JP7022196B2 - 車両搭載機器の制御装置 - Google Patents

車両搭載機器の制御装置 Download PDF

Info

Publication number
JP7022196B2
JP7022196B2 JP2020505634A JP2020505634A JP7022196B2 JP 7022196 B2 JP7022196 B2 JP 7022196B2 JP 2020505634 A JP2020505634 A JP 2020505634A JP 2020505634 A JP2020505634 A JP 2020505634A JP 7022196 B2 JP7022196 B2 JP 7022196B2
Authority
JP
Japan
Prior art keywords
sensor
vehicle
current
electrode terminal
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020505634A
Other languages
English (en)
Other versions
JPWO2019176299A1 (ja
Inventor
光昭 中田
光雄 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Astemo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Astemo Ltd filed Critical Hitachi Astemo Ltd
Publication of JPWO2019176299A1 publication Critical patent/JPWO2019176299A1/ja
Application granted granted Critical
Publication of JP7022196B2 publication Critical patent/JP7022196B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0484Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures for reaction to failures, e.g. limp home
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/001Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup
    • B62D5/003Backup systems, e.g. for manual steering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Description

本発明は、冗長化構成された車両搭載機器の制御装置に関する。
車両搭載機器には、高い安全性や信頼性が要求されており、近年の自動運転の実用化に向けた取り組みに伴い、これらの要求がより強くなっている。その対策の一つとして、故障や障害が発生しても制御を継続できるように、システムを冗長構成で構築することが行われている。
例えば、特許文献1では、二組の巻線組を有するモータを、二系統の駆動回路で制御することにより、仮に一方の系統が故障してもモータの駆動を継続できるようにしている。
また、特許文献2では、二つの電源から二系統の給電経路を介して二系統の駆動回路にそれぞれ電力を供給し、二組の巻線組を有するモータを制御することで、より信頼性を高めている。
特開2015-61458号公報 特開2017-99170号公報
ところで、特許文献2のように、独立した二つの電源系統を備えるモータ制御装置は、単一の電源を用いるものに比べて信頼性を向上できるものの、グランド電位の変動(ばらつき)により系統間の情報伝達に制約が生ずる。また、車両のグランド部にアース電流を出力できなくなった場合には、一系統の機能を全て喪失することになる。このため、各系統におけるグランド電位の変動を考慮した回路設計をせざるを得ず、設計の難易度が高くなる、という課題がある。
一方、二つの電源系統でグランド部を共通化すると、一方の系統に障害が発生してアース電流が出力できなくなると、他方の系統のグランド部にアース電流が集中し、グランドハーネス等の許容電流量を超えてしまう可能性がある。
本発明は上記のような事情に鑑みてなされたもので、その目的とするところは、グランド電位の変動を抑制しつつ、車両のグランド部に異常があった場合に、アース電流の偏りによる損傷を抑制できる、車両搭載機器の制御装置を提供することにある。
本発明の車両搭載機器の制御装置は、その一つの態様において、アクチュエータを備え、第1、第2電源から第1、第2給電経路で、それぞれに対応する第1、第2マイクロプロセッサと第1、第2駆動回路に電力を供給し、第1、第2の駆動回路でアクチュエータを駆動するように構成されている。この制御装置は、第1、第2電源の各負極が共通のグランド部に電気的に接続されるとともに、車両のグランド部と第1、第2電源の各負極との間の電流または電圧をそれぞれ検出する第1、第2センサが設けられている。そして、第1、第2マイクロプロセッサは、第1、第2センサの出力信号に基づき、当該装置の異常を検出する。プロセッサは、第1センサまたは第2センサの出力信号に基づき、当該装置の異常を検出するとき、第1マイクロプロセッサは、第1指令信号の出力を継続し、かつ第2マイクロプロセッサは、第2指令信号の出力を継続し、アクチュエータに流れる電流値を制限するように、第1指令信号または第2指令信号を補正することを特徴とする。
本発明によれば、第1、第2マイクロプロセッサと第1、第2駆動回路を、共通のグランド部に接続することで、グランド電位の変動を抑制できる。また、第1、第2センサを設けてアース電流を監視し、アース電流の異常を検出した場合に、第1、第2駆動回路に設けられたインバータにそれぞれ、第1、第2指令信号を出力してモータ制御量を調整することで、車両のグランド部に異常があった場合においても、アース電流の偏りによる損傷を抑制できる。
車両搭載機器の一例として、電動パワーステアリング装置を示す斜視図である。 本発明の実施形態に係る車両搭載機器の制御装置を示しており、EPS制御用ECUへの電源供給に関係する要部を抽出して示すブロック図である。 図2に示したEPS制御用ECUの構成例を示すブロック図である。 図3に示したEPS制御用ECUにおけるアース電流監視用センサの構成例を示すブロック図である。 図2のEPS制御用ECUにおけるグランドハーネス断線時のアース電流の変化について説明するためのブロック図である。 図2のEPS制御用ECUにおけるグランドハーネス断線時の制御例について説明するためのブロック図である。 図2のEPS制御用ECUにおける第1系統の駆動ユニットで実行されるアース電流の異常検出動作を示すフローチャートである。 図2のEPS制御用ECUにおける第2系統の駆動ユニットで実行されるアース電流の異常検出動作を示すフローチャートである。 図2のEPS制御用ECUにおける第1系統の駆動ユニットで実行される過電流検出動作を示すフローチャートである。 図2のEPS制御用ECUにおける第2系統の駆動ユニットで実行される過電流検出動作を示すフローチャートである。 図2のEPS制御用ECUにおける第1系統の駆動ユニットで実行されるショート検出動作を示すフローチャートである。 図2のEPS制御用ECUにおける第2系統の駆動ユニットで実行されるショート検出動作を示すフローチャートである。
以下、本発明の実施形態について図面を参照して説明する。
図1は、本発明が適用される車両搭載機器の一例として、電動パワーステアリング(EPS:Electric Power Steering)装置の概略構成を示している。電動パワーステアリング装置10は、ラックハウジング11、モータハウジング12、二組の巻線組を有する電動モータ(三相ブラシレスモータ)13、減速機14、ピニオン15、ダストブーツ16,16、タイロッド17,17および操舵機構18等を備える。
ラックハウジング11には、図示しないピニオンシャフトとラックバー、およびステアリングシャフト19の一部が収容されている。また、モータハウジング12には、電動モータ13とEPS制御用ECU(Electronic Control Unit)3が収容されている。そして、電動モータ13の回転が減速機14で減速されて操舵機構18に伝達され、車両の運転者による操舵力をアシストして操舵輪に付与する。
操舵機構18は、ステアリングシャフト19、ピニオンシャフトおよびトーションバーを有する。ステアリングシャフト19は、ステアリングホイールと一体に回転する。操舵軸20には、操舵機構18の操舵状態を検出する運転状態検出センサとしての操舵トルクセンサ21と舵角センサ22が取り付けられている。これら操舵トルクセンサ21と舵角センサ22はそれぞれ、一対ずつ設けられている。操舵トルクセンサ21は、トーションバーの捩じれ量に基づいて操舵機構18に発生する操舵トルク(トーションバートルク)を検出する。舵角センサ22は、ステアリング操作時の舵角を検出する。
ピニオンシャフトは、トーションバーを介してステアリングシャフト19と接続されている。ダストブーツ16,16は、ゴム等を用いて蛇腹環状に形成されている。ダストブーツ16,16の車幅方向外側端は、タイロッド17,17の車幅方向内側端に固定されている。これら一対のタイロッド17,17の端部は、上記ラックバーの両端に接続されている。
図2は、本発明の実施形態に係る車両搭載機器の制御装置であり、EPS制御用ECU3の電源供給に関係する要部を抽出して示している。このEPS制御用ECU3は、第1、第2系統の駆動ユニットEPP1,EPP2を備えた冗長化構成になっている。EPS制御用ECU3はハウジング1を有し、第1、第2系統の駆動ユニットEPP1,EPP2がハウジング1の電子機器収容空間1aに収容されている。
ハウジング1には、第1正極端子2a-1、第1負極端子2a-2、第2正極端子2b-1、および第2負極端子2b-2を備えるコネクタ部が設けられている。第1正極端子2a-1は、電源ハーネスPH1を介して第1電源(バッテリー)4aの正極4aPに接続され、第1負極端子2a-2はグランドハーネスGH1を介して第1電源4aの負極4aMおよび車両の接地部材(車体グランド)9に接続されている。また、第2正極端子2b-1は、電源ハーネスPH2を介して第2電源4bの正極4bPに接続され、第2負極端子2b-2はグランドハーネスGH2を介して第2電源4bの負極4bMおよび車両の接地部材9に接続されている。上記コネクタ部は、第1正極端子2a-1の電流容量よりも第1負極端子2a-2の電流容量が大きく、かつ第2正極端子2b-1の電流容量よりも第2負極端子2b-2の電流容量が大きくなっている。換言すれば、電源ハーネスPH1よりもグランドハーネスGH1の方が太く、かつ電源ハーネスPH2よりもグランドハーネスGH2の方が太くなっている。
第1系統の駆動ユニットEPP1には、第1マイクロプロセッサ5a、第1駆動回路6a、および第1センサ7aが含まれている。また、第2系統の駆動ユニットEPP2には、第2マイクロプロセッサ5b、第2駆動回路6b、および第2センサ7bが含まれている。
第1マイクロプロセッサ5aは、第1電源4aの正極4aPとグランド部(共通グランド)8との間に接続されて第1電源4aから電力が供給され、第1駆動回路6aを制御する第1指令信号CS1を出力する。第2マイクロプロセッサ5bは、第2電源4bとグランド部8との間に接続されて第2電源4bから電力が供給され、第2駆動回路6bを制御する第2指令信号CS2を出力する。
第1、第2マイクロプロセッサ5a,5bはそれぞれ、第1センサ7aまたは第2センサ7bの出力信号DS1,DS2に基づき当該装置の異常を検出するもので、不揮発性メモリを有する記憶部5c,5dを備えている。これらの記憶部5c,5dは、第1または第2マイクロプロセッサ5aまたは5bがコネクタ部に異常があると判断したときに、その故障履歴を記録する。
第1駆動回路6aは、第1電源4aの正極4aPとグランド部8との間に接続され、第1電源4aから電力が供給される。この第1駆動回路6aは電動モータ(アクチュエータ)13を駆動制御する第1インバータを含んでいる。第2駆動回路6bは、第2電源4bの正極4bPとグランド部8との間に接続され、第2電源4bから電力が供給される。この第2駆動回路6bは電動モータ13を駆動制御する第2インバータを含んでいる。
グランド部8は、導電材料で形成され、第1、第2マイクロプロセッサ5a,5bと第1、第2駆動回路6a,6bの共通グランドになっている。
図3は、図2に示したEPS制御用ECU3の構成例を示している。このEPS制御用ECU3は、プリント基板上に実装される論理回路部3aと、メタルプリント基板上に実装される電力回路部3bとを有する。論理回路部3aは第1、第2電源4a,4bからそれぞれ供給された外部電源電圧を、電源IC等により降圧して生成した内部電源電圧で動作し、電力回路部3bは第1、第2電源4a,4bからそれぞれ供給される外部電源電圧で動作する。ここで、メタルプリント基板は、発熱量の大きいパワー系デバイスの放熱対策と熱による電子部品の信頼性対策を行うために用いている。
論理回路部3aはプロセッサとして働き、図2における第1、第2マイクロプロセッサ5a,5bに対応する。電力回路部3bは、図2における第1、第2駆動回路6a,6bに対応する。論理回路部3aと電力回路部3bは、一点鎖線DLを境界として第1系統の駆動ユニットEPP1と第2系統の駆動ユニットEPP2に分かれている。
第1マイクロプロセッサ5aは、第1マイクロコントローラ(本例ではデュアルコアCPU)32、プリドライバ33、CPUモニタ34および仮想モータ位置検出器(インダクタンス検出器)35等で構成される。第2マイクロプロセッサ5bは、第2マイクロコントローラ(本例ではデュアルコアCPU)36、プリドライバ37、CPUモニタ38および仮想モータ位置検出器(インダクタンス検出器)39等で構成される。
第1駆動回路6aは、第1インバータ40と3シャント方式の第1電流検出部42を備える。この電流検出部42は、モータ相電流センサおよび一次電流センサとして用いられる。第2駆動回路6bは、第2インバータ41と3シャント方式の第2電流検出部43を備える。この電流検出部43は、モータ相電流センサおよび一次電流センサとして用いられる。
更に、第1インバータ40のグランド部と第1負極端子2a-2との間には、アース電流監視用の第1センサ7aが設けられ、この第1センサ7aで検出した電流または電圧がマイクロコントローラ32に供給される。また、第2インバータ41のグランド部と第2負極端子2b-2との間には、第2センサ7bが設けられ、この第2センサ7bで検出した電流または電圧がマイクロコントローラ36に供給される。
第1、第2マイクロコントローラ32,36はそれぞれ、EPSのアシスト制御の演算、モータ電流のコントロール、機能構成要素の異常検出、および安全状態への移行処理等を行うものである。第1、第2マイクロコントローラ32,36にはそれぞれ、内部動作電源48,49から電源電圧が印加される。CPUモニタ34,38は、マイクロコントローラ32,36に発生した異常を検出するもので、異常と判断されたとき、マイクロコントローラ32,36への電源供給を遮断する機能を持っている。また、プリドライバ33,37はそれぞれ、マイクロコントローラ32,36からの指令に基づいて、インバータ40,41中の駆動素子を駆動する。
インバータ40,41はそれぞれ、電動モータ13へ電流を流すための複数の駆動素子で構成され、プリドライバ33,37からの指令信号CS1,CS2に基づいて作動する。これらインバータ40,41からの駆動電流に応じて、二系統の巻線組を有する電動モータ13が駆動されて操舵力をアシストするためのモータトルクを発生する。
電流検出部42,43は、アシスト制御から求めた電動モータ13での必要トルクを出力するために、モータ制御で必要な電流値が目標どおり出ているかモニタする機能と、1次電流(第1、第2電源4a,4bから駆動ユニットEPP1,EPP2への取り込み電流)をモニタする機能を備える。
駆動ユニットEPP1の第1操舵センサ23a(操舵トルクセンサ21aと舵角センサ22a)には、論理回路部3aの内部動作電源45から電源電圧が印加され、検出出力は第1、第2マイクロコントローラ32,36にそれぞれ供給される。また、駆動ユニットEPP2の第2操舵センサ23b(操舵トルクセンサ21bと舵角センサ22b)には、論理回路部3aの内部動作電源47から電源電圧が印加され、検出出力は第2、第1マイクロコントローラ36,32にそれぞれ供給される。
ここで、操舵トルクセンサ21aと舵角センサ22a、および操舵トルクセンサ21bと舵角センサ22bには、デュアルコアCPUにそれぞれ対応するデュアルセンサを用いることができる。第1、第2マイクロコントローラ32,36は、マイコン間通信(CPU間通信)を行ってステータス信号とセンサ信号の送受信を行うマイコン間通信部を備える。
電動モータ13には、モータ回転角センサ(デュアルモータ位置センサ)50a,50bがプリント基板上に実装されて設けられている。このモータ回転角センサ50a,50bには、論理回路部3aに設けられた内部動作電源51,52から電源電圧が印加され、検出出力がそれぞれ第1、第2マイクロコントローラ32,36に供給される。
第1マイクロコントローラ32は、電流検出部42で検出した3相電流、仮想モータ位置検出器35で検出したロータの回転位置、モータ回転角センサ50a,50bで検出したモータ回転角、および第1センサ7aの出力信号DS1等に基づいて、PWM(Pulse Width Modulation)制御を行うためのパルス信号を生成する。第1マイクロコントローラ32から出力されるパルス信号は、プリドライバ33に供給される。
また、第2マイクロコントローラ36は、電流検出部43で検出した相電流、仮想モータ位置検出器39で検出したロータの回転位置、モータ回転角センサ50a,50bで検出したモータ回転角、および第2センサ7bの出力信号DS2等に基づいて、PWM制御を行うためのパルス信号を生成する。第2マイクロコントローラ36から出力されるパルス信号は、プリドライバ37に供給される。
第1マイクロコントローラ32の動作はCPUモニタ34によって検証され、第2マイクロコントローラ36の動作はCPUモニタ38によって検証される。これらCPUモニタ34,38は、例えばウォッチドッグと呼ばれるタイマで構成されており、第1、第2マイクロコントローラ32,36が正常か否かを常に監視している。
プリドライバ33,37から出力される第1、第2指令信号(PWM信号)CS1,CS2はそれぞれ、インバータ40,41に供給され、電動モータ13がインバータ40,41からの電流に応じて駆動される。電動モータ13の駆動時の3相電流が電流検出部42,43でそれぞれ検出され、検出信号がフィードバック制御を行うために第1、第2マイクロコントローラ32,36に供給される。第1、第2マイクロコントローラ32,36では、3相電流に基づいて第1、第2電源4a,4bからの総電流量が算出される。また、仮想モータ位置検出器35,39により、ステータコイルの中性点電圧に基づいてロータの回転位置が検出され、検出信号が第1、第2マイクロコントローラ32,36に供給される。仮想モータ位置検出器35,39の検出信号は、電流検出部42,43およびモータ回転角センサ50a,50bの検出出力の検証用とセンサ故障時のバックアップ用に用いられる。
図4は、図3に示したEPS制御用ECU3における第1、第2センサ7a,7bの構成例を示している。これらのセンサ7a,7bは、アース電流監視用である。第1センサ7aは、インバータ40のグランド部8と第1負極端子2a-2との間に接続された抵抗器R1で構成される。この抵抗器R1の両端の電圧が、第1センサ7aの出力信号DS1としてマイクロコントローラ32に供給されて、アース電流が検出される。また、抵抗器R1の両端の電圧レベルに応じて過電流やハーネスのショートが検出される。第2センサ7bも第1センサ7aと同様であり、インバータ41のグランド部8と第2負極端子2b-2との間に接続された抵抗器R2で構成される。この抵抗器R2の両端の電圧が、第2センサ7bの出力信号DS2としてマイクロコントローラ36に供給されて、アース電流が検出される。また、抵抗器R2の両端の電圧レベルに応じて過電流やハーネスのショートが検出される。
次に、図2のEPS制御用ECU3におけるグランドハーネス断線時のアース電流の変化について、図5により説明する。電源4bの負極4bMと第2負極端子2b-2との間のグランドハーネスGH2が、×印で示すように断線したと仮定する。この断線によって、第2系統の駆動ユニットEPP2にはアース電流が流れなくなり、第2センサ7bの出力信号DS2(電流モニタ値)がゼロになる。この出力信号DS2が第2マイクロプロセッサ5bに供給されると、グランドハーネスGH2の異常(断線)が検出される。
一方、電源4aの負極4aMと第1負極端子2a-2との間のグランドハーネスGH1には、二系統分の電流が流れる(電流値が2倍になる)。このアース電流の増大を第1センサ7aで検出すると、第1マイクロプロセッサ5aに出力信号DS1が供給されて、グランドハーネスGH1の異常(過電流)が検出される。
図6は、図2のEPS制御用ECU3におけるグランドハーネスGH2の断線時の制御例について説明するためのものである。図5に示したように、グランドハーネスGH2が断線し、第1、第2センサ7a,7bでグランドハーネスGH1,GH2を流れるアース電流の異常が検出された場合には、第1マイクロプロセッサ5aと第2マイクロプロセッサ5bとのマイコン間通信により、グランドハーネスGH2の断線、あるいはグランドハーネスの車体アースからの外れと判定される。
グランドハーネスGH2の断線、あるいはグランドハーネスの車体アースからの外れが検出されると、第1マイクロプロセッサ5aから第1駆動回路6aを制御する第1指令信号CS1を出力して、モータ電流の印加量を例えば最大1/2に制限する。また、第2マイクロプロセッサ5bから第2駆動回路6bを制御する第2指令信号CS2を出力して、モータ電流の印加量を例えば最大1/2に制限する。このように、第1、第2マイクロプロセッサ5a,5bから第1、第2指令信号CS1,CS2の出力を継続する。
これによって、断線していないグランドハーネスGH1に流れるアース電流は、最大でも一系統分の電流を超えないようになる。従って、グランド電位の変動を抑制しつつ、車両のグランド部に異常があった場合に、アース電流の偏りによるグランドハーネスの焼損等を抑制できる。
また、一方のグランドハーネスが断線しても、二系統の駆動ユニットEPP1,EPP2で電動モータ13の駆動を継続できるので、故障検出性を保ったままアシスト出力を低下させることができ、より安全な方法で故障を通知できる。しかも、二系統の駆動ユニットEPP1,EPP2のマイクロプロセッサ5a,5b、駆動回路6a,6bおよびセンサ7a,7bが作動状態であるので、電動モータ13の異常等グランドハーネス以外に故障が発生した場合にもマイクロプロセッサ5a,5bで対処でき、二重の安全性が得られる。
次に、上述したアース電流の異常検出動作、過電流検出動作、およびショート検出動作について図7乃至図12のフローチャートにより詳しく説明する。図7は第1系統の駆動ユニットEPP1で実行されるアース電流の異常検出動作、図8は第2系統の駆動ユニットEPP2で実行されるアース電流の異常検出動作を示すフローチャートである。
図7に示すように、第1系統の駆動ユニットEPP1では、まず、第1マイクロプロセッサ5a中に設けられているアース電流の異常カウンタが規定値以上か否か判定する。そして、グランドハーネスGH1に、規定値以上の回数アース電流の異常が発生した場合にハーネスの異常と判定する(ステップS1)。規定値未満の場合には、第1センサ7aによりアース電流を検出し、電流値が所定値を超えているか否かにより異常検出判断を行う(ステップS2)。
ステップS2でアース電流が所定値を超えていない、すなわち正常と判断すると、第1マイクロプロセッサ5aにおける異常カウンタのクリア処理を実行する(ステップS3)。
続いて、マイコン間通信により、駆動ユニットEPP2側の第2マイクロプロセッサ5bから異常確定フラグの受信処理を実行する(ステップS4)。第1マイクロプロセッサ5aは、第2マイクロプロセッサ5bから異常確定フラグを受信すると、モータ印加電流の上限値の設定処理を実行する(ステップS5)。この設定処理は、第1マイクロプロセッサ5aで制御されている電動モータ13の巻線組13aに流れる電流値を制限するもので、第1指令信号CS1により駆動回路6aから出力される電流量がハーネスの許容電流を超えないように補正する。具体的には、異常確定フラグを受信すると、第1マイクロプロセッサ5aは、巻線組13aに流れる電流値(モータ電流印加量)を、例えば1/2に制限する。
次に、記憶部5cに、モータ印加電流異常の故障履歴の記録処理を行って(ステップS6)終了する。
一方、ステップS1でアース電流の異常カウンタが規定値以上であると判定された場合には、グランドハーネスGH1の異常と判定し、ステップS7に移動してアース電流の異常確定フラグ設定処理を実行する。次に、第1マイクロプロセッサ5aは、第2系統の駆動ユニットEPP2の第2マイクロプロセッサ5bに対して、アース電流の異常確定フラグ送信処理を実行する(ステップS8)。これによって、第2マイクロプロセッサ5bに第1系統の駆動ユニットEPP1のグランドハーネスGH1で異常が発生したことが送信される。このように、第1、第2系統の駆動ユニットEPP1,EPP2間で協調してグランドハーネスの許容電流を超えないように電流制限を行う。
その後、ステップS6に移動し、記憶部5cに、モータ印加電流異常の故障履歴の記録処理を行って終了する。
また、ステップS2でアース電流が異常であると判断された場合には、第1マイクロプロセッサ5aにより異常カウンタの加算処理が実行される(ステップS9)。その後、ステップS6に移動し、記憶部5cに、モータ印加電流異常の故障履歴の記録処理を行って終了する。
図8に示すように、第2系統の駆動ユニットEPP2では、まず、第2マイクロプロセッサ5b中に設けられているアース電流の異常カウンタが規定値以上か否か判定する。そして、グランドハーネスGH2に、規定値以上の回数アース電流の異常が発生した場合にハーネスの異常と判定する(ステップS11)。規定値未満の場合には、第2センサ7bによりアース電流を検出し、電流値が所定値を超えているか否かにより異常検出判断を行う(ステップS12)。
ステップS12でアース電流が所定値を超えていない、すなわち正常と判断すると、第2マイクロプロセッサ5bにおける異常カウンタのクリア処理を実行する(ステップS13)。
続いて、マイコン間通信により、駆動ユニットEPP1側の第1マイクロプロセッサ5aから異常確定フラグの受信処理を実行する(ステップS14)。第2マイクロプロセッサ5bは、第1マイクロプロセッサ5aから異常確定フラグを受信すると、モータ印加電流の上限値の設定処理を実行する(ステップS15)。この設定処理は、第2マイクロプロセッサ5bで制御されている電動モータ13の巻線組13bに流れる電流値を制限するもので、第2指令信号CS2により駆動回路6bから出力される電流量がハーネスの許容電流を超えないように補正する。具体的には、異常確定フラグを受信すると、第2マイクロプロセッサ5bは、巻線組13bに流れる電流値(モータ電流印加量)を、例えば1/2に制限する。
次に、記憶部5dに、モータ印加電流異常の故障履歴の記録処理を行って(ステップS16)終了する。
一方、ステップS11でアース電流の異常カウンタが規定値以上であると判定された場合には、グランドハーネスGH2の異常と判定し、ステップS17に移動してアース電流の異常確定フラグ設定処理を実行する。次に、第2マイクロプロセッサ5bは、第1系統の駆動ユニットEPP1の第1マイクロプロセッサ5aに対して、アース電流の異常確定フラグ送信処理を実行する(ステップS18)。これによって、第1マイクロプロセッサ5aに第2系統の駆動ユニットEPP2のグランドハーネスGH2で異常が発生したことが送信される。このように、第1、第2系統の駆動ユニットEPP1,EPP2間で協調してグランドハーネスの許容電流を超えないように電流制限を行う。
その後、ステップS16に移動し、記憶部5dに、モータ印加電流異常の故障履歴の記録処理を行って終了する。
また、ステップS12でアース電流が異常であると判断された場合には、第2マイクロプロセッサ5bにより異常カウンタの加算処理が実行される(ステップS19)。その後、ステップS16に移動し、記憶部5dに、モータ印加電流異常の故障履歴の記録処理を行って終了する。
このように、第1、第2センサ7a,7bでアース電流の異常検出を検出し、第1、第2駆動回路6a,6bに設けられたインバータ40,41にそれぞれ、第1、第2指令信号CS1,CS2を出力してモータ制御量を調整することで、車両のグランド部8に異常があった場合に、アース電流の偏りによる損傷を抑制できる。
また、ステップS1,S2、およびステップS11,S12では、第1、第2マイクロプロセッサ5a,5bによって車体ハーネスの異常を判断するので、新たなハードウェアを追加する必要がなく、ソフトウェアで処理することが可能である。
更に、ステップS4,S8、およびステップS14,S18では、第1、第2系統の駆動ユニットEPP1,EPP2間で協調して電流制限を行うので、より確実な動作継続が可能となる。
更にまた、ステップS5およびステップS15では、モータ印加電流の上限値を設定するので、ハーネスの焼損防止と動作継続を両立できると共に、モータ印加電流が低い領域においてより機能残存ができる。
加えて、ステップS6およびステップS16では、記憶部5c,5dにそれぞれ故障履歴を記録するので、この故障履歴をサービスツールで読み出すことでグランドハーネスの異常が発見できるため、サービス性を向上できる。
図9は第1系統の駆動ユニットEPP1で実行される過電流検出動作、図10は第2系統の駆動ユニットEPP2で実行される過電流検出動作を示すフローチャートである。例えば、操舵トルクセンサ21a,21bの故障により操舵トルクが不足していると判定され、フィードバック制御でモータ電流を増加させ続けるような異常(過電流)が発生した場合に対処するためのものである。
図9に示すように、第1系統の駆動ユニットEPP1では、まず、第1マイクロプロセッサ5aにより、過電流の異常カウンタが規定値以上か否か判定する。そして、グランドハーネスGH1に、規定値以上の回数、電源4aから供給された電流とアース電流に有意差が発生した場合に、EPS制御用ECU3内の過電流発生と判定する(ステップS21)。規定値未満の場合には、第1センサ7aによりアース電流を検出し、第1マイクロプロセッサ5aで電源4aから供給された電流とアース電流との差に基づき、過電流が流れているか否か判断することにより異常検出判断を行う(ステップS22)。
ステップS22で過電流が流れていない、すなわち正常と判断すると、第1マイクロプロセッサ5aにおける異常カウンタのクリア処理を実行する(ステップS23)。
続いて、マイコン間通信により、駆動ユニットEPP2側の第2マイクロプロセッサ5bから異常確定フラグの受信処理を実行する(ステップS24)。第1マイクロプロセッサ5aは、第2マイクロプロセッサ5bから異常確定フラグを受信すると、安全状態移行処理を実行する(ステップS25)。この安全移行処理は、例えば、第1マイクロプロセッサ5aで制御されている電動モータ13の巻線組13aに流れる電流値を制限するもので、第1指令信号CS1により駆動回路6aから出力される電流量がハーネスの許容電流を超えないように補正する。具体的には、異常確定フラグを受信すると、第1マイクロプロセッサ5aは、巻線組13aに流れる電流値(モータ電流印加量)を、例えば1/2に制限する。
次に、記憶部5cに、過電流異常の故障履歴の記録処理を行って(ステップS26)終了する。
一方、ステップS21で過電流の異常カウンタが規定値以上であると判定された場合には、過電流が流れたと判定し、ステップS27に移動して過電流異常確定フラグ設定処理を実行する。次に、第1マイクロプロセッサ5aは、第2系統の駆動ユニットEPP2の第2マイクロプロセッサ5bに対して、過電流異常確定フラグ送信処理を実行する(ステップS28)。これによって、第2マイクロプロセッサ5bに第1系統の駆動ユニットEPP1のグランドハーネスGH1に過電流異常が発生したことが送信される。このように、ステップS24およびS28においては、第1、第2系統の駆動ユニットEPP1,EPP2間で協調して許容電流を超えないように電流制限を行う。
その後、ステップS26に移動し、記憶部5cに、過電流異常の故障履歴の記録処理を行って終了する。
また、ステップS22で過電流が流れていると判断された場合には、第1マイクロプロセッサ5aにより異常カウンタの加算処理が実行される(ステップS29)。その後、ステップS26に移動し、記憶部5cに、過電流異常の故障履歴の記録処理を行って終了する。
図10に示すように、第2系統の駆動ユニットEPP2では、まず、第2マイクロプロセッサ5bにより、過電流の異常カウンタが規定値以上か否か判定する。そして、グランドハーネスGH2に、規定値以上の回数、電源4bから供給された電流とアース電流に有意差が発生した場合には、EPS制御用ECU3内の過電流発生と判定する(ステップS31)。規定値未満の場合には、第2センサ7bによりアース電流を検出し、第2マイクロプロセッサ5bで電源4bから供給された電流とアース電流との差に基づき、過電流が流れているか否か判断することにより異常検出判断を行う(ステップS32)。
ステップS32で過電流が流れていない、すなわち正常と判断すると、第2マイクロプロセッサ5bにおける異常カウンタのクリア処理を実行する(ステップS33)。
続いて、マイコン間通信により、駆動ユニットEPP1側の第1マイクロプロセッサ5aから異常確定フラグの受信処理を実行する(ステップS34)。第2マイクロプロセッサ5bは、第1マイクロプロセッサ5aから異常確定フラグを受信すると、安全状態移行処理を実行する(ステップS35)。この安全移行処理は、例えば、第2マイクロプロセッサ5bで制御されている電動モータ13の巻線組13bに流れる電流値を制限するもので、第2指令信号CS2により駆動回路6bから出力される電流量がハーネスの許容電流を超えないように補正する。具体的には、異常確定フラグを受信すると、第2マイクロプロセッサ5bは、巻線組13bに流れる電流値(モータ電流印加量)を、例えば1/2に制限する。
次に、記憶部5dに、過電流異常の故障履歴の記録処理を行って(ステップS36)終了する。
一方、ステップS31で過電流の異常カウンタが規定値以上であると判定された場合には、過電流が流れたと判定し、ステップS37に移動して過電流異常確定フラグ設定処理を実行する。次に、第2マイクロプロセッサ5bは、第1系統の駆動ユニットEPP1の第1マイクロプロセッサ5aに対して、過電流異常確定フラグ送信処理を実行する(ステップS38)。これによって、第1マイクロプロセッサ5aに第2系統の駆動ユニットEPP2のグランドハーネスGH2に過電流異常が発生したことが送信される。このように、ステップS34およびS38においては、第1、第2系統の駆動ユニットEPP1,EPP2間で協調して許容電流を超えないように電流制限を行う。
その後、ステップS36に移動し、記憶部5dに、過電流異常の故障履歴の記録処理を行って終了する。
また、ステップS32で過電流が流れていると判断された場合には、第2マイクロプロセッサ5bにより異常カウンタの加算処理が実行される(ステップS39)。その後、ステップS26に移動し、記憶部5dに、過電流異常の故障履歴の記録処理を行って終了する。
このようにして、第1、第2マイクロプロセッサ5a,5bで過電流を検出し、第1、第2駆動回路6a,6bに設けられたインバータにそれぞれ、第1、第2指令信号CS1,CS2を出力してモータ制御量を調整することで、車両のグランド部8に異常が発生して過電流が流れた場合に、アース電流の偏りによる損傷を抑制できる。
また、ステップS21,S22およびステップS31,S32では、アース電流を監視する第1、第2センサ7a,7bを用いて過電流も検出するので、過電流検出用のセンサを別途設ける必要はない。
図11は第1系統の駆動ユニットEPP1で実行されるショート検出動作、図12は第2系統の駆動ユニットEPP2で実行されるショート検出動作を示すフローチャートである。
図11に示すように、第1系統の駆動ユニットEPP1では、まず、第1マイクロプロセッサ5aにより、ショート異常のカウンタが規定値以上か否か判定する(ステップS41)。ショート異常は、第1駆動回路6aからの出力に応じて電動モータ13の巻線組13aに流れる電流値と、第1センサ7aで検出された電流値との比較に基づき、第1マイクロプロセッサ5aで判断する。そして、規定値以上の回数、電源4aから供給された電流とアース電流との間に有意差が生じた場合には、EPS制御用ECU3内にショートが発生したと判定する。規定値未満の場合には、一次電流の推定処理を実行する(ステップS42)。この際、入力電流には、モータ相電流に基づく推定値を用いる。次に、ショートの異常検出判断を行う(ステップS43)。
ステップS43でショートしていない、すなわち正常と判断すると、第1マイクロプロセッサ5aにおける異常カウンタのクリア処理を実行する(ステップS44)。
続いて、マイコン間通信により、駆動ユニットEPP2側の第2マイクロプロセッサ5bから異常確定フラグの受信処理を実行する(ステップS45)。第2マイクロプロセッサ5bから異常確定フラグを受信すると、ショート異常が発生している第2系統のモータ電流の遮断処理を実行する(ステップS46)。すなわち、電動モータ13の巻線組13bに流れる電流値を遮断するように、第2マイクロプロセッサ5bから第2指令信号CS2を出力して制御する。
次に、記憶部5cに、ショート異常の故障履歴の記録処理を行って(ステップS47)終了する。
一方、ステップS41でショート異常のカウンタが規定値以上であると判定された場合には、ショートが発生したと判断し、ステップS48に移動してショート異常確定フラグ設定処理を実行する。次に、第1マイクロプロセッサ5aは、第2系統の駆動ユニットEPP2の第2マイクロプロセッサ5bに対して、ショート異常の確定フラグ送信処理を実行する(ステップS49)。これによって、第2マイクロプロセッサ5bに第1系統の駆動ユニットEPP1のショート発生が送信される。このように、ステップS45およびS49においては、第1、第2系統の駆動ユニットEPP1,EPP2間で協調して電流制限を行う。
その後、ステップS47に移動し、記憶部5cに、ショート異常の故障履歴の記録処理を行って終了する。
また、ステップS43でショート異常であると判断された場合には、第1マイクロプロセッサ5aにより異常カウンタの加算処理が実行される(ステップS50)。その後、ステップS47に移動し、記憶部5cに、ショート異常の故障履歴の記録処理を行って終了する。
図12に示すように、第2系統の駆動ユニットEPP2では、まず、第2マイクロプロセッサ5bにより、ショート異常のカウンタが規定値以上か否か判定する(ステップS51)。ショート異常は、第2駆動回路6bからの出力に応じて電動モータ13の巻線組13bに流れる電流値と、第2センサ7bで検出された電流値との比較に基づき、第2マイクロプロセッサ5bで判断する。そして、規定値以上の回数、電源4bから供給された電流とアース電流との間に有意差が生じた場合には、EPS制御用ECU3内にショートが発生したと判定する。規定値未満の場合には、一次電流の推定処理を実行する(ステップS52)。この際、入力電流には、モータ相電流に基づく推定値を用いる。次に、ショートの異常検出判断を行う(ステップS53)。
ステップS53でショートしていない、すなわち正常と判断すると、第2マイクロプロセッサ5bにおける異常カウンタのクリア処理を実行する(ステップS54)。
続いて、マイコン間通信により、駆動ユニットEPP1側の第1マイクロプロセッサ5aから異常確定フラグの受信処理を実行する(ステップS55)。第1マイクロプロセッサ5aから異常確定フラグを受信すると、ショート異常が発生している第1系統のモータ電流の遮断処理を実行する(ステップS56)。すなわち、電動モータ13の巻線組13aに流れる電流値を遮断するように、第1マイクロプロセッサ5aから第1指令信号CS1を出力して制御する。
次に、記憶部5dに、ショート異常の故障履歴の記録処理を行って(ステップS57)終了する。
一方、ステップS51でショート異常のカウンタが規定値以上であると判定された場合には、ショートが発生したと判断し、ステップS58に移動してショート異常確定フラグ設定処理を実行する。次に、第2マイクロプロセッサ5bは、第1系統の駆動ユニットEPP1の第1マイクロプロセッサ5aに対して、ショート異常の確定フラグ送信処理を実行する(ステップS59)。これによって、第1マイクロプロセッサ5aに第2系統の駆動ユニットEPP2のショート発生が送信される。このように、ステップS55およびS59においては、第1、第2系統の駆動ユニットEPP1,EPP2間で協調して電流制限を行う。
その後、ステップS57に移動し、記憶部5dに、ショート異常の故障履歴の記録処理を行って終了する。
また、ステップS53でショート異常であると判断された場合には、第2マイクロプロセッサ5bにより異常カウンタの加算処理が実行される(ステップS60)。その後、ステップS57に移動し、記憶部5dに、ショート異常の故障履歴の記録処理を行って終了する。
このようにして、第1、第2マイクロプロセッサ5a,5bでショートを検出し、第1、第2駆動回路6a,6bに設けられたインバータにそれぞれ、第1、第2指令信号CS1,CS2を出力してショートが発生している系統のモータ電流を遮断することで、EPS制御用ECU3内にショートが発生した場合においても、アース電流の偏りによる損傷を抑制できる。
また、ステップS41,S51では、EPS制御用ECU3によってショートの発生を検出することで、ソフトウェアで対処が可能となる場合がある。
更に、ステップS42,S52では、モータ相電流に基づく推定値を用いることで、ショートを検出するための専用のセンサは不要となる。
更にまた、ステップS46,S58では、ショートが発生している系統のモータ電流を遮断するので、ハーネスの焼損を防止できる。この場合、ショートが発生した系統の駆動ユニットの動作を継続させることで、マイクロプロセッサ5aやセンサ7aの継続利用が可能となり、機能を残存させることができる。
上述したように、本発明によれば、第1、第2駆動回路と第1、第2マイクロプロセッサを、第1、第2電源の共通のグランド部に接続することで、グランド電位の変動を抑制できる。グランド側を共通化することで、一方の系統のグランドハーネスが断線した場合でも動作を継続することが可能となる。また、グランド電位のばらつきがなくなるため、制御用回路間の通信手段の設計自由度が改善する。
更に、車両のグランド部に印加されるアース電流の異常を検出する第1、第2センサを設けてアース電流を監視する。そして、アース電流の異常を検出した場合に、第1、第2駆動回路に設けられたインバータに指令信号を出力してモータ制御量を調整することで、車両のグランド部に異常があった場合においても、アース電流の偏りによる損傷を抑制できる。このように、各系統に接続するグランドハーネスの断線、車体アースからの外れを検出できるため、一方のハーネスにアース電流が集中して焼損するのを抑制できる。
従って、複数の電源系統から電源供給を受ける車載装置において、車体ハーネスの異常に対するロバスト性が向上することで、故障発生後においても故障診断の精度の維持または向上が可能となり、特に自動運転を行う車両において、自動運転時の故障発生時にも動作継続による車両制御の維持が可能な高信頼性システムとすることができる。これによって、機能残存性、サービス性、信頼性の向上にも寄与できる。
尚、上述した実施形態では、EPS制御用ECUを例に取って説明したが、他の車両搭載機器にも同様に適用可能なのは勿論である。
また、第1、第2系統の駆動ユニットを備えた冗長化構成について説明したが、第3系統以上の駆動ユニットを備えた冗長化構成にも適用できる。
更に、図7乃至図12のフローチャートでは、アース電流の異常検出動作、過電流検出動作、およびショート検出動作を別々に行う場合について説明したが、グランド部と負極端子の間の電流値または電圧値に基づき、連続的に過電流、ショートおよびアース電流の異常を検出することもできる。もちろん、必要に応じて幾つかの検出動作を選択して実行しても良い。
更にまた、アース電流監視用の第1、第2センサ7a,7bを、インバータ40,41とグランド間に接続された抵抗器R1,R2で構成したが、グランド部と第1、第2負極端子2a-2,2b-2の間の電流または電圧を検出できれば、この構成に限られるものではない。例えば、1シャント方式の電流検出部を備えている場合には、この電流検出部をアース電流監視用センサに用いることができる。この場合には、アース電流監視用センサを別途設ける必要はない。
ここで、上記実施形態から把握し得る技術的思想について、以下にその効果と共に記載する。
車両搭載機器の制御装置は、その一つの態様において、アクチュエータ(電動モータ)13を備え、第1電源4aおよび第2電源4bから電力が供給されるものであって、
電子機器収容空間1aを有するハウジング1と、
コネクタ部であって、前記ハウジング1に設けられており、第1正極端子2a-1、第1負極端子2a-2、第2正極端子2b-1、および第2負極端子2b-2を備え、前記第1正極端子2a-1は、前記第1電源4aの正極4aPと接続可能であり、前記第1負極端子2a-2は、前記第1電源4aの負極4aMまたは車両の接地部材9と接続可能であり、前記第2正極端子2b-1は、前記第2電源4bの正極4bPと接続可能であり、前記第2負極端子2b-2は、前記第2電源4bの負極4bMまたは車両の接地部材9と接続可能である、前記コネクタ部と、
グランド部8であって、前記電子機器収容空間1aに収容され、導電材料で形成されている、前記グランド部と、
第1センサ7aであって、前記グランド部8と前記第1負極端子2a-2の間に設けられ、前記グランド部8と前記第1負極端子2a-2の間の電流または電圧を検出可能な前記第1センサ7aと、
第2センサ7bであって、前記グランド部8と前記第2負極端子2b-2の間に設けられ、前記グランド部8と前記第2負極端子2b-2の間の電流または電圧を検出可能な前記第2センサ7bと、
第1駆動回路6aであって、前記電子機器収容空間1aに収容され、前記第1電源4aの正極4aPと前記グランド部8との間に接続されて前記第1電源4aから電力が供給されており、前記アクチュエータ13を駆動制御する第1インバータ40を含む前記第1駆動回路6aと、
第2駆動回路6bであって、前記電子機器収容空間1aに収容され、前記第2電源4bの正極4bPと前記グランド部8との間に接続されて前記第2電源4bから電力が供給されており、前記アクチュエータ13を駆動制御する第2インバータ41を含む前記第2駆動回路6bと、
プロセッサであって、前記電子機器収容空間1aに収容され、第1マイクロプロセッサ5aと、第2マイクロプロセッサ5bを備え、前記第1センサ7aまたは前記第2センサ7bの出力信号DS1,DS2に基づき、当該装置の異常を検出可能であり、前記第1マイクロプロセッサ5aは、前記第1電源4aの正極4aPと前記グランド部8との間に接続されて前記第1電源4aから電力が供給され、前記第1インバータ40を制御する第1指令信号CS1を出力可能であり、前記第2マイクロプロセッサ5bは、前記第2電源4bの正極4bPと前記グランド部8との間に接続されて前記第2電源4bから電力が供給され、前記第2インバータ41を制御する第2指令信号CS2を出力可能である、前記プロセッサと、
を有することを特徴とする。
上記構成によると、一方の電源系統のマイナス線(グランドハーネスGH1またはGH2)が外れた場合、他方の電源系統のマイナス線(グランドハーネスGH2またはGH1)に電流が集中するが、第1、第2センサ7a,7bによりマイナス線の外れや切断等を検出することで、第1、第2マイクロプロセッサ5a,5bで供給電力の制限等の対策を行うことができる。
また、第1、第2マイクロプロセッサ5a,5bの夫々のグランド部8が独立せず、共通となっているため、グランドレベルが共通となり、マイコン間通信を行う際の設計の自由度が向上する。
車両搭載機器の制御装置の好ましい態様では、前記プロセッサは、前記第1センサ7aまたは前記第2センサ7bの出力信号に基づき、当該装置の異常を検出するとき、前記第1マイクロプロセッサ5aは、前記第1指令信号CS1の出力を継続し、かつ前記第2マイクロプロセッサ5bは、前記第2指令信号CS2の出力を継続することを特徴とする。
上記構成によると、第1、第2マイクロプロセッサ5a,5bの夫々が独立せず、協調して制御を行うため、一方の電源系統のマイナス線(グランドハーネスGH1またはGH2)が外れた場合であっても、第1、第2マイクロプロセッサ5a,5bの両方を継続して使用可能となる。よって、装置の異常時における機能減少量の抑制を図ることができる。
さらに別の好ましい態様では、前記プロセッサは、前記第1センサ7aまたは前記第2センサ7bの出力信号DS1,DS2に基づき、当該装置の異常を検出するとき、前記アクチュエータ13に流れる電流値を制限するように、前記第1指令信号CS1または前記第2指令信号CS2を補正することを特徴とする。
上記構成によると、一方の電源系統のマイナス線(グランドハーネスGH1またはGH2)が外れた場合、他方の電源系統のマイナス線(グランドハーネスGH2またはGH1)に電流が集中するが、電流値を制限することにより、このマイナス線の破損を抑制することができる。尚、電流値の制限方法としては、第1、第2指令信号CS1,CS2によりアクチュエータ13の出力トルクが低下するように補正してもよいし、所定値を超えないようにリミッタ処理を行ってもよい。
さらに別の好ましい態様では、前記プロセッサは、前記第1センサ7aまたは前記第2センサ7bの出力信号に基づき、当該装置の異常を検出するとき、前記コネクタ部の前記第1負極端子2a-2または前記第2負極端子2b-2における接触異常であると判断することを特徴とする。
上記構成によると、第1センサ7aまたは第2センサ7bの出力信号DS1,DS2が過大となったとき、一方の電源系統のマイナス線(グランドハーネスGH1またはGH2)の外れ(接触異常)と判断することにより、異常検出後において適切な処理を行うことができる。
さらに別の好ましい態様では、前記プロセッサは、不揮発性メモリを有する記憶部5c,5dを備え、
前記記憶部5c,5dは、前記第1センサ7aまたは前記第2センサ7bの出力信号DS1,DS2に基づき、前記コネクタ部の前記第1負極端子2a-2または前記第2負極端子2b-2における接触異常であると判断するとき、前記接触異常について記憶することを特徴とする。
上記構成によると、装置の異常について故障履歴として記憶することにより、後の車両整備時における整備性の向上を図ることができる。
さらに別の好ましい態様では、前記プロセッサは、前記第1センサ7aまたは前記第2センサ7bの出力信号DS1,DS2に基づき、前記コネクタ部の前記第1負極端子2a-2または前記第2負極端子2b-2における接触異常であると判断するとき、前記アクチュエータ13に流れる電流値を制限するように、前記第1指令信号CS1または前記第2指令信号CS2を補正することを特徴とする。
上記構成によると、一方の電源系統のマイナス線(グランドハーネスGH1またはGH2)が外れた場合、他方の電源系統のマイナス線(グランドハーネスGH2またはGH1)に電流が集中するため、電流値を制限することにより、このマイナス線の破損を抑制することができる。尚、電流値の制限方法としては、第1、第2指令信号CS1,CS2によりアクチュエータ13の出力トルクが低下するように補正してもよいし、所定値を超えないようにリミッタ処理を行ってもよい。
さらに別の好ましい態様では、前記コネクタ部は、前記第1正極端子2a-1の電流容量よりも前記第1負極端子2a-2の電流容量が大きく、かつ前記第2正極端子2b-1の電流容量よりも前記第2負極端子2b-2の電流容量が大きいことを特徴とする。
上記構成によると、一方の電源系統のマイナス線(グランドハーネスGH1またはGH2)が外れた場合、他方の電源系統のマイナス線(グランドハーネスGH2またはGH1)に電流が集中するため、マイナス線に繋がる第1、第2負極端子2a-2,2b-2の電流容量を大きくしておくことで、第1、第2負極端子2a-2,2b-2の損傷を抑制することができる。尚、マイナス線も同様に電流容量を大きくしておくとよい。一方、第1、第2正極端子2a-1,2b-1の電流容量は、第1、第2負極端子2a-2,2b-2に比べて小さいため、装置の大型化やコストアップを抑制することができる。
さらに別の好ましい態様では、前記第1センサ7aは、前記グランド部8と前記第1負極端子2a-2の間の電流を検出可能であり、前記第2センサ7bは、前記グランド部8と前記第2負極端子2b-2の間の電流を検出可能であることを特徴とする。
上記構成によると、グランド部8とコネクタ部の間に流れる電流値を検出することで、異常検出後において、電流値に応じた対処をすることができる。
さらに別の好ましい態様では、前記プロセッサは、前記第1センサ7aまたは前記第2センサ7bの出力信号DS1,DS2が所定値以上のとき、当該装置の異常と判断することを特徴とする。
上記構成によると、第1、第2センサ7a,7bが過電流の検知も行うことで、別途、過電流検知用の電流センサを設ける必要が無い。
さらに別の好ましい態様では、前記プロセッサは、前記第1駆動回路6aからの出力に応じて前記アクチュエータ13に流れる電流値と前記第1センサ7aの出力信号との比較、または前記第2駆動回路6bからの出力に応じて前記アクチュエータ13に流れる電流値と前記第2センサ7bの出力信号との比較に基づき、前記電子機器収容空間1a内でのショート故障の有無を判断可能であることを特徴とする。
上記構成によると、第1、第2駆動回路6a,6bから出力信号が出力されたとき、通常であれば流れるべき電流値が第1、第2センサ7a,7bで検出されないとき、回路内のショート故障であると判断することができる。
さらに別の好ましい態様では、前記プロセッサは、前記第1指令信号CS1に基づき前記第1駆動回路6aからの出力に応じて前記アクチュエータ13に流れる電流値を推定すると共に、前記第2指令信号CS2に基づき前記第2駆動回路6bからの出力に応じて前記アクチュエータ13に流れる電流値を推定することを特徴とする。
上記構成によると、第1、第2指令信号CS1,CS2に関する情報は、マイクロプロセッサ5a,5b内に存在するため、特にアクチュエータ13に流れる電流値または第1、第2駆動回路6a,6bからの出力信号等を検出する必要が無い。
さらに別の好ましい態様では、前記車両搭載機器は、車両の運転状態に関する情報を検出する運転状態検出センサ(操舵トルクセンサ21および舵角センサ22)を備え、前記プロセッサは、前記運転状態検出センサの出力信号に基づき、前記第1指令信号CS1または前記第2指令信号CS2を演算すると共に、前記第1センサ7aまたは前記第2センサ7bの出力信号に基づき、当該装置の異常を検出するとき、前記第1マイクロプロセッサ5aは、前記運転状態検出センサの出力信号に基づく前記第1指令信号CS1の出力を継続し、かつ前記第2マイクロプロセッサ5bは、前記運転状態検出センサの出力信号に基づく前記第2指令信号CS2の出力を継続することを特徴とする。
上記構成によると、第1、第2マイクロプロセッサ5a,5bの夫々が独立せず、協調して制御を行うため、一方の電源系統のマイナス線(グランドハーネスGH1またはGH2)が外れた場合であっても、運転状態検出センサの出力信号に応じた第1、第2マイクロプロセッサ5a,5bの演算等を継続して使用可能となる。よって、装置の異常時における機能減少量の抑制を図ることができる。
1…ハウジング、1a…電子機器収容空間、2a-1…第1正極端子、2a-2…第1負極端子、2b-1…第2正極端子、2b-2…第2負極端子、3…EPS制御用ECU、4a…第1電源、4b…第2電源、5a…第1マイクロプロセッサ、5b…第2マイクロプロセッサ、5c,5d…記憶部、6a…第1駆動回路、6b…第2駆動回路、7a…第1センサ、7b…第2センサ、8…グランド部(共通グランド)、9…接地部材(車体グランド)、10…電動パワーステアリング装置、13…電動モータ(アクチュエータ)、21,21a,21b…操舵トルクセンサ(運転状態検出センサ)、22,22a,22b…舵角センサ(運転状態検出センサ)、EPP1…第1系統の駆動ユニット、EPP2…第2系統の駆動ユニット、PH1,PH2…電源ハーネス、GH1,GH2…グランドハーネス、CS1…第1指令信号、CS2…第2指令信号、DS1…第1センサの出力信号、DS2…第2センサの出力信号

Claims (10)

  1. 車両搭載機器の制御装置において、前記車両搭載機器は、アクチュエータを備え、第1電源および第2電源から電力が供給されるものであって、
    電子機器収容空間を有するハウジングと、
    コネクタ部であって、前記ハウジングに設けられており、第1正極端子、第1負極端子、第2正極端子、および第2負極端子を備え、
    前記第1正極端子は、前記第1電源の正極と接続可能であり、
    前記第1負極端子は、前記第1電源の負極または車両の接地部材と接続可能であり、
    前記第2正極端子は、前記第2電源の正極と接続可能であり、
    前記第2負極端子は、前記第2電源の負極または車両の接地部材と接続可能である、前記コネクタ部と、
    グランド部であって、前記電子機器収容空間に収容され、導電材料で形成されている、前記グランド部と、
    第1センサであって、前記グランド部と前記第1負極端子の間に設けられ、前記グランド部と前記第1負極端子の間の電流または電圧を検出可能な前記第1センサと、
    第2センサであって、前記グランド部と前記第2負極端子の間に設けられ、前記グランド部と前記第2負極端子の間の電流または電圧を検出可能な前記第2センサと、
    第1駆動回路であって、前記電子機器収容空間に収容され、前記第1電源の正極と前記グランド部との間に接続されて前記第1電源から電力が供給されており、前記アクチュエータを駆動制御する第1インバータを含む前記第1駆動回路と、
    第2駆動回路であって、前記電子機器収容空間に収容され、前記第2電源の正極と前記グランド部との間に接続されて前記第2電源から電力が供給されており、前記アクチュエータを駆動制御する第2インバータを含む前記第2駆動回路と、
    プロセッサであって、前記電子機器収容空間に収容され、第1マイクロプロセッサと、第2マイクロプロセッサを備え、前記第1センサまたは前記第2センサの出力信号に基づき、当該装置の異常を検出可能であり、
    前記第1マイクロプロセッサは、前記第1電源の正極と前記グランド部との間に接続されて前記第1電源から電力が供給され、前記第1インバータを制御する第1指令信号を出力可能であり、
    前記第2マイクロプロセッサは、前記第2電源の正極と前記グランド部との間に接続されて前記第2電源から電力が供給され、前記第2インバータを制御する第2指令信号を出力可能である、前記プロセッサと、を有し、
    前記プロセッサは、前記第1センサまたは前記第2センサの出力信号に基づき、当該装置の異常を検出するとき、前記第1マイクロプロセッサは、前記第1指令信号の出力を継続し、かつ前記第2マイクロプロセッサは、前記第2指令信号の出力を継続し、
    前記アクチュエータに流れる電流値を制限するように、前記第1指令信号または前記第2指令信号を補正することを特徴とする車両搭載機器の制御装置。
  2. 請求項1に記載の車両搭載機器の制御装置において、前記プロセッサは、前記第1センサまたは前記第2センサの出力信号に基づき、当該装置の異常を検出するとき、前記コネクタ部の前記第1負極端子または前記第2負極端子における接触異常であると判断することを特徴とする車両搭載機器の制御装置。
  3. 請求項に記載の車両搭載機器の制御装置において、前記プロセッサは、不揮発性メモリを有する記憶部を備え、
    前記記憶部は、前記第1センサまたは前記第2センサの出力信号に基づき、前記コネクタ部の前記第1負極端子または前記第2負極端子における接触異常であると判断するとき、前記接触異常について記憶することを特徴とする車両搭載機器の制御装置。
  4. 請求項に記載の車両搭載機器の制御装置において、前記プロセッサは、前記第1センサまたは前記第2センサの出力信号に基づき、前記コネクタ部の前記第1負極端子または前記第2負極端子における接触異常であると判断するとき、前記アクチュエータに流れる電流値を制限するように、前記第1指令信号または前記第2指令信号を補正することを特徴とする車両搭載機器の制御装置。
  5. 請求項1に記載の車両搭載機器の制御装置において、前記コネクタ部は、前記第1正極端子の電流容量よりも前記第1負極端子の電流容量が大きく、かつ前記第2正極端子の電流容量よりも前記第2負極端子の電流容量が大きいことを特徴とする車両搭載機器の制御装置。
  6. 請求項1に記載の車両搭載機器の制御装置において、前記第1センサは、前記グランド部と前記第1負極端子の間の電流を検出可能であり、
    前記第2センサは、前記グランド部と前記第2負極端子の間の電流を検出可能であることを特徴とする車両搭載機器の制御装置。
  7. 請求項に記載の車両搭載機器の制御装置において、前記プロセッサは、前記第1センサまたは前記第2センサの出力信号が所定値以上のとき、当該装置の異常と判断することを特徴とする車両搭載機器の制御装置。
  8. 請求項に記載の車両搭載機器の制御装置において、前記プロセッサは、前記第1駆動回路からの出力に応じて前記アクチュエータに流れる電流値と前記第1センサの出力信号との比較、または前記第2駆動回路からの出力に応じて前記アクチュエータに流れる電流値と前記第2センサの出力信号との比較に基づき、前記電子機器収容空間内でのショート故障の有無を判断可能であることを特徴とする車両搭載機器の制御装置。
  9. 請求項に記載の車両搭載機器の制御装置において、前記プロセッサは、前記第1指令信号に基づき前記第1駆動回路からの出力に応じて前記アクチュエータに流れる電流値を推定すると共に、前記第2指令信号に基づき前記第2駆動回路からの出力に応じて前記アクチュエータに流れる電流値を推定することを特徴とする車両搭載機器の制御装置。
  10. 請求項1に記載の車両搭載機器の制御装置において、前記車両搭載機器は、車両の運転状態に関する情報を検出する運転状態検出センサを備え、
    前記プロセッサは、前記運転状態検出センサの出力信号に基づき、前記第1指令信号または前記第2指令信号を演算すると共に、前記第1センサまたは前記第2センサの出力信号に基づき、当該装置の異常を検出するとき、前記第1マイクロプロセッサは、前記運転状態検出センサの出力信号に基づく前記第1指令信号の出力を継続し、かつ前記第2マイクロプロセッサは、前記運転状態検出センサの出力信号に基づく前記第2指令信号の出力を継続することを特徴とする車両搭載機器の制御装置。
JP2020505634A 2018-03-13 2019-01-23 車両搭載機器の制御装置 Active JP7022196B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018045777 2018-03-13
JP2018045777 2018-03-13
PCT/JP2019/001982 WO2019176299A1 (ja) 2018-03-13 2019-01-23 車両搭載機器の制御装置

Publications (2)

Publication Number Publication Date
JPWO2019176299A1 JPWO2019176299A1 (ja) 2020-12-17
JP7022196B2 true JP7022196B2 (ja) 2022-02-17

Family

ID=67908318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020505634A Active JP7022196B2 (ja) 2018-03-13 2019-01-23 車両搭載機器の制御装置

Country Status (5)

Country Link
US (1) US11498614B2 (ja)
JP (1) JP7022196B2 (ja)
CN (1) CN111629954B (ja)
DE (1) DE112019001270T5 (ja)
WO (1) WO2019176299A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111629954B (zh) * 2018-03-13 2022-10-18 日立安斯泰莫株式会社 车辆搭载设备的控制装置
KR102637909B1 (ko) * 2019-01-23 2024-02-19 에이치엘만도 주식회사 전동식 파워 스티어링 시스템의 리던던시 회로

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014187730A (ja) 2013-03-21 2014-10-02 Sanyo Electric Co Ltd 電源システム
JP2017169405A (ja) 2016-03-17 2017-09-21 株式会社ジェイテクト モータ制御装置及び操舵制御装置

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747991B2 (ja) * 1989-05-19 1995-05-24 日産自動車株式会社 電磁バルブ駆動制御装置
JPH07251749A (ja) * 1994-03-16 1995-10-03 Mitsubishi Electric Corp 電動パワーステアリング制御装置
US5945802A (en) * 1996-09-27 1999-08-31 General Electric Company Ground fault detection and protection method for a variable speed ac electric motor
WO1998058833A1 (fr) * 1997-06-20 1998-12-30 Mitsubishi Denki Kabushiki Kaisha Dispositif de direction assistee entraine par un moteur electrique
JP3696384B2 (ja) * 1997-09-16 2005-09-14 本田技研工業株式会社 電動機の駆動装置
JP2006160030A (ja) * 2004-12-06 2006-06-22 Nsk Ltd 電動パワーステアリング装置
JP5017883B2 (ja) * 2006-02-22 2012-09-05 日本精工株式会社 電動パワーステアリング装置
JP2008211910A (ja) * 2007-02-26 2008-09-11 Jtekt Corp モータ制御装置及び電動パワーステアリング装置
JP5181579B2 (ja) * 2007-08-23 2013-04-10 日本精工株式会社 モータの制御装置
JP5012879B2 (ja) * 2009-11-16 2012-08-29 株式会社ジェイテクト モータ制御装置、電動パワーステアリング装置及び車両用操舵装置
JP2012224298A (ja) * 2011-04-22 2012-11-15 Honda Motor Co Ltd 電動パワーステアリング装置
US9397592B2 (en) * 2012-01-27 2016-07-19 Mitsubishi Electric Corporation Motor control device and electric power steering device
JP5653386B2 (ja) * 2012-05-09 2015-01-14 三菱電機株式会社 モータ制御装置およびそれを用いた電動パワーステアリング装置
JP6053651B2 (ja) * 2013-09-20 2016-12-27 日立オートモティブシステムズ株式会社 パワーステアリング装置および車両搭載機器の制御装置
JP6078444B2 (ja) * 2013-09-20 2017-02-08 日立オートモティブシステムズ株式会社 パワーステアリング装置および車両搭載機器の制御装置
JP5904181B2 (ja) 2013-09-20 2016-04-13 株式会社デンソー モータ制御装置
JP6220696B2 (ja) * 2014-02-19 2017-10-25 日立オートモティブシステムズ株式会社 電動モータの駆動制御装置
WO2015125617A1 (ja) * 2014-02-24 2015-08-27 日立オートモティブシステムズステアリング株式会社 車両搭載機器の制御装置およびパワーステアリング装置
JP5943151B2 (ja) * 2014-03-11 2016-06-29 日本精工株式会社 モータ制御装置、これを使用した電動パワーステアリング装置および車両
JP6302727B2 (ja) * 2014-04-10 2018-03-28 日立オートモティブシステムズ株式会社 電動モータの制御装置
JP6298390B2 (ja) * 2014-09-29 2018-03-20 日立オートモティブシステムズ株式会社 電動機駆動制御装置、電動パワーステアリング装置、電動ブレーキ装置、電動ポンプ装置
US10105863B2 (en) * 2015-03-12 2018-10-23 Robert Bosch Tool Corporation System and method for object and operator profiling in an object detection system in a saw
US10099399B2 (en) * 2015-03-12 2018-10-16 Robert Bosch Tool Corporation Object proximity detection in a saw
US10322522B2 (en) * 2015-03-12 2019-06-18 Robert Bosch Tool Corporation Electrical configuration for object detection system in a saw
JP6423955B2 (ja) * 2015-04-08 2018-11-14 日立オートモティブシステムズ株式会社 パワーステアリング装置および車両搭載機器の制御装置
JP6641924B2 (ja) 2015-11-25 2020-02-05 株式会社ジェイテクト モータ制御装置
CN111630773B (zh) * 2018-03-13 2023-11-10 日立安斯泰莫株式会社 车辆搭载设备的控制装置
CN111629954B (zh) * 2018-03-13 2022-10-18 日立安斯泰莫株式会社 车辆搭载设备的控制装置
JP6999480B2 (ja) * 2018-04-12 2022-01-18 日立Astemo株式会社 電子制御装置及びその診断方法
WO2019218097A1 (zh) * 2018-05-14 2019-11-21 Lu Shan 汽车爆胎安全稳定控制系统
JP7131281B2 (ja) * 2018-10-11 2022-09-06 株式会社デンソー 回転検出装置、操舵システム
CN111162715B (zh) * 2018-11-08 2023-09-15 中车永济电机有限公司 一种电力机车用兆瓦级直驱永磁电传动系统
CN109683050A (zh) * 2018-12-26 2019-04-26 南京埃斯顿自动化股份有限公司 一种伺服系统动力电缆断线检测的方法
EP3809588B1 (en) * 2019-02-13 2022-12-28 Nsk Ltd. Power supply current control device, electric actuator product, and electric power steering device
JP7136005B2 (ja) * 2019-05-29 2022-09-13 株式会社デンソー 多相回転機の制御装置
JP7188285B2 (ja) * 2019-06-14 2022-12-13 株式会社デンソー 電源システム
JP7319857B2 (ja) * 2019-08-06 2023-08-02 日立Astemo株式会社 電子制御装置及びその故障検知方法
WO2021117636A1 (ja) * 2019-12-10 2021-06-17 日立Astemo株式会社 電動モータの駆動制御装置
US11685004B2 (en) * 2020-03-13 2023-06-27 Illinois Tool Works Inc. Systems and methods to detect faults in wire feed motor drive circuits

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014187730A (ja) 2013-03-21 2014-10-02 Sanyo Electric Co Ltd 電源システム
JP2017169405A (ja) 2016-03-17 2017-09-21 株式会社ジェイテクト モータ制御装置及び操舵制御装置

Also Published As

Publication number Publication date
CN111629954B (zh) 2022-10-18
CN111629954A (zh) 2020-09-04
DE112019001270T5 (de) 2021-04-01
JPWO2019176299A1 (ja) 2020-12-17
WO2019176299A1 (ja) 2019-09-19
US11498614B2 (en) 2022-11-15
US20200406962A1 (en) 2020-12-31

Similar Documents

Publication Publication Date Title
JP6894041B2 (ja) 車両搭載機器の制御装置
CN112042109B (zh) 电子控制装置及其诊断方法
US11104375B2 (en) Rotary electric machine control device and electric power steering apparatus using the same
CN112351933B (zh) 具有冗余配置的控制单元的机动车辆转向系统
JP6642278B2 (ja) 回転電機制御装置、および、これを用いた電動パワーステアリング装置
US11088532B2 (en) Control device
JP7022196B2 (ja) 車両搭載機器の制御装置
US11541930B2 (en) Rotary electric machine control device
WO2021085228A1 (ja) モータ駆動システム
US11770089B2 (en) Rotary electric machine control device
WO2021085168A1 (ja) モータ駆動システム
JP2020171099A (ja) 電子制御装置
WO2021029405A1 (ja) 制御装置
JP6914003B2 (ja) 電子制御装置
US20240106264A1 (en) Power supply apparatus
JP2021035071A (ja) 回転電機制御装置
JP2021035073A (ja) 回転電機制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220204

R150 Certificate of patent or registration of utility model

Ref document number: 7022196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150