JP7035972B2 - 核酸配列計測用デバイス - Google Patents

核酸配列計測用デバイス Download PDF

Info

Publication number
JP7035972B2
JP7035972B2 JP2018211188A JP2018211188A JP7035972B2 JP 7035972 B2 JP7035972 B2 JP 7035972B2 JP 2018211188 A JP2018211188 A JP 2018211188A JP 2018211188 A JP2018211188 A JP 2018211188A JP 7035972 B2 JP7035972 B2 JP 7035972B2
Authority
JP
Japan
Prior art keywords
probe
quenching
nucleic acid
fluorescent
acid sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018211188A
Other languages
English (en)
Other versions
JP2020074726A (ja
Inventor
崇 蓼沼
祐樹 宮内
朋之 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2018211188A priority Critical patent/JP7035972B2/ja
Priority to PCT/JP2019/041142 priority patent/WO2020095657A1/ja
Priority to CN201980072820.2A priority patent/CN112996899A/zh
Priority to US17/291,010 priority patent/US20220042080A1/en
Priority to EP19882653.9A priority patent/EP3878938A4/en
Publication of JP2020074726A publication Critical patent/JP2020074726A/ja
Application granted granted Critical
Publication of JP7035972B2 publication Critical patent/JP7035972B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6818Hybridisation assays characterised by the detection means involving interaction of two or more labels, e.g. resonant energy transfer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips

Description

本発明は、ハイブリダイゼーションによりサンプルに含まれる特定の核酸配列を有するターゲットを計測する核酸配列計測用デバイスに関する。
ハイブリダイゼーションによりサンプルに含まれる特定の核酸配列を有するターゲットを計測する核酸配列計測方法としては、蛍光プローブと消光プローブを用いた、核酸検出工程が簡素化された核酸配列計測方法が報告されている(特許文献1)。特許文献1の方法においては、ターゲットが存在しないときには、蛍光プローブと消光プローブに存在する結合部を介する蛍光プローブと消光プローブとの結合が維持されて、蛍光分子に接近した消光分子の蛍光が消光され、ターゲットが存在すると、蛍光プローブまたは消光プローブに存在する検出部にターゲットが結合して、前記結合部を介する結合が解消され、消光分子が蛍光分子から離れることにより蛍光分子が蛍光を呈する。この蛍光を測定することにより、サンプル中に含まれるターゲットを計測することができる。
特許第5928906号公報
しかしながら、特許文献1の方法は、蛍光分子が付加された蛍光プローブと、消光分子が付加された消光プローブとが、蛍光プローブおよび消光プローブ上の一部に存在するお互いに相補的な核酸配列を有する結合部で結合するため、蛍光プローブと消光プローブとの結合力が弱く、消光分子による蛍光の抑制が十分とはいえないことから、ターゲットが存在しないときの蛍光、即ちオフセット光が高くなる傾向がある。オフセット光が高くなると、ターゲットが低濃度である場合、蛍光の変化を判別しにくくなり、検出感度が低下する。
また、特許文献1の方法では、蛍光プローブおよび消光プローブ上の一部に存在する、お互いに相補的な核酸配列を有する前記結合部の核酸配列の長さを適切に決める必要があり、前記結合部の核酸配列が短すぎると、蛍光プローブと消光プローブとが、前記結合部を介して結合することができず、蛍光プローブを消光プローブで消光することができなくなる。反対に、前記結合部の核酸配列が長すぎると、前記結合部を介する蛍光プローブと消光プローブとの結合が強すぎて、ターゲットが供給されても、蛍光プローブと消光プローブとが結合したままで離れず、サンプル中のターゲットを計測することができない。
したがって、本発明の目的は、ターゲットが存在しないときのオフセット光を低下させることにより、検出感度に優れ、また、蛍光プローブと消光プローブとの結合部の長さに依存せずに、ターゲットを検出することが可能な核酸配列計測用デバイスを提供することにある。
上記の目的を達成するために、本発明は以下の構成を採用した。
[1] ハイブリダイゼーションによりサンプルに含まれる特定の核酸配列を有するターゲットを計測する核酸配列計測用デバイスにおいて、
蛍光分子が所定の位置に付加された蛍光プローブと、
消光分子が所定の位置に付加された消光プローブと、
前記蛍光プローブおよび前記消光プローブのそれぞれの基端が固定される固相面を有する基板と、
を備え、
前記蛍光プローブまたは前記消光プローブの一方は、前記ターゲットの核酸配列と相補的な核酸配列を有する検出配列を有し、
前記蛍光プローブまたは前記消光プローブの他方は、前記検出配列の一部の核酸配列と相補的な核酸配列(以下、相補配列ともいう)を有し、前記相補配列の固相面側の基端から、他の基端までの核酸配列が、前記検出配列の一部と相補的であり、
前記検出配列を有する前記蛍光プローブまたは消光プローブは、前記相補配列を有する蛍光プローブまたは消光プローブよりも核酸配列が長く、
前記蛍光プローブおよび前記消光プローブは、前記蛍光分子に接近した前記消光分子により前記蛍光分子が呈する蛍光が消光される位置関係となるように、前記蛍光プローブおよび前記消光プローブのそれぞれの基端が固相面に固定される、
ことを特徴とする核酸配列計測用デバイス。
[2] 前記ターゲットと前記検出配列とのハイブリダイゼーションが生じていない場合、前記蛍光プローブと消光プローブとの結合が維持されることにより、前記蛍光分子に接近した前記消光分子により前記蛍光分子が呈する蛍光が消光され、前記ターゲットと前記検出配列とのハイブリダイゼーションが生じた場合、前記蛍光プローブと消光プローブとの結合が解消されることにより、前記消光分子から離れた前記蛍光分子が蛍光を呈することを特徴とする[1]に記載の核酸配列計測用デバイス。
[3] 前記消光プローブが、前記検出配列を有することを特徴とする[1]または[2]に記載の核酸配列計測用デバイス。
[4] 前記基板が平板であり、前記固相面が、前記平板の一平面であることを特徴とする[1]~[3]のいずれか1項に記載の核酸配列計測用デバイス。
[5] 前記基板がビーズであり、前記固相面が、前記ビーズの表面である、[1]~[3]のいずれか1項に記載の核酸配列計測用デバイス。
[6] 前記消光プローブの数が前記蛍光プローブの数よりも多いことを特徴とする[1]~[5]のいずれか1項に記載の核酸配列計測用デバイス。
[7] 前記蛍光プローブの数が前記消光プローブの数よりも多いことを特徴とする[1]~[5]のいずれか1項に記載の核酸配列計測用デバイス。
[8] 前記消光分子の数が前記蛍光分子の数よりも多いことを特徴とする[1]~[7]のいずれか1項に記載の核酸配列計測用デバイス。
[9] 前記蛍光分子の数と前記消光分子の数との比が2:3である、[8]に記載の核酸配列計測用デバイス。
[10] 前記蛍光分子が付加される前記所定の位置は、前記蛍光プローブの途中であることを特徴とする[1]~[9]のいずれか1項に記載の核酸配列計測用デバイス。
[11] 前記消光分子が付加される前記所定の位置は、前記消光プローブの途中であることを特徴とする[1]~[9]のいずれか1項に記載の核酸配列計測用デバイス。
[12] 前記蛍光分子が付加される前記所定の位置が複数あることを特徴とする、[1]~[11]のいずれか1項に記載の核酸配列計測用デバイス。
[13] 前記消光分子が付加される前記所定の位置が複数あることを特徴とする、[1]~[11]のいずれか1項に記載の核酸配列計測用デバイス。
本発明の核酸配列計測用デバイスによれば、蛍光プローブと消光プローブは、前記相補配列の固相面側の基端から、他の基端までの核酸配列部分で結合するので、蛍光プローブおよび消光プローブ上の一部に存在する、お互いに相補的な結合部で、蛍光分子が付加されたプローブと消光分子が付加された消光プローブとが結合する従来の核酸配列計測用デバイスと比較して、消光効果に優れ、オフセット光を低減させることができる。そのため、検出可能な最小光量を小さくすることができ、検出感度を向上させることができる。
また、前記検出配列を有する前記蛍光プローブまたは消光プローブは、前記相補配列を有する前記蛍光プローブまたは消光プローブよりも核酸配列が長いので、前記相補配列で結合している蛍光プローブと消光プローブとの結合力よりも、前記検出配列を有する蛍光プローブまたは消光プローブとターゲットとの結合力の方が強い。そのため、検出配列を有する蛍光プローブまたは消光プローブは、前記相補配列を有する蛍光プローブまたは消光プローブと解離し、ターゲットと結合することができる。
また、本発明の核酸配列計測用デバイスによれば、蛍光プローブと消光プローブとは、前記相補配列の固相面側の基端から、他の基端までの核酸配列部分で結合するので、ターゲットの検出の可否が、前記蛍光プローブと消光プローブとの結合部の核酸配列の長さに依存する従来の核酸配列計測用デバイスと比較して、ターゲットの検出が可能な蛍光プローブと消光プローブとを容易に設計することができる。
また、この核酸配列計測用デバイスによれば、お互いに独立した分子である蛍光プローブおよび消光プローブのそれぞれの基端が基板に固定されるので、消光効果を適切に発揮させることが可能となり、検出感度を良好なものとすることができるとともに、ラベリング工程が不要となり、洗浄工程を省略することも可能となる。ラべリング工程が不要なうえ、洗浄工程を省略することによってハイブリダイズの実験にかかる手間がさらに短縮され、作業時間とともにコストが削減される。さらに、洗浄工程の不備による性能悪化、光量低下、オフセット光上昇、あるいはバラつきの発生等を回避することが可能となる。それによりアレイ面上でより均一な結果を得ることができ、検出の再現性も向上する。
さらに、本発明の核酸配列計測用デバイスによれば、ハイブリダイズのリアルタイム観察が可能となる。すなわち、DNAアレイ等の核酸配列計測用デバイスに検出対象分子(ターゲット)を含む溶液を添加した状態のまま(ウェット状態)での観察が可能となる。それにより洗浄の影響を排した状態の光量の確認やハイブリダイズのリアルタイム観察が可能となる。したがって、サンプル濃度が高く、ハイブリダイゼーションが早く進む場合など、状況によっては、より短時間でハイブリダイゼーションを終了させることが可能となる。
本発明による核酸配列計測用デバイスの構成を示す図である。 プローブの構成例を示す図である。 ターゲットを検出する原理を模式的に示す図である。 ターゲットを検出する操作手順を示す図である。 変形例を示す図であり、複数個所に消光分子が付加された例を示す図である。 変形例を示す図であり、蛍光プローブに検出配列を与えた例を示す図である。 変形例を示す図であり、複数個所に蛍光分子および消光分子が付加された例を示す図である。 実施例1~3の核酸配列計測用デバイスおよび比較例1~3の核酸配列計測用デバイスの構造を模式的に示す図である。 実施例1~3の核酸配列計測用デバイスのオフセット光と、比較例1~3の核酸配列計測用デバイスのオフセット光とを比較したグラフである。
本発明の核酸配列計測用デバイスは、ハイブリダイゼーションによりサンプルに含まれる特定の核酸配列を有するターゲットを計測する核酸配列計測用デバイスにおいて、
蛍光分子が所定の位置に付加された蛍光プローブと、
消光分子が所定の位置に付加された消光プローブと、
前記蛍光プローブおよび前記消光プローブのそれぞれの基端が固定される固相面を有する基板と、
を備え、
前記蛍光プローブまたは前記消光プローブの一方は、前記ターゲットの核酸配列と相補的な核酸配列を有する検出配列を有し、
前記蛍光プローブまたは前記消光プローブの他方は、前記検出配列の一部の核酸配列と相補的な核酸配列(以下、相補配列ともいう)を有し、前記相補配列の固相面側の基端から、他の基端までの核酸配列が、前記検出配列の一部と相補的であり、
前記検出配列を有する前記蛍光プローブまたは消光プローブは、前記相補配列を有する蛍光プローブまたは消光プローブよりも核酸配列が長く、
前記蛍光プローブおよび前記消光プローブは、前記蛍光分子に接近した前記消光分子により前記蛍光分子が呈する蛍光が消光される位置関係となるように、前記蛍光プローブおよび前記消光プローブのそれぞれの基端が固相面に固定される、
ことを特徴とする。
以下、本発明の核酸配列計測用デバイスの実施形態について説明する。
図1は、本発明の核酸配列計測用デバイスの構成を示す図、図2はプローブの構成例を示す図である。
図1および図2に示すように、本実施形態の核酸配列計測用デバイスは、基板などの固相面100に、検出対象となる核酸であるターゲット30の相補的な配列である検出配列23に消光分子21を付加した消光プローブ20と、検出配列23の一部と相補的な配列である相補配列12に蛍光物質11を付加した蛍光プローブ10とが、前記蛍光分子11に接近した前記消光分子21により前記蛍光分子11が呈する蛍光が消光される位置関係となるように、それぞれ固定されて構成される。検出配列23の核酸配列は、相補配列12の核酸配列よりも長い。
本発明では、蛍光共鳴エネルギー転移による消光の原理が用いられ、蛍光分子11としては、特に制限はないが、例えば、EDANS、Coumarin、FAM、FITC、Cy2、TF2、TF3、HEX、JOE、TET、Cy3、Cy5、Alexa Fluor(登録商標) 532、Alexa Fluor(登録商標) 610、Alexa Fluor(登録商標) 647、ATTO532、ATTO633、Qdot(登録商標)565、Qdot(登録商標)585、Qdot(登録商標)605、Qdot(登録商標)705、iFluorTM532、iFluorTM647などの公知の物質を使用できる。消光分子21としては、特に制限はないが、例えば、Dabcyl、TQ1、TQ2、TQ3、Eclipse(登録商標)、BHQ1、BHQ2、BHQ3、Cy5Q、Cy7Q、Iowa Black(登録商標) FQ、Iowa Black(登録商標) RQ、IRDye QC-1、QSY7、QSY21、QXL570、QXL570、QXL570などの公知の物質を使用できる。蛍光分子11と消光分子21の組み合わせについても特に制限はないが、例えば、EDANS、CoumarinまたはTF2とDabcylまたはTQ1との組み合わせ、FAM、FITC、TET、Alexa Fluor(登録商標) 532、Cy2、Cy3、TF2またはTF3とTQ2との組み合わせ、Alexa Fluor(登録商標) 532、Cy3、HEX、JOE、TF2、TF3、TF4またはTETとTQ3との組み合わせ、Alexa Fluor(登録商標) 532、TF2、Cy3、FAMまたはHEXとEclipse(登録商標)との組み合わせ、Alexa Fluor(登録商標) 532、TF2、TF3、Cy3、FAM、HEX、TETまたはCy3とBHQ1との組み合わせ、TF3、TF4、Cy3、Cy5またはHEXとBHQ2との組み合わせ、Cy5、Alexa Fluor(登録商標) 647、TF5とIowa Black(登録商標) RQ、IRDye QC-1、QSY21、TQ4、TQ5、BHQ2またはBHQ3との組み合わせ、Cy3、TF3、TF4とCy5Q、Iowa Black(登録商標) FQ、Iowa Black(登録商標) RQ、IRDye QC-1、QSY7またはQXL570との組み合わせ、Alexa Fluor(登録商標) 532とCy5Q、TQ2、TQ3、Iowa Black(登録商標) FQ、Iowa Black(登録商標) RQ、IRDye QC-1、QSY7またはQXL570との組み合わせ、TF3とBHQ1、BHQ2またはCy5Qとの組み合わせ等が挙げられる。
図2に示すように、蛍光プローブ10は、3’末端から設けられ、5’末端までの核酸配列が、消光プローブ20の検出配列23の固相面100側の3’末端から、蛍光プローブ10の3’末端に対応する部分までの核酸配列と相補的な配列である相補配列12と、相補配列12の5’末端に接続され、固相面100まで続くリンカー14と、を備え、蛍光プローブ10の3’末端に蛍光分子11が付加される。
消光プローブ20は、5’末端から設けられる検出配列23と、検出配列23の3’末端に接続され、固相面100まで続くリンカー24と、を備え、蛍光プローブ10に付加されている蛍光分子11に接近した位置に消光分子21が固定される。消光プローブ20が有する検出配列23の核酸配列の長さは、相補配列12より核酸配列が長い。
蛍光プローブ10および消光プローブ20は、それぞれリンカー14およびリンカー24を介して固相面100に固定化される。また、蛍光プローブ10のリンカー14に接続される、固相面100側の基端(5’末端)から、他の基端(3’末端)までの核酸配列と、消光プローブ20が有する検出配列23の、リンカー24に接続される、固相面100側の末端(3’末端)から、蛍光プローブ10の3’末端に対応する部分までの核酸配列とは、互いに相補的とされる。
なお、本発明において相補的であるとは、一方の核酸配列が、他方の核酸配列と2本鎖状態を形成することのできる核酸配列を持つことを意味し、必ずしも完全に相補的である必要はなく、いくつかのミスマッチ塩基対を含んでいてもよい。
また、蛍光プローブ10と消光プローブ20とが互いに結合可能な位置に蛍光プローブ10および消光プローブ20が、固相面100に固定されるとともに、蛍光プローブ10と消光プローブ20とが結合したときに、消光分子21が蛍光分子11に接近し、これにより蛍光分子11が消光状態となるような位置関係が確保されている。
次に、核酸配列計測用デバイスによりターゲット30を検出する原理および操作手順について説明する。図3はターゲットを検出する原理を模式的に示す図、図4はターゲットを検出する操作手順を示す図である。
図3に示すように、ターゲット30が存在しないときは蛍光分子11および消光分子21がそれぞれ付加された蛍光プローブ10と消光プローブ20とが結合することにより、蛍光分子11と消光分子21が接近した状態にある。この状態では励起光が照射されても消光分子21の影響により蛍光分子11は蛍光を呈さない。
図4に示すように、サンプル50に対し、遺伝子(ターゲット30)の増幅を行う(ステップ1)。次に、増幅後のターゲット30を含む溶液をDNAチップの固相面100に供給し、ハイブリダイゼーションを行う(ステップ2)。
図3に示すように、消光プローブ20が有する、ターゲット30の核酸配列と相補的な核酸配列である検出配列23の核酸配列は、蛍光プローブ10が有する相補配列12より長いので、この相補配列12の部分で結合している蛍光プローブ10と消光プローブ20との結合力よりも、検出配列23を有する消光プローブ20とターゲット30との結合力の方が強い。そのため、ターゲット30が存在するときは、検出配列23を有する消光プローブ20は、蛍光プローブ10と解離し、ターゲット30と結合する。ターゲット30が蛍光プローブ10と結合すると、蛍光プローブ10と消光プローブ20の結合が外れて消光分子21と蛍光分子11の距離が離れることで消光状態が解かれ、励起光の照射により蛍光分子11が蛍光を呈するようになる。したがって、図4に示すように、蛍光読取装置60での固相面100の観察により、蛍光プローブ10が蛍光を呈するか否かでサンプル中の対象核酸(ターゲット30)の有無を確認することができる(ステップ3)。またこの時、溶液中に含まれる捕集されていないターゲット30は蛍光を呈さないために、洗浄する必要がない。したがって、ターゲット溶液存在下で、溶液を通して固相面100を観察することが可能である。このため、洗浄の影響を排した状態での光量が測定できるとともに、ハイブリダイゼーション中のリアルタイム測定も可能となる。
遺伝子の増幅を行った段階(ステップ1)で、遺伝子が増幅されたか否かを確認する試験を行い、遺伝子が増幅されている場合にのみハイブリダイズ(ステップ2)を行うようにしてもよい。
なお、遺伝子の存在の有無を検査するタイミングは、増幅終了後に限定されず、増幅反応中であってもよい。検査の手法としては、電気泳動、抗原抗体反応、質量分析やリアルタイムPCR法などを適宜、利用することができる。
また、核酸(ターゲット30)はタンパク質や糖鎖などに結合させても良い。この場合には、核酸(ターゲット30)に対するタンパク質や糖鎖などの相互作用が確認できる。
本発明の核酸配列計測用デバイスは上記実施形態に限定されず、以下のような種々の変形が可能である。
蛍光体を修飾した蛍光プローブと消光分子を修飾した消光プローブの存在比を変えてそれぞれを固定化することで、消光状態における消光効率を制御することができる。例えば、消光プローブを蛍光プローブよりも多くすると、カップリングされる蛍光分子の確率が高まり、消光効率が上昇する。それによってオフセット光を低く抑えることができる。また、蛍光プローブを消光プローブよりも多くすると、消光作用を受ける蛍光プローブの確率が低くなり、対象物質検出後に呈する蛍光(ハイブリダイズ光量)がより強くなる。
前記検出配列は、前記相補配列より核酸配列が長い。前記検出配列の長さは、前記相補配列の長さより長ければ特に制限はなく、例えば、前記相補配列の長さより、1塩基以上、5塩基以上、10塩基以上長くてよい。
蛍光分子または消光分子はプローブの先端についていなくてもよく、図5~図7に示すように、蛍光分子または消光分子は、プローブの途中の位置に付加されていてもよい。図5の例では、消光分子21が消光プローブ20Aの途中に付加されている。図6の例では、蛍光分子11が蛍光プローブ10Bの途中に付加されている。図7の例では、蛍光分子11および消光分子21が、それぞれ蛍光プローブ10Cおよび消光プローブ20Cのプローブの途中に付加されている。ただし、消光作用が生じるように、蛍光プローブ10A~10Cおよび消光プローブ20A~20Cがそれぞれ結合した状態において、消光分子21が蛍光分子11に接近するように互いに向き合う位置となるように設計することが望ましい。蛍光分子もしくは消光分子をプローブの先端以外の位置に付加する場合には、プローブの先端にはさらに別の修飾が可能となる利点がある。
蛍光分子と消光分子はそれぞれ複数種類・複数個所に付加されてもよい。図5および図6は、複数個所に消光分子が付加された例を示す図である。図5の例では、蛍光プローブ10Aに蛍光分子11が、消光プローブ20Aに消光分子21、21が、それぞれ付加されている。図6の例では、蛍光プローブ10Bに蛍光分子11が、消光プローブ20Bに消光分子21、21が、それぞれ付加されている。複数の消光分子を1つのプローブに付加する場合、消光分子の種類を異なるものとしてもよい。1つのプローブに複数の消光分子を付加した場合、蛍光分子に対する消光分子の消光効果を高めることができるため、オフセット光をより低くすることができる。そのため、検出可能な最小光量を小さくすることができ、検出感度を向上させることができる。
図7は、複数個所に蛍光分子および消光分子が付加された例を示す図である。図7の例では、蛍光プローブ10Cに蛍光分子11、11が、消光プローブ20Cに消光分子21、21、21が、それぞれ付加されている。複数の蛍光分子および消光分子をそれぞれ1つのプローブに付加する場合、それぞれの蛍光分子または消光分子の種類を異なるものとしてもよい。1つのプローブにそれぞれ複数の蛍光分子および消光分子を付加した場合、ターゲットが結合した際の蛍光量が増加し、より高感度な検出が可能となる。また、消光分子の数を蛍光分子の数より多くすることにより、ターゲットが存在しないときのオフセット光を低くすることができる。
前記検出配列は、消光プローブに設けても、蛍光プローブに設けてもよい。消光プローブが検出配列を有する場合は、前記したように、ターゲット30が、消光プローブが有する検出配列に結合するが、蛍光プローブが検出配列を有する場合は、ターゲット30が、蛍光プローブが有する検出配列に結合する。図6は、蛍光プローブに検出配列を与え、消光プローブに複数の消光分子21、21を付加した場合の状態を模式的に示す図である。図6に示すように、消光プローブに複数の消光分子を付加することにより、ターゲットが存在しないときのオフセット光を低くすることができる。また、蛍光プローブと消光プローブとの結合力よりも、ターゲットと蛍光プローブとの結合力が強いため、ターゲットが存在するときは、蛍光プローブは消光プローブと解離し、ターゲットと結合することができ、蛍光分子が蛍光を呈するようにすることができる。
また、蛍光プローブおよび消光プローブが固定される基板は、平板であっても、ビーズであってもよい。前記基板が平板である場合、蛍光プローブ及び消光プローブが固定される固相面は、前記平板の一平面とすることができる。前記基板がビーズである場合は、蛍光プローブおよび消光プローブの固相面は、前記ビーズの表面とすることができる。ビーズの表面に蛍光プローブおよび消光プローブを固定することにより、蛍光プローブおよび消光プローブがビーズを中心として放射状に広がった形状となる。この場合、プローブを固定する固相面の表面積が大きくなり、単位面積当たりのプローブ量を増やすことができる。また、検出対象分子を捕集したビーズをその大きさや磁気等で回収することで、検出対象分子の選択的な回収も可能となる。回収した分子は後工程における別の試験などに使用可能となる。
次に、本発明の核酸配列計測方法にかかる核酸配列計測用デバイスの製造方法について説明する。
(1)溶液調製
まず、蛍光プローブ10および消光プローブ20を混合したプローブ液を調製し、プローブ濃度を調整する。
(2)カップリング
次に、プローブ液を加熱後、急冷し、蛍光プローブ10と消光プローブ20をカップリングさせる。これにより、蛍光プローブ10または前記消光プローブ20の一方が有する相補配列の部分で蛍光プローブ10と消光プローブ20が結合される。ここでは、例えば、プローブ液を95℃に加熱後、5分間温度を保持し、その後、25℃に急冷することで蛍光プローブ10と消光プローブ20をカップリングさせる。
(3)固相面への固定
次に、蛍光プローブ10と消光プローブ20がカップリングした状態にあるプローブ液を固相面にスポットして、蛍光プローブ10と消光プローブ20を固相面100に固定化する。
(4)洗浄
次に、固相面100を洗浄し、固定化されていない余剰のプローブを除去する。以上の手順により、核酸配列計測用デバイスが製造される。
このように、蛍光プローブ10または消光プローブ20の一方が有する相補配列の部分で互いに結合された状態で、蛍光プローブ10および消光プローブ20を固相面100に結合させるので、蛍光プローブ10および消光プローブ20の位置関係を適切に管理でき、消光効果を適切に発揮させることが可能となるため、検出感度を良好なものとすることができる。
本発明の適用範囲は上記実施形態に限定されることはない。本発明は、ハイブリダイゼーションによりサンプルに含まれる特定の核酸配列を有するターゲットを計測する核酸配列計測用デバイスに対し、広く適用することができる。
以下、実施例および比較例に基づき本発明を更に詳細に説明するが、本発明はこれらにより限定されるものではない。
(実施例1)
リンカー配列と、核酸配列の長さ33の検出配列とを有し、蛍光分子が結合した蛍光プローブ1、及び、リンカー配列と、前記蛍光プローブ1の検出配列の固相面側の基端から28塩基の部分と相補的な核酸配列とを有し、消光分子が結合した消光プローブ1を混合したプローブ液を調製した。
次に、プローブ液を95℃に加熱後、5分間温度を維持し、その後、25℃に急冷し、蛍光プローブ1と消光プローブ1とをカップリングさせた。これにより、消光プローブ1が有する相補配列の部分で蛍光プローブ1と消光プローブ1を結合させた。なお、消光プローブ1において、消光分子は、消光プローブ1の固相面側の基端とは反対側の基端に結合させ、蛍光分子は、消光プローブ1における消光分子の固相面からの高さと同じ高さの位置で、蛍光プローブ1に結合させた。
次に、蛍光プローブ1と消光プローブ1がカップリングした状態にあるプローブ液を固相面にスポットして、蛍光プローブ1と消光プローブ1を固相面に固定化した。
その後、固相面を洗浄し、固定化されていない余剰のプローブを除去することにより、蛍光プローブ1と消光プローブ1とからなる核酸配列計測用デバイス1を製造した(図8)。
表1に、核酸配列計測用デバイス1の蛍光プローブと消光プローブの長さ、及び蛍光プローブが消光プローブのどの部分で結合するかを示す。
次に、上記で製造された核酸配列計測用デバイス1のオフセット光を測定した。その結果を図9に示す。
(実施例2)
蛍光プローブ1の代わりに、蛍光プローブ1の蛍光分子の結合位置を、蛍光プローブの固相面側の基端とは反対側の基端とした蛍光プローブ2を用いる以外は、実施例1と同様にして、蛍光プローブ2と消光プローブ1とからなる核酸配列計測用デバイス2を製造した(図8)。
表1に、核酸配列計測用デバイス2の蛍光プローブと消光プローブの長さ、及び蛍光プローブが消光プローブのどの部分で結合するかを示す。
次に、上記で製造された核酸配列計測用デバイス2のオフセット光を測定した。その結果を図9に示す。
(実施例3)
蛍光プローブ1の代わりに、蛍光プローブ1の検出配列の長さを34とした蛍光プローブ3を用い、消光プローブ1の代わりに、前記蛍光プローブ3の検出配列の固相面側の基端から24塩基の部分と相補的な核酸配列を有し、消光分子が、固相面側の基端とは反対側の基端に結合している消光プローブ3を用いる以外は、実施例1と同様にして、蛍光プローブ3と消光プローブ3とからなる核酸配列計測用デバイス3を製造した(図8)。なお、蛍光プローブ3において蛍光分子は、消光プローブ3における消光分子の固相面からの高さと同じ高さの位置で、蛍光プローブ3に結合させた。
表1に、核酸配列計測用デバイス3の蛍光プローブと消光プローブの長さ、及び蛍光プローブが消光プローブのどの部分で結合するかを示す。
次に、上記で製造された核酸配列計測用デバイス3のオフセット光を測定した。その結果を図9に示す。
(比較例1)
蛍光プローブ1の代わりに、リンカー配列と、核酸配列の長さ28の検出配列とを有し、蛍光分子が、固相面側の基端とは反対側の基端に結合した蛍光プローブ1’を用い、消光プローブ1の代わりに、リンカー配列と、前記蛍光プローブ1’の検出配列の固相面側の基端とは反対側の基端側の核酸配列(以下、先端配列ともいう)の一部と相補的で、核酸配列の長さ28の核酸配列とを有し、消光分子が、固相面側の基端とは反対側の基端に結合した、消光プローブ1’を用いる以外は、実施例1と同様にして、蛍光プローブ1’と消光プローブ1’とからなる核酸配列計測用デバイス1’を製造した(図8)。
表1に、核酸配列計測用デバイス1’の蛍光プローブと消光プローブの長さ、及び蛍光プローブが消光プローブのどの部分で結合するかを示す。
次に、上記で製造された核酸配列計測用デバイス1’のオフセット光を測定した。その結果を図9に示す。
(比較例2)
蛍光プローブ1の代わりに、リンカー配列と、核酸配列の長さ33の検出配列を有し、蛍光分子が、固相面側の基端とは反対側の基端に結合した蛍光プローブ2’を用い、消光プローブ1の代わりに、リンカー配列と、先端配列の一部が蛍光プローブ2’と相補的で、核酸配列の長さが28の核酸配列とを有し、消光分子が、固相面側の基端とは反対側の基端に結合した消光プローブ2’を用いる以外は、実施例1と同様にして、蛍光プローブ2’と消光プローブ2’とからなる核酸配列計測用デバイス2’を製造した(図8)。
表1に、核酸配列計測用デバイス2’の蛍光プローブと消光プローブの長さ、及び蛍光プローブが消光プローブのどの部分で結合するかを示す。
次に、上記で製造された核酸配列計測用デバイス2’のオフセット光を測定した。その結果を図9に示す。
(比較例3)
蛍光プローブ1の代わりに、リンカー配列と、核酸配列の長さ24の検出配列とを有し、蛍光分子が、固相面側の基端とは反対側の基端に結合した蛍光プローブ3’を用い、消光プローブ1の代わりに、リンカー配列と、蛍光プローブ3’の先端配列の一部と相補的で、核酸配列の長さ24の核酸配列とを有し、消光分子が、固相面側の基端とは反対側の基端に結合した、消光プローブ3’を用いる以外は、実施例1と同様にして、蛍光プローブ3’と消光プローブ3’とからなる核酸配列計測用デバイス3’を製造した(図8)。
表1に、核酸配列計測用デバイス3’の蛍光プローブと消光プローブの長さ、及び蛍光プローブが消光プローブのどの部分で結合するかを示す。
次に、上記で製造された核酸配列計測用デバイス3’のオフセット光を測定した。その結果を図9に示す。
Figure 0007035972000001
図9に示すように、リンカー配列を除く消光プローブの全核酸配列部分で、蛍光プローブが消光プローブと結合する、実施例1~3の核酸配列計測用デバイスは、消光プローブの先端配列の一部で、蛍光プローブが消光プローブと結合する、比較例1~3の核酸配列用計測用デバイスと比較して、オフセット光が低かった。その結果、実施例1~3の核酸配列計測用デバイスは、検出可能な最小光量を小さくすることができ、検出感度を向上させることができることが確認された。
また、オフセット光は、実施例1~3及び比較例1~3のいずれでも、蛍光分子と消光分子の位置がお互いに近い方が、蛍光分子と消光分子の位置が離れている方よりも低かったが、蛍光分子と消光分子の位置が離れている実施例2の核酸配列計測用デバイスは、同様に蛍光分子と消光分子の位置が離れている比較例2の核酸配列計測用デバイスと比較して、オフセット光を低くすることができた。
10 蛍光プローブ
11 蛍光分子
12 相補配列
13 検出配列
14 リンカー
20 消光プローブ
21 消光分子
22 相補配列
23 検出配列
24 リンカー
60 蛍光読取装置
100 固相面

Claims (13)

  1. ハイブリダイゼーションによりサンプルに含まれる特定の核酸配列を有するターゲットを計測する核酸配列計測用デバイスにおいて、
    蛍光分子が先端又は途中の位置に付加された蛍光プローブと、
    前記蛍光プローブと結合した時に、消光分子が前記蛍光プローブの蛍光分子と近接する位置に付加された消光プローブと、
    前記蛍光プローブおよび前記消光プローブのそれぞれの基端が固定される固相面を有する基板と、
    を備え、
    前記蛍光プローブまたは前記消光プローブの一方は、前記ターゲットの核酸配列と相補的な核酸配列を有する検出配列を有し、
    前記蛍光プローブまたは前記消光プローブの他方は、前記検出配列の一部の核酸配列と相補的な核酸配列(以下、相補配列ともいう)を有し、前記相補配列の固相面側の基端から、他の基端までの核酸配列が、前記検出配列の一部と相補的であり、
    前記検出配列を有する前記蛍光プローブまたは消光プローブは、前記相補配列を有する前記蛍光プローブまたは消光プローブよりも核酸配列が長く、
    前記蛍光プローブおよび前記消光プローブは、前記蛍光分子に接近した前記消光分子により前記蛍光分子が呈する蛍光が消光される位置関係となるように、それぞれの基端が固相面に固定され
    前記相補配列の固相面側の基端から他の基端までの核酸配列が、前記検出配列の固相面側の基端から前記相補配列の前記他の基端に対応する部分までの核酸配列と相補的である、
    ことを特徴とする核酸配列計測用デバイス。
  2. 前記ターゲットと前記検出配列とのハイブリダイゼーションが生じていない場合、前記蛍光プローブと消光プローブとの結合が維持されることにより、前記蛍光分子に接近した前記消光分子により前記蛍光分子が呈する蛍光が消光され、
    前記ターゲットと前記検出配列とのハイブリダイゼーションが生じた場合、前記蛍光プローブと消光プローブとの結合が解消されることにより、前記消光分子から離れた前記蛍光分子が蛍光を呈することを特徴とする請求項1に記載の核酸配列計測用デバイス。
  3. 前記消光プローブが、前記検出配列を有することを特徴とする請求項1または2に記載の核酸配列計測用デバイス。
  4. 前記基板が平板であり、前記固相面が、前記板の一平面であることを特徴とする請求項1~3のいずれか1項に記載の核酸配列計測用デバイス。
  5. 前記基板がビーズであり、前記固相面が、前記ビーズの表面である、請求項1~3のいずれか1項に記載の核酸配列計測用デバイス。
  6. 前記消光プローブの数が前記蛍光プローブの数よりも多いことを特徴とする請求項1~5のいずれか1項に記載の核酸配列計測用デバイス。
  7. 前記蛍光プローブの数が前記消光プローブの数よりも多いことを特徴とする、請求項1~5のいずれか1項に記載の核酸配列計測用デバイス。
  8. 前記消光分子の数が前記蛍光分子の数よりも多いことを特徴とする請求項1~7のいずれか1項に記載の核酸配列計測用デバイス。
  9. 前記蛍光分子の数と前記消光分子の数との比が2:3である、請求項8に記載の核酸配列計測用デバイス。
  10. 前記蛍光分子が付加される前記所定の位置は、前記蛍光プローブの途中であることを特徴とする請求項1~9のいずれか1項に記載の核酸配列計測用デバイス。
  11. 前記消光分子が付加される前記所定の位置は、前記消光プローブの途中であることを特徴とする請求項1~9のいずれか1項に記載の核酸配列計測用デバイス。
  12. 前記蛍光分子が付加される前記所定の位置が複数あることを特徴とする、請求項1~11のいずれか1項に記載の核酸配列計測用デバイス。
  13. 前記消光分子が付加される前記所定の位置が複数あることを特徴とする、請求項1~11のいずれか1項に記載の核酸配列計測用デバイス。
JP2018211188A 2018-11-09 2018-11-09 核酸配列計測用デバイス Active JP7035972B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018211188A JP7035972B2 (ja) 2018-11-09 2018-11-09 核酸配列計測用デバイス
PCT/JP2019/041142 WO2020095657A1 (ja) 2018-11-09 2019-10-18 核酸配列計測用デバイス
CN201980072820.2A CN112996899A (zh) 2018-11-09 2019-10-18 核酸序列检测用装置
US17/291,010 US20220042080A1 (en) 2018-11-09 2019-10-18 Nucleic acid sequence measurement device
EP19882653.9A EP3878938A4 (en) 2018-11-09 2019-10-18 NUCLEIC ACID SEQUENCE MEASURING DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018211188A JP7035972B2 (ja) 2018-11-09 2018-11-09 核酸配列計測用デバイス

Publications (2)

Publication Number Publication Date
JP2020074726A JP2020074726A (ja) 2020-05-21
JP7035972B2 true JP7035972B2 (ja) 2022-03-15

Family

ID=70612365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018211188A Active JP7035972B2 (ja) 2018-11-09 2018-11-09 核酸配列計測用デバイス

Country Status (5)

Country Link
US (1) US20220042080A1 (ja)
EP (1) EP3878938A4 (ja)
JP (1) JP7035972B2 (ja)
CN (1) CN112996899A (ja)
WO (1) WO2020095657A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7327360B2 (ja) 2020-11-19 2023-08-16 横河電機株式会社 熱処理システム、核酸抽出システム、核酸分析システム
JP7463951B2 (ja) 2020-11-19 2024-04-09 横河電機株式会社 処理装置、核酸抽出システム、核酸分析システム、および処理方法
JP7409354B2 (ja) 2021-07-30 2024-01-09 横河電機株式会社 核酸計測デバイス、その設計方法、製造方法及び計測方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002506654A (ja) 1998-03-18 2002-03-05 ノーベンバー・アクチェンゲゼルシャフト・ゲゼルシャフト・フュール・モレクラーレ・メディツィーン ヌクレオチド配列を検出するための方法と装置
JP2002506656A (ja) 1998-03-18 2002-03-05 ノヴェンバー・アクティエンゲゼルシャフト・ゲゼルシャフト・フューア・モレクラーレ・メディツィン タグの同定方法及び同定装置
JP2004511227A (ja) 2000-10-10 2004-04-15 ザ パブリック ヘルス リサーチ インスティテュート オブ ザ シティ オブ ニューヨーク,インコーポレーテッド 核酸の同種内検出用の特異的二本鎖プローブおよびその適用方法
JP2015043702A (ja) 2013-08-27 2015-03-12 横河電機株式会社 核酸配列計測方法、核酸配列計測用デバイス、核酸配列計測用デバイスの製造方法および核酸配列計測装置
US20180320223A1 (en) 2015-03-19 2018-11-08 Quandx Inc. Ided double-stranded probes for detection of nucleic acid and uses of same

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928906B2 (ja) 1978-10-31 1984-07-17 富士ゼロックス株式会社 自動原稿搬送装置
CN1088261A (zh) * 1992-07-17 1994-06-22 阿普罗精内斯有限公司 使用3sr扩增法原位检测核酸
US20040009514A1 (en) * 2000-02-28 2004-01-15 Frutos Anthony G. Assembly for label-free detection of hybridized nucleic targets
NZ521593A (en) * 2000-03-29 2004-11-26 Lgc Ltd Hybridisation beacon and method of rapid sequence detection and discrimination
JP3965872B2 (ja) * 2000-06-27 2007-08-29 日鉄環境エンジニアリング株式会社 新規な定量的多型解析方法
US20100105050A1 (en) * 2000-09-07 2010-04-29 Transnetyx, Inc. Real time detection of genetic sequences using a bipartite probe
EP1377686A4 (en) * 2001-04-12 2007-07-25 Caliper Life Sciences Inc SYSTEMS AND METHOD FOR GENETIC ANALYSIS WITH HIGH THROUGHPUT
DE10158516A1 (de) * 2001-11-29 2003-06-12 Focusgenomics Gmbh Verfahren zum Nachweis von Hybridisierungsereignissen in Nukleinsäuren
JP4460228B2 (ja) * 2002-04-22 2010-05-12 日鉄環境エンジニアリング株式会社 核酸の新規測定方法
EP1717313A4 (en) * 2003-09-22 2007-11-14 Univ Kyoto NUCLEIC ACID PROBE, NUCLEIC ACID CHIP, METHOD FOR DETECTION OF TARGET NUCLEIC ACID, METHOD FOR DETECTING MEDICINE, APPARATUS FOR DETECTING TARGET NUCLEIC ACID, AND GENE DIAGNOSTIC METHOD
JP2006191856A (ja) * 2005-01-13 2006-07-27 Canon Inc 標的核酸の検出方法
JP4639935B2 (ja) * 2005-05-09 2011-02-23 ソニー株式会社 物質間の相互作用を検出する表面、dnaチップその他のセンサーチップ、プローブ、並びにバックグラウンドノイズ蛍光の低減方法
JP4538746B2 (ja) * 2005-09-21 2010-09-08 横河電機株式会社 バイオチップおよび分析装置
EP1777298A1 (en) * 2005-10-13 2007-04-25 Roche Diagnostics GmbH Multiplexed solid-phase nucleic acid amplification assay
CN101292045A (zh) * 2005-10-20 2008-10-22 株式会社日立制作所 核酸分析方法
PT1911852E (pt) * 2006-10-12 2009-10-09 Bio Rad Pasteur Sondas de cadeia dupla para a detecção fluorescente de ácidos nucleicos
DE102007031137A1 (de) * 2007-06-13 2008-12-18 Attomol Gmbh Molekulare Diagnostika Verfahren und Sonden/Primärsystem zum "real time" Nachweis eines Nukleinsäuretargets
CN102341696B (zh) * 2009-03-03 2013-12-11 万迈医疗仪器有限公司 用于高灵敏度荧光分析的检测系统和方法
JP2011135824A (ja) * 2009-12-28 2011-07-14 Nagoya Univ 標的核酸の検出方法
US20140248611A1 (en) * 2011-06-16 2014-09-04 Nippon Steel & Sumikin Eco-Tech Corporation Nucleic acid probe for assaying nucleic acids
US20170260576A1 (en) * 2012-02-24 2017-09-14 Seegene, Inc. Td probe and its uses
JP6661171B2 (ja) * 2014-03-31 2020-03-11 国立研究開発法人理化学研究所 蛍光性標識一本鎖核酸及びその用途
CN107109398B (zh) * 2014-12-19 2020-08-18 荣研化学株式会社 单核苷酸多态性检测用寡核苷酸探针及单核苷酸多态性检测方法
CN113832215B (zh) * 2016-02-09 2024-02-06 荣研化学株式会社 对目标核酸进行检测的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002506654A (ja) 1998-03-18 2002-03-05 ノーベンバー・アクチェンゲゼルシャフト・ゲゼルシャフト・フュール・モレクラーレ・メディツィーン ヌクレオチド配列を検出するための方法と装置
JP2002506656A (ja) 1998-03-18 2002-03-05 ノヴェンバー・アクティエンゲゼルシャフト・ゲゼルシャフト・フューア・モレクラーレ・メディツィン タグの同定方法及び同定装置
JP2004511227A (ja) 2000-10-10 2004-04-15 ザ パブリック ヘルス リサーチ インスティテュート オブ ザ シティ オブ ニューヨーク,インコーポレーテッド 核酸の同種内検出用の特異的二本鎖プローブおよびその適用方法
JP2015043702A (ja) 2013-08-27 2015-03-12 横河電機株式会社 核酸配列計測方法、核酸配列計測用デバイス、核酸配列計測用デバイスの製造方法および核酸配列計測装置
US20180320223A1 (en) 2015-03-19 2018-11-08 Quandx Inc. Ided double-stranded probes for detection of nucleic acid and uses of same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, Xiangjun et. al.,Microbead-Based Platform for Multiplex Detection of DNA and Protein,ACS APPLIED MATERIALS & INTERFACES,2017年,Vol.9,pp.9462-9469,特にABSTRACT, Table 1, Scheme 1, Figure 1-2, p.9465-9466のTarget DNA Detection with the Microbead-Based Platformの項

Also Published As

Publication number Publication date
WO2020095657A1 (ja) 2020-05-14
CN112996899A (zh) 2021-06-18
JP2020074726A (ja) 2020-05-21
EP3878938A1 (en) 2021-09-15
US20220042080A1 (en) 2022-02-10
EP3878938A4 (en) 2022-08-10

Similar Documents

Publication Publication Date Title
JP7035972B2 (ja) 核酸配列計測用デバイス
JP5928906B2 (ja) 核酸配列計測方法、核酸配列計測用デバイス、核酸配列計測用デバイスの製造方法および核酸配列計測装置
JP6910145B2 (ja) プライマー伸長によるスライドガラス上での染色
AU2013271401B2 (en) Aptamer-based multiplexed assays
JPH05236997A (ja) ポリヌクレオチド捕捉用チップ
JP2016525344A5 (ja)
JP2008532003A5 (ja)
US20210318296A1 (en) Intramolecular kinetic probes
KR100450817B1 (ko) Dna 마이크로어레이 스팟의 품질관리방법
RU2410439C1 (ru) Способ абляции целевой днк с поверхности днк-биочипов
CN1672050A (zh) 荧光偏振检测
WO2014067390A1 (zh) 一种针对蚊媒病毒的悬浮芯片多重非诊断性检测引物及方法
WO2014153948A1 (zh) 针对蜱传病原的悬浮芯片多重检测引物及方法
US11293055B2 (en) Nucleic acid detection kit and nucleic acid detection method using nanoparticles
US20030073091A1 (en) Use of generic oligonucleotide microchips to detect protein-nucleic acid interactions
WO2016073594A1 (en) Thermally resolved molecule assays
US20210395804A1 (en) Sensitive and multiplexed detection of nucleic acids and proteins for large scale serological testing
EP4215620A1 (en) Nucleic acid sequence measurement method and nucleic acid sequence measurement kit
JP6962596B2 (ja) Pcr産物の検出方法
KR101356396B1 (ko) Pcr 수행 없는 소위성 주형 반복 유전자 타이핑법
KR20010016720A (ko) 여러 종류의 디엔에이 프로브가 부착된 마이크로 웰 플레이트를 사용하여 핵산 시료내 특정 핵산을 검출하는 방법
JP3706636B2 (ja) 核酸ハイブリッド体の検出方法、プローブ、標的核酸の有無の確認方法、および2本鎖核酸ハイブリッド内のミスマッチの検出方法
CN115558708A (zh) 一种基于光敏凝胶的痕量核酸检测方法
JP2022114583A (ja) ターゲット計測用デバイスの製造方法、及びターゲット計測用キット
JP2006029954A (ja) 生体関連物質検出用プローブ及び生体関連物質検出用固相化担体、並びに生体関連物質検出方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211201

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211201

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211209

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220214

R150 Certificate of patent or registration of utility model

Ref document number: 7035972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150