JP7047985B1 - 回転子およびこれを用いた回転電機 - Google Patents

回転子およびこれを用いた回転電機 Download PDF

Info

Publication number
JP7047985B1
JP7047985B1 JP2021557563A JP2021557563A JP7047985B1 JP 7047985 B1 JP7047985 B1 JP 7047985B1 JP 2021557563 A JP2021557563 A JP 2021557563A JP 2021557563 A JP2021557563 A JP 2021557563A JP 7047985 B1 JP7047985 B1 JP 7047985B1
Authority
JP
Japan
Prior art keywords
magnet
axis
rotor core
rotor
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021557563A
Other languages
English (en)
Other versions
JPWO2021261022A1 (ja
Inventor
純士 北尾
友 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2021261022A1 publication Critical patent/JPWO2021261022A1/ja
Application granted granted Critical
Publication of JP7047985B1 publication Critical patent/JP7047985B1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

回転子コア(21)を備え、回転子コア(21)の磁極中心をd軸とし、d軸と電気的に直交する方向の軸をq軸としたとき、回転子コア(21)は、q軸上に設けられる非磁性領域のバイパスバリア(23)と、回転子コア(21)のq軸よりもd軸に近い領域に設けられる第1の磁石(221)と、回転子コア(21)の第1の磁石(221)よりも径内側の領域に少なくとも一部が設けられる第2の磁石(222)と、を有し、第2の磁石(222)は、回転子コア(21)の第1の磁石(221)よりもq軸に近い領域に設けられ、第2の磁石(222)のq軸に最も近い端点は、回転子コア(21)内のバイパスバリア(23)の最も径内側の面である最径内面よりも径内側に位置する。

Description

本開示は、永久磁石を有する回転子、および回転電機に関するものである。
永久磁石が回転子コアの中に埋め込まれる構造である回転子においては、無負荷時の主磁束低減のため、回転子コア内で閉じる漏れ磁束の磁路を有するように回転子コアを形成すると永久磁石式回転電機の効率は向上するのに対し、漏れ磁束の磁路を有することにより主磁束が低減し出力が低下する。
上記の状況を鑑み、隣接する永久磁石へ漏洩する漏れ磁束をq軸電流により制御し、これにより固定子に巻回されたコイルに鎖交する永久磁石の磁束を制御する可変磁束型回転電機が提案されている(例えば、特許文献1)。
この特許文献1では、回転子は、d軸磁路を形成する少なくとも一つの永久磁石を有し、回転子に設けられた少なくとも一つの永久磁石から、隣接する永久磁石極へ漏洩する際の経路となる磁束バイパス路を備え、磁束バイパス路の磁束流入部及び磁束流出部は、回転子と固定子との間のエアギャップ近傍に配置される。
国際公開第2014/003730号
しかしながら、磁束バイパス路の磁束流入部及び磁束流出部が回転子と固定子との間のエアギャップ近傍に配置される構成においては、回転子表面の限られた面積の中で固定子に鎖交する磁束と回転子内部で短絡する磁束の両方を発生させる必要があった。また限られた面積内で固定子に鎖交する磁束と回転子内部で短絡する磁束の両方の磁路を形成するためには双方の磁束量はトレードオフの関係となっており、最大トルクを高めると磁石の磁束の可変量が低下するという課題があった。
本開示は、上記の課題を解決するためになされたものであり、磁石磁束の可変量を向上させることができる回転子および回転子を用いた回転電機を提供することを目的とする。
本開示に係る回転子および回転子を用いた回転電機は、回転子コアの磁極中心をd軸とし、d軸と電気的に直交する方向の軸をq軸としたとき、回転子コアは、q軸上に設けられる非磁性領域のバイパスバリアと、回転子コアのq軸よりもd軸に近い領域に設けられる第1の磁石と、回転子コアのフラックスバリアおよび第1の磁石よりも径内側の領域に少なくとも一部が設けられる第2の磁石と、を有し、第2の磁石は、回転子コアの第1の磁石よりもq軸に近い領域に設けられ、第2の磁石のq軸に最も近い端点は、回転子コア内のバイパスバリアの最も径内側の面である最径内面よりも径内側に位置し、第2の磁石とバイパスバリアとの径方向間に、固定子で発生する磁束の経路となる磁束バイパス部を有することを特徴とするものである。
本開示の回転子および回転子を用いた回転電機によれば、磁石磁束の可変量を向上させることができる。
本開示の実施の形態1に係る回転子を備えた回転電機の縦断面図である。 本開示の実施の形態1に係る回転子を備えた回転電機の図1のI-I矢視断面図である。 本開示の実施の形態1に係る回転子の要部横断面図である。 本開示の実施の形態1に係る回転子の無負荷時の磁界解析結果を示す図である。 本開示の実施の形態1に係る回転子の有負荷時の磁界解析結果を示す図である。 本開示の実施の形態1に係る回転子の変更例における無負荷時の磁界解析を示す図である。 本開示の実施の形態1に係る回転子の変更例における有負荷時の磁界解析を示す図である。 本開示の実施の形態1に係る回転子における電流とΦdの関係を示す図である。 本開示の実施の形態1に係る回転子における要部横断面図である。 本開示の実施の形態2に係る回転子における要部横断面図である。 本開示の実施の形態3に係る回転子における要部横断面図である。 本開示の実施の形態4に係る回転子を備えた回転電機の図1のI-I矢視断面図である。
以下、図面を参照しながら実施の形態について説明する。なお、図面は概略的に示されるものであり、説明の便宜のため、構成の省略、または、構成の簡略化がなされるものである。また、異なる図面にそれぞれ示される構成などの大きさおよび位置の相互関係は、必ずしも正確に記載されるものではなく、適宜変更され得るものである。また、以下に示される説明では、同様の構成要素には同じ符号を付して図示し、それらの名称と機能とについても同様のものとする。したがって、それらについての詳細な説明を、重複を避けるために省略する場合がある。
実施の形態1.
図1は、本開示の実施の形態1に係る回転子を備えた回転電機を示す縦断面図、図2は、図1のI-I矢視断面図である。なお、縦断面図とは、回転軸の軸心を含む断面を示す断面図である。また、便宜上、回転軸の軸心と平行な方向を軸方向3、回転軸の軸心を中心として、回転軸の軸心と直交する方向を径方向、回転軸を中心として回転する方向を周方向とする。
図1に示すように、回転電機100は、略円筒状のフレーム13と、フレーム13の軸方向の両端に装着されて、フレーム13の軸方向両側の開口を塞ぐ一対のブラケット14と、一対のブラケット14に装着された軸受15に支持されて、フレーム13内に回転可能に設けられた回転軸16と、を備える。回転電機100は、回転軸16に固着されてフレーム13内に回転可能に設けられた回転子20と、フレーム13内に挿入、保持されて、回転子20の外径側に同軸に設けられた固定子10と、をさらに備える。回転子20と固定子10との間には、ギャップGが形成されている。フレーム13、ブラケット14、軸受15および回転軸16は、周知技術であるため各構成のその他の詳細な説明は省略する。
図2に示すように、固定子10は、円環状の固定子コア11と、固定子コア11に装着された固定子コイル12と、を備える。固定子コア11は、円環状のコアバック18と、コアバック18の内周面から径方向内方に突出する複数のティース19と、を備え、例えば、電磁鋼板の薄板を軸方向に積層、一体化して構成される。ティース19は、周方向に等角ピッチで48本配列されている。ティース19の最内径部の周方向幅を周方向幅Tとする。固定子コイル12は、ティース19の間に挿入され、複数のティース19を跨って導体線を形成された分布巻コイルにより構成される。分布巻を採用することにより、リラクタンストルクが活用しやすくなる。
回転子20は、回転軸16と、軸心位置にシャフト挿入孔が形成された円筒状の回転子コア21と、回転子コア21の内側に埋め込まれた複数の永久磁石22(以下では単に磁石22という)と、非磁性領域のバイパスバリア23と、を備える。図中の磁石22に示す矢印は、配向を示している。回転子コア21は、シャフト挿入孔に挿入された回転軸16に固着される。回転子コア21は、例えば、電磁鋼板の薄板を軸方向に積層、一体化して構成される。永久磁石22は、例えば、残留磁束密度が高いネオジム磁石が適用される。
回転子20の構造について、図3を用いてさらに説明する。図3は、本開示の実施の形態1に係る回転子の要部横断面図である。なお、横断面図とは、回転軸の軸心と直交する断面を示す断面図である。図3において、図示していない部分については、図示した部分と同様の構成が周方向に連続して構成されている。
回転子20に配置される磁石22は、それぞれ長方形に形成され、磁石22の長方形のそれぞれの短辺側には後述するフラックスバリア25が設けられる。また、磁石22のそれぞれは、後述する第1の磁石221と第2の磁石222のいずれかである。そして、それぞれが長方形の一方の長辺から他方の長辺へ向かう方向、すなわち短辺と平行に着磁されている。なお、図面が煩雑になるのを防ぐため、磁石22の符号は一部のみとし省略している。
図中に矢印で示すように、磁石22のうち、固定子10側に向かって着磁されて配置される一部の磁石22によって、固定子10に磁石22の磁束が鎖交する経路となるN極磁極が形成される。また、図中に矢印で示すように、固定子10側から回転軸16に向かうように着磁された一部の磁石22によって、固定子10から回転子20に向かう経路となるS極磁極が形成される。ここで、N極の磁極中心をd軸、N極とS極との間である磁極間に位置しd軸と電気的に直交する方向をq軸、と定義する。このような着磁と配置によって、各磁石22が作る磁路を最短で形成できるため、固定子10に鎖交する磁束を効果的に増大させることができる。これにより回転電機100の所望の出力を実現するために必要な回転子20に配置される各磁石22の磁石量を最小限の量で形成することが可能となる。
回転子コア21の1磁極は、複数の磁石22のうち、回転子コア21のd軸を周方向に跨ぐように設けられる1つの第1の磁石221と、第1の磁石221よりもq軸側に近い回転子コア21の領域に設けられる2つの第2の磁石222と、によって構成される。この構成により主に固定子10へ鎖交する磁束出力を目的とした磁石22と、主に回転子20で短絡させる磁束出力を目的とした磁石22とに分離しつつ全体として1磁極を構成することができる。この1磁極を構成する3つの磁石22を1つの磁石群としたとき、複数の磁石群は、回転子コア21内に周方向に離間して等間隔で配置される。そして、上記で述べたN極の磁極中心であるd軸は、第1の磁石221を周方向に等分するような軸となる。また、上記で述べたq軸は隣接する磁石群の間の回転子コア21を周方向に等分するようにとおる軸となる。
1磁極を構成する磁石群のうちの2つの第2の磁石222は、第1の磁石221の周方向を挟むようにそれぞれ離間し、その全体が円弧状になるように配置される。その円弧は、回転子20の回転軸16に対して凹部を有するように形成される。すなわち、1磁極を構成する3つの磁石22の配置のうち、第1の磁石221の配置は、他の第2の磁石222よりも径外側の回転子コア21の領域となる。N極においては、第1の磁石221の磁束出力面が各第2の磁石222の磁束出力面よりも回転子コア21の径外面に近くなるように配置される。S極においては、第1の磁石221の磁束入力面が各第2の磁石222の磁束入力面よりも回転子コア21の径外面に近くなる。
第2の磁石222の配置は、少なくともその一部が第1の磁石221よりも径内側の回転子コア21の領域に設けられるように配置される。さらに詳細には、第2の磁石222のq軸に最も近い端点が後述するバイパスバリア23の最も径内側の最径内面よりも径内側に位置するように配置される。また、第2の磁石222は、その周方向両端部のうち、q軸に近い側の端部がq軸から遠い側の端部よりも軸心に近く、q軸側から遠い端部が他方の端部よりも回転子コア21の径外面に近くなるように配置される。すなわち、第2の磁石222の磁束出力面は、傾きを有し、N極磁極における第2の磁石222の磁束出力面の傾きは、q軸側に傾向いている。傾きによって第2の磁石222の磁束を意図した方向へ鎖交させやすくなる。この傾きは第2の磁石222の磁石出力面からでた磁束がq軸を介して隣接する他の第2の磁石222へ鎖交するように決定される。S極磁極を構成する各磁石22においても同様の配置であり、q軸を介して隣接する異極の第2の磁石222はq軸に対して線対称に傾きを有するように配置される。
各磁石22は、周方向両端にフラックスバリア25をそれぞれ有する。フラックスバリア25は、軸方向に回転子コア21を貫通しており、空隙の非磁性領域である。第1の磁石221の両端に設けられるフラックスバリア25と第2の磁石222の両端に設けられるフラックスバリア25とは回転子コア21を介して隣接している。隣接する同極の第1の磁石221と第2の磁石222との間の回転子コア21をバイパス部24bとする。
バイパスバリア23は、回転子コア21のq軸上に形成される。バイパスバリア23は、軸方向に回転子コア21を貫通しており、空隙の非磁性領域である。バイパスバリア23は、回転子コア21のうち、q軸を介して隣接する2つの第2の磁石222の径外側の面と回転子の最径外面とで囲まれた回転子コア21の領域内に設けられる。第2の磁石222とバイパスバリア23との径方向間の回転子コア21は、q軸を介して隣接する異極の第2の磁石222のうち、一方の前記第2の磁石222の磁束が他方の前記第2の磁石222をとおり前記回転子コア内部で短絡する経路となる。この経路をバイパス部24aとする。バイパスバリア23よりも径内側であって、隣接する異極の第2の磁石222の周方向間の回転子コア21は、固定子10が生成する磁束の経路となる。この経路をq軸磁路部とする。
次に、各磁石22、バイパスバリア23、およびフラックスバリア25の関係を説明する。図3に示すように、回転子コア21の最も径外側の最径外面とq軸に最も近い第2の磁石222の角部とをq軸に平行に結んだときの距離を距離Aとする。バイパスバリア23の最も内径側の最径内面と回転子コア21の最径外面とをq軸に平行に結んだときの回転子コア21の径外面とバイパスバリア23までの最も大きい距離を距離Bとする。ここでは、回転子コア21の径外面とq軸との交点と、バイパスバリア23の最径内面とq軸との交点と、を結んだ距離となる。このとき、バイパスバリア23と第2の磁石222とは、距離A>距離Bの関係を満足するように回転子コア21に配置される。
また、q軸を介して隣接する第2の磁石222に設けられるフラックスバリア25の周方向間の回転子コア21における最も短い距離を最短距離Cとする。バイパスバリア23と第2の磁石222との径方向間の回転子コア21の距離、またはフラックスバリア25と第2の磁石222の周方向端部に位置するフラックスバリア25との径方向間の回転子コア21の距離のうち、最も小さい距離を最小距離Dとする。このとき、フラックスバリア25、第2の磁石222、バイパスバリア23は最短距離C≧最小距離D×2の関係を満足するようにそれぞれ回転子コア21に配置される。また、バイパスバリア23は、最小距離Dがバイパスバリア23の径外側の回転子コア21の径方向の幅よりも大きくなるように配置される。
さらに、第1の磁石221の最も径外側の最径外面とd軸との交点から回転子20の最径外面までの回転子コア21の最小の距離を距離Eとし、第1の磁石の最も径外側の端点から回転子20の径外面までの回転子コア21の最小の距離を距離Fとする。このとき、第1の磁石221は、距離E>距離Fの関係を満足するように回転子コア21に配置される。
また、第2の磁石222の周方向幅を周方向幅Hとする。このとき周方向幅H≧最短距離C×2の関係を満足する。さらに、バイパスバリア23の最外径部の周方向幅を周方向幅Pとしたとき、ティース19の最内径部の周方向幅Tとの関係は、周方向幅P≧周方向幅Tを満足する。
ここで、上記構成とする効果を図4から図7を用いて説明する。図4は図3に示す回転子形状の無負荷時の磁界解析における磁束密度ベクトルを示す図である。図5は図3に示す回転子形状の有負荷時の磁界解析における磁束密度ベクトルを示す図である。図6は図4に示す回転子形状の最短距離Cを変化させた形状の無負荷時の磁界解析における磁束密度ベクトルを示す図である。図7は図4に示す回転子形状の最短距離Cを変化させた形状の有負荷時の磁界解析における磁束密度ベクトルを示す図である。図4から図7において、上記で説明した最小距離Dを含む、バイパス部24aの回転子コア21の範囲を要部aとする。また、上記で説明した最短距離Cを含む、q軸を介して隣接する異極の第2の磁石222の周方向間の回転子コア21のq軸磁路部の範囲を要部bとする。そして、バイパス部24bを含む同極の第2の磁石222と第1の磁石221との周方向間の回転子コア21の範囲を要部cとする。
無負荷時の回転子20内の磁束密度は、図4に示すように要部aの磁束密度が高くなっていることがわかる。また要部bの磁束密度は低くなっていることがわかる。また、要部cには、第1の磁石221から出た磁束が多く通っていることがわかる。言い換えると、q軸を介して隣接する一方の第2の磁石222から出た多くの磁束は、回転子コア21のバイパス部24aを通り隣接する他方の第2の磁石222へ鎖交し、回転子コア21内で短絡している。第1の磁石221の一部の磁束は、第2の磁石222との間のバイパス部24bを通り短絡している。
有負荷時は、図5に示すように要部aと要部bとの磁束密度は同程度の大きさを示している。また、固定子10の固定子コイル12に電流を通電すると固定子10で発生する磁束は、回転子コア21の要部bと要部aを鎖交していることがわかる。同様に要部cにも固定子10で発生する磁束が鎖交する。
すなわち、上記で説明したように、特に距離A>距離Bの関係を満足するようにバイパスバリア23と第2の磁石222とが回転子コア21に配置される構成により、バイパスバリア23と第2の磁石222との径方向間の回転子コア21に磁束の経路を確保することができる。そして、無負荷時における第2の磁石222の磁束を回転子コア21内のバイパスバリア23よりも径内側の回転子コア21で短絡させることができる。また、同極内で第1の磁石221と第2の磁石222とを離間して配置することにより、磁束の経路となる回転子コア21は磁束の経路を確保でき、無負荷時における第1の磁石221の一部の磁束を回転子コア21内で短絡させることができる。よって、無負荷時において、回転子コア21内で短絡する磁束を増加することにより、主磁束が低減し、回転電機100の効率を向上させることができる。
さらに、回転子コア21に電磁鋼板を適用した場合の飽和磁束密度は2T程度であり、第2の磁石222にネオジム磁石を適用した場合の磁石内部の磁束密度は1T程度である。このため、最小距離Dを飽和磁束密度に達するまで第2の磁石222の磁束を短絡させるためには周方向幅H≧最短距離C×2の関係を満足する必要がある。そして、周方向幅H≧最短距離C×2の関係を満足することにより、回転子コア21の要部aで短絡する磁束を最大限まで高めることができる。よって、無負荷時において、回転子コア21内で短絡する磁束を増加することにより、主磁束が低減し、回転電機100の効率を向上させることができる。
また、バイパスバリア23と第2の磁石222との径方向間の回転子コア21にバイパス部24aを有するように配置される構成により、無負荷時に第2の磁石222の磁束短絡経路となっていたバイパス部24aを有負荷時には主に固定子10で発生する磁束の経路とすることができる。そして、回転子20内部で発生する短絡磁束量の増加と、固定子10に鎖交する磁石磁束量の増加を両立することができる。さらに、図5の要部dに示すように、周方向幅P≧周方向幅Tの関係を満足することで、固定子10に鎖交する磁束量を高めることができる。
次に、最短距離Cを上記の図4に示した最短距離Cよりも狭くした場合における回転子20内の磁束密度について説明する。無負荷時は、図6に示すように要部aの磁束密度が高くなっている。これは、図4の構成と同様に、q軸を介して隣接する一方の第2の磁石222から出た多くの磁束は、回転子コア21のバイパス部24aを通り隣接する異極の第2の磁石222を通って回転子コア21内で短絡し、第1の磁石221の一部の磁束は、第2の磁石222との間の回転子コア21を通り短絡しているためである。すなわち、距離A>距離Bの関係が満たされていれば、回転子コア21内で短絡する磁束を増加させることができ、最短距離Cを小さくすることによる無負荷時の第2の磁石222の磁束への影響は少ない。
一方で、有負荷時における回転子20内の磁束密度は、図7に示すように要部aの磁束密度は要部bよりも低くなっていることがわかる。これは第2の磁石222の磁束と固定子10で発生する磁束との向きが関係している。以下で詳細に説明する。
有負荷時の磁束密度は、固定子10で発生する磁束と回転子20内で発生する磁束の重ね合せで大きさが決まる。要部aでは、第2の磁石222の磁束の向きと固定子10で発生する磁束の向きが反転し、要部bでは、磁束密度が0の状態から飽和に向かう。例えば、第2の磁石222から発生する磁束の向きを-方向と定義とすると、要部aは-方向の磁気飽和から+方向の磁気飽和へ現象が変化する。一方で、要部bは、磁束が0の状態から+方向の磁気飽和へ現象が変化する。したがって、図7に示すように最短距離Cが最小距離Dと同程度である場合には、要部aよりも要部bの方が磁気飽和しやすくなり、要部bで磁気飽和すると要部aを鎖交し固定子10側へ向かう磁束は少なくなる。最短距離Cが最小距離Dよりも小さい場合も同様である。
したがって、有負荷時において要部aの固定子コア11を磁束経路としてより有効に活用するためには、最短距離Cを最小距離Dよりも大きくする構成とする必要がある。最短距離Cを最小距離Dよりも大きくする構成とすることにより、要部bの磁気飽和による要部aへの磁束の鎖交抑制を避けることができ、有負荷時において要部a付近の回転子コア21をより有効に活用することができる。
さらに最短距離Cと最小距離Dとの関係について図8を用いて説明する。図8は、電流を通電させた時に固定子10に鎖交する磁束をd軸方向とq軸方向に分離させた時のΦdの結果を示す図である。図中の実線は、最短距離C≧最小距離D×2(C≧2D)の関係を満足する構成におけるΦdを示し、点線は、最小距離D×2>最短距離C(2D>C)の関係となる構成におけるΦdを示している。
Φdは、回転子20に配置された各磁石22からの磁束が固定子10に鎖交する磁束量と等価である。電流を通電すると、C≧2Dの関係を満足する構成におけるΦdの増加量が高いことがわかる。Φdの増加量は、磁石22の磁束増加を意味する。
上記でも説明したように、要部bを通る磁束は、固定子10からの磁束と磁石22の磁束と重ね合わせで決まり、この重ね合わせによってΦdが形成される。したがって、バイパスバリア23は、第2の磁石222の磁束発生面よりも回転子コア21の径外側に形成され、両者の配置が上記の距離A>距離Bの関係を満足することで、有負荷時における磁束の重ね合わせが生じる構成となる。このためΦdを増加させることができる。さらに、フラックスバリア25、第2の磁石222、バイパスバリア23をC≧2Dの関係を満足するようにそれぞれ回転子コア21に配置する構成により、要部a、要部bにおける磁束の重ね合わせを増加させることができるためΦdをより増加させることができる。よって、最大トルクを向上させることができる。
また図4の要部cと図5の要部cの磁束密度は、反転していることがわかる。これは、要部aと同様の現象が発生しており、同極内で第1の磁石221と第2の磁石222とを離間して配置する構成により固定子10から発生する磁束によってΦdを増加させることができる。
以上のように、本開示における実施の形態1は、バイパスバリア23と、バイパスバリア23よりも径内側に配置される第2の磁石222とを有し、バイパスバリア23と第2の磁石222との径方向間の回転子コア21に磁束の経路となるバイパス部24aを設けている。この構成により、無負荷時において、第2の磁石222の磁束を回転子コア21内のバイパスバリア23よりも径内側の回転子コア21でより多く短絡させることができる。また有負荷時においては、固定子10からの磁束経路とするができる。したがって、回転子20内部で発生する短絡磁束量の増加と、電流通電時に固定子10に鎖交する磁石磁束量の増加を両立することにより磁石磁束の可変量を向上させることができる。
また、最小距離Dは、バイパスバリア23の径外側の回転子コア21の径方向の幅よりも大きくなるように配置される。この構成により、第2の磁石222の磁束は、バイパスバリア23よりも径内側により鎖交させることができ、回転子20内でより多くの磁束を短絡させることができる。第2の磁石のq軸に最も近い端点は、バイパスバリア23の最も径内側の最径内面よりも径内側のバイパス部24aの磁束流入出口に位置する回転子コア21領域に設けられる。この構成により、バイパスバリア23よりも径内側の回転子コア21により多く磁束を鎖交させることができる。また、有負荷時のΦd可変量をより増加させることができる。第2の磁石222の磁束入出力面は、q軸に対して傾きを有する。この構成により、隣接する第2の磁石222間に磁束を回転子コア21内で鎖交しやすくすることができる。さらに、q軸を介して異極の第2の磁石222が隣接して配置される。この構成により、一方の第2の磁石222から、他方の第2の磁石222へ向かうため、バイパス部24aを経路として磁束を回転子20内でより短絡させることができる。
また、1磁極は複数の磁石22で構成している。この構成により、主として固定子10に鎖交する磁束を発生させる第1の磁石221と、主として回転子コア21内で短絡する磁束を発生させる第2の磁石222とに分離することができ、複数の磁石22の間の回転子コア21を磁束経路とすることができる。また、磁石22を長方形で形成しても、より最適な配置にしやすく、磁石の加工等が少なく、製作性を向上させることができる。第1の磁石221の配置は、第2の磁石222と比較して、回転子コア21の径外側の領域にd軸を跨ぐように配置される。この構成により、通電時に第1の磁石221の磁束の多くを固定子10側へ鎖交させることができる。さらに、周方向幅P≧周方向幅Tの関係を満足することで、固定子10に鎖交する磁束量を高めることができる。
また、周方向幅H≧最短距離C×2の関係を満足する。これにより、回転子コア21で短絡する磁束を最大限まで高めることができる。よって、無負荷時において、回転子コア21内で短絡する磁束を増加することにより、主磁束が低減し、回転電機100の効率を向上させることができる。
さらに、d軸上の第1の磁石221は、距離E>距離Fの関係を満足するように設けられる。この構成により、ギャップG側の回転子コア21は、固定子10による磁束によりリラクタンストルクが発生するため、第1の磁石221と第2の磁石222を分離した効果でΦdの増加量を向上させながら、リラクタンストルクを向上させることができる。
なお、上記では、第1の磁石221は、d軸上を跨いで配置される構成を説明したが、1磁極を構成するうちの第1の磁石221は複数で構成されていてもよく、磁石22の個数は適宜変更できる。例えば、図9に示すようにd軸を介して線対称に配置されるように構成してもよい。この場合も同様に、Φdの増加量を向上させる効果を奏することに加え、固定子10に鎖交する主磁束を増加させる効果が得られる。
また、各磁石22の形状は、長方形としたが、一体で形成された円弧状、もしくはそれぞれの磁石を円弧上の沿うような形状に形成してもよい。この場合、固定子10に鎖交する主磁束を増加させる効果や回転子20が生成する磁束の高調波を低減することで効率を向上させる効果が得られる。
また、各磁石22は、短辺と平行に着磁されると説明したが、必ずしも短辺と平行とは限らず、長辺と平行もしくは、平行ではないものに、適宜変更できるものである。
また、各磁石の周方向端部にフラックスバリア25を設ける構成を説明したが、必ずしももうける必要はなく、磁石22の間の回転子コア21が上記で説明した関係を満たすように配置すればよい。この場合にも回転子コア21内で短絡する磁束を増加させてΦd可変量を増加させる効果と第1の磁石221から発生して固定子10に鎖交する主磁束を増加させる効果が得られる。
また、バイパスバリア23およびフラックスバリア25は、空隙の非磁性領域としたが、回転子コア21よりも透磁率が低ければよく、非磁性の材料が埋め込まれていてもよい。この場合にも残留応力により磁気特性を劣化させて透磁率を低くしたりすることができる。
実施の形態2.
以下に、実施の形態2に係る回転子について図を用いて説明する。
図10は、実施の形態2にかかる回転子20の要部横断面図である。図において、第2の磁石222は、q軸上に設けられるバイパスバリア23よりも径内側の回転子コア21のq軸上に設けられる。第2の磁石222は、N極磁極において、図中に矢印で示すように、第2の磁石222の磁束が固定子10側に向かうように着磁される。第2の磁石222は、q軸上に設けられるため、S極磁極においては、着磁方向は反対となる。その他の構成は実施の形態1と同様である。
このような構成においても実施の形態1と同様の効果がある。第2の磁石222はq軸に設けられるため、バイパスバリア23との径方向間の距離を大きくとることができる。これにより磁石の個数を減らすことができるため、Φd可変量を増加させながらコストを低減することができる。
以上のように、実施の形態2に係る回転子によれば、実施の形態1と同様に、電流通電時に固定子10に鎖交する磁石磁束量の増加を両立することにより磁石磁束の可変量を向上させることができる効果を奏する。さらに、リラクタンストルクを向上させることが可能となる。
実施の形態3.
以下に、実施の形態3に係る回転子について図を用いて説明する。
図11は、実施の形態3にかかる回転子20の要部横断面図である。図において、第2の磁石222は、その周方向端部のうちd軸に近い径内側端部がq軸に近い径内側端部よりも軸心に近くなるように傾きをもって配置される。また、同極内の第2の磁石222はd軸に対して線対称に配置される。第2の磁石222の着磁は、第2の磁石の磁束が固定子10側に向かうように着磁される。すなわち、1磁極内の各磁石22は、2層に構成される。その他の構成は実施の形態1または実施の形態2と同様である。
このような構成においても実施の形態1と同様の効果がある。1磁極内の各磁石22は、2層に構成することにより固定子10から発生する磁束が回転子20に鎖交する磁路を増やすことができるため、リラクタンストルクを向上させることができる。
以上のように、実施の形態3に係る回転子によれば、実施の形態1または実施の形態2と同様に、電流通電時に固定子10に鎖交する磁石磁束量の増加を両立することにより磁石磁束の可変量を向上させることができる効果を奏する。さらに、リラクタンストルクを向上させることが可能となる。
実施の形態4.
以下に、実施の形態4に係る固定子および回転子について図を用いて説明する。
図12は、実施の形態4にかかる図1のI-I矢視断面図である。固定子10は、円環状の固定子コア11と、固定子コア11に装着された固定子コイル12と、を備える。固定子コア11は、円環状のコアバック18と、コアバック18の内周面から径方向内方に突出する複数のティース19と、を備え、例えば、電磁鋼板の薄板を軸方向に積層、一体化して構成される。ティース19は、周方向に等角ピッチで12本配列されている。ティース19の最内径部の周方向幅をTとする。固定子コイル12は、ティース19に導体線を巻回して形成された集中巻コイルにより構成される。その他の構成は実施の形態1~3と同様である。
図において、バイパスバリア23の最外径部の周方向幅を周方向幅Pとしたとき、ティース19の最内径部の周方向幅Tとの関係は、周方向幅P≧周方向幅Tを満足する。
このような構成においても実施の形態1と同様の効果がある。また、集中巻を採用することにより、コイルエンド長を短くすることができ、銅損の低減およびモータ全長を短縮することができる。
なお、ティース19は、等角ピッチで12本配列されているものを説明したが、必ずしも12本である必要はなく、適宜変更可能なものである。
以上のように、実施の形態4に係る回転子によれば、実施の形態1~3と同様に、電流通電時に固定子10に鎖交する磁石磁束量の増加を両立することにより磁石磁束の可変量を向上させることができる効果を奏する。さらに、銅損の低減およびモータ全長を短縮することができる。
本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
10 固定子、12 固定子コイル、13 フレーム、14 ブラケット、15 軸受、16 回転軸、18 コアバック、19 ティース、20 回転子、21 回転子コア、22 磁石、23 バイパスバリア、24a 24b バイパス部、25 フラックスバリア、221 第1の磁石、222 第2の磁石

Claims (14)

  1. 回転子コアを備え、
    前記回転子コアの磁極中心をd軸とし、前記d軸と電気的に直交する方向の軸をq軸としたとき、
    前記回転子コアは、前記q軸上に設けられる非磁性領域のバイパスバリアと、前記回転子コアの前記q軸よりも前記d軸に近い領域に設けられる第1の磁石と、前記回転子コアの前記第1の磁石よりも径内側の領域に少なくとも一部が設けられる第2の磁石と、を有し、
    前記第2の磁石は、前記回転子コアの前記第1の磁石よりも前記q軸に近い領域に設けられ、
    前記第2の磁石の前記q軸に最も近い端点は、前記回転子コア内の前記バイパスバリアの最も径内側の面である最径内面よりも径内側に位置し、
    前記第2の磁石と前記バイパスバリアとの径方向間に、固定子で発生する磁束の経路となる磁束バイパス部を有することを特徴とする
    回転子。
  2. 前記回転子コアは、前記q軸を介して隣接して設けられる複数の前記第2の磁石と、
    前記固定子で発生する磁束の経路および隣接する一方の前記第2の磁石から他方の前記第2の磁石をとおり前記回転子コアの内部で短絡する前記第2の磁石の磁束の経路となる前記磁束バイパス部と、
    前記バイパスバリアよりも径内側の前記回転子コアであって、隣接する複数の前記第2の磁石の周方向間の前記回転子コアであるq軸磁路部と、を有し、
    前記q軸磁路部の前記q軸に直交する最短の距離である最短距離Cは、前記磁束バイパス部の最小の距離である最小距離Dよりも大きいことを特徴とする
    請求項1に記載の回転子。
  3. 前記第2の磁石は、周方向両端にフラックスバリアを有し、
    前記q軸磁路部の前記最短距離Cは、前記q軸を介して隣接する前記フラックスバリアの間の前記回転子コアの幅であり、
    前記磁束バイパス部の前記最小距離Dは、前記バイパスバリアと前記第2の磁石の間または前記バイパスバリアと前記フラックスバリアとの間の幅であることを特徴とする
    請求項2に記載の回転子。
  4. 前記q軸磁路部の前記最短距離Cと前記磁束バイパス部の前記最小距離Dとは、
    C≧D×2の関係を満たすことを特徴とする
    請求項2または請求項3に記載の回転子。
  5. 前記バイパスバリアのd軸側端部と軸心とを結ぶ直線の前記d軸側に前記第2の磁石が位置することを特徴とする
    請求項1から請求項4のいずれか1項に記載の回転子。
  6. 前記第2の磁石は、周方向両端部のうち、前記q軸に近い側の端部が前記q軸から遠い側の端部よりも軸心に近く、前記q軸側から遠い端部が他方の端部よりも前記回転子コアの径外面に近くなるように傾きを有して配置されることを特徴とする
    請求項1から請求項5のいずれか1項に記載の回転子。
  7. 前記第2の磁石は、前記バイパスバリアの最も径内側の面である最径内面よりも径内側であって、前記回転子コアの前記q軸上に設けられることを特徴とする
    請求項1に記載の回転子。
  8. 前記回転子コアは、前記d軸を介して隣接して設けられる複数の前記第2の磁石を有し、
    複数の前記第2の磁石は、周方向端部のうち、前記d軸に近い径内側の端部が前記q軸に近い径内側の端部よりも軸心に近くなるように傾きを有し、前記d軸に対して線対称に設けられることを特徴とする
    請求項1から請求項4のいずれか1項に記載の回転子。
  9. 前記第1の磁石は、前記d軸上に設けられ、
    前記第1の磁石の最も径外側の最径外面と前記d軸との交点から前記回転子コアの外周面までの最小の距離を距離Eとし、前記第1の磁石の最も径外側の端点から前記回転子コアの外周面までの最小の距離を距離Fとしたとき、
    E>Fの関係を満たすことを特徴とする
    請求項1から請求項のいずれか1項に記載の回転子。
  10. 前記回転子コアは、1磁極を構成する前記第1の磁石と前記第2の磁石とを含む磁石群を有し、
    前記磁石群は、周方向に離間して前記回転子コアに設けられることを特徴とする
    請求項1から請求項のいずれか1項に記載の回転子。
  11. 前記第2の磁石の幅をHとし、
    前記第2の磁石の周方向間の前記回転子コアであるq軸磁路部の前記q軸に直交する最短の距離である最短距離Cとしたとき、
    H≧C×2の関係を満たすことを特徴とする
    請求項1から請求項10のいずれか1項に記載の回転子。
  12. 前記第2の磁石の前記q軸に最も近い端点は、前記回転子コア内の前記バイパスバリアの最も径内側の面である最径内面よりも径内側に位置して前記第2の磁石の磁束入出力面は、前記q軸に対して傾きを有し、
    前記回転子コアの最も径外側の最径外面と前記q軸に最も近い前記第2の磁石の角部とを前記q軸に平行に結んだときの距離を距離Aとし、
    前記バイパスバリアの最も内径側の最径内面と前記回転子コアの最径外面とを前記q軸に平行に結んだときの前記回転子コアの径外面と前記バイパスバリアまでの最も大きい距離を距離Bとしたとき、
    距離Aは距離Bよりも大きいことを特徴とする
    請求項1から11のいずれか1項に記載の回転子。
  13. 請求項1から請求項12のいずれか1項に記載の回転子と、
    前記回転子の径外側に空隙を有して設けられる前記固定子と、
    を有することを特徴とする
    回転電機。
  14. 前記固定子は固定子コアと固定子コイルを有し、
    前記固定子コアは円環状のコアバックと、前記コアバックから径方向内側へ突出した複数のティースとを有しており、
    前記ティースの最内径部の周方向幅をTとし、前記q軸上に設けられる非磁性領域の前記バイパスバリアの最外径部の周方向幅をPとしたとき、
    P≧Tの関係を満たすことを特徴とする
    請求項13に記載の回転電機。
JP2021557563A 2020-06-26 2021-03-05 回転子およびこれを用いた回転電機 Active JP7047985B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020110630 2020-06-26
JP2020110630 2020-06-26
PCT/JP2021/008662 WO2021261022A1 (ja) 2020-06-26 2021-03-05 回転子およびこれを用いた回転電機

Publications (2)

Publication Number Publication Date
JPWO2021261022A1 JPWO2021261022A1 (ja) 2021-12-30
JP7047985B1 true JP7047985B1 (ja) 2022-04-05

Family

ID=79282262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021557563A Active JP7047985B1 (ja) 2020-06-26 2021-03-05 回転子およびこれを用いた回転電機

Country Status (5)

Country Link
US (1) US20230179043A1 (ja)
JP (1) JP7047985B1 (ja)
CN (1) CN115699519A (ja)
DE (1) DE112021003419T5 (ja)
WO (1) WO2021261022A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7548018B2 (ja) * 2020-03-18 2024-09-10 ニデック株式会社 モータ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017017783A (ja) * 2015-06-26 2017-01-19 日産自動車株式会社 可変磁束型回転電機
CN108599418A (zh) * 2018-05-16 2018-09-28 华中科技大学 一种磁路串联型混合永磁可控磁通电机的转子铁芯及电机
CN109742881A (zh) * 2019-02-20 2019-05-10 哈尔滨工业大学 串联型具有反凸极特性的混合永磁可调磁通电机
CN109742880A (zh) * 2019-02-20 2019-05-10 哈尔滨工业大学 具有反凸极特性的内置v型-一字型混合永磁可调磁通电机
DE102018206478A1 (de) * 2018-04-26 2019-10-31 Robert Bosch Gmbh Elektrische Maschine mit veränderlichem magnetischem Fluss

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003199273A (ja) * 2001-12-27 2003-07-11 Toshiba Corp 永久磁石式リラクタンス型回転電機
JP3967760B2 (ja) * 2006-05-15 2007-08-29 株式会社東芝 永久磁石式リラクタンス型回転電機
CN104412493B (zh) 2012-06-26 2018-08-07 日产自动车株式会社 可变磁通型旋转电机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017017783A (ja) * 2015-06-26 2017-01-19 日産自動車株式会社 可変磁束型回転電機
DE102018206478A1 (de) * 2018-04-26 2019-10-31 Robert Bosch Gmbh Elektrische Maschine mit veränderlichem magnetischem Fluss
CN108599418A (zh) * 2018-05-16 2018-09-28 华中科技大学 一种磁路串联型混合永磁可控磁通电机的转子铁芯及电机
CN109742881A (zh) * 2019-02-20 2019-05-10 哈尔滨工业大学 串联型具有反凸极特性的混合永磁可调磁通电机
CN109742880A (zh) * 2019-02-20 2019-05-10 哈尔滨工业大学 具有反凸极特性的内置v型-一字型混合永磁可调磁通电机

Also Published As

Publication number Publication date
US20230179043A1 (en) 2023-06-08
CN115699519A (zh) 2023-02-03
DE112021003419T5 (de) 2023-04-27
WO2021261022A1 (ja) 2021-12-30
JPWO2021261022A1 (ja) 2021-12-30

Similar Documents

Publication Publication Date Title
KR102079486B1 (ko) 회전 전기
CN109565198B (zh) 转子以及磁阻马达
JP6019875B2 (ja) 回転電機
JP2008136298A (ja) 回転電機の回転子及び回転電機
JP7076188B2 (ja) 可変磁力モータ
JP2013055872A (ja) スイッチドリラクタンスモータ
JP6048191B2 (ja) マルチギャップ型回転電機
JP6019876B2 (ja) 回転電機
JP5920472B2 (ja) 回転電機およびロータ
JP7047985B1 (ja) 回転子およびこれを用いた回転電機
JP2013132124A (ja) 界磁子用コア
JP6466612B1 (ja) 回転電機
JP2018061379A (ja) 回転電機
JP2016201960A (ja) 埋込磁石型モータ
JP6191375B2 (ja) 電動発電機及びそれを備えたエンジンユニット
JP6839376B1 (ja) 回転電機
JP7116667B2 (ja) 回転電機
JP2018061378A (ja) 回転電機
JP2018046590A (ja) 回転電機
JP5677593B2 (ja) ランデル型回転機
JP5740250B2 (ja) 永久磁石式回転電機
JP5884464B2 (ja) 回転電機
WO2021182088A1 (ja) 永久磁石同期モータ
JP2017163716A (ja) ロータおよび回転電機
JP7270806B1 (ja) 回転電機

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210927

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210927

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220307

R151 Written notification of patent or utility model registration

Ref document number: 7047985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151