JP7007960B2 - ガスエンジン駆動式空気調和装置 - Google Patents

ガスエンジン駆動式空気調和装置 Download PDF

Info

Publication number
JP7007960B2
JP7007960B2 JP2018046685A JP2018046685A JP7007960B2 JP 7007960 B2 JP7007960 B2 JP 7007960B2 JP 2018046685 A JP2018046685 A JP 2018046685A JP 2018046685 A JP2018046685 A JP 2018046685A JP 7007960 B2 JP7007960 B2 JP 7007960B2
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
outdoor heat
gas engine
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018046685A
Other languages
English (en)
Other versions
JP2019158249A (ja
Inventor
知秀 西川
順一 横山
喜記 山野井
靖史 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Aisin Corp
Original Assignee
Daikin Industries Ltd
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Aisin Seiki Co Ltd, Aisin Corp filed Critical Daikin Industries Ltd
Priority to JP2018046685A priority Critical patent/JP7007960B2/ja
Publication of JP2019158249A publication Critical patent/JP2019158249A/ja
Application granted granted Critical
Publication of JP7007960B2 publication Critical patent/JP7007960B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、ガスエンジン駆動式空気調和装置に関する。
例えば、下記特許文献1に記載されているように、1台の室外機及び複数台の室内機に冷媒を循環させて室内空気の温度を調整するガスエンジン駆動式空気調和装置は知られている。各室内機は、室内空気と冷媒との間で熱伝達を生じさせるための室内熱交換器を備える。室外機は、冷媒を圧縮して吐出する圧縮機、室外空気と冷媒との間で熱伝達を生じさせるための室外熱交換器、室外熱交換器に室外空気を吹き付ける冷却ファン、冷媒の流れを制御するための各種弁を備える。なお、このガスエンジン駆動式空気調和装置の圧縮機がガスエンジンによって回転駆動される。このガスエンジン駆動式空気調和装置は、ガスエンジンを冷却するラジエーターを備える。
ここで、一般に、空気調和装置(室内機)を冷房装置として運転する場合、圧縮機の吸入口側における冷媒の圧力又は飽和温度が比較的低いことが好ましい。一方、空気調和装置(室内機)を暖房装置として運転する場合、圧縮機の吐出口側における冷媒の圧力又は飽和温度が比較的高いことが好ましい。そこで、冷房運転時には、圧縮機の吸入口側における冷媒の圧力又は飽和温度の目標値が比較的低く設定される。そして、圧縮機の吸入口側における冷媒の圧力又は飽和温度の現在値が目標値に近づくように、圧縮機の回転数、各種弁の開度などが調整される。一方、暖房運転時には、圧縮機の吐出口側における冷媒の圧力又は飽和温度の目標値が比較的高く設定される。そして、圧縮機の吐出口側における冷媒の圧力又は飽和温度の現在値が目標値に近づくように、圧縮機の回転数、各種弁の開度などが調整される。
特許文献1のガスエンジン駆動式空気調和装置は、前記複数の室内機のうちのいくつかの室内機を冷房装置として運転するとともに、他のいくつかの室内機を暖房装置として運転可能に構成されている。この場合、圧縮機の吸入口側における冷媒の圧力又は飽和温度の目標値が比較的低く設定されるとともに、圧縮機の吐出口側における冷媒の圧力又は飽和温度の目標値が比較的高く設定される。すなわち、この場合、圧縮機の吸入口側の圧力と吐出口側の圧力との差(冷媒の圧縮比)を比較的大きく保つ必要がある。よって、圧縮機の負荷が比較的高い。
特開2007‐127369号公報
ここで、室外熱交換器用の冷却ファンによって、室外熱交換器のみならず、ラジエーターの放熱フィンにも室外空気が吹き付けられるように構成されれば、ラジエーター用の冷却ファンと室外熱交換器用の冷却ファンとを別々に設ける場合に比べて、室外機の構成を簡略化できる。ここで、例えば、全ての室内機を冷房装置として運転(全冷房運転と呼ぶ)するとき、又は暖房装置として運転する室内機よりも冷房装置として運転する室内機の方が多い(冷房メイン運転と呼ぶ)とき、室外熱交換器が凝縮器として運転される。これらの場合、室外熱交換器にて冷媒が凝縮し易い運転条件下(例えば低温環境下)では、圧縮機の吐出口側における冷媒の圧力又は飽和温度が比較的低下する。全冷房運転では、圧縮機の吐出口側における冷媒の圧力又は飽和温度が比較的低下しても、冷房室内の快適性には影響がない。しかし、冷房メイン運転では、圧縮機の吐出口側における冷媒の圧力又は飽和温度が比較的低下すると、暖房室内の快適性が損なわれる虞がある。そこで、冷却ファンの回転数を低下させて室外熱交換器への送風量を低減させることにより、冷媒の凝縮を少し抑制して、圧縮機の吐出口側における冷媒の圧力又は飽和温度を適切な値に保つことができる。しかし、上記のように、冷却ファンを室外熱交換器及びラジエーターに共用した場合に冷却ファンの回転数を低下させると、ガスエンジンの冷却効率が低下する。そのため、ガスエンジンの回転数を低下させなければならなくなる。つまり、圧縮機による冷媒の圧縮比を低下させざるを得なくなり、結果として、圧縮機の吐出口側における冷媒の圧力又は飽和温度がさらに低下してしまう。
本発明は、1台又は複数台の室外機と複数台の室内機とを備え、冷房室内及び暖房室内を快適に保つことができるガスエンジン駆動式空気調和装置を提供することを目的とする。なお、下記本発明の各構成要件の記載においては、本発明の理解を容易にするために、実施形態の対応箇所の符号を括弧内に記載しているが、本発明の各構成要件は、実施形態の符号によって示された対応箇所の構成に限定解釈されるべきものではない。
上記目的を達成するために、本発明の特徴は、1台又は複数台の室外機及び複数台の室内機に冷媒を循環させて室内空気の温度を調整するガスエンジン駆動式空気調和装置(1)であって、前記冷媒と前記室内空気との間で熱伝達を生じさせる複数の室内熱交換器(21)と、前記冷媒を吸入するとともに圧縮して吐出する圧縮機(11)と、前記圧縮機を駆動するガスエンジン(12)と、放熱器(131)を備え、前記放熱器と前記ガスエンジンに冷却液を循環させて前記ガスエンジンを冷却するラジエータ(13)と、前記冷媒と室外空気との間で熱伝達を生じさせる室外熱交換器(17)と、前記ラジエーターの放熱器及び前記室外熱交換器に室外空気を吹き付ける冷却ファン(18)と、前記冷媒の流れをそれぞれ制御する複数の弁(15,16,1a,1b)と、前記圧縮機の吸入口側における前記冷媒に関する物理量を表す低圧側物理量の現在値が、所定の低圧側物理量の目標値に一致し、且つ前記圧縮機の吐出口側における前記冷媒に関する物理量を表す高圧側物理量の現在値(TPHP)が所定の高圧側物理量の目標値(TTHP)にそれぞれ一致するように前記ガスエンジンの回転数及び前記複数の弁の開度を制御する制御装置(CT)と、を備え、前記制御装置は、前記室外熱交換器を凝縮器として運転する際、前記高圧側物理量の現在値、及び前記ラジエーターの冷却液の温度の現在値に基づいて、前記冷却ファンを制御するとともに、前記室外熱交換器の伝熱面積を変更する、ガスエンジン駆動式空気調和装置としたことにある。
この場合、前記室外熱交換器は、伝熱面積の異なる第1室外熱交換器及び第2室外熱交換器から構成され、前記制御装置は、前記高圧側物理量の現在値、及び前記ラジエーターの冷却液の温度の現在値に基づいて、前記第1室外熱交換器又は前記第2室外熱交換器のうちのいずれか一方に前記冷媒を流通させるとよい。
また、この場合、前記高圧側物理量の現在値が所定値(TTH)より小さいとき、前記室外熱交換器の伝熱面積を減少させてもよい。
本発明に係るガスエンジン駆動式空気調和装置によれば、ガスエンジンの冷却を促進する必要がある場合であって、且つ室外熱交換器における冷媒の凝縮を抑制する必要がある場合には、冷却ファンの回転数を増大させるとともに、室外熱交換器の伝熱面積を小さく設定することができる。これによれば、ガスエンジンを適切に冷却してガスエンジンの回転数を維持しつつ、冷媒の凝縮を抑制して高圧側物理量を目標値に近づけることができる。よって、本発明によれば、冷房メイン運転において、冷房室内及び暖房室内の快適性を保つことができる。
本発明の一実施形態に係るガスエンジン駆動式空気調和装置の概略構成を示す回路図であり、冷房メイン運転の第1モードにおける冷媒の流れを示す回路図である。 冷房メイン運転の第2モードにおける冷媒の流れを示す回路図である。 室外熱交換器及び冷却ファン制御処理のメインルーチンを示すフローチャートである。 室外熱交換器及び冷却ファン制御処理の第1のサブルーチン(処理A)を示すフローチャートである。 室外熱交換器及び冷却ファン制御処理の第2のサブルーチン(処理B)を示すフローチャートである。 室外熱交換器及び冷却ファン制御処理の第3のサブルーチン(処理C)を示すフローチャートである。 室外熱交換器及び冷却ファン制御処理の第4のサブルーチン(処理D)を示すフローチャートである。 本発明の変形例に係る室外熱交換器及び冷却ファン制御処理のフローチャートである。
以下、本発明の一実施形態に係るガスエンジン駆動式空気調和装置1について説明する。ガスエンジン駆動式空気調和装置1は、図1及び図2に示すように、1台の室外機10と複数台の室内機(室内機20A,20B,・・・)とを備える。また、ガスエンジン駆動式空気調和装置1は、室外機10、室内機20A,20B,・・・を循環する冷媒の流路としての冷媒管30を備える。つまり、室外機10、室内機20A,20B,・・・の各構成部品が、冷媒管30を構成する複数の管で接続されている。また、ガスエンジン駆動式空気調和装置1は、室外機10、室内機20A,20B,・・・を制御する制御装置CTを備える。室外機10、室内機20A,20B,・・・内の装置の構成は周知の空気調和装置と同様である。以下、室外機10、室内機20A,20B,・・・の構成について簡単に説明しておく。
室外機10は、圧縮機11、ガスエンジン12、ラジエーター13、オイルセパレーター14、第1四方切替弁15、第2四方切替弁16、室外熱交換器17(第1室外熱交換器171及び第2室外熱交換器172)、冷却ファン18、第1膨張弁1a、第2膨張弁1b、レシーバー1c、ブリッジバルブ1d、過冷却コイル1e、アキュムレーター1f及び逆止弁1gを備える。本実施形態では、圧縮機11として、スクロール式圧縮機を採用している。圧縮機11は吸入口及び吐出口を有する。圧縮機11は、吸入口から低圧ガス状の冷媒を吸入し、吸入した冷媒を圧縮して吐出口から吐出する。圧縮機11とガスエンジン12の回転駆動軸が図示しないクラッチ装置、駆動ベルトなどを介して接続されている。ガスエンジン12の回転駆動力が圧縮機11に伝達されて、圧縮機11が駆動される。ガスエンジン12の本体部には、冷却水の循環経路(パイプ又は孔)が設けられている。
ラジエーター13は、放熱器131を備える。ラジエーター13は、ガスエンジン12の本体部及び放熱器131に冷却水を循環させてガスエンジンを冷却する。オイルセパレーター14は、圧縮機11から吐出された冷媒に含まれる圧縮機用潤滑油を分離して貯留し、冷媒のみを吐出する。
第1四方切替弁15と第2四方切換弁16の構成は同一である。第1四方切替弁15及び第2四方切換弁16は、4個のポートP1~P4をそれぞれ有する。第1四方切替弁15及び第2四方切換弁16は、ポートP1とポートP4とが連通し、且つポートP2とポートP3とが連通した第1の状態と、ポートP1とポートP2とが連通し、且つポートP3とポートP4とが連通した第2の状態とを切り替え可能である。
室外熱交換器17は、第1室外熱交換器171及び第2室外熱交換器172を備える。第1室外熱交換器171及び第2室外熱交換器172は、フィンを備えた複数のパイプからそれぞれ構成される。第1室外熱交換器171は、ポート171a及びポート171bを備える。一方のポート171a(171b)に導入された冷媒が前記複数のパイプを通って他方のポート171b(171a)から吐出される。第2室外熱交換器172は、ポート172a及びポート172bを備える。一方のポート172a(172b)に導入された冷媒が前記複数のパイプを通って他方のポート172b(172a)から吐出される。第1室外熱交換器171の伝熱面積(フィンの表面積)が、第2室外熱交換器172の伝熱面積よりも大きい。
ラジエーター13の放熱器131、第1室外熱交換器171及び第2室外熱交換器172は近接配置されている。冷却ファン18は、ラジエーター13の放熱器131、第1室外熱交換器171及び第2室外熱交換器172に対面配置されている。冷却ファン18は、室外空気をラジエーター13の放熱器131、第1室外熱交換器171及び第2室外熱交換器172に吹き付ける。冷却ファンの19の回転数が後述する制御装置CTによって制御されて風量が変更される。
第1膨張弁1a及び第2膨張弁1bは、冷媒を減圧させる。レシーバー1cは、液化した冷媒を一時的に貯留する。
ブリッジバルブ1dは、逆止弁1d1,1d2,1d3,1d4から構成されている。逆止弁1d1の出力ポートと逆止弁1d2の出力ポートとが連通している。逆止弁1d3の入力ポートと逆止弁1d4の入力ポートとが連通している。逆止弁1d1の入力ポートと逆止弁1d3の出力ポートとが連通している。また、逆止弁1d2の入力ポートと逆止弁1d4の出力ポートとが連通している。
過冷却コイル1eは、本体部1e1と過冷却調整弁1e2を備える。本体部1e1は、冷媒が流通する2つの流路Ra,Rbを備える。流路Raの一端と流路Rbの一端との間に過冷却調整弁1e2が設けられている。流路Raを流通した冷媒の一部が過冷却調整弁1e2を通過して他方の流路Rbを流通する。これにより、流路Raを流通する冷媒の過冷却度が高められる。
アキュムレーター1fは、液状の冷媒とガス状の冷媒とを分離する。逆止弁1gは、冷媒の所定の方向への流れを許容し、反対方向への流れを禁止する。
つぎに、室内機20A,20B,・・・の構成について説明する。室内機20A,20B,・・・の構成は同一である。室内機20A,20B,・・・は、室内熱交換器21、膨張弁22及び分流装置23をそれぞれ備える。室内熱交換器21は、フィンを備えた複数のパイプから構成される。室内熱交換器21は、ポート21a及びポート21bを備える。一方のポート21a(21b)に導入された冷媒が前記複数のパイプを通って他方のポート21b(21a)から吐出される。膨張弁22は、冷媒を減圧させる。分流装置23は、2つの開閉弁23a,23bを備える。
つぎに、ガスエンジン駆動式空気調和装置1の各構成部品の接続関係について説明する。圧縮機11の吐出口と第1四方切替弁15のポートP1とがオイルセパレーター14を介して接続されている。また、圧縮機11の吐出口と第2四方切替弁16のポートP1とがオイルセパレーター14を介して接続されている。第1四方切替弁15のポートP4と第1室外熱交換器171のポート171aとが接続されている。第2四方切替弁16のポートP4と第2室外熱交換器172のポート172aとが接続されている。第1四方切替弁15のポートP3と逆止弁1gの入力ポートとが接続されている。第2四方切替弁16のポートP3と逆止弁1gの入力ポートとが接続されている。逆止弁1gの出力ポートとアキュムレーター1fの入力ポートとが接続されている。アキュムレーター1fの出力ポートと圧縮機11の吸入口とが接続されている。なお、第1四方切替弁15及び第2四方切替弁16のポートP2はそれぞれ閉鎖されている。
また、第1室外熱交換器171のポート171b(第1四方切替弁15とは反対側)と逆止弁1d1の入力ポート(逆止弁1d3の出力ポート)とが、膨張弁1aを介して接続されている。第2室外熱交換器172のポート172b(第2四方切替弁16とは反対側)と逆止弁1d1の入力ポート(逆止弁1d3の出力ポート)とが、膨張弁1bを介して接続されている。逆止弁1d1の出力ポート(逆止弁1d2の出力ポート)とレシーバー1cの入力ポートとが接続されている。レシーバー1cの出力ポートと過冷却コイル1eの流路Raとが接続されている。流路Raと流路Rbとが過冷却調整弁1e2を介して接続されている。流路Rbとアキュムレーター1fの入力ポートとが接続されている。流路Raと逆止弁1d3(逆止弁1d4)の入力ポートとが接続されている。また、逆止弁1d4の出力ポート(逆止弁1d2の入力ポート)と各室内熱交換器21のポート21aとが、膨張弁22を介して接続されている。
また、各室内熱交換器21のポート21bが、開閉弁23aを介して、第1四方切替弁14とオイルセパレーター14との中間点(分岐点3a)に接続されている。また、各室内熱交換器21のポート21bが開閉弁23bを介して、逆止弁1gとアキュムレーター1fとの中間点(分岐点3b)に接続されている。
ここで、冷媒管30のうち、液状の冷媒が流通する部分を液管31と呼ぶ。また、冷媒管30のうち、高圧ガス状の冷媒が流通する部分を高圧ガス管32と呼び、低圧ガス状の冷媒が流通する部分を低圧ガス管33と呼ぶ。
液管31、高圧ガス管32及び低圧ガス管33の中間部のうちの室外機10側の部分と、室内機20A,20B,・・・側の部分とが、ボールバルブ41,42,43を介して接続されている。具体的には、ボールバルブ41は、ブリッジバルブ1dと膨張弁22との間に設けられている。また、ボールバルブ42は、分岐点3aと開閉弁23aとの間に設けられている。また、ボールバルブ43は、分岐点3bと開閉弁23bとの間に設けられている。
また、ガスエンジン駆動式空気調和装置1は、各部の温度、圧力などをそれぞれ検出する複数のセンサを備える。例えば、ガスエンジン駆動式空気調和装置1は、圧縮機11の吸入口における冷媒の圧力を検出する低圧センサ51及び圧縮機11の吐出口における冷媒の圧力を検出する高圧センサ52を備える。また、ガスエンジン駆動式空気調和装置1は、ラジエーター13の冷却水の温度を検出する温度センサ53を備える。
制御装置CTは、演算装置、メモリ、タイマーなどからなるマイクロコンピュータを備える。制御装置CTは、ユーザーが、各室内機の空調モード(冷房モード又は暖房モード)、目標の室温、風量などを設定する際に用いるスイッチ、表示装置などを備えた操作パネルを含む。これらの設定情報は、制御装置CTのマイクロコンピュータに入力される。制御装置CTは、上記の設定情報、各種センサから取得した圧力情報及び温度情報に基づいて、室外機10及び室内機20A,20B,・・・を制御する。
つぎに、冷媒の流れについて説明する。上記のように構成されたガスエンジン駆動式空気調和装置1は、すべての室内機20A,20B,・・・を冷房装置として運転(全冷房運転)することができるように構成されている。また、ガスエンジン駆動式空気調和装置1は、すべての室内機20A,20B,・・・を暖房装置として運転(全暖房運転)することができるように構成されている。また、ガスエンジン駆動式空気調和装置1は、室内機20A,20B,・・・のうちのいくつかの室内機を暖房装置として運転し、他のいくつかの室内機を冷房装置として運転することができるように構成されている。室内機20A,20B,・・・のうち、暖房装置として運転する室内機より冷房装置として運転する室内機の方が多い運転状態を冷房メイン運転と呼ぶ。逆に、室内機20A,20B,・・・のうち、冷房装置として運転する室内機より暖房装置として運転する室内機の方が多い運転状態を暖房メイン運転と呼ぶ。
本発明は、室外熱交換器17を凝縮器として運転する場合の室外熱交換器17の伝熱面積の制御及び冷却ファン18の制御に関する。とくに、本発明は、冷房メイン運転における室外熱交換器17の伝熱面積の制御及び冷却ファン18の制御に関する。そこで、以下、冷房メイン運転における冷媒の流れについて説明し、その他の運転状態(全冷房運転、全暖房運転及び暖房メイン運転)における冷媒の流れについての説明を省略する。なお、図1及び図2における弁のうち、黒く塗りつぶした弁が閉じられている。
つぎに、冷房メイン運転における冷媒の流れについて図1及び図2を用いて説明する。図1及び図2は、室内機20Aを暖房装置とし運転するとともに、室内機20Bを冷房装置として運転する例を示している。他のいくつかの室内機を冷房装置として運転し、他のいくつかの室内機を暖房装置として運転している。冷房メイン運転では、詳しくは後述するように、室外熱交換器17の第1室外熱交換器171又は第2室外熱交換器172が選択されるように、第1四方切換弁15及び第2四方切換弁16が設定される。以下、第1室外熱交換器171が選択されている動作モード(図1参照)を第1モードと呼び、第2室外熱交換器172が選択されている動作モード(図2参照)を第2モードと呼ぶ。すなわち、第1モードでは、第1四方切換弁が第1の状態に設定され、第2四方切換弁が第2の状態に設定されるとともに、膨張弁1aが開かれ、膨張弁1bが閉じられる。第2モードでは、第1四方切換弁が第2の状態に設定され、第2四方切換弁が第1の状態に設定されるとともに、膨張弁1aが閉じられ、膨張弁1bが開かれる。動作モードの切り替え制御については後述することとし、ここでは、まず、室外機10及び室内機20A,20B,・・・における冷媒の流れの概略について説明する。なお、冷房メイン運転では、室外熱交換器17(第1室外熱交換器171又は第2室外熱交換器172)は、凝縮器として機能する。また、暖房装置として運転する室内機20Aの開閉弁23aが開放され、且つ開閉弁23bが閉鎖される。暖房装置として運転する他の室内機の開閉弁23a,23bに関しても、室内機20Aと同様に設定される。一方、冷房装置として運転する室内機20Bの開閉弁23aが閉鎖され、且つ開閉弁23bが開放される。冷房装置として運転する他の室内機の開閉弁23a,23bに関しても、室内機20Bと同様に設定される。
圧縮機11から吐出された高圧ガス状の冷媒は、オイルセパレーター14に導入される。オイルセパレーター14から吐出された冷媒が、高圧ガス管32及び室外熱交換器17に導入される。高圧ガス管32に導入された冷媒は、暖房装置としての室内機(例えば室内機20A)の室内熱交換器21に導入される。室内熱交換器21に導入された高圧ガス状の冷媒は室内熱交換器21内を流通する間に室内空気に熱を放出して凝縮する。このとき冷媒から放出された熱によって室内空気が暖められる。室内空気に熱を放出して凝縮した冷媒は室内熱交換器21から排出され、冷房装置としての室内機(例えば室内機20B)の室内熱交換器21に導入される。
一方、オイルセパレーター14から吐出されて室外熱交換器17に導入された高圧ガス状の冷媒は室外熱交換器17内を流通する間に外気に熱を放出して凝縮する。
外気に熱を放出して凝縮した冷媒が室外熱交換器17から排出される。そして、膨張弁16で膨張することにより低圧化され、ブリッジバルブ1d、レシーバー1c.過冷却コイル1e及び液管31をこの順に経由して、冷房装置としての室内機(例えば室内機20B)の室内熱交換器21に導入される。なお、上述した暖房装置としての室内機(例えば室内機20A)から排出された冷媒も、冷房装置としての室内機(例えば室内機20B)の室内熱交換器21に導入される。室内熱交換器21に導入された冷媒は室内熱交換器21内を流通する間に室内空気の熱を奪って蒸発する。このとき冷媒が室内空気の熱を奪うことによって室内空気が冷やされる。
室内空気の熱を奪って蒸発した冷媒は室内熱交換器21から排出され、低圧ガス管33を経由して、アキュムレーター1fに導入される。そして、低圧ガス状の冷媒が圧縮機11の吸入口に帰還する。
冷房メイン運転において、制御装置CTは、低圧センサ51を用いて、圧縮機11の吸入口側における冷媒の圧力を検出するとともに高圧センサ52を用いて、圧縮機11の吐出口側における冷媒の圧力を検出する。制御装置CTは、前記検出した圧力、又は前記圧力に基づいて計算した値が、所定の目標値にそれぞれ一致するように、ガスエンジン12の回転数及び各種弁を制御する。例えば、制御装置CTは、低圧センサ51を用いて検出した圧力に相当する飽和温度(低圧相当温度)の現在値が、所定の目標値に一致し、且つ高圧センサ52を用いて検出した圧力に相当する飽和温度(高圧相当温度)の現在値TPHPが、所定の目標値TTHPに一致するように、ガスエンジン12の回転数及び各種弁を制御する。
上記のように、例えば、低温環境下では、高温環境下に比べて、室外熱交換器17にて冷媒が凝縮し易く、高圧相当温度の現在値TPHPが目標値TTHPよりも低くなる傾向にある。このように、ガスエンジン駆動式空気調和装置1の外気温度に応じて、室外熱交換器17にて冷媒と室外空気との間でなされる単位時間当たりの熱交換量が変化する。そこで、制御装置CTは、冷却ファン18の回転数RFを適宜変更するとともに、動作モードを切り替えて室外熱交換器17の伝熱面積を変更することにより、室外熱交換器17における単位時間当たりの熱交換量を適切な値に保持する。
具体的には、制御装置CTは、図3乃至図7に示す室外熱交換器及び冷却ファン制御プログラムをメモリから読み出して実行する。制御装置CTは、ステップS10にて室外熱交換器及び冷却ファン制御処理を開始する。つぎに、制御装置CTは、ステップS11にて、初期化処理を実行する。例えば、制御装置CTは、タイマーを用いて、経過時間TM(図4乃至図7参照)の計測を開始する。後述するように、動作モードが切り替えられるごとに、タイマーがリセットされる。したがって、経過時間TMは、動作モードを切り替えてから経過した時間を表す。つぎに、制御装置CTは、ステップS12にて、温度センサ53を用いて、ラジエーター13の冷却水の温度の現在値TPを検出する。つぎに、制御装置CTは、ステップS13にて、冷却水の温度の現在値TPと所定の目標値TTとの差を表す冷却水温度差ΔT(=TP-TT)を計算する。つぎに、制御装置CTは、ステップS14にて、高圧センサ52を用いて、圧縮機11の吐出口側における冷媒の圧力を検出し、その圧力に相当する飽和温度である高圧相当温度の現在値TPHPを計算する。つぎに、制御装置CTは、ステップS15にて、高圧相当温度の現在値TPHPと目標値TTHPとの差を表す高圧相当温度差ΔTHP(=TPHP-TTHP)を計算する。つぎに、制御装置CTは、ステップS16にて、冷却水温度差ΔT及び高圧相当温度差ΔTHPに応じて、次に実行する処理(処理A、処理B、処理C及び処理Dのうちの1つ)を選択する。
具体的には、冷却水温度差ΔTが「0」より大きく、且つ高圧相当温度差ΔTHPが「0」より大きいとき、制御装置CTは、処理A(ステップS20)を選択して実行する。また、冷却水温度差ΔTが「0」より小さく、且つ高圧相当温度差ΔTHPが「0」より小さいとき、制御装置CTは、処理B(ステップS30)を選択して実行する。また、冷却水温度差ΔTが「0」より大きく、且つ高圧相当温度差ΔTHPが「0」より小さいとき、制御装置CTは、処理C(ステップS40)を選択して実行する。また、冷却水温度差ΔTが「0」より小さく、且つ高圧相当温度差ΔTHPが「0」より大きいとき、制御装置CTは、処理D(ステップS50)を選択して実行する。冷却水温度差ΔT及び高圧相当温度差ΔTHPが上記のいずれの条件にも当てはまらないとき、制御装置CTは、ステップS12に戻る。
つぎに、図4に示す処理Aについて説明する。制御装置CTは、ステップS20にて、処理Aを開始する。つぎに、制御装置CTは、ステップS21にて、冷却ファン18の回転数RFを増大させる。具体的には、制御装置CTは、現在の回転数RFに所定の補正値ΔRF(例えば、10min―1)を加算して、回転数RFを更新する。ただし、更新結果が最大値RFmaxを超えるとき、制御装置CTは、回転数RFを最大値RFmaxに設定する。つぎに、制御装置CTは、ステップS22にて、回転数RFが最大値RFmaxであるか否かを判定する。回転数RFが最大値RFmaxより小さいとき、制御装置CTは、「No」と判定して、ステップS27にて処理Aを終了し、ステップS12に戻る。一方、回転数RFが最大値RFmaxであるとき、制御装置CTは、「Yes」と判定し、ステップS23にて、ガスエンジン駆動式空気調和装置1の現在の動作モードが第2モードであるか否かを判定する。現在の動作モードが第1モードであるとき、制御装置CTは、「No」と判定して、ステップS27にて、処理Aを終了し、ステップS12に戻る。一方、現在の動作モードが第2モードであるとき、制御装置CTは、「Yes」と判定して、ステップS24にて、経過時間TMが所定の時間ΔTM(例えば5分)以上であるか否かを判定する。経過時間TMが所定の時間ΔTMを下回るとき、制御装置CTは、「No」と判定して、ステップS27にて処理Aを終了し、ステップS11に戻る。一方、経過時間TMが所定の時間ΔTM以上であるとき、制御装置CTは、「Yes」と判定して、ステップS25にて、動作モードを第1モードに変更する。つぎに、制御装置CTは、ステップS26にて、経過時間TMを初期化(「0」に設定)する。そして、制御装置CTは、ステップS27にて、処理Aを終了し、ステップS12に戻る。
つぎに、図5に示す処理Bについて説明する。制御装置CTは、ステップS30にて、処理Bを開始する。つぎに、制御装置CTは、ステップS31にて、冷却ファン18の回転数RFを減少させる。具体的には、制御装置CTは、現在の回転数RFから所定の補正値ΔRF(例えば、10min―1)を減算して、回転数RFを更新する。ただし、更新結果が最小値RFmin(例えば0min―1)を下回るとき、制御装置CTは、回転数RFを最小値RFminに設定する。つぎに、制御装置CTは、ステップS32にて、回転数RFが最小値RFminであるか否かを判定する。回転数RFが最小値RFminより大きいとき、制御装置CTは、「No」と判定して、ステップS37にて処理Bを終了し、ステップS12に戻る。一方、回転数RFが最小値RFminであるとき、制御装置CTは、「Yes」と判定し、ステップS33にて、ガスエンジン駆動式空気調和装置1の現在の動作モードが第1モードであるか否かを判定する。現在の動作モードが第2モードであるとき、制御装置CTは、「No」と判定して、ステップS37にて、処理Bを終了し、ステップS12に戻る。一方、現在の動作モードが第1モードであるとき、制御装置CTは、「Yes」と判定して、ステップS34にて、経過時間TMが所定の時間ΔTM(例えば5分)以上であるか否かを判定する。経過時間TMが所定の時間ΔTMを下回るとき、制御装置CTは、「No」と判定して、ステップS37にて処理Bを終了し、ステップS12に戻る。一方、経過時間TMが所定の時間ΔTM以上であるとき、制御装置CTは、「Yes」と判定して、ステップS35にて、動作モードを第2モードに変更する。つぎに、制御装置CTは、ステップS36にて、経過時間TMを初期化する。そして、制御装置CTは、ステップS37にて、処理Bを終了し、ステップS12に戻る。
つぎに、図6に示す処理Cについて説明する。制御装置CTは、ステップS40にて、処理Cを開始する。つぎに、制御装置CTは、ステップS41にて、冷却ファン18の回転数RFを増大させる。具体的には、制御装置CTは、現在の回転数RFに所定の補正値ΔRF(例えば、10min―1)を加算して、回転数RFを更新する。ただし、更新結果が最大値RFmaxを超えるとき、制御装置CTは、回転数RFを最大値RFmaxに設定する。つぎに、制御装置CTは、ステップS42にて、ガスエンジン駆動式空気調和装置1の現在の動作モードが第1モードであるか否かを判定する。現在の動作モードが第2モードであるとき、制御装置CTは、「No」と判定して、ステップS46にて、処理Cを終了し、ステップS12に戻る。一方、現在の動作モードが第1モードであるとき、制御装置CTは、「Yes」と判定して、ステップS43にて、経過時間TMが所定の時間ΔTM(例えば5分)以上であるか否かを判定する。経過時間TMが所定の時間ΔTMを下回るとき、制御装置CTは、「No」と判定して、ステップS46にて処理Cを終了し、ステップS12に戻る。一方、経過時間TMが所定の時間ΔTM以上であるとき、制御装置CTは、「Yes」と判定して、スステップS44にて、動作モードを第2モードに変更する。つぎに、制御装置CTは、ステップS45にて、経過時間TMを初期化する。そして、制御装置CTは、ステップS46にて、処理Cを終了し、ステップS12に戻る。
つぎに、図7に示す処理Dについて説明する。制御装置CTは、ステップS50にて、処理Dを開始する。つぎに、制御装置CTは、ステップS51にて、ガスエンジン駆動式空気調和装置1の現在の動作モードが第2モードであるか否かを判定する。現在の動作モードが第1モードであるとき、制御装置CTは、「No」と判定して、ステップS52にて、冷却ファン18の回転数RFを増大させる。具体的には、制御装置CTは、現在の回転数RFに所定の補正値ΔRF(例えば、10min―1)を加算して、回転数RFを更新する。ただし、更新結果が最大値RFmaxを超えるとき、制御装置CTは、回転数RFを最大値RFmaxに設定する。そして、制御装置CTは、ステップS56にて、処理Dを終了し、ステップS12に戻る。一方、現在の動作モードが第2モードであるとき、制御装置CTは、「Yes」と判定して、ステップS53にて、経過時間TMが所定の時間ΔTM(例えば5分)以上であるか否かを判定する。経過時間TMが所定の時間ΔTMを下回るとき、制御装置CTは、「No」と判定して、ステップS56にて処理Dを終了し、ステップS12に戻る。一方、経過時間TMが所定の時間ΔTM以上であるとき、制御装置CTは、「Yes」と判定して、ステップS54にて、動作モードを第1モードに変更する。つぎに、制御装置CTは、ステップS55にて、経過時間TMを初期化する。そして、制御装置CTは、ステップS56にて、処理Cを終了し、ステップS12に戻る。以降、制御装置CTは、ステップS12乃至ステップS16、及びステップS16にて選択した処理A乃至処理Dのうちの1つからなる一連の処理を繰り返し実行する。なお、動作モードを一度切り替えてから所定の時間ΔTMが経過するまで、次の動作モードの切り替えが禁止される。
冷却水の温度の現在値TPが目標値TTより大きく、且つ高圧相当温度の現在値TPHPが目標値TTHPより大きいとき、ガスエンジン12が過熱傾向にあり、且つ室外熱交換器17において冷媒が凝縮し難い状態にあると考えられる。そこで、処理Aにおいて、冷却ファン18の回転数RFを増大させることにより冷媒の凝縮を促進するとともに、ガスエンジン12の冷却を促進する。冷却ファン18の回転数RFを最大に設定しても冷媒の凝縮をさらに促進する必要がある場合には、動作モードを第1モードに切り替えることにより室外熱交換器17の伝熱面積を大きく設定する。
また、冷却水の温度の現在値TPが目標値TTより小さく、且つ高圧相当温度の現在値TPHPが目標値TTHPより小さいとき、ガスエンジン12は十分に冷却されている状態にあり、且つ室外熱交換器17において冷媒が凝縮し易い状態にあると考えられる。そこで、処理Bにおいて、冷却ファン18の回転数RFを減少させることにより冷媒の凝縮を抑制する。ガスエンジン12は十分に冷却されていると考えられるので、冷却ファン18の回転数RFを減少させても問題ない。冷却ファン18の回転数RFを最小に設定しても(例えば、冷却ファン18を停止させても)冷媒の凝縮をさらに抑制する必要がある場合には、動作モードを第2モードに切り替えることにより室外熱交換器17の伝熱面積を小さく設定する。
また、冷却水の温度の現在値TPが目標値TTより大きく、且つ高圧相当温度の現在値TPHPが目標値TTHPより小さいとき、ガスエンジン12は過熱傾向にあり、且つ室外熱交換器17において冷媒が凝縮し易い状態にあると考えられる。そこで、処理Cにおいて、冷却ファン18の回転数RFを増大させることによりガスエンジン12の冷却を促進する。冷却ファン18の回転数RFを増大させると、冷媒の凝縮がさらに促進されてしまう。そこで、動作モードが第1モードである場合には、第2モードに切り替えることにより室外熱交換器17の伝熱面積を小さく設定して、冷媒の凝縮を抑制する。
また、冷却水の温度の現在値TPが目標値TTより小さく、且つ高圧相当温度の現在値TPHPが目標値TTHPより大きいとき、ガスエンジン12は十分に冷却されている状態であり、且つ室外熱交換器17において冷媒が凝縮し難い状態にあると考えられる。そこで、処理Dにおいて、冷却ファン18の回転数RFを増大させることによりガスエンジン12の冷却を促進する。そこで、動作モードが第2モードである場合には、第1モードに切り替えることにより室外熱交換器17の伝熱面積を大きく設定して、冷媒の凝縮を促進する。さらに、冷却ファン18の回転数RFを増大させることにより冷媒の凝縮を促進する。この場合、ガスエンジン12の冷却がさらに促進されることになるが、とくに問題はない。
上記のように構成されたガスエンジン駆動式空気調和装置1によれば、冷却水温度差ΔT及び高圧相当温度差ΔTHPに基づいて、冷却ファン18の回転数RF及び室外熱交換器17の伝熱面積が変更される。例えば、ガスエンジン12の冷却を促進する必要があり、且つ室外熱交換器17における冷媒の凝縮を抑制する必要がある場合には、冷却ファン18の回転数RFが増大されるとともに、室外熱交換器17の伝熱面積が小さく設定される。これによれば、ガスエンジン12を適切に冷却してガスエンジン12の回転数を維持しつつ、冷媒の凝縮を抑制して高圧相当温度の現在値TPHPを目標値TTHPに近づけることができる。よって、本実施形態によれば、冷房メイン運転において、冷房室内及び暖房室内の快適性を保つことができる。
さらに、本発明の実施にあたっては、上記実施形態に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。
例えば、上記の室外熱交換器及び冷却ファン制御処理(図3乃至図7)は、図8のように変更できる。すなわち、制御装置CTは、ステップS60にて、室外熱交換器及び冷却ファン制御処理を開始する。つぎに、制御装置CTは、ステップS61にて、初期化処理を実行する。例えば、制御装置CTは、タイマーを用いて、経過時間TMの計測を開始する。
つぎに、制御装置CTは、ステップS62にて、冷却水の温度の現在値TPに対応する回転数Rを決定する。回転数Rは、冷却ファン18の回転数RFの候補の1つである。所定の計算式に基づいて回転数Rを決定してもよいし、予め作成されたデータベースに従って回転数Rを決定しても良い。つぎに、制御装置CTは、ステップS63にて、高圧相当温度の現在値TPHPに対応する回転数RHPを決定する。回転数RHPは、冷却ファン18の回転数RFの候補の1つである。所定の計算式に基づいて回転数RHPを決定してもよいし、予め作成されたデータベースに従って回転数RHPを決定しても良い。
つぎに、制御装置CTは、ステップS64にて、回転数Rが回転数RHP以上であるか否かを判定する。回転数Rが回転数RHP以上であるとき、制御装置CTは、「Yes」と判定し、ステップS65にて、冷却ファン18の回転数RF(実回転数)を回転数Rに設定し、ステップS67に処理を進める。一方、回転数Rが回転数RHPより小さいとき、制御装置CTは、「No」と判定し、ステップS66にて、冷却ファン18の回転数RF(実回転数)を回転数RHPに設定し、ステップS67に処理を進める。
つぎに、制御装置CTは、動作モードの切り替え処理を実行する。ただし、動作モードを切り替えてから所定の時間が経過するまで動作モードの切り替えが禁止される。具体的には、制御装置CTは、ステップS67にて、経過時間TMが所定の時間ΔTM(例えば5分)以上であるか否かを判定する。経過時間TMが所定の時間ΔTMを下回るとき、制御装置CTは、「No」と判定して、制御装置CTは、動作モードを切り替えることなく、ステップS62に戻る。一方、経過時間TMが所定の時間ΔTM以上であるとき、制御装置CTは、「Yes」と判定して、ステップS68に処理を進める。制御装置CTは、ステップS68にて、高圧相当温度の現在値TPHPが所定の閾値TTH以上であるか否かを判定する。高圧相当温度の現在値TPHPが所定の閾値TTH以上であるとき、制御装置CTは、「Yes」と判定して、ステップS69にて、動作モードを第1モードに設定する。一方、高圧相当温度の現在値TPHPが所定の閾値TTHより小さいとき、制御装置CTは、「No」と判定して、ステップS6aにて、動作モードを第2モードに設定する。つぎに、制御装置CTは、ステップS6bにて、経過時間TMを初期化して、ステップS62に処理を進める。以降、制御装置CTは、ステップS62~ステップS6bからなる一連の処理を繰り返し実行する。
図8に示す室外熱交換器及び冷却ファン制御処理では、冷却ファン18の回転数RFが冷却水の温度の現在値TP及び高圧相当温度の現在値TPHPに基づいて決定される。また、高圧相当温度の現在値TPHPと所定の閾値TTHとの関係に基づいて、動作モードが切り替えられる。例えば、高圧相当温度の現在値TPHPがある程度低く、室外熱交換器17において冷媒が凝縮し易いと考えられる状況であっても、冷却水の温度が比較的高い場合(R>RHP)には、ガスエンジン12の冷却が優先される。すなわち、冷却水の温度の現在値TPに対応する回転数Rが冷却ファン18の回転数RFとして用いられる。この場合、室外熱交換器17における冷媒の凝縮がさらに促進されることになるが、高圧相当温度の現在値TPHPと所定の閾値TTHとの関係に基づいて、動作モードが第2モードに設定される。すなわち、室外熱交換器17の伝熱面積が小さく設定される。これにより、ガスエンジン12を適切に冷却してガスエンジン12の回転数を維持しつつ、冷媒の凝縮を抑制して高圧相当温度の現在値TPHPを目標値TTHPに近づけることができる。よって、冷房メイン運転において、冷房室内及び暖房室内の快適性を保つことができる。
なお、上記実施形態では、第1室外熱交換器171及び室外熱交換器172のうちのいずれか一方に冷媒を流通させているが、冷媒の凝縮をさらに促進する必要がある場合には、第1室外熱交換器171及び第2室外熱交換器172に、冷媒を同時に流通させてもよい。また、第1室外熱交換器171の伝熱面積と第2室外熱交換器172の伝熱面積とを同一に設定しておき、冷媒の凝縮を抑制する場合に、第1室外熱交換器171又は第2室外熱交換器172に冷媒を流通させ、冷媒の凝縮を促進する場合に、第1室外熱交換器171及び第2室外熱交換器172に、冷媒を同時に流通させてもよい。また、上記実施形態では、室外熱交換器17が第1室外熱交換器171及び第2室外熱交換器172から構成されているが、室外熱交換器17が、より多くの熱交換器から構成されていてもよい。この場合、室外熱交換器17を構成する複数の熱交換器のうち、冷媒を流通させる1つ又は複数の熱交換器を、冷媒の凝縮速度(凝縮し易さ)に応じて選択すればよい。また、上記のガスエンジン駆動式空気調和装置1は、1台の室外機10を備えているが、ガスエンジン駆動式空気調和装置1が複数台の室外機10を備えていてもよい。
1・・・ガスエンジン駆動式空気調和装置、10・・・室外機、11・・・圧縮機、12・・・ガスエンジン、13・・・ラジエーター、15・・・第1四方切替弁、16・・・第2四方切替弁、17・・・室外熱交換器、171・・・第1室外熱交換器、172・・・第2室外熱交換器、18・・・冷却ファン、20A,20B・・・室内機、21・・・室内熱交換器、30・・・冷媒管、51・・・低圧センサ、52・・・高圧センサ、53・・・温度センサ、CT・・・制御装置、RF・・・回転数、RHP・・・回転数、R・・・回転数、TM・・・経過時間、TPHP・・・高圧相当温度の現在値、TP・・・冷却水の温度の現在値、TTHP・・・高圧相当温度の目標値、TT・・・冷却水の温度の目標値、ΔTHP・・・高圧相当温度差、ΔT・・・冷却水温度差

Claims (3)

  1. 1台又は複数台の室外機及び複数台の室内機に冷媒を循環させて室内空気の温度を調整するガスエンジン駆動式空気調和装置であって、
    前記冷媒と前記室内空気との間で熱伝達を生じさせる複数の室内熱交換器と、
    前記冷媒を吸入するとともに圧縮して吐出する圧縮機と、
    前記圧縮機を駆動するガスエンジンと、
    放熱器を備え、前記放熱器と前記ガスエンジンに冷却液を循環させて前記ガスエンジンを冷却するラジエーターと、
    前記冷媒と室外空気との間で熱伝達を生じさせる室外熱交換器と、
    前記ラジエーターの放熱器及び前記室外熱交換器に室外空気を吹き付ける冷却ファンと、
    前記冷媒の流れをそれぞれ制御する複数の弁と、
    前記圧縮機の吸入口側における前記冷媒に関する物理量を表す低圧側物理量の現在値が、所定の低圧側物理量の目標値に一致し、且つ前記圧縮機の吐出口側における前記冷媒に関する物理量を表す高圧側物理量の現在値が所定の高圧側物理量の目標値にそれぞれ一致するように前記ガスエンジンの回転数及び前記複数の弁の開度を制御する制御装置と、
    を備え、
    前記制御装置は、前記室外熱交換器を凝縮器として運転する際、前記高圧側物理量の現在値、及び前記ラジエーターの冷却液の温度の現在値に基づいて、前記冷却ファンを制御するとともに、前記室外熱交換器の伝熱面積を変更する、ガスエンジン駆動式空気調和装置。
  2. 請求項1に記載のガスエンジン駆動式空気調和装置において、
    前記室外熱交換器は、伝熱面積の異なる第1室外熱交換器及び第2室外熱交換器から構成され、
    前記制御装置は、前記高圧側物理量の現在値、及び前記ラジエーターの冷却液の温度の現在値に基づいて、前記第1室外熱交換器又は前記第2室外熱交換器のうちのいずれか一方に前記冷媒を流通させる、ガスエンジン駆動式空気調和装置。
  3. 請求項1又は2に記載のガスエンジン駆動式空気調和装置において、
    前記高圧側物理量の現在値が所定値より小さいとき、前記室外熱交換器の伝熱面積を減少させる、ガスエンジン駆動式空気調和装置。
JP2018046685A 2018-03-14 2018-03-14 ガスエンジン駆動式空気調和装置 Active JP7007960B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018046685A JP7007960B2 (ja) 2018-03-14 2018-03-14 ガスエンジン駆動式空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018046685A JP7007960B2 (ja) 2018-03-14 2018-03-14 ガスエンジン駆動式空気調和装置

Publications (2)

Publication Number Publication Date
JP2019158249A JP2019158249A (ja) 2019-09-19
JP7007960B2 true JP7007960B2 (ja) 2022-01-25

Family

ID=67993337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018046685A Active JP7007960B2 (ja) 2018-03-14 2018-03-14 ガスエンジン駆動式空気調和装置

Country Status (1)

Country Link
JP (1) JP7007960B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127369A (ja) 2005-11-07 2007-05-24 Mitsubishi Heavy Ind Ltd ガスヒートポンプ式空気調和機
JP2011112333A (ja) 2009-11-30 2011-06-09 Mitsubishi Electric Corp 空気調和装置、空気調和装置の運転方法
WO2011121634A1 (ja) 2010-03-29 2011-10-06 三菱電機株式会社 空気調和装置
WO2013145006A1 (ja) 2012-03-29 2013-10-03 三菱電機株式会社 空気調和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5633737B2 (ja) * 2010-09-22 2014-12-03 アイシン精機株式会社 空気調和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127369A (ja) 2005-11-07 2007-05-24 Mitsubishi Heavy Ind Ltd ガスヒートポンプ式空気調和機
JP2011112333A (ja) 2009-11-30 2011-06-09 Mitsubishi Electric Corp 空気調和装置、空気調和装置の運転方法
WO2011121634A1 (ja) 2010-03-29 2011-10-06 三菱電機株式会社 空気調和装置
WO2013145006A1 (ja) 2012-03-29 2013-10-03 三菱電機株式会社 空気調和装置

Also Published As

Publication number Publication date
JP2019158249A (ja) 2019-09-19

Similar Documents

Publication Publication Date Title
JP5855129B2 (ja) 室外機及び空気調和装置
JP4740984B2 (ja) 冷凍空調装置
JP6493432B2 (ja) 空気調和装置
WO2009122706A1 (ja) 冷凍装置
KR100758902B1 (ko) 멀티 공기조화 시스템 및 그 제어방법
JP4538919B2 (ja) 室内マルチ空気調和機
JP2006162235A (ja) マルチエアコンシステム及びマルチエアコンシステムのバルブ開度制御方法
JP2004170023A (ja) 多室形空気調和機の制御方法
WO2018025934A1 (ja) 冷凍装置の熱源ユニット
JP7007960B2 (ja) ガスエンジン駆動式空気調和装置
JP3936345B2 (ja) 空気調和機
JP4179783B2 (ja) 空気調和装置
JP4969271B2 (ja) 空気調和機
JP2006258331A (ja) 冷凍装置
JPWO2017119138A1 (ja) 空気調和装置
JP4252184B2 (ja) 空気調和機の冷媒流量制御装置
WO2012081110A1 (ja) 空気調和装置
JP7065552B2 (ja) ガスエンジン駆動式空気調和装置
WO2017158715A1 (ja) 多室型空気調和装置、多室型空気調和装置の制御方法およびプログラム
KR102066694B1 (ko) 히트펌프 시스템
JPH09318140A (ja) 空気調和装置
JP2016161235A (ja) 冷凍サイクル装置
KR100639488B1 (ko) 공기조화기 및 그 과부하 제어방법
JP7448848B2 (ja) 空気調和装置
JP2582441B2 (ja) 空気調和機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210210

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220107

R150 Certificate of patent or registration of utility model

Ref document number: 7007960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150