICと電極群の厚さTWとの比HIC/TWが1.8以上であると、ガス発生時に、ガスが電極群2から外部へと放出され易くなる。また、比HIC/TWが3.2以下であると、電極群2がその形状を保持する力が適度にあるため、ガス発生時に、電極群2に変形が生じるのを抑制し得る。
図6は、図3乃至図5に示す電極群が具備する正極の断面図である。図6に示す正極8は、正極集電体8cと、正極集電体8cの一方の主面上に設けられた正極活物質含有層8b1と、正極集電体8cの他方の主面上に設けられた正極活物質含有層8b2と、正極集電タブ8aとを含んでいる。
正極の厚さTPEとは、正極集電体8cの厚さTPE1と、正極活物質含有層8b1の厚さTPE2と、正極活物質含有層8b2の厚さTPE3との合計値である。なお、正極活物質含有層8bが正極集電体8cの一方の面にのみ設けられている場合には、正極の厚さTPEは、正極集電体8cの厚さTPE1と、正極活物質含有層8b1の厚さTPE2又は正極活物質含有層8b2の厚さTPE3との合計値である。負極の厚さTNEも、正極の厚さTPEと同様に求めることができる。
正極の厚さTPEと負極の厚さTNEとは、等しくてもよく、異なっていてもよい。正極の厚さTPEは、負極の厚さTNEよりも厚いことが好ましい。正極の厚さTPEが負極の厚さTNEよりも厚いと、電池20の安全性が高い傾向にある。
電極の厚さTEは、以下の方法により求めることができる。先ず、上述した方法で、洗浄後の電極群2を得る。次に、この電極群2を展開して、シート状の正極8及び負極9を取り出す。次いで、正極8及び負極9において、正極活物質含有層8b及び負極活物質含有層9bが設けられた50か所の点で正極及び負極の厚さを測定し、これらの平均値を、各電極の厚さとする。50か所の点は、正極活物質含有層8b及び負極活物質含有層9bにおいて、長辺方向に沿って均等な間隔を有するように設けられた、短辺と平行な10本の直線と、短辺方向に沿って均等な間隔を有するように設けられた、長辺と平行な5本の直線との交点とする。このようにして得られた厚さTPE及びTNEのうち、より大きい方の厚さを、電極の厚さTEとする。なお、厚さTPE及びTNEが同じ値の場合には、何れか一方の厚さを電極の厚さTEとする。
電極の厚さTEは、0.03mm以上0.08mm以下である。すなわち、電極の厚さTEは、30μm以上80μm以下である。電極の厚さTEがこの範囲内にあると、電池20の寿命性能を高めることができる。すなわち、電極の厚さTEが0.03mmより小さいと、電極の剛性が低すぎるため、ガス放出時に電極に撚れが生じ易い。一方、電極の厚さTEが0.08mmより大きいと、電極の剛性が過剰に高いため、ガス発生時に電極間に隙間が生じにくく、電極からガスが放出されにくい。それゆえ、電極間にガスが滞留して、局所的に大きな隙間が生じ得る。また、電極の厚さTEが0.08mmより大きいと、内部抵抗が高まるため、充放電に伴う発熱が大きくなる。
電極の厚さTEと、電極群の厚さTWと、電極群の最内周の高さHICとは、下記式(1)を満たす。
0.02≦(TE×TW)/HIC≦0.04 (1)
このような電極群2は、従来の電極群と比較して、電極の厚みTEが小さく、電極群2の厚みTWが大きく、かつ、電極群2の内周面の高さHICが小さいと言える。このような電極群2においては、電極群2の厚みが比較的大きいため、電極群2自体の剛性が高く、電極の厚みTEが比較的小さくても、電極群内でのガス発生時に電極に撚れが生じにくい。また、内周面の高さHICが比較的小さいため、電極群2においてストレート部が占める割合が小さく、より電極に撚れが生じにくい。以上のことから、上記式(1)を満たす電池は、優れた寿命性能を実現できる。電極の厚さTEと電極群の厚さTWとの積と、電極群の最内周の高さHICとの比(TE×TW)/HICは、0.02以上0.033以下であることが好ましい。
電極の厚さTE(mm)と、電極群の高さHW(mm)とは、下記式(2)を満たすことが好ましい。
800≦HW/TE≦1500 (2)
このような電極群2を備えると、電池20の寿命性能を高めることができる。すなわち、電極群の高さHWと電極の厚さTEとの比HW/TEが、800以上であると、ガス発生時にガスが電極から抜け易く、電極間にガスが溜まりにくく、局所的に電極間距離が広がるのが抑制される傾向にある。したがって、比HW/TEが800以上であると、電池20の内部抵抗が低まり、容量が向上し得る。また、比HW/TEが、1500以下であると、ガス発生時に電極に撚れが生じにくく、電池20の内部抵抗が低まり、容量が向上し得る。
電極の厚さTEと、電極群の塗工幅WWとは、下記式(3)を満たすことが好ましい。
1600≦WW/TE≦2500 (3)
このような電極群2を備える電池20は、寿命性能が高い傾向にある。すなわち、電極群の塗工幅WWと電極の厚さTEとの比WW/TEが、1600以上2500以下であると、ガス発生時にガスが電極から抜け易く、また、電極群に撚れが生じにくい傾向にある。したがって、比WW/TEが、1600以上2500以下である電極群を用いると、ガス発生時に電池性能が低下しにくい。
電極群の厚さTWと、電極の厚さTEとは、下記式(4)を満たすことが好ましい。
250≦TW/TE≦450 (4)
このような電池20は、寿命性能を高めることができる。すなわち、電極群の厚さTWと電極の厚さTEとの比TW/TEが、250以上であると、電極群2がその形状を保持する力が適度にあるため、ガス発生時に電極群2に変形が生じるのが抑制され得る。また、比TW/TEが、450以下であると、ガス発生時にガスが電極群2から外部へと抜け易く、電池特性が向上し得る。
以上説明した実施形態に係る電池は、0.08mm以下という比較的厚みの小さい電極を備えている。第1の実施形態に係る電池では、電極の厚さTEと電極群の厚さTWとの積と、電極群の最内周の高さHICとの比(TE×TW)/HICを、0.02以上0.04以下とすることにより、比較的厚みの小さい電極を備えていても、電極に撚れを生じにくくすることができる。これにより、実施形態に係る電池は、優れた寿命性能を達成することができる。また、実施形態に係る電池は、優れた寿命性能と、優れた入出力性能とを両立することができる。また、実施形態に係る電池は、二次電池として好適に用いられる。
(第2の実施形態)
第2の実施形態によれば、電池パックが提供される。第2の実施形態に係る電池パックは、第1の実施形態に係る電池を具備する。電池パックに含まれる電池(単電池)の数は、1個または複数にすることができる。
複数の電池は、電気的に直列、並列、又は直列及び並列を組み合わせて接続されて組電池を構成することができる。電池パックは、複数の組電池を含んでいてもよい。
電池パックは、保護回路を更に具備することができる。保護回路は、電池の充放電を制御する機能を有する。また、電池パックを電源として使用する装置(例えば、電子機器、自動車等)に含まれる回路を、電池パックの保護回路として使用することができる。
また、電池パックは、通電用の外部端子を更に具備することもできる。通電用の外部端子は、電池からの電流を外部に出力するため、及び電池に電流を入力するためのものである。言い換えれば、電池パックを電源として使用する際、電流が通電用の外部端子を通して外部に供給される。また、電池パックを充電する際、充電電流(自動車の動力の回生エネルギーを含む)は通電用の外部端子を通して電池パックに供給される。
次に、第2の実施形態に係る電池パックの一例を、図面を参照して説明する。
図7は、実施形態に係る電池パックの電気回路の一例を示すブロック図である。図7に示す電池パックは、複数個の扁平型電池20を含む。
複数個の単電池20は、外部に延出した負極外部端子及び正極外部端子が同じ向きに揃えられるように積層され、粘着テープで締結されており、それにより組電池を構成している。これらの単電池20は、図7に示すように互いに電気的に直列に接続されている。
プリント配線基板が、複数の単電池20の負極外部端子及び正極外部端子が延出している側面に対向して配置されている。プリント配線基板には、図7に示すように、サーミスタ251、保護回路261及び外部機器への通電用端子271が搭載されている。なお、プリント配線基板の組電池と対向する面には、組電池の配線と不要な接続を回避するために絶縁板(図示せず)が取り付けられている。
組電池の最下層に位置する単電池20の正極外部端子に正極側リード281が接続されており、その先端はプリント配線基板の正極側コネクタ29に挿入されて電気的に接続されている。組電池の最上層に位置する単電池20の負極外部端子に負極側リード301が接続されており、その先端はプリント配線基板の負極側コネクタ31に挿入されて電気的に接続されている。これらのコネクタ29及び31は、プリント配線基板に形成された配線32及び33をそれぞれ通して保護回路261に接続されている。
サーミスタ251は、単電池20の各々の温度を検出し、その検出信号を保護回路261に送信する。保護回路261は、所定の条件で保護回路261と外部機器への通電用端子271との間のプラス側配線34a及びマイナス側配線34bを遮断することができる。所定の条件の例は、例えばサーミスタ251から、単電池20の温度が所定温度以上であるとの信号を受信したときである。また、所定の条件の他の例は、単電池20の過充電、過放電、過電流等を検出したときである。この過充電等の検出は、個々の単電池20又は単電池20全体について行われる。個々の単電池20を検出する場合、電池電圧を検出してもよいし、正極電位もしくは負極電位を検出してもよい。後者の場合、参照極として用いるリチウム電極を個々の単電池20に挿入する。図7の電池パックでは、単電池20それぞれに電圧検出のための配線35が接続されており、これら配線35を通して検出信号が保護回路261に送信される。
図7に示した電池パックは複数の単電池20を直列接続した形態を有するが、第2の実施形態に係る電池パックは、電池容量を増大させるために、複数の単電池20を並列に接続してもよい。或いは、第2の実施形態に係る電池パックは、直列接続と並列接続とを組合せて接続された複数の単電池20を備えてもよい。組み上がった電池パックをさらに直列又は並列に接続することもできる。
また、図7に示した電池パックは複数の単電池20を備えているが、第2の実施形態に係る電池パックは1つの単電池20を備えるものでもよい。
また、電池パックの態様は用途により適宜変更される。電池パックの用途としては、大電流特性でのサイクル特性が望まれるものが好ましい。具体的には、デジタルカメラの電源用や、二輪乃至四輪のハイブリッド電気自動車、二輪乃至四輪の電気自動車、アシスト自転車等の車載用が挙げられる。特に、車載用が好適である。
本実施形態に係る電池パックを搭載した自動車において、電池パックは、例えば、自動車の動力の回生エネルギーを回収するものである。
以上詳述した第2の実施形態の電池パックは、第1の実施形態の電池を含む。したがって、第2の実施形態に係る電池パックは、優れた寿命性能を実現することができる。
以下、実施例を説明する。
<実施例1>
[正極の作製]
正極活物質として、リチウムニッケルコバルトマンガン複合酸化物LiNi0.33Co0.33Mn0.332を用意した。正極活物質と、アセチレンブラックと、グラファイトと、ポリフッ化ビニリデンとを、質量比100:2:3:3の割合で混合して、混合物を得た。この混合物と、N-メチル-2-ピロリドンとを混合し、これをプラネタリミキサで混練及び攪拌して、正極スラリーを作製した。この正極スラリーを、厚み12μmのアルミ箔の両方の主面に、一部未塗工部分ができるよう塗布して、塗膜を乾燥させた。乾燥後の塗膜をロールプレスで圧縮して、正極を作製した。
[負極の作製]
負極活物質として、チタン酸リチウムLi4Ti512を準備した。負極活物質と、グラファイトと、ポリフッ化ビニリデンとを、質量比100:10:5の割合で混合して、混合物を得た。この混合物とN-メチル-2-ピロリドンとを混合し、これをプラネタリミキサで混練及び攪拌し、負極スラリーを作製した。この負極スラリーを、厚み12μmのアルミ箔の両方の主面に、一部未塗工部分ができるよう塗布して、塗膜を乾燥させた。乾燥後の塗膜をロールプレスで圧縮して、負極を作製した。
[電極群の作製]
負極、第1セパレータ、正極、及び第2セパレータをこの順で積層して、積層体を得た。第1及び第2セパレータとしては、厚さが14μmのセルロース製不織布を用いた。第1及び第2セパレータの空隙率は60%であった。次いで、この積層体を捲回装置に移し、渦巻き状に捲回した。次いで、この捲回積層体にプレス処理を施し、扁平形状の電極群を得た。
[液状非水電解質の調製]
エチレンカーボネートとジメチルカーボネートとを1:1の体積比で混合して、非水溶媒を調製した。この非水溶媒に、電解質としての六フッ化リン酸リチウムLiPF6を1mol/Lの濃度となるように溶解させた。このようにして液状非水電解質を調製した。
[電池の組立て]
正極端子に電気的に接続された正極リードと、負極端子に電気的に接続された負極リードとを具備する封口板を準備した。電極群の一方の端に配置される正極未塗工部分と、正極リードとを超音波接合した。また、電極群の他方の端に配置される負極未塗工部分と、負極リードとを超音波接合した。このようにして、電極群に封口板を取り付けた。次いで、この電極群を外装容器内に挿入し、封口板と外装缶とを溶接した。次いで、封口板に設けられた注液口から、液状非水電解質を、外装容器内に注入した。その後、注液口にアルミニウム製の封止部材をはめ込み、封止部材の周囲を封口体に溶接した。このようにして、電池を得た。
<実施例2~12、及び、比較例1~3>
正極活物質の種類、負極活物質の種類、正極活物質含有層の密度、正極の厚さ、負極の厚さ、セパレータの厚さ、外装部材のサイズ、電極群のサイズなどを下記の表1~3に示すように変更したこと以外は、実施例1に記載したのと同様の方法で実施例2~12及び比較例1~3に係る電池を得た。
<評価試験>
[サイクル試験]
先ず、25℃の環境下で、電池を使用最大電圧まで0.05Cのレートで定電流充電した。次いで、この電池を、使用最大電圧を維持した状態で、電流値が0.01Cとなるまで更に充電した。その後、この電池を、0.05Cのレートで終止電圧まで放電して、放電容量を得た。この際に得られた放電容量を、公称容量Aとした。この電池の充放電を1サイクルとして、55℃環境下で1000サイクル行った。1000サイクル後の電池の放電容量を測定し、放電容量A1とした。放電容量A1の公称容量Aに対する比率を、容量維持率として算出した。
なお、実施例1~8、12及び比較例1~3に係る電池の使用最大電圧は2.8Vであり、終止電圧は1.3Vであった。また、実施例9及び10に係る電池の使用最大電圧は2.9Vであり、終止電圧は1.5Vであった。また、実施例11に係る電池の使用最大電圧は3.1Vであり、終止電圧は1.5Vであった。
次いで、サイクル試験後の外装部材の厚さTC1を測定した。その結果、サイクル試験後の外装部材の厚さTC1は、実施例1~12及び比較例1~3において、ほぼ同じであった。このことは、サイクル試験により、何れの電池においても、外装部材の内部でガスが発生したことを示している。
これらの結果を表3に示す。
下記の表1に、正極、負極及びセパレータに関するデータをまとめる。

Figure 0007140899000001
下記の表2に、電極群に関するデータをまとめる。
Figure 0007140899000002
下記の表3に、電池に関するデータをまとめる。なお、表3の実施例1~12及び比較例1~3において、対向面積Sは、正極活物質含有層の面積である。
Figure 0007140899000003
表2及び表3から明らかなように、電極の厚さTEと電極群の厚さTWとの積と、電極群の最内周の高さHICとの比(TE×TW)/HICが、0.02以上0.04以下である実施例1~12に係る電池の容量維持率は、比(TE×TW)/HICが、0.02より低い比較例1~3に係る電池の容量維持率よりも高かった。
また、実施例1と実施例2との比較から明らかなように、正極及び負極のうち、正極の方が厚くても、負極の方が厚くても、高い容量維持率を実現することができた。
また、実施例1、2、9、及び12の比較から明らかなように、負極活物質の種類が異なっていても、高い容量維持率を実現することができた。また、実施例9と実施例1との比較から明らかなように、正極活物質の種類が異なっていても、高い容量維持率を実現することができた。
以上説明した実施形態に係る電池は、0.08mm以下という比較的厚みの小さい電極を備えている。第1の実施形態に係る電池では、電極の厚さTEと電極群の厚さTWとの積と、電極群の最内周の高さHICとの比(TE×TW)/HICを、0.02以上0.04以下とすることにより、比較的厚みの小さい電極を備えていても、電極に撚れを生じにくくすることができる。これにより、実施形態に係る電池は、優れた寿命性能を達成することができる。また、実施形態に係る電池は、優れた寿命性能と、優れた入出力性能とを両立することができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
以下に、当初の特許請求の範囲に記載された発明を付記する。
[1] 底壁と、前記底壁から第1方向に延びた側壁とを備え、前記底壁と対向する開口部が設けられた外装容器と、
正極と、負極と、絶縁層とを備え、前記正極及び前記負極が前記絶縁層を介して扁平形状に捲回され、前記外装容器内に捲回軸方向が前記第1方向と直交するように収容された電極群と、
前記外装容器の前記開口部に取り付けられた封口板と
を具備し、
前記正極の厚さ及び前記負極の厚さは、互いに等しくてもよく、互いに異なっていてもよく、これら電極の各々の厚さTEは、0.03mm以上0.08mm以下であり、
前記捲回軸方向に平行な方向を第2方向とし、前記第1方向及び前記第2方向に直交する方向を第3方向とした際に、
前記電極の前記厚さTE(mm)と、前記電極群の前記第3方向に平行な方向の厚さTW(mm)と、前記電極群の前記第1方向に平行な方向の最内周高さHIC(mm)とは、下記式(1)を満たす電池。
0.02≦(TE×TW)/HIC≦0.04 (1)
[2] 前記負極は、リチウムチタン複合酸化物を含む[1]に記載の電池。
[3] 前記電極群の前記第1方向に平行な方向の高さHW(mm)と、前記電極の前記厚さTE(mm)とは、下記式(2)を満たす[1]又は[2]に記載の電池。
800≦HW/TE≦1500 (2)
[4] 前記正極は、正極集電体と、前記正極集電体の少なくとも一方に設けられ、正極活物質を含む正極活物質含有層とを含み、
前記負極は、負極集電体と、前記負極集電体の少なくとも一方に設けられ、負極活物質を含む負極活物質含有層とを含み、
前記正極活物質含有層の前記第2方向に平行な方向の幅と、前記負極活物質含有層の前記第2方向に平行な方向の幅とは、互いに等しくてもよく、互いに異なっていてもよく、これらの少なくとも一方の幅を電極群の塗工幅WWとした際に、
前記電極群の塗工幅WW(mm)と、前記電極の前記厚さTE(mm)とは、下記式(3)を満たす[1]乃至[3]の何れか1つに記載の電池。
1600≦WW/TE≦2500 (3)
[5] 前記電極の前記厚さTE(mm)と、前記電極群の前記厚さTW(mm)とは、下記式(4)を満たす[1]乃至[4]の何れか1つに記載の電池。
250≦TW/TE≦450 (4)
[6] 前記電極群の前記厚さTW(mm)と、前記電極群の前記最内周高さHIC(mm)とは、下記式(5)を満たす[1]乃至[5]の何れか1つに記載の電池。
1.8≦HIC/TW≦3.2 (5)
[7] 前記正極は、正極集電体と、前記正極集電体の少なくとも一方に設けられ、正極活物質を含む正極活物質含有層とを含み、
前記正極活物質含有層の密度は、2.7g/cm3以上3.3g/cm3以下である[1]乃至[6]の何れか1つに記載の電池。
[8] 前記絶縁層は、6μm以上15μm以下の厚さを有するセパレータである[1]乃至[7]の何れか1つに記載の電池。
[9] 前記正極活物質含有層の面積と、前記負極活物質含有層の面積とは、互いに等しくてもよく、互いに異なっていてもよく、これらの少なくとも一方の面積を対向面積Sとした際に、
前記対向面積S(m2)と、前記電池の公称容量A(Ah)とは、下記式(6)を満たす[4]に記載の電池。
3.5≦A/S≦10 (6)
[10] 前記外装容器は、前記側壁として一対の長辺側壁と一対の短辺側壁とを含み、
前記長辺側壁の板厚は、0.3mm以上0.7mm以下である[1]乃至[9]の何れか1つに記載の電池。
[11] 前記封口板が取り付けられた前記外装容器において、前記第3方向に平行な方向の厚さTC(mm)と、前記第1方向に平行な方向の高さHC(mm)とは、下記式(7)を満たす[1]乃至[10]の何れか1つに記載の電池。
2.5≦HC/TC≦3.5 (7)
[12] 前記封口板が取り付けられた前記外装容器において、前記第2方向に平行な方向の幅WC(mm)と、前記厚さTC(mm)とは、下記式(8)を満たす[1]乃至[11]の何れか1つに記載の電池。
4.5≦WC/TC≦6.5 (8)
[13] 公称容量が4Ah以上である[1]乃至[12]の何れか1つに記載の電池。
[14] [1]乃至[13]の何れか1つに記載の電池を含む電池パック。

Claims (8)

  1. 正極と、負極と、絶縁層とを備え、前記正極及び前記負極が前記絶縁層を介して扁平形状に捲回された電極群であって、
    前記正極の厚さ及び前記負極の厚さは、互いに等しくてもよく、互いに異なっていてもよく、これら電極の各々の厚さTEは、0.03mm以上0.08mm以下であり、
    捲回軸方向と直交する方向を第1方向とし、前記捲回軸方向に平行な方向を第2方向とし、前記第1方向及び前記第2方向に直交する方向を第3方向とした際に、
    前記電極の前記厚さTE(mm)と、前記電極群の前記第3方向に平行な方向の厚さTW(mm)と、前記電極群の前記第1方向に平行な方向の最内周高さHIC(mm)とは、下記式(1)を満たす電極群。
    0.02≦(TE×TW)/HIC≦0.04 (1)
  2. 前記負極は、リチウムチタン複合酸化物を含む請求項1に記載の電極群。
  3. 前記電極群の前記第1方向に平行な方向の高さHW(mm)と、前記電極の前記厚さTE(mm)とは、下記式(2)を満たす請求項1又は2に記載の電極群。
    800≦HW/TE≦1500 (2)
  4. 前記正極は、正極集電体と、前記正極集電体の少なくとも一方に設けられ、正極活物質を含む正極活物質含有層とを含み、
    前記負極は、負極集電体と、前記負極集電体の少なくとも一方に設けられ、負極活物質を含む負極活物質含有層とを含み、
    前記正極活物質含有層の前記第2方向に平行な方向の幅と、前記負極活物質含有層の前記第2方向に平行な方向の幅とは、互いに等しくてもよく、互いに異なっていてもよく、これらの少なくとも一方の幅を前記電極群の塗工幅WWとした際に、
    前記電極群の塗工幅WW(mm)と、前記電極の前記厚さTE(mm)とは、下記式(3)を満たす請求項1乃至3の何れか1項に記載の電極群。
    1600≦WW/TE≦2500 (3)
  5. 前記電極の前記厚さTE(mm)と、前記電極群の前記厚さTW(mm)とは、下記式(4)を満たす請求項1乃至4の何れか1項に記載の電極群。
    250≦TW/TE≦450 (4)
  6. 前記電極群の前記厚さTW(mm)と、前記電極群の前記最内周高さHIC(mm)とは、下記式(5)を満たす請求項1乃至5の何れか1項に記載の電極群。
    1.8≦HIC/TW≦3.2 (5)
  7. 前記正極は、正極集電体と、前記正極集電体の少なくとも一方に設けられ、正極活物質を含む正極活物質含有層とを含み、
    前記正極活物質含有層の密度は、2.7g/cm3以上3.3g/cm3以下である請求項1乃至6の何れか1項に記載の電極群。
  8. 前記絶縁層は、6μm以上15μm以下の厚さを有するセパレータである請求項1乃至7の何れか1項に記載の電極群。
JP2021165535A 2018-09-21 2021-10-07 電極群 Active JP7140899B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021165535A JP7140899B2 (ja) 2018-09-21 2021-10-07 電極群

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020547589A JP6961103B2 (ja) 2018-09-21 2018-09-21 電池及び電池パック
PCT/JP2018/035142 WO2020059131A1 (ja) 2018-09-21 2018-09-21 電池及び電池パック
JP2021165535A JP7140899B2 (ja) 2018-09-21 2021-10-07 電極群

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020547589A Division JP6961103B2 (ja) 2018-09-21 2018-09-21 電池及び電池パック

Publications (2)

Publication Number Publication Date
JP2022003649A JP2022003649A (ja) 2022-01-11
JP7140899B2 true JP7140899B2 (ja) 2022-09-21

Family

ID=69886809

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020547589A Active JP6961103B2 (ja) 2018-09-21 2018-09-21 電池及び電池パック
JP2021165535A Active JP7140899B2 (ja) 2018-09-21 2021-10-07 電極群

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020547589A Active JP6961103B2 (ja) 2018-09-21 2018-09-21 電池及び電池パック

Country Status (5)

Country Link
US (1) US20210184267A1 (ja)
EP (2) EP4050693B1 (ja)
JP (2) JP6961103B2 (ja)
CN (1) CN112204791A (ja)
WO (1) WO2020059131A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7153193B2 (ja) * 2018-12-11 2022-10-14 トヨタ自動車株式会社 非水電解液二次電池
JP7125656B2 (ja) * 2019-04-22 2022-08-25 トヨタ自動車株式会社 非水電解液二次電池
JP7280914B2 (ja) * 2021-04-26 2023-05-24 プライムプラネットエナジー&ソリューションズ株式会社 非水電解質二次電池
JP2023026188A (ja) * 2021-08-13 2023-02-24 株式会社東芝 二次電池、電池パック、及び車両
CN114188673B (zh) * 2021-12-09 2024-03-19 远景动力技术(江苏)有限公司 电芯及电子设备
CN115458797A (zh) * 2022-10-27 2022-12-09 欣旺达电动汽车电池有限公司 一种二次电池及用电设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157560A (ja) 2005-12-07 2007-06-21 Gs Yuasa Corporation:Kk 非水電解質二次電池
JP2009158376A (ja) 2007-12-27 2009-07-16 Tdk Corp 巻回型電気化学デバイス及びその製造方法
JP2016105415A (ja) 2016-02-04 2016-06-09 日立オートモティブシステムズ株式会社 角形リチウムイオン電池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4250932B2 (ja) 2002-08-30 2009-04-08 ソニー株式会社 非水電解質電池から成る電池ブロック及び交換機器サイズのバッテリーパック
JP5261869B2 (ja) * 2005-10-07 2013-08-14 株式会社Gsユアサ 非水電解質二次電池
JP4412304B2 (ja) * 2006-05-17 2010-02-10 ソニー株式会社 二次電池
JP4296205B2 (ja) * 2007-03-29 2009-07-15 株式会社東芝 非水電解質電池、電池パック及び自動車
JP5696886B2 (ja) 2011-03-01 2015-04-08 トヨタ自動車株式会社 二次電池
EP2953200B1 (en) * 2013-01-29 2018-08-22 Toyota Jidosha Kabushiki Kaisha Battery
WO2015045400A1 (ja) * 2013-09-30 2015-04-02 三洋電機株式会社 偏平形非水電解質二次電池及びそれを用いた組電池
JP2015138621A (ja) * 2014-01-21 2015-07-30 日立オートモティブシステムズ株式会社 リチウムイオン二次電池
JPWO2015129376A1 (ja) * 2014-02-25 2017-03-30 株式会社東芝 捲回型電極群及び非水電解質電池
JP2017126400A (ja) * 2014-06-05 2017-07-20 株式会社東芝 二次電池
JP6748401B2 (ja) * 2014-08-18 2020-09-02 株式会社Gsユアサ 蓄電素子
JP6460413B2 (ja) * 2016-08-26 2019-01-30 トヨタ自動車株式会社 リチウムイオン二次電池および組電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157560A (ja) 2005-12-07 2007-06-21 Gs Yuasa Corporation:Kk 非水電解質二次電池
JP2009158376A (ja) 2007-12-27 2009-07-16 Tdk Corp 巻回型電気化学デバイス及びその製造方法
JP2016105415A (ja) 2016-02-04 2016-06-09 日立オートモティブシステムズ株式会社 角形リチウムイオン電池

Also Published As

Publication number Publication date
EP3855547A4 (en) 2021-09-29
CN112204791A (zh) 2021-01-08
JP6961103B2 (ja) 2021-11-05
EP3855547B1 (en) 2022-06-01
EP3855547A1 (en) 2021-07-28
JPWO2020059131A1 (ja) 2021-05-13
WO2020059131A1 (ja) 2020-03-26
EP4050693B1 (en) 2023-10-18
JP2022003649A (ja) 2022-01-11
US20210184267A1 (en) 2021-06-17
EP4050693A1 (en) 2022-08-31

Similar Documents

Publication Publication Date Title
JP7140899B2 (ja) 電極群
JP5178111B2 (ja) 非水電解質電池およびパック電池
JP5135664B2 (ja) 非水電解質リチウムイオン電池用正極材料およびこれを用いた電池
CN107204454B (zh) 电极、非水电解质电池、电池包及车辆
JP5136706B2 (ja) 非水電解質リチウムイオン電池用正極材料およびこれを用いた電池
EP3145005B1 (en) Electrode, nonaqueous electrolyte battery, battery pack, automobile, and vehicle
KR101829528B1 (ko) 전극, 비수전해질 전지 및 전지 팩
EP2980894B1 (en) Nonaqueous electrolyte battery and battery pack
CN108336253B (zh) 电池模块以及电池组
JP2013008493A (ja) 非水電解質電池及び電池パック
KR20090006797A (ko) 비수전해질 전지 및 전지팩
JP6776291B2 (ja) 組電池、電池パック、車両、及び、定置用電源
JP7166265B2 (ja) 電極、非水電解質電池及び電池パック
KR20160134808A (ko) 비수 전해액 이차 전지
EP3322024A1 (en) Nonaqueous electrolyte battery and battery pack
JP7247353B2 (ja) 電極、電池、及び電池パック
US20210376393A1 (en) Battery group, battery, and battery pack
JP5865951B2 (ja) 非水電解質電池及び電池パック
JP2005174686A (ja) リチウムイオン電池
JP4529432B2 (ja) リチウムイオン電池用正極材料およびこれを用いた電池
CN116783731A (zh) 电极、电池及电池包
US20230223522A1 (en) Negative electrode active material for secondary battery, negative electrode for secondary battery, and secondary battery
US20230132785A1 (en) Secondary battery
JP5558498B2 (ja) 非水電解質電池及び電池パック

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220908

R151 Written notification of patent or utility model registration

Ref document number: 7140899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151