JP7123519B1 - 渦電流検査方法 - Google Patents

渦電流検査方法 Download PDF

Info

Publication number
JP7123519B1
JP7123519B1 JP2021568822A JP2021568822A JP7123519B1 JP 7123519 B1 JP7123519 B1 JP 7123519B1 JP 2021568822 A JP2021568822 A JP 2021568822A JP 2021568822 A JP2021568822 A JP 2021568822A JP 7123519 B1 JP7123519 B1 JP 7123519B1
Authority
JP
Japan
Prior art keywords
eddy current
inspection method
preliminary
detection signal
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021568822A
Other languages
English (en)
Other versions
JPWO2022259444A5 (ja
JPWO2022259444A1 (ja
Inventor
有佑 岩尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Application granted granted Critical
Publication of JP7123519B1 publication Critical patent/JP7123519B1/ja
Publication of JPWO2022259444A1 publication Critical patent/JPWO2022259444A1/ja
Publication of JPWO2022259444A5 publication Critical patent/JPWO2022259444A5/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents

Abstract

本開示は、検査対象物となる電極と接触することなく、電極の基板への接合状態を判定することができる検査方法を提供することを目的とする。検査対象物である電極リード(40)の形成方向に沿って、交流電流印加状態のコイル内蔵プローブ(1)を走査させる。走査時のコイル内蔵プローブ(1)は電極リード(40)に接触することなく、電極リード(40)の表面から所定距離隔てて上方に位置している。その後、渦電流測定器(3)によって、複数の超音波接合部(41)に対応する複数の検出信号が得られる。最後に、複数の検出信号それぞれと基準レベルとの比較結果に基づき、電極リード(40)の基板(30)への接合状態が判定される。すなわち、電極リード(40)に設けられる複数の超音波接合部(41)それぞれに対し、未接合状態、破断状態及び正常状態のうちいずれの状態であるかが判定される。

Description

本開示は、基板上に設けられた電極を検査対象物に対し渦電流測定装置を用いて行う渦電流検査方法に関する。
基板上に設けられた電極等を検査対象物とした検査方法として、例えば、特許文献1で開示された第1の検査方法や、特許文献2で開示された第2の検査方法がある。
第1の検査方法は、検査対象物となる電極リード部の金属製円筒の外側表面と上記電極リード部の導電性リードピンとの間で計測した絶縁抵抗値に基づいて電極リード部の状態を判定する検査方法である。
第1の検査方法では、狭小な場所でも検査が可能で、かつ、検査装置を用いた比較的安価な半田付による検査方法となっている。
第2の検査方法は、基板に接合されたリードフレームのリードを検査対象物としている。第2の検査方法は以下の第1~第4のステップを含んでいる。
第1のステップ…加圧装置にセットしてリードフレームのリードを上から加圧するとともに、環状の照明装置を点灯させる。
第2のステップ…撮像装置によって、リード接合部を含むように撮像し、この撮像により得られた画像データをA/D変換器によりディジタル画像信号に変換する。
第3のステップ…処理装置によって、画像データのうちリード接合部に対応する画像データを、一定値より明るい部分を残すように2値化した画像を抽出する。
第4のステップ…2値化した画像に基づき、リードの状態を判定する。
上述した第2の検査方法によって、接合されていないリードと接合されているリードとを精度よく区別することができる。
特開2016-151484号公報 特開平10-185527号公報
しかしながら、上述した第1の検査方法は、検査自体は非破壊で行っているが、検査対象物に接触しなければ検査できないという問題点があった。
加えて、第1の検査方法では、検査対象物に破断部が含まれている場合、接触した箇所が破断部でなく正常部位であれば、破断部の存在を検出できないという問題点もあった。
また、上述した第2の検査方法は、上記第1のステップの実行時に検査対象物であるリードを加圧しているため、検査対象物に対し非接触で検査できないという問題点があった。
加えて、第2の検査方法では、原理的にリードの端部における無接合状態を検出することはできるが、リードの中間領域の接合状態を判定することは極めて困難となる問題点もあった。さらに、第2の検査方法では、リードの破断部を精度良く判別することができないという問題点もあった。
本開示では、上述した第1及び第2の検査方法を含む従来の検査方法の問題点を解決し、検査対象物となる電極と接触することなく、電極の基板への接合状態を判定することができる検査方法を提供することを目的とする。
本開示の渦電流検査方法は、検査対象物に渦電流を発生させ、渦電流の状態を示す検出信号を得る渦電流測定装置を用いた渦電流検査方法であって、前記渦電流測定装置はコイルを内蔵したプローブを有し、基板上に設けられた電極が前記検査対象物となり、(a) 交流電流を前記プローブ内のコイルに印加して交流電流印加状態にするステップと、(b) 前記電極の形成方向に沿って、前記交流電流印加状態の前記プローブを走査させるステップとを備え、前記ステップ(b)の実行期間において、前記プローブは前記電極に接触することなく、前記電極の表面から所定距離隔てて上方に位置し、前記ステップ(b)の実行時に前記電極の表面に渦電流が発生し、前記渦電流測定装置より前記検出信号が時々刻々得られ、(c) 時々刻々得られる前記検出信号と基準レベルとの比較結果に基づき、前記電極の前記基板への接合状態を判定するステップをさらに備え、前記電極は互いに離散した複数の接合部を有し、前記複数の接合部は前記基板の表面との接合領域として割り当てられており、前記渦電流検査方法は、(d) 前記ステップ(a)の後、前記ステップ(b)の前に実行され、前記複数の接合部から一の接合部を基準接合部として選択するステップをさらに備え、前記基準レベルは前記基準接合部の上方に前記プローブを配置した時の前記検出信号の信号値であり、前記ステップ(b)の実行時に前記複数の接合部に対応して複数の検出信号が得られ、前記ステップ(c)は、(c-1) 前記複数の検出信号のうち、正方向及び負方向のうち一方の方向で前記基準レベルと有意な差を有する第1種検出信号が存在する場合、前記複数の接合部のうち前記第1種検出信号に対応する接合部を未接合状態と判定し、(c-2) 前記複数の検出信号のうち、正方向及び負方向のうち他方の方向で前記基準レベルと有意な差を有する第2種検出信号が存在する場合、前記複数の接合部のうち前記第2種検出信号に対応する接合部を破断状態と判定し、(c-3) 前記複数の検出信号のうち、前記第1及び第2種検出信号のいずれにも該当しない第3種検出信号が存在する場合、前記複数の接合部のうち前記第3種検出信号に対応する接合部を正常状態と判定する。
本開示の渦電流検査方法は、ステップ(b)において、電極と接触することなく、電極の形成方向に沿ってプローブを走査させることにより、検出信号を取得している。
したがって、本開示の渦電流検査方法は、検査対象物となる電極に接触することなく、ステップ(c)の実行時に電極の基板への接合状態を判定することができる。
本開示の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
本開示の実施の形態である渦電流検査方法を模式的に示す説明図である。 図1で示した実施の形態の渦電流検査方法の処理手順を示すフローチャートである。 検出電圧表示用PCのディスプレイ上に表示される出力波形を示す説明図である。 図2で示す校正基準部の選択処理の処理手順を示すフローチャートである。 渦電流予備検査の検査内容を模式的に示す説明図である。 基本技術による検査方法を模式的に示す説明図である。
<基本技術>
図6は基本技術による検査方法を模式的に示す説明図である。図6にXYZ直交座標系を記している。
同図に示すように、基板30上に電極リード40が設けられ、電極リード40は複数の超音波接合部41を有している。複数の超音波接合部41はそれぞれ超音波接合法を用いた基板30の表面との接合領域となる金属箔部分である。すなわち、複数の超音波接合部41によって電極リード40と基板30の表面とは接合されている。
基本技術の検査方法は、90度強度引張計測器60を用いて、電極リード40と接触して複数の超音波接合部41それぞれにおける基板30との接合状態を検査する方法である。
90度強度引張計測器60は接続ケーブル64を介して接続されるクリップ62を有しており、クリップ62にて電極リード40の先端部分40tを把持することができる。
基本技術の検査方法は、クリップ62にて電極リード40の先端部分40tを把持した状態で、引張方向F6に沿って90度強度引張計測器60を上昇させて、電極リード40を基板30から強制的に引き剥がすことにより行われる。
基板30及び電極リード40は図6で示すXY平面に配置されているため、引張方向F6(+Z方向)は基板30に対し90度の方向を有することになる。
例えば、図6において、図中、最も左(-X方向側)に存在する超音波接合部41を引き剥がす際、90度強度引張計測器60で計測される接合強度が測定接合強度となる。
基本技術では、測定接合強度が基準強度以上であれば、正常接合部41Aと判定し、基準強度未満であれば、未接合部41Cと判定することができる。なお、超音波接合部41が破断部41Bであるか否かは目視にて空隙44の有無を確認することにより認識できる。
例えば、図6に示すように、4つの超音波接合部41のうち、図中左から正常接合部41A、破断部41B、未接合部41C及び正常接合部41Aであった場合を想定する。この場合、左から1番目と4番目の超音波接合部41それぞれの測定接合強度は基準強度以上となる。
一方、左から3番目の超音波接合部41の測定接合強度は基準強度を下回る。未接合部41Cは基板30の表面との間に浮き空間48が存在する状態であるため、電極リード40の上方からの目視では確認することができない。基本技術の検査方法では、未接合部41Cを正確に判別することができる。
上述したように、基本技術の検査方法は、90度強度引張計測器60を用いて電極リード40を基板30から引き剥がすことにより、複数の超音波接合部41それぞれの基板30への接合状態を検査している。
しかしながら、基本技術の検査方法では、電極リード40と接触し、さらに、電極リード40を基板30から引き剥がすことにより、基板30と電極リード40との組合せ構造を破壊している。このため、検査で使用した基板30は使用できない。
すなわち、従来技術として説明した第1及び第2の検査方法と同様、基本技術の検査方法は、電極と接触することなく、電極の基板への接合状態を判定することができないという問題点を有している。以下で述べる実施の形態の検査方法は、上述した問題点の解消を図ったものである。
<実施の形態>
図1は本開示の実施の形態である渦電流検査方法を模式的に示す説明図である。図1にXYZ直交座標系を記している。なお、渦電流測定装置10はコイル内蔵プローブ1を除き、XYZ直交座標系の対象外である。オシロスコープ7、接続ケーブル8及び検出電圧表示用PC9もXYZ直交座標系の対象外である。
同図に示すように、基板30上に電極リード40が設けられ、電極リード40が検査対象物となる。電極リード40は複数の超音波接合部41を有しており、超音波接合処理によって複数の超音波接合部41にて基板30の表面との接合がなされている。
電極リード40は基板30上に設けられた「電極」に対応し、複数の超音波接合部41は、電極リード40に互いに離散して設けられる「複数の接合部」に対応する。
複数の超音波接合部41は基板30の表面との接合領域として割り当てられた複数の金属箔部分である。すなわち、複数の超音波接合部41は超音波接合法を用いた基板30の表面との接合領域となっている。
電極リード40は膜厚が1.1mm程度であり、X方向に延びて基板30の表面上に形成されている。各超音波接合部41は同一サイズであり、1mm×1mmの正方形を少なくとも含む面積を有し、その厚みは例えば1.1mm程度である。
本実施の形態の渦電流検査方法は、渦電流測定装置10を用いて、電極リード40と接触することなく、複数の超音波接合部41それぞれにおける基板30の表面との接合状態を検査する方法である。
渦電流測定装置10は、コイル内蔵プローブ1、接続ケーブル2、渦電流測定器3、接続用プローブ5、及びプローブフォルダ11を主要構成要素として含んでいる。渦電流測定装置10は、電極リード40の表面で発生する渦電流の状態を示す検出信号を得る装置である。
コイル内蔵プローブ1は内部に内蔵コイルを有するプローブである。コイル内蔵プローブ1内の内蔵コイルに所定周波数の交流電流を流すことにより、コイル内蔵プローブ1は交流電流印加状態となり、内蔵コイルに磁界が発生する。なお、交流電流の印加機能は渦電流測定器3が有している。
プローブフォルダ11は、コイル内蔵プローブ1の先端部を露出させた状態でコイル内蔵プローブ1を保持している。
コイル内蔵プローブ1は接続ケーブル2を介して渦電流測定器3に接続されており、渦電流測定器3はコイル内蔵プローブ1によって検出された渦電流検出結果に基づき、所定の演算を実行して検出信号を得ている。検出信号は渦電流検出結果に対し正の相関を有する信号である。
渦電流検出結果として、例えば、コイル内蔵プローブ1内の内蔵コイルのインピーダンスが考えられ、内蔵コイルのインピーダンスの変化によって渦電流の状態変化を認識することができる。したがって、渦電流測定器3より得られる検出信号は、電極リード40の表面に発生する渦電流の状態を示す信号となる。なお、渦電流の状態とは渦電流の大きさ、分布等を含んでいる。
渦電流測定装置10に接続される外部装置として、検出電圧表示用PC(Personal Computer)9を設け、検出電圧表示用PC9は、オシロスコープ7及び接続ケーブル8を介して、渦電流測定装置10の接続用プローブ5に接続されている。
渦電流測定器3で得られた検出信号は接続用プローブ5を介してオシロスコープ7に付与される。オシロスコープ7は、受信した検出信号を検出電圧表示用PC9のディスプレイ上で表示可能な表示用検出信号に変換する。この表示用検出信号が接続ケーブル8を介して検出電圧表示用PC9に出力される。
検出電圧表示用PC9は表示用検出信号に基づき、検出信号の出力波形LVをディスプレイ上に表示する。
このような構成の渦電流測定装置10を用いて本実施の形態の渦電流検査方法が実行される。本実施の形態の渦電流検査方法は、電極リード40に設けられる複数の超音波接合部41の基板30の表面への接合状態を判定する検査方法である。
図2は図1で示した本実施の形態の渦電流検査方法の処理手順を示すフローチャートである。以下、図2を参照しつつ、本実施の形態の渦電流検査方法の処理内容を説明する。
まず、ステップS1において、交流電流をコイル内蔵プローブ1内の内蔵コイルに印加して交流電流印加状態にする。
ステップS1の後、ステップS2において、複数の接合部である複数の超音波接合部41から一の接合部を校正基準部(基準接合部)として選択する。なお、校正基準部の選択内容については後に詳述する。
以下、説明の都合上、図1で示す4つの超音波接合部41のうち、最も左にある超音波接合部41が校正基準部41S(基準接合部)として選択されたと仮定する。
ステップS2の後、ステップS3において、校正基準部41Sの初期設定を行う。すなわち、コイル内蔵プローブ1の先端を校正基準部41Sの表面から所定距離隔てて上方に配置し、校正基準部41Sの表面に渦電流を発生させる。
すると、コイル内蔵プローブ1にて得られた渦電流検出結果に基づき渦電流測定器3から校正基準用検出信号が得られる。そこで、渦電流測定器3に設けられた校正用ボタンを押圧する等により校正処理を実行して、この校正基準用検出信号の信号値が初期設定値(“0”)になるように初期設定する。このように、校正基準部41Sに対応する校正基準用検出信号が示す信号値“0”が基準レベルとなる。すなわち、基準レベルは校正基準部41Sの上方にコイル内蔵プローブ1を配置した時の検出信号の信号値となる。
ステップS3の実行後において、渦電流測定器3から得られる検出信号の信号値が正の場合は基準レベルより高い信号値となり、検出信号の信号値が負の場合は基準レベルより低い信号値となる。
その後、ステップS4において、電極リード40に対する渦電流検査が実行される。すなわち、電極リード40の形成方向(X方向)に沿って、交流電流印加状態のコイル内蔵プローブ1を走査させる走査SC1が実行される。走査SC1の開始位置は電極リード40の左端先端部の上方であり、走査SC1のX方向に沿った走査速度は、例えば、1m/sに設定される。
ステップS4の実行期間において、コイル内蔵プローブ1は電極リード40に接触することなく、電極リード40の表面から所定距離隔てて上方に位置している。所定距離は1mm程度に設定されている。
したがって、ステップS4の実行時に電極リード40の表面に渦電流が発生し、コイル内蔵プローブ1にて渦電流検出結果が時々刻々と得られる。さらに、渦電流測定器3の演算処理によって、渦電流検出結果に基づく検出信号が時々刻々得られる。前述したように、検出信号は電極リード40の表面に発生する渦電流の状態を示している。
走査SC1の実行時に、複数の超音波接合部41それぞれの上方をコイル内蔵プローブ1の先端が通過する時間帯は、各超音波接合部41の位置及びサイズと、コイル内蔵プローブ1の走査速度から導き出すことができる。
したがって、ステップS4の実行によって、複数の超音波接合部41に対応する複数の検出信号を得ることができる。
最後に、ステップS5において超音波接合状態の判定処理を実行する。すなわち、ステップS5において、時々刻々得られる検出信号と基準レベルとの比較結果に基づき、電極リード40の基板30への接合状態を判定する。
本実施の形態では、ステップS5において、複数の超音波接合部41に対応する複数の検出信号それぞれと基準レベルとの比較結果に基づき、複数の超音波接合部41それぞれの基板30の表面における接合状態を判定している。
ステップS5にて実行される判定処理は、複数の超音波接合部41それぞれに対し、正常接合部41A、破断部41B及び未接合部41Cのうち、いずれに該当するかを判定する処理である。ステップS5にて実行される判定処理は以下の第1~第3の判定を含んでいる。
第1の判定…複数の超音波接合部41に対応する複数の検出信号のうち、正方向で基準レベル(“0”)と有意な差を有する第1種検出信号が存在する場合、複数の超音波接合部41のうち上記第1種検出信号に対応する超音波接合部41を未接合状態と判定する。その結果、未接合状態の超音波接合部41は未接合部41Cに分類される。
第2の判定…上述した複数の検出信号のうち、負方向に前記基準レベルと有意な差を有する第2種検出信号が存在する場合、複数の超音波接合部41のうち上記第2種検出信号に対応する超音波接合部41を破断状態と判定する。その結果、破断状態の超音波接合部41は破断部41Bに分類される。
第3の判定…上述した複数の検出信号のうち、上述した第1種及び第2種検出信号のいずれにも該当しない第3種検出信号が存在する場合、複数の超音波接合部41のうち上記第3種検出信号に対応する超音波接合部41を正常状態と判定する。その結果、正常状態の超音波接合部41は正常接合部41Aに分類される。
以下、第1~第3の判定によって第1種検出信号~第3種検出信号に分類できる理由について説明する。
図1に示すように、破断部41Bの少なくとも一部に空隙44が存在している。空隙44は多くの場合、電極リード40を貫通している。したがって、破断部41Bは空隙44が存在する分、正常接合部41Aと比較してコイル内蔵プローブ1内のコイルからの距離が長くなる部分が存在するという第1の距離特性を有している。
図1に示すように、未接合部41Cは、基板30の表面との間に浮き空間48が存在している。したがって、破断部41Bは、浮き空間48が存在する分、正常接合部41Aと比較してコイル内蔵プローブ1内のコイルからの距離が短くなる領域が存在するという第2の距離特性を有している。
超音波接合部41からコイル内蔵プローブ1内の内蔵コイルまでの距離が近い程、コイル内蔵プローブ1にて得られる渦電流検出結果は大きくなる性質を有する。このため、渦電流測定器3が渦電流検出結果に対し正の相関を有する検出信号を得る場合、破断部41B、正常接合部41A及び未接合部41Cの順に検出信号の信号値は高くなる性質を有すると推測される。
したがって、正常接合部41A、破断部41B及び未接合部41C間の上述した第1及び第2の距離特性に基づき、上述した第1~第3の判定が可能となる。
なお、渦電流測定器3が用いる演算式によっては、渦電流検出結果に対し負の相関を有する検出信号が得られる場合もある。
この場合は、破断部41B、正常接合部41A及び未接合部41Cの順に検出信号の信号値は低くなる性質を有すると推測されるため、上述した第1及び第2の距離特性に基づき、上述した第1~第3の判定と等価な判定が可能となる。
すなわち、複数の超音波接合部41を複数の接合部として、上述した第1~第3の判定を以下のように拡張することができる。
第1の判定…複数の検出信号のうち、正方向及び負方向のうち一方の方向で基準レベルと有意な差を有する第1種検出信号が存在する場合、複数の接合部のうち第1種検出信号に対応する接合部を未接合状態の未接合部41Cと判定する。
第2の判定…複数の検出信号のうち、正方向及び負方向のうち他方の方向で基準レベルと有意な差を有する第2種検出信号が存在する場合、複数の接合部のうち第2種検出信号に対応する接合部を破断状態の破断部41Bと判定する。
第3の判定…複数の検出信号のうち、第1及び第2種検出信号のいずれにも該当しない第3種検出信号が存在する場合、複数の接合部のうち第3種検出信号に対応する接合部を正常接合状態の正常接合部41Aと判定する。
図3は検出電圧表示用PC9のディスプレイ上に表示される出力波形LVを示す説明図である。出力波形LVは図1で示した電極リード40に対する検査結果を示している。
図3で示す出力波形LVを得るために、コイル内蔵プローブ1内の内蔵コイルに印加する交流電流として第1及び第2の交流電流を用いている。第1の交流電流において周波数は600kHz、位相65.0degに設定されている。第2の交流電流において周波数は600kHz、位相225.0degに設定されている。
そして、第1の交流電流をコイル内蔵プローブ1内の内蔵コイルに印加することにより、コイル内蔵プローブ1にて第1の渦電流検出結果が得られ、第2の交流電流を内蔵コイルに印加することにより、コイル内蔵プローブ1にて第2の渦電流検出結果が得られる。
渦電流測定器3は第1及び第2の渦電流検出結果に基づき所定の演算を行うことにより、検出信号を得ている。
渦電流測定器3で得られた検出信号は接続用プローブ5を介してオシロスコープ7に付与される。オシロスコープ7は、受信した検出信号を検出電圧表示用PC9で表示可能な表示用検出信号に変換する。この表示用検出信号が接続ケーブル8を介して検出電圧表示用PC9に出力され、検出電圧表示用PC9のディスプレイ上に図3に示す出力波形LVが表示される。
図1に示すように、電極リード40は4つの超音波接合部41を有しており、最も左の超音波接合部41が校正基準部41Sに選択されている。
前述したように、4つの超音波接合部41それぞれの上方をコイル内蔵プローブ1の先端が通過する時間帯は、各超音波接合部41の位置及びサイズと、コイル内蔵プローブ1の走査速度から導き出すことができる。以下、説明の都合上、4つの超音波接合部41を左から第1、第2、第3及び第4の接合部と呼ぶ。
図3に示すように、時間帯T1~T4における出力波形LVが第1~第4の接合部に対応する第1~第4の検出信号となる。ここで、正方向の有意な差を示す正方向閾値を「+0.3V」とし、負方向の有意な差を示す負方向閾値を「-0.2V」とする。
第1の接合部は校正基準部41Sであるため、時間帯T1における出力波形LVの信号値は0Vを示している。したがって、第1の検出信号は上述した第1種及び第2種検出信号のいずれにも該当しない第3種検出信号となるため、第1の接合部は正常状態の正常接合部41Aと判定される。
時間帯T2における出力波形LVの最小信号値が-0.2Vを下回っている。したがって、第2の検出信号は上述した第2種検出信号となるため、第2の接合部は破断状態の破断部41Bと判定される。
時間帯T3における出力波形LVは最大信号値が+0.3Vを上回っている。したがって、第3の検出信号は上述した第1種検出信号となるため、第3の接合部は未接合状態の未接合部41Cと判定される。
時間帯T4における出力波形LVの信号値は1V前後を示しているが、最小信号値が-0.2Vを上回り、最大信号値が+0.3Vを下回っている。したがって、第4の検出信号は上述した第1種及び第2種検出信号のいずれにも該当しない第3種検出信号となるため、第4の接合部は正常状態の正常接合部41Aと判定される。
本実施の形態の渦電流検査方法は、ステップS4において、電極リード40と接触することなく、電極リード40の形成方向に沿って、コイル内蔵プローブ1を走査させることにより、渦電流測定器3から検出信号を取得している。
したがって、本実施の形態の渦電流検査方法は、検査対象物となる電極リード40に接触することなく、ステップS5の実行時に電極リード40の基板30の表面への接合状態を判定することができる。
本実施の形態の渦電流検査方法は、ステップS5の実行時に第1~第3の判定を行うことにより、複数の超音波接合部41それぞれに対し、未接合状態、破断状態及び正常状態のうちいずれの状態であるかを、電極リード40に接触することなく判定することができる。
図4は図2のステップS2で示した校正基準部41Sの選択処理の処理手順を示すフローチャートである。以下、図4を参照しつつ、ステップS2における校正基準部41Sの選択内容を説明する。
まず、ステップS21において、予備基板を準備する。予備基板の表面上には無接合状態の予備電極が配置されている。
予備基板及び予備電極は基板30及び電極リード40とは別に準備された部材であり、予備基板は基板30に対応する基板であり、予備電極は電極リード40に対応する電極である。したがって、予備基板は基板30と同じ材質、同じサイズで構成されることが望ましく、予備電極は電極リード40と同じ材質、同じサイズで構成されることが望ましい。
次に、ステップS22において予備電極に対する押圧処理を実行する。すなわち、予備電極における少なくとも予備基準領域を上部からローラ等を用いて押圧する。なお、予備基準領域は予備電極の一部領域であり、超音波接合箇所41と同程度の領域に設定することが望ましい。
その結果、予備電極の予備基準領域は慣らされ、予備基準領域は予備基板の表面に密着した状態になる。なお、予備基準領域の予備基板の表面への密着度を高めるべく、予備電極の全領域に対し押圧処理を実行することが望ましい。
続いて、ステップS23において予備基準信号を取得する。すなわち、予備電極に接触することなく、予備基準領域の表面から所定距離隔てて上方にコイル内蔵プローブ1の先端が位置するように、コイル内蔵プローブ1を配置する。所定距離は1mm程度に設定される。
したがって、ステップS23の実行時に予備電極における予備基準領域の表面に渦電流が発生し、コイル内蔵プローブ1にて渦電流検出結果が取得される。そして、渦電流測定器3の演算処理によって渦電流検出結果に基づく予備基準信号が得られる。
この予備基準信号の信号値は、正常接合部41Aの検出信号の信号値と同一または近似値をとることが推測される。なぜなら、ステップS22によって予備基準領域は予備基板の表面に密着した状態にされているからである。
ステップS23の実行後、ステップS24にて、渦電流測定器3に設けられた校正ボタンを押し、予備基準信号の信号値が“0”となるように校正処理を行う。
上述した校正処理後において、渦電流測定器3から得られる検出信号は以下の性質を有する。検出信号の信号値が正の場合、予備基準信号の信号値より高い信号値を意味し、検出信号の信号値が負の場合、予備基準信号の信号値より低い信号値を意味する。
次に、ステップS25において、基板30上の電極リード40を検査対象物として、複数の予備検出信号を取得する渦電流予備検査を実行する。
図5は渦電流予備検査の検査内容を模式的に示す説明図である。図5にXYZ直交座標系を記している。なお、渦電流測定装置10はXYZ直交座標系の対象外である。なお、図5では基板30の図示を省略している。
同図に示すように、検査対象物となる電極リード40の複数の超音波接合部41それぞれに対し、電極リード40の形成方向(X方向)と垂直なY方向に沿って、複数の超音波接合部41それぞれの上方を横切るように走査する。図5で示す例では、3つの超音波接合部41が示されているため、3つの超音波接合部41に対し3回の走査SC11~SC13が行われる。
このように、ステップS25において、走査SC11~SC13が順次実行されることにより、交流電流印加状態のコイル内蔵プローブ1が複数の超音波接合部41それぞれの上方に順次配置される。走査SC11~SC13の際、コイル内蔵プローブ1の下方先端部が複数の超音波接合部41から、1mm程度の高さになるように位置設定される。したがって、走査SC11~SC13の実行時に複数の超音波接合部41それぞれの表面に渦電流が発生する。
その後、コイル内蔵プローブ1にて渦電流検出結果が走査SC11~SC13毎に得られる。ここで、説明の都合上、走査SC11~SC13で得られる渦電流検出結果を第1~第3の渦電流検出結果と称する。
さらに、渦電流測定器3の演算処理によって、第1~第3の渦電流検出結果に基づく第1~第3の予備検出信号が得られる。第1~第3の予備検出信号が複数の予備検出信号となる。
最後に、ステップS26において、複数の超音波接合部41から校正基準部41Sを決定する。すなわち、ステップS25で得られた複数の予備検出信号の信号値うち、ステップS24で校正された“0”に最も近い信号値を有する予備検出信号を決定予備検出信号として決定する。
その後、複数の超音波接合部41のうち上記決定予備検出信号に対応する超音波接合部41を校正基準部41Sとして決定する。この校正基準部41Sが基準接合部となる。このように、ステップS21~S26を含むステップS2を実行することにより、複数の超音波接合部41から一の校正基準部41Sを選択することができる。
なお、図5で示す例では、走査SC11~SC13で得られた第1~第3の予備検出信号のうち、“0”に最も近い信号値が選択予備検出信号として選択される。
本実施の形態の渦電流検査方法は、ステップS21~S26を含むステップS2を実行することにより、検査対象物となる電極リード40と接触することなく、複数の超音波接合部41から基準接合部となる校正基準部41Sを選択することができる。
その結果、本実施の形態の渦電流検査方法は、信頼性の高い校正基準部41Sを選択することにより、基準レベルを精度良く得ることができるため、複数の超音波接合部41それぞれの基板30の表面への接合状態を精度良く判定することができる。
電極リード40は、超音波接合処理によって複数の超音波接合部41にて基板30の表面との接合がなされている。すなわち、複数の超音波接合部41はそれぞれ基板30の表面との接合領域となる。
本実施の形態の渦電流検査方法に関し、複数の超音波接合部41それぞれの厚さが0.01mm以上であれば、複数の超音波接合部41それぞれの基板30への接合状態を精度良く判定することができることが確認されている。
したがって、本実施の形態の渦電流検査方法によれば、例えば、各々が0.11mm程度の比較的薄い膜厚を有する複数の超音波接合部41に対しても、基板30の表面への接合状態を判定することができる。
本実施の形態の渦電流検査方法に関し、複数の超音波接合部41がそれぞれ平面視して、一辺の長さが1mmの正方形を含む平面形状を有しておれば、複数の超音波接合部41それぞれの基板30への接合状態を精度良く判定することができることが確認されている。
したがって、本実施の形態の渦電流検査方法によれば、例えば、各々が一辺の長さが1mmの正方形程度の平面形状の複数の超音波接合部41に対しても、基板30への接合状態を判定することができる。
本実施の形態の渦電流検査方法は、ステップS4で実行される渦電流検査実行時のコイル内蔵プローブ1の走査速度は、1m/s以上に設定している。
したがって、本実施の形態の渦電流検査方法によれば、ステップS4で実行されるコイル内蔵プローブ1の走査速度は1m/s以上であるため、ステップS4の実行時間を比較的短時間に抑えて検査時間の短縮化を図ることができる。
すなわち、比較的長い形成長を有する電極リード40に対しても、本実施の形態の渦電流検査方法の検査時間が長期化することはない。
さらに、本実施の形態の渦電流検査方法は、ステップS1で印加される交流電流として、周波数が同一で位相が異なる第1及び第2の交流電流を用いることにより、ステップS4にて、より精度の高い検出信号を得ることができる。
その結果、本実施の形態の渦電流検査方法は、精度良く電極リード40の基板30の表面への接合状態を判定することができる効果を奏する。
<その他>
なお、上述した実施の形態では、コイル内蔵プローブ1に印加する交流電流として、周波数が同一で位相が異なる第1及び第2の交流電流を用いたが、第1及び第2の交流電流は周波数及び位相のうち、少なくとも一つが異なれば同様な効果が期待できる。
さらに、渦電流測定器3は、第1の渦電流検出結果に基づく第1の検出信号と、第2の渦電流検出結果に基づく第2の検出信号とを互いに独立して得るようにしても良い。第1の検出信号が第1の交流電流に対応し、第2の検出信号が第2の交流電流に対応する。
この場合、2つの出力波形LVが得られることになるため、図1に示すように、接続用プローブ5として、互いに独立した2つのプローブ5a及び5bを用いることが望ましい。
また、ステップS1で印加される交流電流として、単一の交流電流を用いても、電極リード40の基板30の表面への接合状態を判定することができる効果が期待できる。なぜなら、一般的に渦電流測定器3は単一の交流電流を用いても、渦電流検出結果に基づく検出信号を得ることができるからである。
すなわち、ステップS1で印加される交流電流として単一の交流電流を用いても、正常接合部41A、破断部41B及び未接合部41C間の上述した第1及び第2の距離特性に基づき、上述した第1~第3の判定と同様な判定が可能である。
また、図2で示したステップS2の校正基準部41Sの選択処理として図4で示す処理に代えて、複数の超音波接合部41それぞれの近傍領域を手動で持ち上げ、複数の超音波接合部41のうち、安定した接合状態の超音波接合部41を校正基準部41Sとして選択する手動選択処理を用いても良い。
ただし、手動選択処理を用いる場合、電極リード40と接触する必要がある。さらに、上述した手動選択処理は人手による主観的な処理であるため、校正基準部41Sの選択精度も高いとは言えない。したがって、図2で示した校正基準部41Sの選択処理として図4で示す処理を実行することが望ましい。
本開示は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、本開示がそれに限定されるものではない。例示されていない無数の変形例が、本開示の範囲から外れることなく想定され得るものと解される。
1 コイル内蔵プローブ
3 渦電流測定器
9 検出電圧表示用PC
10 渦電流測定装置
30 基板
40 電極リード
41 超音波接合部
41A 正常接合部
41B 破断部
41C 未接合部
41S 校正基準部

Claims (6)

  1. 検査対象物に渦電流を発生させ、渦電流の状態を示す検出信号を得る渦電流測定装置を用いた渦電流検査方法であって、前記渦電流測定装置はコイルを内蔵したプローブを有し、基板上に設けられた電極が前記検査対象物となり、
    (a) 交流電流を前記プローブ内のコイルに印加して交流電流印加状態にするステップと、
    (b) 前記電極の形成方向に沿って、前記交流電流印加状態の前記プローブを走査させるステップとを備え、前記ステップ(b)の実行期間において、前記プローブは前記電極に接触することなく、前記電極の表面から所定距離隔てて上方に位置し、前記ステップ(b)の実行時に前記電極の表面に渦電流が発生し、前記渦電流測定装置より前記検出信号が時々刻々得られ、
    (c) 時々刻々得られる前記検出信号と基準レベルとの比較結果に基づき、前記電極の前記基板への接合状態を判定するステップをさらに備え、
    前記電極は互いに離散した複数の接合部を有し、前記複数の接合部は前記基板の表面との接合領域として割り当てられており、
    前記渦電流検査方法は、
    (d) 前記ステップ(a)の後、前記ステップ(b)の前に実行され、前記複数の接合部から一の接合部を基準接合部として選択するステップをさらに備え、
    前記基準レベルは前記基準接合部の上方に前記プローブを配置した時の前記検出信号の信号値であり、
    前記ステップ(b)の実行時に前記複数の接合部に対応して複数の検出信号が得られ、
    前記ステップ(c)は、
    (c-1) 前記複数の検出信号のうち、正方向及び負方向のうち一方の方向で前記基準レベルと有意な差を有する第1種検出信号が存在する場合、前記複数の接合部のうち前記第1種検出信号に対応する接合部を未接合状態と判定し、
    (c-2) 前記複数の検出信号のうち、正方向及び負方向のうち他方の方向で前記基準レベルと有意な差を有する第2種検出信号が存在する場合、前記複数の接合部のうち前記第2種検出信号に対応する接合部を破断状態と判定し、
    (c-3) 前記複数の検出信号のうち、前記第1及び第2種検出信号のいずれにも該当しない第3種検出信号が存在する場合、前記複数の接合部のうち前記第3種検出信号に対応する接合部を正常状態と判定する、
    渦電流検査方法。
  2. 請求項記載の渦電流検査方法であって、
    前記ステップ(d) は、
    (d-1) 表面上に無接合状態の予備電極が配置された予備基板を準備するステップと、
    (d-2) 前記予備電極における予備基準領域を上部から押圧し、前記予備基準領域を前記予備基板の表面に密着させるステップと、
    (d-3) 前記交流電流印加状態の前記プローブを前記予備電極の前記予備基準領域の上方に配置するステップとを含み、前記ステップ(d-3)の実行時に前記予備基準領域の表面に渦電流が発生し、前記渦電流測定装置より予備基準信号が得られ、
    (d-4) 前記交流電流印加状態の前記プローブを前記複数の接合部の上方に順次配置するステップをさらに含み、前記ステップ(d-4)の実行時に前記複数の接合部の表面に渦電流が発生し、前記渦電流測定装置より前記複数の接合部に対応する複数の予備検出信号が得られ、
    (d-5) 前記複数の予備検出信号のうち、前記予備基準信号に最も近い信号値を有する信号を決定予備検出信号と判定し、前記複数の接合部のうち前記決定予備検出信号に対応する接合部を前記基準接合部として決定するステップをさらに含む、
    渦電流検査方法。
  3. 請求項または請求項記載の渦電流検査方法であって、
    前記複数の接合部は超音波接合法を用いた前記基板の表面との接合領域であり、
    前記複数の接合部それぞれの厚さは0.01mm以上である、
    渦電流検査方法。
  4. 請求項から請求項のうち、いずれか1項に記載の渦電流検査方法であって、
    前記複数の接合部それぞれ平面視して、一辺の長さが1mmの正方形を含む平面形状を有する、
    渦電流検査方法。
  5. 請求項1から請求項のうち、いずれか1項に記載の渦電流検査方法であって、
    前記ステップ(b)で実行される前記プローブの走査速度は1m/s以上である、
    渦電流検査方法。
  6. 請求項1から請求項のうち、いずれか1項に記載の渦電流検査方法であって、
    前記交流電流は、第1の交流電流と第2の交流電流とを含み、前記第1及び第2の交流電流は周波数及び位相のうち少なくとも一つが異なる、
    渦電流検査方法。
JP2021568822A 2021-06-10 2021-06-10 渦電流検査方法 Active JP7123519B1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/022046 WO2022259444A1 (ja) 2021-06-10 2021-06-10 渦電流検査方法

Publications (3)

Publication Number Publication Date
JP7123519B1 true JP7123519B1 (ja) 2022-08-23
JPWO2022259444A1 JPWO2022259444A1 (ja) 2022-12-15
JPWO2022259444A5 JPWO2022259444A5 (ja) 2023-05-23

Family

ID=82942152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021568822A Active JP7123519B1 (ja) 2021-06-10 2021-06-10 渦電流検査方法

Country Status (3)

Country Link
JP (1) JP7123519B1 (ja)
CN (1) CN115943304A (ja)
WO (1) WO2022259444A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5287662A (en) * 1975-01-15 1977-07-21 Mo Enerugechichiesukii I Eddy current converter for testing conductive layer coated on hole portion of printed substrate nonndestructively
JPH10288605A (ja) * 1997-04-14 1998-10-27 Takenaka Komuten Co Ltd 磁気探傷装置及び方法
JP2003035738A (ja) * 2001-07-19 2003-02-07 Omron Corp 部品実装基板の検査方法および部品実装基板用の検査装置
US20050104585A1 (en) * 2003-11-13 2005-05-19 Yuli Bilik Methods and devices for eddy current PCB inspection
US20070096751A1 (en) * 2005-11-03 2007-05-03 The Boeing Company Systems and methods for inspecting electrical conductivity in composite materials
JP2009229337A (ja) * 2008-03-25 2009-10-08 Hioki Ee Corp 電極検査装置
JP5287662B2 (ja) 2009-10-30 2013-09-11 パナソニック株式会社 除湿装置
JP2015052467A (ja) * 2013-09-05 2015-03-19 国立大学法人東京工業大学 複合材料検査装置と方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5287662A (en) * 1975-01-15 1977-07-21 Mo Enerugechichiesukii I Eddy current converter for testing conductive layer coated on hole portion of printed substrate nonndestructively
JPH10288605A (ja) * 1997-04-14 1998-10-27 Takenaka Komuten Co Ltd 磁気探傷装置及び方法
JP2003035738A (ja) * 2001-07-19 2003-02-07 Omron Corp 部品実装基板の検査方法および部品実装基板用の検査装置
US20050104585A1 (en) * 2003-11-13 2005-05-19 Yuli Bilik Methods and devices for eddy current PCB inspection
US20070096751A1 (en) * 2005-11-03 2007-05-03 The Boeing Company Systems and methods for inspecting electrical conductivity in composite materials
JP2009229337A (ja) * 2008-03-25 2009-10-08 Hioki Ee Corp 電極検査装置
JP5287662B2 (ja) 2009-10-30 2013-09-11 パナソニック株式会社 除湿装置
JP2015052467A (ja) * 2013-09-05 2015-03-19 国立大学法人東京工業大学 複合材料検査装置と方法

Also Published As

Publication number Publication date
CN115943304A (zh) 2023-04-07
WO2022259444A1 (ja) 2022-12-15
JPWO2022259444A1 (ja) 2022-12-15

Similar Documents

Publication Publication Date Title
JP4863127B2 (ja) 磁気探傷方法及び磁気探傷装置
JP4736753B2 (ja) 渦電流探傷プローブと被検査体のリフトオフ量評価方法及びその評価装置並びに渦電流探傷方法及び渦電流探傷装置
JP5960292B2 (ja) 接合状態検査方法
WO2010113250A1 (ja) 接合品質検査装置及び接合品質検査方法
KR20180122115A (ko) 이차전지의 용접 검사장치 및 검사방법
EP2818856B1 (en) Eddy-current inspection method and device
JP7123519B1 (ja) 渦電流検査方法
CN112098522A (zh) 钢丝绳拉力缺陷检测方法
Janovec et al. Eddy current array inspection of riveted joints
CN109254073A (zh) 基于涡流技术和超声技术的便携式复合无损检测仪
KR101031594B1 (ko) 표면결함 검사용 와전류 프로브 및 이를 포함하는 와전류 검사장치
JP5415134B2 (ja) 検査装置および検査方法
JPH102883A (ja) 渦電流探傷装置
JP2010014508A (ja) 測定装置および測定方法
JP3856013B2 (ja) 電子回路検査装置
KR20180125748A (ko) 블레이드 표면검사방법 및 표면검사장치
JPWO2022259444A5 (ja)
JP2003075494A (ja) 検査装置及び検査方法
Kobayashi et al. Signal processing method for scanning-acoustic-tomography defect detection based on correlation between ultrasound waveforms
JP4735075B2 (ja) き裂深さ測定器用センサおよびき裂深さ測定器
Luo et al. Evaluation of wire bond integrity through force detected wire vibration analysis
JP7077051B2 (ja) ワイヤボンディング装置およびワイヤボンディング方法
JP2007155429A (ja) コンクリート構造物の検査方法および検査装置
KR20110015259A (ko) 와전류를 이용한 가스터빈 버킷 코팅층 및 모재 표면의 결함을 측정하는 방법 및 시스템
KR20160113069A (ko) 전자기 유도 센서를 활용한 비파괴 피로 검사 장치 및 그 검사 방법

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220809

R150 Certificate of patent or registration of utility model

Ref document number: 7123519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150