WO2018025934A1 - 冷凍装置の熱源ユニット - Google Patents

冷凍装置の熱源ユニット Download PDF

Info

Publication number
WO2018025934A1
WO2018025934A1 PCT/JP2017/028134 JP2017028134W WO2018025934A1 WO 2018025934 A1 WO2018025934 A1 WO 2018025934A1 JP 2017028134 W JP2017028134 W JP 2017028134W WO 2018025934 A1 WO2018025934 A1 WO 2018025934A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat source
heat
heat exchanger
temperature
refrigerant
Prior art date
Application number
PCT/JP2017/028134
Other languages
English (en)
French (fr)
Inventor
植田 裕樹
大久保 英作
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP17837036.7A priority Critical patent/EP3483518B1/en
Priority to ES17837036T priority patent/ES2884203T3/es
Priority to US16/321,341 priority patent/US11112151B2/en
Priority to CN201780038234.7A priority patent/CN109312961B/zh
Publication of WO2018025934A1 publication Critical patent/WO2018025934A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator

Definitions

  • the present invention relates to a heat source unit of a refrigeration apparatus that performs a refrigeration cycle.
  • Patent Documents 1 and 2 disclose an air conditioner configured by a refrigeration apparatus that performs a refrigeration cycle.
  • the air conditioning apparatus of Patent Documents 1 and 2 includes one heat source unit (outdoor unit) and a plurality of indoor units.
  • the heat source unit accommodates a compressor, a heat source side heat exchanger, and the like, and the heat source side heat exchanger causes the refrigerant in the refrigerant circuit to exchange heat with the heat source water.
  • the heat source side heat exchanger functions as a condenser during cooling operation (cooling operation), and functions as an evaporator during heating operation (heating operation).
  • the “load factor” described in FIG. 13A and FIG. 13B indicates the capacity required for the refrigeration apparatus (that is, the required value of the cooling capacity or the heating capacity) and the rated capacity of the refrigeration apparatus (that is, the rated cooling capacity) Or the value divided by the rated heating capacity) is expressed as a percentage.
  • the maximum value of the capability that the refrigeration apparatus can exhibit varies depending on the temperature Tw of the heat source water.
  • the refrigeration apparatus can be operated regardless of the load factor. is there.
  • the refrigeration apparatus can be operated regardless of the load factor. It is.
  • the low pressure of the refrigeration cycle becomes too low, so the refrigeration apparatus cannot be operated.
  • the capacity of the heat source side heat exchanger functioning as an evaporator is insufficient, while the load factor is large, so that the rotation speed of the compressor is set high in order to secure the circulation amount of the refrigerant.
  • the cycle low pressure is too low.
  • heat source water for cooling supplied to the heat source side heat exchanger functioning as a condenser heat source water cooled by a cooling tower is generally used.
  • heat source water cooled by heat exchange with soil in underground heat exchangers buried in the ground may be used as heat source water for cooling.
  • the temperature of the heat source water for cooling is lower than that in the case of using it.
  • the refrigeration apparatus is required to be able to perform the cooling operation at any load factor even when heat source water having a temperature lower than that in the past (specifically, less than the temperature T0_c in FIG. 13A) is used.
  • heat source water heated by a boiler As the heat source water for heating supplied to the heat source side heat exchanger functioning as an evaporator, heat source water heated by a boiler is generally used. However, in recent years, heat source water heated by heat exchange with soil in underground heat exchangers buried in the ground may be used as heat source water for heating. In this case, a boiler is used. In general, the temperature of the heat source water for heating is lower than in the case of doing so. For this reason, the refrigeration apparatus is required to be able to perform the heating operation at any load factor even when heat source water having a temperature lower than that in the past (specifically, the temperature T3 in FIG. 13B) is used.
  • the temperature of hot water obtained by heating in a general boiler is too high for heat exchange with the refrigerant in the evaporator of the refrigeration cycle. Therefore, conventionally, only a part of the heat source water is heated by the boiler, and the heat source water bypassed by the boiler and the heat source water heated by the boiler are mixed and then supplied to the evaporator of the refrigeration system.
  • the hot water obtained by heating is heat-exchanged with the heat source water, and the indirectly heated heat source water is supplied to the evaporator of the refrigeration apparatus.
  • the efficiency of the boiler may be reduced, or the circulation amount of the heat source water may increase and the power required for transporting the heat source water may increase. .
  • the refrigeration apparatus is required to be able to perform the heating operation at any load factor even when heat source water having a temperature higher than that of the conventional one (specifically, higher than the temperature T4 in FIG. 13B) is used.
  • the present invention has been made in view of such points, and an object of the present invention is to operate a heat source water in a temperature range that can be operated in a heat source unit of a refrigeration apparatus including a heat source side heat exchanger that exchanges heat between the refrigerant and the heat source water. Is to expand.
  • a refrigeration apparatus (10) including a refrigerant circuit (15) that performs a refrigeration cycle is configured with a use-side unit (12), and a compressor provided in the refrigerant circuit (15) ( 21) Target heat source units that contain at least the heat source side heat exchanger (40).
  • the heat source side heat exchanger (40) is connected to the heat source water circuit (100) through which the heat source water circulates, and is configured to exchange heat between the refrigerant circulating through the refrigerant circuit (15) and the heat source water.
  • a controller (70) configured to adjust the size of the heat exchange region in the heat source side heat exchanger (40) based on the difference index value is provided.
  • the controller (70) adjusts the size of the heat exchange region of the heat source side heat exchanger (40) according to the pressure difference index value.
  • the capacity of the heat source side heat exchanger (40) that is, the amount of heat exchanged between the refrigerant and the heat source water
  • the controller (70) it becomes possible for the controller (70) to appropriately control the capacity of the heat source side heat exchanger (40) by adjusting the size of the heat exchange region of the heat source side heat exchanger (40).
  • the controller (70) is configured so that the pressure difference index value is equal to or greater than a predetermined reference index value. Is configured to adjust the size of the heat exchange region.
  • the controller (70) adjusts the size of the heat exchange region of the heat source side heat exchanger (40) so that the pressure difference index value is equal to or greater than a predetermined reference index value. If the pressure difference index value is greater than or equal to the reference index value, the difference between the high and low pressures of the refrigeration cycle performed in the refrigerant circuit (15) is greater than a certain level.
  • the controller (70) when the pressure difference index value falls below the reference index value, the controller (70) causes the heat in the heat source side heat exchanger (40) to be It is configured to reduce the size of the exchange area.
  • the controller (70) when the pressure difference index value falls below the reference index value, the controller (70) reduces the size of the heat exchange region in the heat source side heat exchanger (40).
  • the size of the heat exchange region of the heat source side heat exchanger (40) is reduced, the capacity of the heat source side heat exchanger (40) is reduced. Therefore, when the heat source side heat exchanger (40) functions as a condenser, the high pressure of the refrigeration cycle increases, and when the heat source side heat exchanger (40) functions as an evaporator, the low pressure of the refrigeration cycle decreases. To do. As a result, the difference between the high pressure and the low pressure of the refrigeration cycle performed in the refrigerant circuit (15) increases.
  • the controller (70) is configured such that the size of the heat exchange region in the heat source side heat exchanger (40) is smaller than the maximum.
  • the pressure difference index value when the size of the heat exchange region is increased is estimated, and when the estimated value of the calculated pressure difference index value exceeds the reference index value, the heat source side heat exchanger (40 ) To increase the size of the heat exchange region.
  • the controller (70) increases the size of the heat exchange area.
  • the pressure difference index value is estimated.
  • a controller (70) will increase the magnitude
  • the capacity of the heat source side heat exchanger (40) increases. Therefore, when the heat source side heat exchanger (40) functions as a condenser, the high pressure of the refrigeration cycle decreases, and when the heat source side heat exchanger (40) functions as an evaporator, the low pressure of the refrigeration cycle increases. To do. As a result, the difference between the high pressure and the low pressure of the refrigeration cycle performed in the refrigerant circuit (15) is reduced.
  • the size of the heat exchange region of the heat source side heat exchanger (40) is smaller than the maximum, if the size of the heat exchange region is immediately increased when the pressure difference index value exceeds the reference index value, There is a possibility that the pressure difference index value falls below the reference index value, and the controller (70) again reduces the size of the heat exchange region of the heat source side heat exchanger (40). Therefore, the size of the heat exchange region of the heat source side heat exchanger (40) repeatedly increases and decreases, and the refrigeration cycle performed in the refrigerant circuit (15) may not be stable.
  • the controller (70) of the fourth aspect is configured to heat the heat source side heat exchanger (40). Increase the size of the exchange area. Therefore, even if the size of the heat exchange area of the heat source side heat exchanger (40) is increased, and as a result, the difference between the high pressure and low pressure of the refrigeration cycle performed in the refrigerant circuit (15) is reduced, the pressure difference index value Is unlikely to be below the reference index value.
  • the heat source side heat exchanger (40) is a condenser for cooling an object in the usage side unit (12).
  • the controller (70) is a temperature of the heat source water supplied to the heat source side heat exchanger (40) during the cooling operation.
  • a difference between the inlet water temperature and the refrigerant evaporation temperature in the use side unit (12) or a target evaporation temperature which is a target value of the evaporation temperature is used as the pressure difference index value.
  • the heat source unit (11) of the fifth aspect can execute a cooling operation that causes the heat source side heat exchanger (40) to function as a condenser.
  • the condensing temperature of the refrigerant in the heat source side heat exchanger (40) is higher than the inlet water temperature by a substantially constant value.
  • the refrigerant condensation temperature in the heat source side heat exchanger (40) correlates with the high pressure of the refrigeration cycle, and the refrigerant evaporation temperature in the use side unit (12) correlates with the low pressure of the refrigeration cycle.
  • the difference ((Tw_i ⁇ Te) or (Tw_i ⁇ Te_t)) between the inlet water temperature Tw_i and the evaporation temperature Te of the refrigerant in the use side unit (12) or the target evaporation temperature Te_t which is the target value of the evaporation temperature is
  • Tw_i ⁇ Te or (Tw_i ⁇ Te_t) can be a pressure difference index value indicating the difference between the high pressure and the low pressure of the refrigeration cycle performed in the refrigerant circuit (15).
  • the heat source side heat exchanger (40) is an evaporator for heating an object in the use side unit (12).
  • the controller (70) is configured to perform a refrigerant condensing temperature or a target value of the condensing temperature in the user side unit (12) during the heating operation.
  • a difference between a certain target condensation temperature and the inlet water temperature, which is the temperature of the heat source water supplied to the heat source side heat exchanger (40), is configured as the pressure difference index value.
  • the heat source unit (11) of the sixth aspect can execute a heating operation that causes the heat source side heat exchanger (40) to function as an evaporator.
  • the evaporating temperature of the refrigerant in the heat source side heat exchanger (40) is lower than the inlet water temperature by a substantially constant value.
  • the refrigerant condensation temperature in the use side unit (12) correlates with the high pressure of the refrigeration cycle, and the refrigerant evaporation temperature in the heat source side heat exchanger (40) correlates with the low pressure of the refrigeration cycle.
  • the difference ((Tc ⁇ Tw_i) or (Tc_t ⁇ Tw_i)) between the refrigerant condensation temperature Tc in the usage side unit (12) or the target condensation temperature Tc_t, which is the target value of the condensation temperature, and the inlet water temperature Tw_i is
  • the difference between the high pressure and low pressure of the refrigeration cycle increases, the difference expands.
  • the difference between the high pressure and low pressure of the refrigeration cycle decreases. Therefore, (Tc ⁇ Tw_i) or (Tc_t ⁇ Tw_i) can be a pressure difference index value indicating the difference between the high pressure and the low pressure of the refrigeration cycle performed in the refrigerant circuit (15).
  • the heat source side heat exchanger (40) is a condenser for cooling an object in the usage side unit (12).
  • the controller (70) is configured to perform a cooling operation that functions as a refrigerant condensing temperature in the heat source side heat exchanger (40) and the use side unit during the cooling operation.
  • the pressure difference index value is the difference between the refrigerant evaporation temperature in (12) or the target evaporation temperature that is the target value of the evaporation temperature.
  • the heat source unit (11) of the seventh aspect can execute a cooling operation that causes the heat source side heat exchanger (40) to function as a condenser.
  • the refrigerant condensation temperature in the heat source side heat exchanger (40) correlates with the high pressure of the refrigeration cycle
  • the refrigerant evaporation temperature in the use side unit (12) correlates with the low pressure of the refrigeration cycle. For this reason, the difference ((Tc_hs) between the refrigerant condensation temperature Tc_hs in the heat source side heat exchanger (40) and the refrigerant evaporation temperature Te in the use side unit (12) or the target evaporation temperature Te_t which is the target value of the evaporation temperature.
  • (Tc_hs ⁇ Te) or (Tc_hs ⁇ Te_t)) increases when the difference between the high and low pressures of the refrigeration cycle increases, and decreases when the difference between the high and low pressures of the refrigeration cycle decreases. Therefore, (Tc_hs ⁇ Te) or (Tc_hs ⁇ Te_t) can be a pressure difference index value indicating the difference between the high pressure and the low pressure of the refrigeration cycle performed in the refrigerant circuit (15).
  • the heat source side heat exchanger (40) is an evaporator for heating an object in the use side unit (12).
  • the controller (70) is configured to perform a refrigerant condensing temperature or a target value of the condensing temperature in the user side unit (12) during the heating operation.
  • a difference between a certain target condensation temperature and the evaporation temperature of the refrigerant in the heat source side heat exchanger (40) is configured as the pressure difference index value.
  • the heat source unit (11) of the eighth aspect can execute a heating operation that causes the heat source side heat exchanger (40) to function as an evaporator.
  • the refrigerant condensing temperature in the use side unit (12) correlates with the high pressure of the refrigeration cycle, and the refrigerant evaporation temperature in the heat source side heat exchanger (40) correlates with the low pressure of the refrigeration cycle. For this reason, the difference ((Tc) between the refrigerant condensation temperature Tc in the use side unit (12) or the target condensation temperature Tc_t, which is the target value of the condensation temperature, and the refrigerant evaporation temperature Te_hs in the heat source side heat exchanger (40).
  • (Tc ⁇ Te_hs) or (Tc_t ⁇ Te_hs)) increases as the difference between the high pressure and low pressure of the refrigeration cycle increases, and decreases as the difference between the high pressure and low pressure of the refrigeration cycle decreases. Therefore, (Tc ⁇ Te_hs) or (Tc_t ⁇ Te_hs) can be a pressure difference index value indicating the difference between the high pressure and the low pressure of the refrigeration cycle performed in the refrigerant circuit (15).
  • the heat source side heat exchanger (40) is a condenser for cooling an object in the usage side unit (12). While the controller (70) is configured to perform a cooling operation that functions as an outlet that is a temperature of the heat source water flowing out of the heat source side heat exchanger (40) during the cooling operation.
  • the difference between the water temperature and the evaporation temperature of the refrigerant in the use side unit (12) or the target evaporation temperature which is the target value of the evaporation temperature is used as the pressure difference index value.
  • the heat source unit (11) of the ninth aspect can execute a cooling operation that causes the heat source side heat exchanger (40) to function as a condenser.
  • the condensing temperature of the refrigerant in the heat source side heat exchanger (40) is higher than the outlet water temperature by a substantially constant value.
  • the refrigerant condensation temperature in the heat source side heat exchanger (40) correlates with the high pressure of the refrigeration cycle, and the refrigerant evaporation temperature in the use side unit (12) correlates with the low pressure of the refrigeration cycle.
  • the difference ((Tw_o ⁇ Te) or (Tw_o ⁇ Te_t)) between the outlet water temperature Tw_o and the evaporation temperature Te of the refrigerant in the use side unit (12) or the target evaporation temperature Te_t that is the target value of the evaporation temperature is
  • the difference between the high pressure and low pressure of the refrigeration cycle increases, the difference expands.
  • the difference between the high pressure and low pressure of the refrigeration cycle decreases, the difference decreases. Therefore, (Tw_o ⁇ Te) or (Tw_o ⁇ Te_t) can be a pressure difference index value indicating the difference between the high pressure and the low pressure of the refrigeration cycle performed in the refrigerant circuit (15).
  • the heat source side heat exchanger (40) is an evaporator for heating an object in the use side unit (12).
  • the controller (70) is configured to perform a refrigerant condensing temperature or a target value of the condensing temperature in the user side unit (12) during the heating operation.
  • a difference between a certain target condensation temperature and the outlet water temperature, which is the temperature of the heat source water flowing out from the heat source side heat exchanger (40), is configured as the pressure difference index value.
  • the heat source unit (11) of the tenth aspect is capable of performing a heating operation that causes the heat source side heat exchanger (40) to function as an evaporator.
  • the evaporating temperature of the refrigerant in the heat source side heat exchanger (40) is lower than the outlet water temperature by a substantially constant value.
  • the refrigerant condensation temperature in the use side unit (12) correlates with the high pressure of the refrigeration cycle, and the refrigerant evaporation temperature in the heat source side heat exchanger (40) correlates with the low pressure of the refrigeration cycle.
  • the difference ((Tc ⁇ Tw_o) or (Tc_t ⁇ Tw_o)) between the refrigerant condensing temperature Tc or the target condensing temperature Tc_t, which is the target value of the condensing temperature, and the inlet / outlet water temperature Tw_o in the use side unit (12) is
  • Tc ⁇ Tw_o the difference between the high pressure and low pressure of the refrigeration cycle increases
  • Tc_t ⁇ Tw_o can be a pressure difference index value indicating the difference between the high pressure and the low pressure of the refrigeration cycle performed in the refrigerant circuit (15).
  • a refrigeration apparatus (10) including a refrigerant circuit (15) that performs a refrigeration cycle is configured with a use-side unit (12), and a compressor provided in the refrigerant circuit (15) ( 21) Target heat source units that contain at least the heat source side heat exchanger (40).
  • the heat source side heat exchanger (40) is connected to the heat source water circuit (100) through which the heat source water circulates, and is configured to exchange heat between the refrigerant circulating through the refrigerant circuit (15) and the heat source water.
  • the temperature of the heat source water supplied to the heat source side heat exchanger (40) while the size of the heat exchange region through which the refrigerant flows and exchanges heat with the heat source water can be changed.
  • a controller (70) for adjusting the size of the heat exchange region in the heat source side heat exchanger (40) based on the inlet water temperature is provided.
  • the controller (70) sets the size of the heat exchange area of the heat source side heat exchanger (40) to the inlet water temperature (that is, the heat source water supplied to the heat source side heat exchanger (40)). Adjust according to temperature.
  • the capacity of the heat source side heat exchanger (40) that is, the amount of heat exchanged between the refrigerant and the heat source water
  • the controller (70) adjusts the size of the heat exchange area of the heat source side heat exchanger (40), so that the capacity of the heat source side heat exchanger (40) is changed to the heat source side heat exchanger (40). It becomes possible to set to an appropriate value according to the temperature of the heat source water supplied to.
  • a cooling operation that causes the heat source side heat exchanger (40) to function as a radiator in order to cool an object in the use side unit (12).
  • the controller (70) reduces the heat exchange area of the heat source side heat exchanger (40) when the inlet water temperature falls below a predetermined reference temperature during the cooling operation. It is comprised as follows.
  • the heat source unit (11) of the twelfth aspect can execute a cooling operation that causes the heat source side heat exchanger (40) to function as a radiator.
  • the capacity of the heat source side heat exchanger (40) functioning as a radiator increases as the temperature of the heat source water supplied to the heat source side heat exchanger (40) decreases. Therefore, if the inlet water temperature falls below a predetermined reference temperature during the cooling operation and the capacity of the heat source side heat exchanger (40) functioning as a radiator may become excessive, the controller (70) Reduce the heat exchange area of the heat exchanger (40). As a result, the cooling operation of the heat source unit (11) can be continued even in a state where the temperature of the heat source water supplied to the heat source side heat exchanger (40) is lower than the reference temperature.
  • a heating operation that causes the heat source side heat exchanger (40) to function as an evaporator in order to heat an object in the use side unit (12).
  • the controller (70) reduces the heat exchange area of the heat source side heat exchanger (40) when the inlet water temperature exceeds a predetermined reference temperature during the heating operation. It is comprised as follows.
  • the heat source unit (11) of the thirteenth aspect is capable of executing a heating operation that causes the heat source side heat exchanger (40) to function as an evaporator.
  • the capacity of the heat source side heat exchanger (40) functioning as an evaporator increases as the temperature of the heat source water supplied to the heat source side heat exchanger (40) increases. Therefore, if the inlet water temperature exceeds the predetermined reference temperature during the heating operation and the capacity of the heat source side heat exchanger (40) functioning as an evaporator may become excessive, the controller (70) Reduce the heat exchange area of the heat exchanger (40). As a result, even when the temperature of the heat source water supplied to the heat source side heat exchanger (40) exceeds the reference temperature, the heating operation of the heat source unit (11) can be continued.
  • the controller (70) is configured to adjust the reference temperature according to a load of the refrigeration apparatus (10). It is.
  • the controller (70) adjusts the reference temperature according to the load of the refrigeration apparatus (10) (that is, the cooling capacity or heating capacity required for the refrigeration apparatus (10)). Therefore, the controller (70) of this embodiment takes into consideration both “the temperature of the heat source water supplied to the heat source side heat exchanger (40)” and “the load of the refrigeration apparatus (10)”. The size of the heat exchange area of the exchanger (40) is adjusted.
  • each of the heat source side heat exchangers (40) is configured to exchange heat between the refrigerant and the heat source water.
  • the controller (70) is configured to change the size of the heat exchange region by changing the number of the heat exchange parts (41a, 41b) into which the refrigerant flows, and the controller (70) includes the refrigerant side valve mechanism (48, 49) is configured to adjust the size of the heat exchange region.
  • the controller (70) of this aspect adjusts the size of the heat exchange region of the heat source side heat exchanger (40) by adjusting the number of heat exchange parts (41a, 41b) into which the refrigerant flows. .
  • the heat source side heat exchanger (40) includes water for changing the number of the heat exchange units (41a, 41b) into which the heat source water flows.
  • a side valve mechanism (50), and the controller (70) includes the heat source water to the heat exchange part (41a, 41b) where the refrigerant side valve mechanism (48, 49) blocks the inflow of the refrigerant.
  • the water side valve mechanism (50) is configured to be operated so that the inflow of water is blocked.
  • the controller (70) of the sixteenth aspect adjusts the size of the heat exchange area of the heat source side heat exchanger (40), the refrigerant side valve mechanism (48, 49) and the water side valve mechanism (50) Operate both. That is, when the controller (70) shuts off the inflow of the refrigerant to a certain heat exchange part (41b) by the refrigerant side valve mechanism (48, 49), the heat source water to the heat exchange part (41b) Inflow is blocked by the water side valve mechanism (50).
  • the controller (70) adjusts the size of the heat exchange region of the heat source side heat exchanger (40) according to the pressure difference index value.
  • the controller (70) supplies the size of the heat exchange region of the heat source side heat exchanger (40) to the inlet water temperature (that is, the heat source side heat exchanger (40)). Adjust according to the temperature of the heat source water. Therefore, according to the aspect of the present disclosure, the capacity of the heat source side heat exchanger (40) can be set to an appropriate value according to the temperature of the heat source water supplied to the heat source side heat exchanger (40). It becomes. As a result, it is possible to continue the operation of the refrigeration apparatus (10) at any load factor even in the temperature range of the heat source water that could not be operated conventionally.
  • the capacity of the heat source side heat exchanger (40) is appropriately controlled by adjusting the size of the heat exchange region of the heat source side heat exchanger (40) based on the pressure difference index value. It becomes possible to do.
  • the controller (70) when the pressure difference index value falls below the reference index value, the controller (70) reduces the size of the heat exchange area in the heat source side heat exchanger (40). The difference between the high and low pressures of the refrigeration cycle performed is widened. As a result, the difference between the high pressure and the low pressure of the refrigeration cycle performed in the refrigerant circuit (15) is maintained in an appropriate range, and the operation of the refrigeration apparatus (10) can be continued.
  • the controller (70) performs heat exchange of the heat source side heat exchanger (40). Increase the size of the area. Therefore, according to this aspect, when the size of the heat exchange region of the heat source side heat exchanger (40) is unlikely to repeatedly increase and decrease, the size of the heat exchange region of the heat source side heat exchanger (40) is reduced. Can be increased. As a result, it is possible to increase the size of the heat exchange region of the heat source side heat exchanger (40) in a situation where the refrigeration cycle performed in the refrigerant circuit (15) can be stably maintained.
  • the controller (70) adjusts the size of the heat exchange region of the heat source side heat exchanger (40) using various temperature differences as pressure difference index values. Therefore, according to each of these aspects, the size of the heat exchange region of the heat source side heat exchanger (40) can be reliably adjusted using various temperature differences as pressure difference index values.
  • the controller (70) reduces the heat exchange area of the heat source side heat exchanger (40) when the inlet water temperature falls below the reference temperature during the cooling operation. For this reason, it is possible to continue the cooling operation of the heat source unit (11) even when the temperature of the heat source water supplied to the heat source side heat exchanger (40) is lower than the reference temperature. Therefore, according to this aspect, the temperature range of the heat source water in which the refrigeration apparatus (10) can continue operation can be reliably expanded to the low temperature side.
  • the controller (70) reduces the heat exchange area of the heat source side heat exchanger (40) when the inlet water temperature exceeds the reference temperature during the heating operation. For this reason, even if the temperature of the heat source water supplied to the heat source side heat exchanger (40) exceeds the reference temperature, the heating operation of the heat source unit (11) can be continued. Therefore, according to this aspect, the temperature range of the heat source water in which the refrigeration apparatus (10) can continue operation can be reliably expanded to the high temperature side.
  • the controller (70) of the fourteenth aspect adjusts the reference temperature according to the load of the refrigeration apparatus (10). Therefore, according to this aspect, in consideration of both “the temperature of the heat source water supplied to the heat source side heat exchanger (40)” and “the load of the refrigeration apparatus (10)”, the heat source side heat exchanger (40 ) Of the heat exchange area can be adjusted.
  • the heat source water is blocked from flowing in the heat exchanging portion (41b) that does not constitute the heat exchanging region. For this reason, compared with the case where heat source water is continuously supplied with respect to the heat exchange part (41b) which does not comprise a heat exchange area
  • FIG. 1 is a refrigerant circuit diagram illustrating the configuration of the air-conditioning apparatus of Embodiment 1.
  • FIG. 2 is a block diagram illustrating a configuration of the controller according to the first embodiment.
  • FIG. 3 is a refrigerant circuit diagram illustrating a cooling operation of the air-conditioning apparatus of Embodiment 1, and illustrates a case where the heat source side heat exchanger is in a small capacity state.
  • FIG. 4 is a refrigerant circuit diagram illustrating a heating operation of the air-conditioning apparatus of Embodiment 1, and illustrates a case where the heat source side heat exchanger is in a small capacity state.
  • FIG. 5 is a flowchart illustrating a control operation performed by the heat exchanger control unit of the controller according to the first embodiment.
  • FIG. 6 is a flowchart illustrating a control operation performed by the heat exchanger control unit of the controller according to the third modification of the first embodiment.
  • FIG. 7 is a flowchart illustrating a control operation performed by the heat exchanger control unit of the controller of the second embodiment during the cooling operation.
  • FIG. 8 is a flowchart illustrating a control operation performed during heating operation by the heat exchanger control unit of the controller of the second embodiment.
  • FIG. 9 is a refrigerant circuit diagram illustrating a configuration of the air-conditioning apparatus of Embodiment 3.
  • FIG. 10 is a piping diagram illustrating the configuration of the air conditioning system according to the fourth embodiment.
  • FIG. 11 is a piping diagram illustrating the configuration of an air conditioning system according to a first modification of the other embodiment.
  • FIG. 12 is a piping diagram illustrating the configuration of an air conditioning system according to a second modification of the other embodiment.
  • FIG. 13A is a diagram illustrating an operable region of a cooling operation of a conventional air conditioner.
  • FIG. 13B is a diagram illustrating an operable region of the heating operation of the conventional air conditioner.
  • Embodiment 1 The first embodiment will be described.
  • the present embodiment is an air conditioner (10) configured by a refrigeration apparatus including a heat source unit (11).
  • the air conditioner (10) of this embodiment includes a single heat source unit (11) and a plurality of indoor units (12).
  • the refrigerant circuit (15) is formed by connecting the heat source unit (11) and each indoor unit (12) with the liquid side connecting pipe (18) and the gas side connecting pipe (19). Has been.
  • the refrigeration cycle is performed by circulating the filled refrigerant.
  • the heat source unit (11) accommodates a heat source side circuit (16) and a controller (70). Moreover, the heat source water circuit (100) mentioned later is connected to the heat source unit (11). Here, the heat source side circuit (16) will be described. The controller (70) and the heat source water circuit (100) will be described later.
  • the heat source side circuit (16) includes a compressor (21), a four-way switching valve (22), a heat source side heat exchanger (40), a heat source side expansion valve (23), an accumulator (24), a liquid A side closing valve (25) and a gas side closing valve (26) are provided.
  • the heat source side circuit (16) is provided with a supercooling heat exchanger (30), a supercooling circuit (31), an oil separator (35), and an oil return pipe (36). Yes.
  • the compressor (21) has its discharge pipe connected to the first port of the four-way switching valve (22), and its suction pipe connected via the accumulator (24) to the four-way switching valve (22). ) To the second port.
  • a check valve (CV) is provided in the pipe connecting the compressor (21) and the first port of the four-way selector valve (22).
  • the heat source side heat exchanger (40) has a gas side end connected to the third port of the four-way switching valve (22) and a liquid side end connected to one end of the heat source side expansion valve (23).
  • the other end of the heat source side expansion valve (23) is connected to the liquid side closing valve (25) via a supercooling heat exchanger (30).
  • the fourth port of the four-way switching valve (22) is connected to the gas side shut-off valve (26).
  • Compressor (21) is a hermetic scroll compressor.
  • the four-way switching valve (22) includes a first state (state indicated by a solid line in FIG. 1) in which the first port communicates with the third port and the second port communicates with the fourth port; It is configured to be switchable to a second state (state indicated by a broken line in FIG. 1) in which the port communicates with the fourth port and the second port communicates with the third port.
  • the heat source side heat exchanger (40) is configured to exchange heat between the refrigerant in the refrigerant circuit (15) and the heat source water in the heat source water circuit (100). The detailed structure of the heat source side heat exchanger (40) will be described later.
  • the heat source side expansion valve (23) is an electronic expansion valve with a variable opening.
  • the check valve (CV) allows the refrigerant to flow from the compressor (21) to the four-way switching valve (22) and prevents the refrigerant from flowing in the reverse direction.
  • the supercooling heat exchanger (30) is a so-called plate heat exchanger.
  • the supercooling heat exchanger (30) is formed with a plurality of high-pressure channels (30a) and low-pressure channels (30b).
  • the supercooling circuit (31) has one end connected to a pipe connecting the heat source side expansion valve (23) and the supercooling heat exchanger (30), and the other end connected to the second port of the four-way switching valve (22). It is connected to the pipe connecting the accumulator (24).
  • the supercooling circuit (31) is provided with a supercooling expansion valve (32).
  • the supercooling expansion valve (32) is an electronic expansion valve with a variable opening.
  • the subcooling heat exchanger (30) has a high-pressure channel (30a) disposed between the heat-source side expansion valve (23) and the liquid-side shut-off valve (25) in the heat-source circuit (16).
  • the passage (30b) is disposed downstream of the supercooling expansion valve (32) in the supercooling circuit (31).
  • the supercooling heat exchanger (30) cools the refrigerant flowing through the high-pressure channel (30a) by exchanging heat with the refrigerant flowing through the low-pressure channel (30b).
  • the oil separator (35) is provided in a pipe connecting the discharge pipe of the compressor (21) and the check valve (CV) in the heat source side circuit (16).
  • the oil separator (35) separates the refrigeration oil discharged together with the gas refrigerant from the compressor (21) from the gas refrigerant.
  • the oil return pipe (36) has one end connected to the oil separator (35) and the other end connected between the accumulator (24) and the suction pipe of the compressor (21) in the heat source side circuit (16). .
  • the oil return pipe (36) is provided with an oil return solenoid valve (37) and a capillary tube (38) in that order from one end to the other end.
  • the oil return pipe (36) is a pipe for returning the refrigeration oil separated from the gas refrigerant in the oil separator (35) to the compressor (21).
  • the heat source side circuit (16) is provided with a high pressure sensor (P1) and a low pressure sensor (P2).
  • the high pressure sensor (P1) is disposed between the compressor (21) and the oil separator (35) in the heat source side circuit (16), and measures the pressure of the refrigerant discharged from the compressor (21).
  • the low pressure sensor (P2) is disposed between the four-way switching valve (22) and the accumulator (24) in the heat source side circuit (16), and measures the pressure of the refrigerant sucked into the compressor (21).
  • the several temperature sensor is provided in the heat source side circuit (16), those illustration is abbreviate
  • the indoor unit (12) constitutes a use side unit.
  • Each indoor unit (12) accommodates one use side circuit (17) and one indoor controller (13).
  • Each usage side circuit (17) includes, in order from the liquid side end to the gas side end, an indoor expansion valve (61) that is a usage side expansion valve and an indoor heat exchanger (61 that is a usage side heat exchanger). ) And are arranged one by one.
  • the indoor expansion valve (61) is an electronic expansion valve with a variable opening.
  • the indoor heat exchanger (61) is a heat exchanger for exchanging heat between the refrigerant and room air.
  • each indoor unit (12) is provided with one indoor fan.
  • the indoor fan is a fan for supplying indoor air to the indoor heat exchanger (61).
  • the usage side circuit (17) of each indoor unit (12) has its liquid side end connected to the liquid side shutoff valve (25) of the heat source side circuit (16) via the liquid side connection pipe (18), respectively.
  • the gas side end is connected to the gas side shut-off valve (26) of the heat source side circuit (16) via the gas side connecting pipe (19).
  • the indoor controller (13) of each indoor unit (12) controls the indoor expansion valve (61) and the indoor fan provided in the indoor unit (12). That is, the indoor controller (13) adjusts the opening degree of the indoor expansion valve (61) and the rotational speed of the indoor fan.
  • the use side refrigerant temperature sensor (98) is attached to the indoor heat exchanger (61) of each indoor unit (12).
  • the use-side refrigerant temperature sensor (98) measures the temperature of the gas-liquid two-phase refrigerant flowing through the heat transfer tube of the indoor heat exchanger (61). That is, the measured value of the use side refrigerant temperature sensor (98) is the refrigerant evaporation temperature when the indoor heat exchanger (61) functions as an evaporator, and the indoor heat exchanger (61) functions as a condenser. In the case, it is the condensation temperature of the refrigerant.
  • the heat source side heat exchanger (40) includes a heat exchange section (41a, 41b), a liquid side passage (44a, 44b), a gas side passage (45a, 45b), a water introduction passage (46a, 46b), Two water outlets (47a, 47b) are provided.
  • Each heat exchange part (41a, 41b) is comprised by what is called a plate type heat exchanger.
  • a plurality of refrigerant flow paths (42a, 42b) and a plurality of heat source water flow paths (43a, 43b) are formed in each heat exchange section (41a, 41b).
  • Each heat exchange unit (41a, 41b) is configured to exchange heat between the refrigerant flowing through the refrigerant flow path (42a, 42b) and the heat source water flowing through the heat source water flow path (43a, 43b).
  • the refrigerant flow paths (42a, 42b) of the heat exchange units (41a, 41b) are connected in parallel to each other. Specifically, one end of the first liquid side passage (44a) is connected to one end of the refrigerant flow path (42a) of the first heat exchange section (41a), and the refrigerant flow path of the second heat exchange section (41b) ( One end of the second liquid side passage (44b) is connected to one end of 42b).
  • the other end of the first liquid side passage (44a) and the other end of the second liquid side passage (44b) constitute the liquid side end of the heat source side heat exchanger (40), and the heat source side heat exchanger (40). And a pipe connecting the heat source side expansion valve (23).
  • One end of the first gas side passage (45a) is connected to the other end of the refrigerant flow path (42a) of the first heat exchange section (41a), and the refrigerant flow path (42b) of the second heat exchange section (41b). ) Is connected to one end of the second gas side passageway (45b).
  • the other end of the first gas side passage (45a) and the other end of the second gas side passage (45b) constitute a gas side end of the heat source side heat exchanger (40), and the heat source side heat exchanger (40).
  • the liquid side valve (48) which consists of a solenoid valve is provided in the 2nd liquid side channel
  • the second gas side passage (45b) is provided with a gas side valve (49) composed of an electromagnetic valve.
  • the liquid side valve (48) and the gas side valve (49) constitute a refrigerant side valve mechanism for changing the number of heat exchange parts (41a, 41b) into which the refrigerant flows.
  • the heat source water flow paths (43a, 43b) of the heat exchange units (41a, 41b) are connected in parallel to each other. Specifically, one end of the first water introduction path (46a) is connected to one end of the heat source water flow path (43a) of the first heat exchange section (41a), and the heat source water flow path of the second heat exchange section (41b) ( One end of the second water introduction path (46b) is connected to one end of 43b). The other end of the first water introduction path (46a) and the other end of the second water introduction path (46b) are connected to the forward line (101) of the heat source water circuit (100) described later.
  • first water outlet channel (47a) is connected to the other end of the heat source water channel (43a) of the first heat exchange unit (41a), and the heat source water channel (43b) of the second heat exchange unit (41b).
  • the other end of the first water lead-out path (47a) and the other end of the second water lead-out path (47b) are connected to a return pipe (102) of a heat source water circuit (100) described later.
  • the second water introduction path (46b) is provided with a water side valve (50) composed of an electromagnetic valve.
  • the water side valve (50) constitutes a water side valve mechanism for changing the number of heat exchange parts (41a, 41b) into which the heat source water flows.
  • An inlet water temperature sensor (96) is provided in the first water introduction path (46a). The inlet water temperature sensor (96) measures the temperature of the heat source water flowing through the first water introduction path (46a) (that is, the heat source water supplied to the heat source water flow path (43a) of the first heat exchange section (41a)).
  • An outlet water temperature sensor (97) is provided in the first water outlet channel (47a). The outlet water temperature sensor (97) measures the temperature of the heat source water flowing through the first water lead-out path (47a) (that is, the heat source water flowing out from the heat source water flow path (43a) of the first heat exchange section (41a)).
  • the heat source side heat exchanger (40) includes a large capacity state in which refrigerant and heat source water circulate in both the first heat exchange unit (41a) and the second heat exchange unit (41b), and the first heat exchange unit (41a). Only in a small capacity state in which the refrigerant and the heat source water circulate. Switching between the large capacity state and the small capacity state is performed by operating the liquid side valve (48), the gas side valve (49), and the water side valve (50).
  • both the first heat exchange part (41a) and the second heat exchange part (41b) serve as a heat exchange region in which the refrigerant exchanges heat with the heat source water.
  • the first heat exchange part (41a) becomes a heat exchange region in which the refrigerant exchanges heat with the heat source water.
  • the heat source side heat exchanger (40) is configured to be able to change the size of the heat exchange region.
  • the controller (70) provided in the heat source unit (11) constitutes a controller.
  • the controller (70) includes a CPU (71) that performs arithmetic processing and a memory (72) that stores programs, data, and the like for performing control operations.
  • Measured values of the high pressure sensor (P1), low pressure sensor (P2), and inlet water temperature sensor (96) are input to the controller (70). Further, the controller (70) also receives a measurement value of a temperature sensor (not shown) provided in the heat source circuit.
  • the controller (70) is configured to communicate with an indoor controller (13) provided in each indoor unit (12).
  • the controller (70) includes a target evaporation temperature setting unit (81), a target condensation temperature setting unit (82), a compressor control unit (83), and a heat exchanger control unit (84). ) And are formed.
  • the controller (70) also controls the opening degree of the heat source side expansion valve (23) and the supercooling expansion valve (32) and also controls the four-way switching valve (22) and the oil return solenoid valve (37). It is configured.
  • the target evaporation temperature setting unit (81) is configured to set a target value Te_t of the refrigerant evaporation temperature in the indoor heat exchanger (61) during the cooling operation.
  • the target condensation temperature setting unit (82) is configured to set a target value Tc_t of the refrigerant condensation temperature in the indoor heat exchanger (61) during the heating operation.
  • the compressor control unit (83) controls the operating frequency of the compressor (21) (specifically, the AC frequency supplied to the electric motor of the compressor (21)), thereby controlling the compressor (21). The operating capacity (specifically, the rotational speed of the compressor (21)) is adjusted.
  • the heat exchanger controller (84) is configured to control the liquid side valve (48), the gas side valve (49), and the water side valve (50) provided in the heat source side heat exchanger (40). ing. Details of operations performed by the target evaporation temperature setting unit (81), the target condensing temperature setting unit (82), the compressor control unit (83), and the heat exchanger control unit (84) will be described later.
  • the heat source water circuit (100) is a circuit through which the heat source water circulates.
  • the heat source water circuit (100) includes an outward pipe (101) for supplying the heat source water to the heat source unit (11) and a return pipe (102) for deriving the heat source water from the heat source unit (11). I have.
  • the heat source water circuit (100) is provided with a pump for circulating the heat source water.
  • the heat source water circuit (100) circulates the heat source water between the heat source side heat exchanger (40) of the heat source unit (11) and a cooling heat source such as a cooling tower.
  • the heat source water cooled in the cold heat source is supplied to the heat source side heat exchanger (40).
  • the heat source water circuit (100) supplies heat source water between the heat source side heat exchanger (40) of the heat source unit (11) and a heat source such as a boiler.
  • the heat source water that is circulated and heated in the heat source is supplied to the heat source side heat exchanger (40).
  • the air conditioner (10) of the present embodiment selectively performs a cooling operation (cooling operation) for cooling the room and a heating operation (heating operation) for heating the room.
  • the refrigerant circulates in the refrigerant circuit (15), the heat source side heat exchanger (40) functions as a condenser (radiator), and the indoor heat exchanger (61) functions as an evaporator. Is done.
  • the heat source unit (11) cools the heat source side heat exchanger (40) as a condenser to cool the object (room air) in the indoor unit (12). Perform the operation.
  • the four-way switching valve (22) is set to the first state (the state indicated by the solid line in FIG. 1), the heat source side expansion valve (23) is set to the fully open state, the supercooling expansion valve (32) and The opening degree of the indoor expansion valve (61) is appropriately adjusted.
  • the air conditioner during the cooling operation in which the liquid side valve (48), the gas side valve (49), and the water side valve (50) of the heat source side heat exchanger (40) are opened The operation of 10) will be explained.
  • the refrigerant discharged from the compressor (21) flows into the heat source side heat exchanger (40) through the four-way switching valve (22).
  • the heat source side heat exchanger (40) a part of the refrigerant that has flowed flows into the refrigerant flow path (42a) of the first heat exchange section (41a), and the rest flows through the refrigerant flow of the second heat exchange section (41b). It flows into the road (42b).
  • Heat source water cooled in the cold heat source is supplied to the heat source water flow paths (43a, 43b) of the heat exchange units (41a, 41b) through the forward pipe path (101).
  • each heat exchange section (41a, 41b) the refrigerant flowing through the refrigerant flow path (42a, 42b) dissipates heat to the heat source water flowing through the heat source water flow path (43a, 43b) and condenses.
  • the refrigerant condensed in each heat exchange section (41a, 41b) passes through the heat source side expansion valve (23) after joining.
  • the refrigerant cooled in the high-pressure channel (30a) of the supercooling heat exchanger (30) is distributed to each use circuit (17) through the liquid communication pipe (18).
  • each use side circuit (17) the refrigerant that has flowed in expands when it passes through the indoor expansion valve (61), and then absorbs heat from the indoor air and evaporates in the indoor heat exchanger (61).
  • Each indoor unit (12) blows out the air cooled in the indoor heat exchanger (61) into the room.
  • the refrigerant evaporated in each indoor heat exchanger (61) flows into the gas side connecting pipe (19) and joins, and then flows into the heat source side circuit (16).
  • the refrigerant passes through the four-way switching valve (22) and then merges with the refrigerant in the supercooling circuit (31), and then passes through the accumulator (24) before being sucked into the compressor (21).
  • the compressor (21) compresses and discharges the sucked refrigerant.
  • the refrigerant circulates in the refrigerant circuit (15), the indoor heat exchanger (61) functions as a condenser (radiator), and the heat source side heat exchanger (40) functions as an evaporator. Is done.
  • the heat source unit (11) heats the heat source side heat exchanger (40) to function as an evaporator in order to heat the object (room air) in the indoor unit (12). Perform the operation.
  • the four-way switching valve (22) is set to the second state (the state indicated by the broken line in FIG. 1), and the heat source side expansion valve (23), the supercooling expansion valve (32), and the indoor expansion valve (61 ) Is adjusted as appropriate.
  • the state in which the liquid side valve (48), the gas side valve (49), and the water side valve (50) of the heat source side heat exchanger (40) are opened is an air conditioner during heating operation ( The operation of 10) will be explained.
  • the refrigerant discharged from the compressor (21) passes through the four-way switching valve (22) and then is distributed to the respective use side circuits (17) through the gas side communication pipe (19).
  • each use side circuit (17) the refrigerant flowing in dissipates heat to the indoor air and condenses in the indoor heat exchanger (61).
  • Each indoor unit (12) blows out the air heated in the indoor heat exchanger (61) into the room.
  • the refrigerant condensed in each indoor heat exchanger (61) flows into the liquid side connecting pipe (18) after passing through the indoor expansion valve (61), and then flows into the heat source side circuit (16).
  • the refrigerant that has flowed into the heat source side circuit (16) flows into the high-pressure channel (30a) of the supercooling heat exchanger (30) and is cooled by the refrigerant flowing through the low-pressure channel (30b).
  • a part of the refrigerant cooled in the high-pressure channel (30a) of the supercooling heat exchanger (30) flows into the supercooling circuit (31), and the rest flows into the heat source expansion valve (23).
  • the refrigerant flowing into the supercooling circuit (31) expands when passing through the supercooling expansion valve (32), and then flows into the low pressure side flow path (30b) of the supercooling heat exchanger (30).
  • the refrigerant flowing through the low-pressure channel (30b) absorbs heat from the refrigerant flowing through the high-pressure channel (30a) and evaporates.
  • the refrigerant flowing into the heat source side expansion valve (23) expands when passing through the heat source side expansion valve (23), and then flows into the heat source side heat exchanger (40).
  • the heat source side heat exchanger (40) a part of the refrigerant that has flowed flows into the refrigerant flow path (42a) of the first heat exchange section (41a), and the rest flows through the refrigerant flow of the second heat exchange section (41b). It flows into the road (42b).
  • Heat source water heated in the heat source is supplied to the heat source water flow path (43a, 43b) of each heat exchange section (41a, 41b) through the forward pipe path (101).
  • the refrigerant flowing through the refrigerant flow path (42a, 42b) absorbs heat from the heat source water flowing through the heat source water flow path (43a, 43b) and evaporates.
  • each heat exchange section (41a, 41b) passes through the four-way switching valve (22) after joining, and then joins with the refrigerant in the supercooling circuit (31). Thereafter, the refrigerant passes through the accumulator (24) and then is sucked into the compressor (21). The compressor (21) compresses and discharges the sucked refrigerant.
  • the target evaporation temperature setting unit (81) performs an operation of setting a target value Te_t of the refrigerant evaporation temperature in the indoor heat exchanger (61) during the cooling operation.
  • the indoor controller (13) calculates the evaporation temperature of the refrigerant so that the indoor unit (12) can exhibit the required cooling capacity, and uses this value as the refrigerant evaporation. It is transmitted to the controller (70) of the heat source unit (11) as a required temperature value. At that time, the indoor controller (13) calculates the required value of the refrigerant evaporation temperature based on the temperature of the indoor heat exchanger (61), the rotational speed of the indoor fan, and the like. That is, the indoor controller (13) calculates the required value of the refrigerant evaporation temperature in consideration of the cooling load of the indoor unit (12) provided with the indoor controller (13).
  • the target evaporation temperature setting unit (81) of the controller (70) compares the required value of the refrigerant evaporation temperature transmitted from the indoor controller (13) of each indoor unit (12), and determines the lowest value of the refrigerant
  • the target value of the evaporation temperature (that is, the target evaporation temperature Te_t) is set.
  • the required value of the evaporation temperature of the refrigerant transmitted from the indoor controller (13) is a value calculated in consideration of the cooling load of the indoor unit (12). Therefore, the target evaporation temperature Te_t set based on the required value of the refrigerant evaporation temperature transmitted by the indoor controller (13) is a value set in consideration of the cooling load of the air conditioner (10). This target evaporation temperature Te_t becomes a higher value as the cooling load of the air conditioner (10) is smaller, and becomes a lower value as the cooling load of the air conditioner (10) is larger.
  • the target condensing temperature setting unit (82) performs an operation of setting the target value Tc_t of the refrigerant condensing temperature in the indoor heat exchanger (61) during the heating operation.
  • the indoor controller (13) calculates the condensation temperature of the refrigerant so that the indoor unit (12) can exhibit the required heating capacity, and uses that value as the refrigerant condensation. It is transmitted to the controller (70) of the heat source unit (11) as a required temperature value. At that time, the indoor controller (13) calculates the required value of the refrigerant condensing temperature based on the temperature of the indoor heat exchanger (61), the rotational speed of the indoor fan, and the like. That is, the indoor controller (13) calculates the required value of the refrigerant condensing temperature in consideration of the heating load of the indoor unit (12) provided with the indoor controller (13).
  • the target condensing temperature setting unit (82) of the controller (70) compares the required value of the refrigerant condensing temperature transmitted from the indoor controller (13) of each indoor unit (12), and determines the highest value of the refrigerant.
  • the target value of the condensation temperature that is, the target condensation temperature Tc_t is set.
  • the required value of the refrigerant condensation temperature transmitted by the indoor controller (13) is a value calculated in consideration of the heating load of the indoor unit (12). Therefore, the target condensing temperature Tc_t set based on the required value of the refrigerant condensing temperature transmitted by the indoor controller (13) is a value set in consideration of the heating load of the air conditioner (10). This target condensation temperature Tc_t becomes a lower value as the heating load of the air conditioner (10) is smaller, and becomes a higher value as the heating load of the air conditioner (10) is larger.
  • the compressor control unit (83) adjusts the operating capacity of the compressor (21) by controlling the operating frequency of the compressor (21).
  • the compressor control unit (83) adjusts the operation capacity of the compressor (21) based on the target evaporation temperature Te_t set by the target evaporation temperature setting unit (81). Specifically, the compressor control unit (83) calculates the refrigerant saturation pressure at the target evaporation temperature Te_t (that is, the pressure at which the refrigerant saturation temperature becomes the target evaporation temperature Te_t), and calculates the value as the target evaporation pressure. Let Pe_t. And a compressor control part (83) adjusts the operating frequency of a compressor (21) so that the measured value of a low pressure sensor (P2) may become target evaporation pressure Pe_t.
  • P2 low pressure sensor
  • the compressor control unit (83) lowers the operating frequency of the compressor (21) and measures the measured value of the low pressure sensor (P2). Is higher than the target evaporation pressure Pe_t, the operating frequency of the compressor (21) is increased.
  • the compressor control unit (83) adjusts the operation capacity of the compressor (21) based on the target condensation temperature Tc_t set by the target condensation temperature setting unit (82). Specifically, the compressor control unit (83) calculates the saturation pressure of the refrigerant at the target condensation temperature Tc_t (that is, the pressure when the saturation temperature of the refrigerant becomes the target condensation temperature Tc_t), and calculates the value as the target condensation pressure. Let Pc_t. And a compressor control part (83) adjusts the operating frequency of a compressor (21) so that the measured value of a high pressure sensor (P1) may become target condensation pressure Pc_t.
  • the compressor controller (83) lowers the operating frequency of the compressor (21) and measures the measured value of the high pressure sensor (P1). Is lower than the target condensation pressure Pc_t, the operating frequency of the compressor (21) is increased.
  • the heat exchanger controller (84) adjusts the size of the heat exchange area in the heat source side heat exchanger (40) based on the measured value of the inlet water temperature sensor (96).
  • the heat exchanger controller (84) controls the liquid side valve (48), the gas side valve (49), and the water side valve (50) provided in the heat source side heat exchanger (40), and
  • the size of the heat exchange region in the heat source side heat exchanger (40) is adjusted by changing the number of heat exchange parts (41a, 41b) through which the heat source water flows.
  • the heat source side heat exchanger (40) of the present embodiment is provided with two heat exchange parts (41a, 41b).
  • the refrigerant and the heat source water flow through the heat source side heat exchanger (40) in both the first heat exchange unit (41a) and the second heat exchange unit (41b). Switching to a large capacity state, and a small capacity state in which only the first heat exchanging part (41a) circulates refrigerant and heat source water and the second heat exchanging part (41b) pauses.
  • the heat exchanger controller (84) includes the liquid side valve (48), the gas side valve (49), By setting the water side valve (50) in the open state, the heat source side heat exchanger (40) is brought into a large capacity state. Further, during the cooling operation of the heat source unit (11), the heat exchanger control unit (84) sets the gas side valve (49) and the water side valve (50) to the closed state as shown in FIG. In addition, by setting the liquid side valve (48) to the open state, the heat source side heat exchanger (40) is set to the small capacity state. Thus, during the cooling operation of the heat source unit (11), the heat exchanger controller (84) switches the gas side valve (49) and the water side valve (50) between the open state and the closed state, Hold the side valve (48) open.
  • the heat exchanger controller (84) includes the liquid side valve (48) and the gas side valve (49 ) And the water side valve (50) are set in an open state, thereby bringing the heat source side heat exchanger (40) into a large capacity state.
  • the heat exchanger controller (84) sets the liquid side valve (48) and the water side valve (50) to the closed state as shown in FIG. And by setting a gas side valve (49) to an open state, a heat source side heat exchanger (40) is made into a small capacity
  • the heat exchanger controller (84) switches the liquid side valve (48) and the water side valve (50) between the open state and the closed state while Hold the side valve (49) open.
  • the heat exchanger controller (84) adjusts the size of the heat exchange region in the heat source side heat exchanger (40) based on the measured value of the inlet water temperature sensor (96). That is, the heat exchanger controller (84) performs a control operation for switching the heat source side heat exchanger (40) between the large capacity state and the small capacity state based on the measured value of the inlet water temperature sensor (96). The heat exchanger controller (84) repeats this control operation every predetermined time.
  • the heat exchanger control unit (84) uses the difference (Tw_i ⁇ Te_t) between the inlet water temperature Tw_i and the target evaporation temperature Te_t as a pressure difference index value.
  • the size of the heat exchange region in the heat source side heat exchanger (40) is adjusted so that the pressure difference index value is equal to or greater than the reference temperature difference ⁇ Ts_c that is the reference index value.
  • the heat exchanger controller (84) uses the difference between the target condensing temperature Tc_t and the inlet water temperature Tw_i (Tc_t ⁇ Tw_i) as a pressure difference index value.
  • the size of the heat exchange region in the heat source side heat exchanger (40) is adjusted so that the value is equal to or greater than the reference temperature difference ⁇ Ts_h that is the reference index value.
  • step ST10 the heat exchanger controller (84) determines whether or not the operating state of the air conditioner (10) is a cooling operation. When it is determined that the operation state of the air conditioner (10) is not the cooling operation, the heat exchanger control unit (84) proceeds to step ST20 and determines whether or not the operation state of the air conditioner (10) is the heating operation. Judging. If it is determined in step ST20 that the operation state of the air conditioner (10) is not the heating operation, the air conditioner (10) is neither performing the cooling operation nor the heating operation. The control unit (84) once ends the control operation.
  • step ST10 When it is determined in step ST10 that the operation state of the air conditioner (10) is the cooling operation, the heat exchanger control unit (84) proceeds to step ST11, and the inlet which is a measured value of the inlet water temperature sensor (96) Water temperature Tw_i (that is, the temperature of the heat source water supplied from the forward pipe (101) of the heat source water circuit (100) to the heat source side heat exchanger (40)) and the target set by the target evaporation temperature setting unit (81) Evaporation temperature Te_t is read.
  • Tw_i Water temperature of the heat source water supplied from the forward pipe (101) of the heat source water circuit (100) to the heat source side heat exchanger (40)
  • the heat exchanger controller (84) compares the difference between the inlet water temperature Tw_i and the target evaporation temperature Te_t (Tw_i ⁇ Te_t) with the reference temperature difference ⁇ Ts_c for cooling operation.
  • the reference temperature difference ⁇ Ts_c is set to 9 ° C., for example.
  • Step ST12 If (Tw_i ⁇ Te_t) is less than ⁇ Ts_c in Step ST12 (that is, Tw_i ⁇ Te_t ⁇ Ts_c is satisfied), the temperature of the heat source water supplied to the heat source side heat exchanger (40) is relatively low, and the condensation is performed. There is a possibility that the capacity of the heat source side heat exchanger (40) functioning as a cooler becomes excessive and the high pressure of the refrigeration cycle (that is, the condensation pressure of the refrigerant) becomes too low. Further, the pressure difference index value (Tw_i ⁇ Te_t) is small, and the difference between the high pressure and the low pressure in the refrigeration cycle may be too small.
  • the heat exchanger control unit (84) proceeds to step ST13, and determines whether or not the gas side valve (49) and the water side valve (50) are open.
  • the heat source side heat exchanger (40) When the gas side valve (49) and the water side valve (50) are in the open state, the heat source side heat exchanger (40) has a refrigerant in both the first heat exchange part (41a) and the second heat exchange part (41b). And heat source water circulates. That is, the heat source side heat exchanger (40) is in a large capacity state in which both the first heat exchange part (41a) and the second heat exchange part (41b) function as a condenser. Therefore, in this case, the capacity of the heat source side heat exchanger (40) can be reduced.
  • step ST13 when it is determined in step ST13 that the gas side valve (49) and the water side valve (50) are in the open state, the heat exchanger controller (84) proceeds to step ST14, and the gas side valve (49) And close the water side valve (50).
  • the gas side valve (49) and the water side valve (50) are in the closed state, in the heat source side heat exchanger (40), the refrigerant and the heat source water flow only in the first heat exchange section (41a). That is, the heat source side heat exchanger (40) is in a small capacity state in which only the first heat exchange part (41a) functions as a condenser and the second heat exchange part (41b) is suspended.
  • the heat exchanger controller (84) once ends the control operation.
  • step ST12 If (Tw_i ⁇ Te_t) is equal to or greater than ⁇ Ts_c in step ST12 (that is, Tw_i ⁇ Te_t ⁇ Ts_c does not hold), the temperature of the heat source water supplied to the heat source side heat exchanger (40) is relatively high, and the condensation is performed.
  • the capacity of the heat source side heat exchanger (40) functioning as a cooler may be insufficient, and the high pressure of the refrigeration cycle (that is, the refrigerant condensing pressure) may become too high.
  • the pressure difference index value (Tw_i ⁇ Te_t) is large, and the difference between the high pressure and the low pressure of the refrigeration cycle becomes too large, which may increase the power consumption of the compressor (21).
  • the heat exchanger control unit (84) proceeds to step ST15 and determines whether or not the gas side valve (49) and the water side valve (50) are closed.
  • the heat source side heat exchanger (40) When the gas side valve (49) and the water side valve (50) are closed, in the heat source side heat exchanger (40), the refrigerant and the heat source water circulate only in the first heat exchange section (41a). That is, the heat source side heat exchanger (40) is in a small capacity state in which only the first heat exchange part (41a) functions as a condenser and the second heat exchange part (41b) is suspended. Therefore, in this case, the capacity of the heat source side heat exchanger (40) can be increased.
  • step ST15 when it is determined in step ST15 that the gas side valve (49) and the water side valve (50) are in the closed state, the heat exchanger controller (84) proceeds to step ST16, and the gas side valve (49) And open the water side valve (50).
  • the heat source side heat exchanger (40) has refrigerant in both the first heat exchange part (41a) and the second heat exchange part (41b). And heat source water circulates. That is, the heat source side heat exchanger (40) is in a large capacity state in which both the first heat exchange part (41a) and the second heat exchange part (41b) function as a condenser.
  • the heat exchanger controller (84) once ends the control operation.
  • step ST20 When it is determined in step ST20 that the operation state of the air conditioner (10) is the heating operation, the heat exchanger control unit (84) proceeds to step ST21, and the inlet which is a measured value of the inlet water temperature sensor (96) The water temperature Tw_i and the target condensation temperature Tc_t set by the target condensation temperature setting unit (82) are read.
  • the heat exchanger controller (84) compares the difference between the target condensation temperature Tc_t and the inlet water temperature Tw_i (Tc_t ⁇ Tw_i) with the reference temperature difference ⁇ Ts_h for heating operation.
  • This reference temperature difference ⁇ Ts_h is set to 2 ° C., for example.
  • step ST22 If (Tc_t ⁇ Tw_i) is less than ⁇ Ts_h (ie, Tc_t ⁇ Tw_i ⁇ Ts_h is satisfied) in step ST22, the temperature of the heat source water supplied to the heat source side heat exchanger (40) is relatively high, and evaporation There is a possibility that the capacity of the heat source side heat exchanger (40) functioning as a refrigerator becomes excessive and the low pressure of the refrigeration cycle (that is, the evaporation pressure of the refrigerant) becomes too high. Further, the pressure difference index value (Tc_t ⁇ Tw_i) is small, and the difference between the high pressure and the low pressure in the refrigeration cycle may be too small.
  • the heat exchanger control unit (84) proceeds to step ST23 and determines whether or not the liquid side valve (48) and the water side valve (50) are in the open state.
  • the heat source side heat exchanger (40) When the liquid side valve (48) and the water side valve (50) are open, the heat source side heat exchanger (40) has a refrigerant in both the first heat exchange part (41a) and the second heat exchange part (41b). And heat source water circulates. That is, the heat source side heat exchanger (40) is in a large capacity state in which both the first heat exchange part (41a) and the second heat exchange part (41b) function as an evaporator. Therefore, in this case, the capacity of the heat source side heat exchanger (40) can be reduced.
  • step ST23 when it is determined in step ST23 that the liquid side valve (48) and the water side valve (50) are in the open state, the heat exchanger control unit (84) proceeds to step ST24, and the liquid side valve (48) And close the water side valve (50).
  • the heat source side heat exchanger (40) When the liquid side valve (48) and the water side valve (50) are in the closed state, in the heat source side heat exchanger (40), the refrigerant and the heat source water circulate only in the first heat exchange section (41a). That is, the heat source side heat exchanger (40) is in a small capacity state in which only the first heat exchange part (41a) functions as an evaporator and the second heat exchange part (41b) is suspended.
  • the heat exchanger controller (84) once ends the control operation.
  • step ST22 If (Tc_t ⁇ Tw_i) is equal to or greater than ⁇ Ts_h in step ST22 (that is, Tc_t ⁇ Tw_i ⁇ Ts_h is not established), the temperature of the heat source water supplied to the heat source side heat exchanger (40) is relatively low, and evaporation The capacity of the heat source side heat exchanger (40) functioning as a cooler may be insufficient, and the low pressure of the refrigeration cycle (that is, the evaporation pressure of the refrigerant) may become too low. In addition, the pressure difference index value (Tc_t ⁇ Tw_i) is large, and the difference between the high pressure and the low pressure in the refrigeration cycle becomes too large, which may increase the power consumption of the compressor (21).
  • the heat exchanger control unit (84) proceeds to step ST25 and determines whether or not the liquid side valve (48) and the water side valve (50) are closed.
  • the heat source side heat exchanger (40) When the liquid side valve (48) and the water side valve (50) are closed, in the heat source side heat exchanger (40), the refrigerant and the heat source water circulate only in the first heat exchange section (41a). That is, the heat source side heat exchanger (40) is in a small capacity state in which only the first heat exchange part (41a) functions as an evaporator and the second heat exchange part (41b) is suspended. Therefore, in this case, the capacity of the heat source side heat exchanger (40) can be increased.
  • step ST25 when it is determined in step ST25 that the liquid side valve (48) and the water side valve (50) are in the closed state, the heat exchanger control unit (84) proceeds to step ST26, and the liquid side valve (48) And open the water side valve (50).
  • the heat source side heat exchanger (40) has a refrigerant in both the first heat exchange section (41a) and the second heat exchange section (41b). And heat source water circulates. That is, the heat source side heat exchanger (40) is in a large capacity state in which both the first heat exchange part (41a) and the second heat exchange part (41b) function as an evaporator.
  • the heat exchanger controller (84) once ends the control operation.
  • the heat exchanger controller (84) uses the difference (Tw_i ⁇ Te_t) between the inlet water temperature Tw_i and the target evaporation temperature Te_t as the pressure difference index value.
  • the condensing temperature of the refrigerant in the heat source side heat exchanger (40) is higher than the inlet water temperature Tw_i by a substantially constant value.
  • the refrigerant condensation temperature in the heat source side heat exchanger (40) correlates with the high pressure of the refrigeration cycle, and the refrigerant evaporation temperature in the indoor unit (12) correlates with the low pressure of the refrigeration cycle.
  • (Tw_i ⁇ Te_t) can be a pressure difference index value indicating the difference between the high pressure and the low pressure of the refrigeration cycle performed in the refrigerant circuit (15).
  • the heat exchanger controller (84) uses the difference (Tc_t ⁇ Tw_i) between the target condensing temperature Tc_t and the inlet water temperature Tw_i as the pressure difference index value. .
  • the evaporating temperature of the refrigerant in the heat source side heat exchanger (40) is lower than the inlet water temperature Tw_i by a substantially constant value.
  • the refrigerant condensation temperature in the indoor unit (12) correlates with the high pressure of the refrigeration cycle
  • the refrigerant evaporation temperature in the heat source side heat exchanger (40) correlates with the low pressure of the refrigeration cycle.
  • the difference (Tc_t ⁇ Tw_i) between the target condensation temperature Tc_t and the inlet water temperature Tw_i increases when the difference between the high pressure and the low pressure of the refrigeration cycle increases, and decreases when the difference between the high pressure and the low pressure of the refrigeration cycle decreases. Therefore, it can be a pressure difference index value indicating the difference between the high pressure and the low pressure of the refrigeration cycle performed in the refrigerant circuit (15).
  • Embodiment 1 If the temperature of the heat source water is relatively low during the cooling operation of the air conditioner (10), the capacity of the heat source side heat exchanger (40) functioning as a condenser becomes excessive, and the high pressure of the refrigeration cycle is lowered. The difference between the high pressure and the low pressure of the refrigeration cycle may become too small and the refrigeration cycle cannot be continued. In particular, when the cooling load of the air conditioner (10) is small, there is a high possibility of falling into such a state.
  • an air conditioning apparatus (10) will start and stop repeatedly. If the air conditioner (10) is repeatedly started and stopped frequently, for example, the indoor air temperature may fluctuate and comfort may be impaired, and the compressor (21) may be damaged easily by repeatedly starting and stopping. Problem arises.
  • the heat exchanger controller (84) of the controller (70) has an inlet water temperature Tw_i (that is, a heat source side) that is a measured value of the inlet water temperature sensor (96). Based on the temperature of the heat source water supplied to the heat exchanger (40), the heat source side heat exchanger (40) is switched between the large capacity state and the small capacity state. Specifically, the heat exchanger controller (84) uses the difference (Tw_i ⁇ Te_t) between the inlet water temperature Tw_i and the target evaporation temperature Te_t as a pressure difference index value for cooling operation, while the target condensation temperature Tc_t and the inlet water temperature Tw_i. Difference (Tc_t ⁇ Tw_i) is used as a pressure difference index value for heating operation, and the size of the heat exchange region of the heat source side heat exchanger (40) is adjusted based on these pressure difference index values.
  • the inlet water temperature Tw_i is “the heat exchange area of the heat source side heat exchanger (40) remains constant, the capacity of the heat source side heat exchanger (40) becomes excessive and the refrigeration cycle can be continued.
  • the heat exchanger control unit (84) switches the heat source side heat exchanger (40) from the large capacity state to the small capacity state, so that the heat source side heat exchanger The capacity of (40) can be reduced, and as a result, the refrigeration cycle can be continued. Therefore, according to the present embodiment, the “temperature range of the heat source water in which the air conditioner (10) can continue the operation regardless of the air conditioning load” can be expanded as compared with the conventional case.
  • the heat exchanger controller (84) of the controller (70) of the present embodiment sets the gas side valve (49) and the heat source side heat exchanger (40) in the small capacity state during the cooling operation.
  • the liquid side valve (48) and the water side valve (50) are closed. That is, in the heat source side heat exchanger (40) in the small capacity state, not only the refrigerant circulation but also the heat source water circulation in the second heat exchange section (41b) is blocked. For this reason, compared with the case where heat source water is continuously supplied to the 2nd heat exchange part (41b) in the heat source side heat exchanger (40) of a small capacity state, the power required for conveyance of heat source water can be reduced.
  • This operation reduces the heat exchange area of the heat source side heat exchanger (40) when Tw_i ⁇ Te_t + ⁇ Ts_c holds, and expands the heat exchange area of the heat source side heat exchanger (40) when Tw_i ⁇ Te_t + ⁇ Ts_c does not hold.
  • the operation is substantially the same.
  • the heat exchanger control unit (84) of the present embodiment is configured to reduce the heat exchange region of the heat source side heat exchanger (40) when the inlet water temperature Tw_i falls below the reference temperature (Te_t + ⁇ Ts_c) for cooling operation. May be. Further, the heat exchanger control section (84) of the present embodiment expands the heat exchange area of the heat source side heat exchanger (40) when the inlet water temperature Tw_i exceeds the reference temperature (Te_t + ⁇ Ts_c) for cooling operation. It may be configured.
  • step ST12 of FIG. 5 the heat exchanger control unit (84) of the present modified example determines whether or not the inlet water temperature Tw_i is lower than the reference temperature for cooling operation (Te_t + ⁇ Ts_c) (that is, whether or not the condition of Tw_i ⁇ Te_t + ⁇ Ts_c is satisfied). Judging. Then, when Tw_i ⁇ Te_t + ⁇ Ts_c is satisfied, the heat exchanger control unit (84) proceeds to step ST13 in FIG. 5, and when Tw_i ⁇ Te_t + ⁇ Ts_c is not satisfied, the process proceeds to step ST15 in FIG.
  • the target evaporation temperature Te_t increases as the cooling load of the air conditioner (10) decreases, and decreases as the cooling load of the air conditioner (10) increases.
  • the reference temperature difference ⁇ Ts_c for cooling operation is a constant value. Therefore, the heat exchanger control unit (84) of the first embodiment and the modified example 1 sets the reference temperature (Te_t + ⁇ Ts_c) for cooling operation to a higher value as the cooling load of the air conditioner (10) is smaller, and the air conditioning The larger the cooling load of the device (10), the lower the value.
  • the target evaporation temperature Te_t becomes higher as the cooling load of the air conditioner (10) is smaller, and becomes lower as the cooling load of the air conditioner (10) is larger. Therefore, the heat exchanger control unit (84) of the first embodiment and the modified example 1 sets the reference temperature (Te_t + ⁇ Ts_c) for cooling operation to a higher value as the cooling load of the air conditioner (10) is smaller, and the air conditioning The larger the cooling load of the device (10), the lower the value.
  • the heat exchanger control unit (84) sets the heat exchange area of the heat source side heat exchanger (40) when Tc_t ⁇ Tw_i ⁇ Ts_h is satisfied.
  • Tc_t ⁇ Tw_i ⁇ Ts_h is not satisfied, an operation of expanding the heat exchange region of the heat source side heat exchanger (40) is performed (see steps ST12 to ST16 in FIG. 5).
  • This operation reduces the heat exchange area of the heat source side heat exchanger (40) when Tc_t ⁇ Ts_h ⁇ Tw_i is satisfied, and heats of the heat source side heat exchanger (40) when Tc_t ⁇ Ts_h ⁇ Tw_i is not satisfied. This is substantially the same as the operation of expanding the exchange area.
  • the heat exchanger control unit (84) of the present embodiment reduces the heat exchange area of the heat source side heat exchanger (40). It may be configured. Further, the heat exchanger control section (84) of the present embodiment expands the heat exchange area of the heat source side heat exchanger (40) when the inlet water temperature Tw_i becomes equal to or lower than the reference temperature for heating operation (Tc_t ⁇ Ts_h). It may be configured.
  • the heat exchanger controller (84) of the present modified example determines whether or not the inlet water temperature Tw_i exceeds the reference temperature for heating operation (Tc_t ⁇ Ts_h) (that is, Tc_t ⁇ Ts_h ⁇ Tw_i). Judgment of success or failure of conditions.
  • the heat exchanger controller (84) proceeds to step ST23 in FIG. 5 when Tc_t ⁇ Ts_h ⁇ Tw_i is satisfied, and proceeds to step ST25 in FIG. 5 when Tc_t ⁇ Ts_h ⁇ Tw_i is not satisfied.
  • the target condensation temperature Tc_t decreases as the heating load of the air conditioner (10) decreases, and increases as the heating load of the air conditioner (10) increases.
  • the reference temperature difference ⁇ Ts_h for heating operation is a constant value. Therefore, the heat exchanger control unit (84) of the first embodiment and the modified example 2 sets the reference temperature (Tc_t ⁇ Ts_h) for heating operation to a lower value as the heating load of the air conditioner (10) is smaller, The higher the heating load of the air conditioner (10), the higher the value.
  • the target condensation temperature Tc_t becomes lower as the heating load of the air conditioner (10) is smaller, and becomes higher as the heating load of the air conditioner (10) is larger. Therefore, the heat exchanger control unit (84) of the first embodiment and the modified example 2 sets the reference temperature (Tc_t ⁇ Ts_h) for heating operation to a lower value as the heating load of the air conditioner (10) is smaller, The higher the heating load of the air conditioner (10), the higher the value.
  • the heat exchanger control unit (84) of the present embodiment changes the heat source side heat exchanger (40) from the small capacity state to the large capacity. It may be configured to switch to a state.
  • the control operation performed by the heat exchanger controller (84) of the present modification will be described with reference to the flowchart of FIG.
  • step ST17 and step ST27 are added to the flowchart shown in FIG.
  • the difference between the control operation of the heat exchanger control unit (84) shown in FIG. 6 and the control operation of the heat exchanger control unit (84) shown in FIG. 5 will be described.
  • Step ST17 the heat exchanger controller (84) compares (Tw_i ⁇ Te_t) with ( ⁇ Ts_c + ⁇ ).
  • Tw_i is the inlet water temperature
  • Te_t is the target evaporation temperature
  • ⁇ Ts_c is the reference temperature difference for cooling.
  • is a constant stored in advance by the heat exchanger controller (84).
  • the heat exchanger controller (84) proceeds to step ST16 and opens the gas side valve (49) and the water side valve (50). As a result, the heat source side heat exchanger (40) switches from the small capacity state to the large capacity state. On the other hand, when (Tw_i ⁇ Te_t) is less than ( ⁇ Ts_c + ⁇ ), the heat exchanger controller (84) keeps the gas side valve (49) and the water side valve (50) closed. As a result, the heat source side heat exchanger (40) is maintained in a small capacity state.
  • the heat exchanger control unit (84) of the present modification has the pressure difference index value (Tw_i ⁇ Te_t) as the reference index value. Even if ⁇ Ts_c or more, the heat exchanger control unit (84) is kept in a small capacity state, and when (Tw_i ⁇ Te_t) becomes ( ⁇ Ts_c + ⁇ ) or more, the heat source side heat exchanger (40) is kept in a small capacity state. To the large capacity state. For this reason, the phenomenon (so-called hunting) in which the heat source side heat exchanger (40) is alternately switched between the small capacity state and the large capacity state in a short time is suppressed.
  • hunting the phenomenon in which the heat source side heat exchanger (40) is alternately switched between the small capacity state and the large capacity state in a short time is suppressed.
  • Step ST27 the heat exchanger control unit (84) compares (Tc_t ⁇ Tw_i) with ( ⁇ Ts_h + ⁇ ).
  • Tw_i is the inlet water temperature
  • Tc_t is the target condensation temperature
  • ⁇ Ts_h is the reference temperature difference for heating.
  • is a constant stored in advance by the heat exchanger controller (84).
  • step ST26 When (Tc_t ⁇ Tw_i) is equal to or greater than ( ⁇ Ts_h + ⁇ ), the heat exchanger controller (84) proceeds to step ST26 and opens the gas side valve (49) and the water side valve (50). As a result, the heat source side heat exchanger (40) switches from the small capacity state to the large capacity state. On the other hand, when (Tc_t ⁇ Tw_i) is less than ( ⁇ Ts_h + ⁇ ), the heat exchanger controller (84) keeps the gas side valve (49) and the water side valve (50) closed. As a result, the heat source side heat exchanger (40) is maintained in a small capacity state.
  • the heat exchanger control unit (84) of the present modification has the pressure difference index value (Tc_t ⁇ Tw_i) as the reference index value. Even if ⁇ Ts_h or more, the heat exchanger control unit (84) is kept in a small capacity state, and when (Tc_t ⁇ Tw_i) becomes ( ⁇ Ts_h + ⁇ ) or more, the heat source side heat exchanger (40) is kept in a small capacity state. To the large capacity state. For this reason, the phenomenon (so-called hunting) in which the heat source side heat exchanger (40) is alternately switched between the small capacity state and the large capacity state in a short time is suppressed.
  • hunting the phenomenon in which the heat source side heat exchanger (40) is alternately switched between the small capacity state and the large capacity state in a short time is suppressed.
  • the heat exchanger controller (84) of the present embodiment sets the reference index values (specifically, the reference temperature difference ⁇ Ts_c for cooling operation and the reference temperature difference ⁇ Ts_h for heating operation) to a constant value.
  • the exchanger control unit (84) may be configured to change the reference index value according to the operating state of the air conditioner (10).
  • the heat exchanger control unit (84) may be configured to change each of the reference temperature difference ⁇ Ts_c for cooling operation and the reference temperature difference ⁇ Ts_h for heating operation according to the inlet water temperature Tw_i.
  • the heat exchanger control unit (84) sets the reference temperature difference ⁇ Ts_c for cooling operation, the inlet water temperature Tw_i, the refrigerant evaporation temperature in the indoor unit (12), and the refrigerant circulation amount in the refrigerant circuit (15).
  • the reference temperature difference ⁇ Ts_h for heating operation is changed according to the inlet water temperature Tw_i, the refrigerant condensation temperature in the indoor unit (12), and the refrigerant circulation amount in the refrigerant circuit (15). It may be configured as follows.
  • Embodiment 2 ⁇ Embodiment 2 >> Embodiment 2 will be described.
  • the air conditioner (10) of the present embodiment is obtained by changing the configuration of the heat exchanger control unit (84) of the controller (70) in the air conditioner (10) of the first embodiment.
  • the air conditioning apparatus (10) of this embodiment a different point from the air conditioning apparatus (10) of Embodiment 1 is demonstrated.
  • the heat exchanger controller (84) calculates the difference (Tc_hs ⁇ Te_t) between the refrigerant condensing temperature Tc_hs and the target evaporation temperature Te_t in the heat source unit (11) as a pressure difference index value. And the size of the heat exchange region in the heat source side heat exchanger (40) is adjusted so that the pressure difference index value is equal to or greater than the reference temperature difference ⁇ Ts_c which is the reference index value.
  • step ST31 the heat exchanger control unit (84) measures the measurement value of the high pressure sensor (91) (that is, the high pressure HP of the refrigeration cycle performed in the refrigerant circuit (15)) and the target evaporation temperature setting unit (81). Reads the target evaporation temperature Te_t set by.
  • the heat exchanger controller (84) calculates the saturation temperature of the refrigerant corresponding to the high pressure HP of the refrigeration cycle (that is, the temperature at which the saturation pressure of the refrigerant becomes HP), and calculates the value. It is set as the condensation temperature Tc_hs of the refrigerant in the heat source unit (11).
  • the heat exchanger controller (84) determines the difference between the refrigerant condensing temperature Tc_hs and the target evaporation temperature Te_t (Tc_hs ⁇ Te_t) in the heat source unit (11) and the reference temperature difference ⁇ Ts_c for cooling operation. Compare However, the value of the reference temperature difference ⁇ Ts_c in the present embodiment is different from the value of the reference temperature difference ⁇ Ts_c in the first embodiment.
  • step ST32 when (Tc_hs ⁇ Te_t) is less than ⁇ Ts_c (that is, Tc_hs ⁇ Te_t ⁇ Ts_c is satisfied), the pressure difference index value (Tc_hs ⁇ Te_t) is small, and the high pressure of the refrigeration cycle is increased. The difference in low pressure may be too small. Therefore, in this case, it is desirable to reduce the capacity of the heat source side heat exchanger (40). Therefore, in this case, the heat exchanger control unit (84) proceeds to step ST33, and determines whether or not the gas side valve (49) and the water side valve (50) are open.
  • the heat source side heat exchanger (40) condenses both the first heat exchange part (41a) and the second heat exchange part (41b). It is in a large capacity state that functions as a vessel. Therefore, in this case, the capacity of the heat source side heat exchanger (40) can be reduced.
  • step ST33 when it is determined in step ST33 that the gas side valve (49) and the water side valve (50) are in the open state, the heat exchanger control unit (84) proceeds to step ST34, and the gas side valve (49) And close the water side valve (50).
  • the heat source side heat exchanger (40) is configured so that only the first heat exchange part (41a) functions as a condenser and the second heat exchange part. (41b) enters a small capacity state in which it pauses.
  • the heat exchanger controller (84) once ends the control operation.
  • step ST32 If (Tc_hs ⁇ Te_t) is equal to or greater than ⁇ Ts_c in step ST32 (that is, Tc_hs ⁇ Te_t ⁇ Ts_c does not hold), the pressure difference index value (Tc_hs ⁇ Te_t) is increased, and the high pressure of the refrigeration cycle is increased. There is a possibility that the power consumption of the compressor (21) increases because the difference in low pressure becomes too large. Therefore, in this case, it is desirable to increase the capacity of the heat source side heat exchanger (40). Therefore, in this case, the heat exchanger control unit (84) proceeds to step ST35 and determines whether or not the gas side valve (49) and the water side valve (50) are closed.
  • the heat source side heat exchanger (40) is a second heat exchange unit in which only the first heat exchange unit (41a) functions as a condenser. (41b) is in a small capacity state in which it pauses. Therefore, in this case, the capacity of the heat source side heat exchanger (40) can be increased.
  • step ST37 the heat exchanger controller (84) condenses the refrigerant in the heat source side heat exchanger (40) when it is assumed that the heat source side heat exchanger (40) is switched from the small capacity state to the large capacity state.
  • An estimated temperature value Tc_hs ′ is calculated.
  • the heat exchanger control unit (84) performs the heat source side heat exchange with the inlet water temperature Tw_i which is a measurement value of the inlet water temperature sensor (96), the outlet water temperature Tw_o which is a measurement value of the outlet water temperature sensor (97).
  • the heat exchange amount Q between the heat source water and the refrigerant in the heat source side heat exchanger (40) is calculated using the flow rate of the heat source water supplied to the vessel (40).
  • the heat exchanger controller (84) switches the heat source side heat exchanger (40) from the small capacity state to the large capacity state based on the characteristic equation of the heat source side heat exchanger (40) stored in advance.
  • the overall heat transfer coefficient K and heat transfer area A of the heat source side heat exchanger (40) are calculated.
  • the heat exchanger controller (84) uses the heat exchange amount Q, the overall heat transfer coefficient K, the heat transfer area A, and the inlet water temperature Tw_i to change the heat source side heat exchanger (40) from a small capacity state to a large capacity state.
  • the estimated value Tw_o ′ of the outlet water temperature when switching to is calculated.
  • the condensing temperature of the refrigerant in the heat source side heat exchanger (40) is higher than the outlet water temperature by a substantially constant value. Therefore, the heat exchanger control unit (84) uses the value obtained by adding a constant stored in advance to the estimated value Tw_o ′ of the outlet water temperature, as the estimated value of the condensation temperature of the refrigerant in the heat source side heat exchanger (40). Let Tc_hs'.
  • the heat exchanger control section (84) determines the difference between the estimated value Tc_hs' of the condensation temperature calculated in step ST37 and the target evaporation temperature Te_t (Tc_hs'-Te_t) and the reference temperature difference ⁇ Ts_c for cooling operation. And compare.
  • step ST38 when (Tc_hs'-Te_t) is greater than or equal to ⁇ Ts_c, there is a possibility that (Tc_hs ⁇ Te_t) may be maintained at or greater than ⁇ Ts_c even after the heat source side heat exchanger (40) is switched from the small capacity state to the large capacity state. Is expensive. Therefore, when (Tc_hs′ ⁇ Te_t) ⁇ ⁇ Ts_c is satisfied in step ST38, the heat exchanger control unit (84) proceeds to step ST36 and opens the liquid side valve (48) and the water side valve (50).
  • the heat source side heat exchanger (40) condenses both the first heat exchange part (41a) and the second heat exchange part (41b). It becomes a large capacity state that functions as a vessel.
  • the heat exchanger controller (84) calculates the difference (Tc_t ⁇ Te_hs) between the target condensation temperature Tc_t and the refrigerant evaporation temperature Te_hs in the heat source unit (11) as a pressure difference index value. And the size of the heat exchange region in the heat source side heat exchanger (40) is adjusted so that the pressure difference index value is equal to or greater than the reference temperature difference ⁇ Ts_h which is the reference index value.
  • step ST41 the heat exchanger control unit (84) measures the measured value of the low pressure sensor (92) (that is, the low pressure LP of the refrigeration cycle performed in the refrigerant circuit (15)) and the target condensing temperature setting unit (82). Reads the target condensing temperature Tc_t set by.
  • the heat exchanger controller (84) calculates the saturation temperature of the refrigerant corresponding to the low pressure LP of the refrigeration cycle (that is, the temperature at which the saturation pressure of the refrigerant becomes LP), and calculates the value. Let it be the evaporating temperature Te_hs of the refrigerant in the heat source unit (11).
  • the heat exchanger control unit (84) sets the difference between the target condensation temperature Tc_t and the refrigerant evaporation temperature Te_hs in the heat source unit (11) (Tc_t ⁇ Te_hs) and the reference temperature difference ⁇ Ts_h for heating operation. Compare However, the value of the reference temperature difference ⁇ Ts_h in the present embodiment is different from the value of the reference temperature difference ⁇ Ts_h in the first embodiment.
  • step ST42 If (Tc_t ⁇ Te_hs) is less than ⁇ Ts_h (ie, Tc_t ⁇ Te_hs ⁇ Ts_h is satisfied) in step ST42, the pressure difference index value (Tc_t ⁇ Te_hs) is small, and the high pressure of the refrigeration cycle is increased. The difference in low pressure may be too small. Therefore, in this case, it is desirable to reduce the capacity of the heat source side heat exchanger (40). Therefore, in this case, the heat exchanger control unit (84) proceeds to step ST43, and determines whether or not the gas side valve (49) and the water side valve (50) are open.
  • the heat source side heat exchanger (40) evaporates both the first heat exchange part (41a) and the second heat exchange part (41b). It is in a large capacity state that functions as a vessel. Therefore, in this case, the capacity of the heat source side heat exchanger (40) can be reduced.
  • step ST43 when it is determined in step ST43 that the gas side valve (49) and the water side valve (50) are in the open state, the heat exchanger control unit (84) proceeds to step ST44, and the gas side valve (49) And close the water side valve (50).
  • the heat source side heat exchanger (40) has only the first heat exchange part (41a) functioning as an evaporator and the second heat exchange part. (41b) enters a small capacity state in which it pauses.
  • the heat exchanger controller (84) once ends the control operation.
  • step ST42 when (Tc_t ⁇ Te_hs) is equal to or greater than ⁇ Ts_h (ie, Tc_t ⁇ Te_hs ⁇ Ts_h does not hold), the pressure difference index value (Tc_t ⁇ Te_hs) is increased, and the high pressure of the refrigeration cycle is increased.
  • the power consumption of the compressor (21) increases because the difference in low pressure becomes too large. Therefore, in this case, it is desirable to increase the capacity of the heat source side heat exchanger (40). Therefore, in this case, the heat exchanger control unit (84) proceeds to step ST45, and determines whether or not the gas side valve (49) and the water side valve (50) are closed.
  • the heat source side heat exchanger (40) is a second heat exchange unit in which only the first heat exchange unit (41a) functions as a condenser. (41b) is in a small capacity state in which it pauses. Therefore, in this case, the capacity of the heat source side heat exchanger (40) can be increased.
  • step ST47 the heat exchanger controller (84) evaporates the refrigerant in the heat source side heat exchanger (40) when it is assumed that the heat source side heat exchanger (40) is switched from the small capacity state to the large capacity state.
  • the estimated temperature value Te_hs ′ is calculated.
  • step ST47 the heat exchanger controller (84) estimates the outlet water temperature when the heat source side heat exchanger (40) is switched from the small capacity state to the large capacity state in the same manner as in step ST37 of FIG. Tw_o ′ is calculated.
  • the evaporating temperature of the refrigerant in the heat source side heat exchanger (40) is lower than the outlet water temperature Tw_o by a substantially constant value. Therefore, the heat exchanger control unit (84) uses the value obtained by subtracting the constant stored in advance in the estimated value Tw_o ′ of the outlet water temperature as the estimated value of the refrigerant evaporation temperature in the heat source side heat exchanger (40). Te_hs'.
  • the heat exchanger controller (84) determines the difference between the estimated value Te_hs 'of the evaporation temperature calculated in step ST47 and the target condensation temperature Tc_t (Tc_t-Te_hs') and the reference temperature difference ⁇ Ts_h for heating operation. And compare.
  • step ST46 when (Tc_t ⁇ Te_hs ′) is equal to or greater than ⁇ Ts_h, there is a possibility that (Tc_t ⁇ Te_hs) may be maintained equal to or greater than ⁇ Ts_h even after the heat source side heat exchanger (40) is switched from the small capacity state to the large capacity state. Is expensive. Therefore, when (Tc_t ⁇ Te_hs ′) ⁇ ⁇ Ts_h is established in step ST46, the heat exchanger control unit (84) proceeds to step ST48 and opens the liquid side valve (48) and the water side valve (50).
  • the heat source side heat exchanger (40) evaporates both the first heat exchange part (41a) and the second heat exchange part (41b). It becomes a large capacity state that functions as a vessel.
  • the heat exchanger controller (84) calculates the difference (Tc_hs ⁇ Te_t) between the refrigerant condensation temperature Tc_hs and the target evaporation temperature Te_t in the heat source unit (11). Used as a pressure difference index value.
  • the refrigerant condensation temperature Tc_hs in the heat source unit (11) correlates with the high pressure of the refrigeration cycle, and the target evaporation temperature Te_t correlates with the low pressure of the refrigeration cycle.
  • Tc_hs ⁇ Te_t the difference between the refrigerant condensing temperature Tc_hs and the target evaporation temperature Te_t (Tc_hs ⁇ Te_t) increases when the difference between the high pressure and the low pressure of the refrigeration cycle increases, and decreases when the difference between the high pressure and the low pressure of the refrigeration cycle decreases. Therefore, (Tc_hs ⁇ Te_t) can be a pressure difference index value indicating the difference between the high pressure and the low pressure of the refrigeration cycle performed in the refrigerant circuit (15).
  • the difference between the target condensation temperature Tc_t and the refrigerant evaporation temperature Te_hs in the heat source unit (11) (Tc_t ⁇ Te_hs) is used as the pressure difference index value.
  • the target condensation temperature Tc_t is correlated with the high pressure of the refrigeration cycle
  • the refrigerant evaporation temperature Te_hs in the heat source unit (11) is correlated with the low pressure of the refrigeration cycle.
  • the difference (Tc_t ⁇ Te_hs) between the target condensation temperature Tc_t and the refrigerant evaporation temperature Te_hs in the heat source unit (11) increases as the difference between the high pressure and low pressure in the refrigeration cycle increases, and the difference between the high pressure and low pressure in the refrigeration cycle. Shrinks when shrinks. Therefore, it can be a pressure difference index value indicating the difference between the high pressure and the low pressure of the refrigeration cycle performed in the refrigerant circuit (15).
  • the heat exchanger controller (84) of the present embodiment uses “the difference between the refrigerant condensing temperature Tc_hs and the target evaporation temperature Te_t (Tc_hs ⁇ Te_t) in the heat source unit (11)” as the pressure difference index value for the cooling operation.
  • the difference between the outlet water temperature Tw_o and the target evaporation temperature Te_t (Tw_o ⁇ Te_t) is used as the pressure difference index value for the cooling operation. It may be configured to be used as
  • the heat exchanger control unit (84) of the present modification determines whether Tw_o ⁇ Te_t ⁇ Ts_c is successful or not in step ST32.
  • the value of the reference temperature difference ⁇ Ts_c in this modification is different from the value of the reference temperature difference ⁇ Ts_c when (Tc_hs ⁇ Te_t) is used as the pressure difference index value.
  • the heat exchanger controller (84) of the present modified example estimates the outlet water temperature Tw_o ′ when it is assumed in step ST37 that the heat source side heat exchanger (40) is switched from the small capacity state to the large capacity state. ”Is calculated, and whether or not (Tw_o′ ⁇ Te_t) ⁇ ⁇ Ts_c is satisfied is determined in step ST38.
  • the condensing temperature of the refrigerant in the heat source side heat exchanger (40) is higher than the outlet water temperature Tw_o by a substantially constant value.
  • the refrigerant condensation temperature in the heat source side heat exchanger (40) correlates with the high pressure of the refrigeration cycle
  • the target evaporation temperature Te_t correlates with the low pressure of the refrigeration cycle. Therefore, the difference between the outlet water temperature Tw_o and the target evaporation temperature Te_t (Tw_o ⁇ Te_t) increases when the difference between the high pressure and the low pressure of the refrigeration cycle increases, and decreases when the difference between the high pressure and the low pressure of the refrigeration cycle decreases. Therefore, (Tw_o ⁇ Te_t) can be a pressure difference index value indicating the difference between the high pressure and the low pressure of the refrigeration cycle performed in the refrigerant circuit (15).
  • the heat exchanger control unit (84) of the present embodiment uses the “difference between the target condensation temperature Tc_t and the refrigerant evaporation temperature Te_hs in the heat source unit (11) (Tc_t ⁇ Te_hs)” as the pressure difference index value for heating operation.
  • the “difference between the target condensing temperature Tc_t and the outlet water temperature Tw_o which is a measured value of the outlet water temperature sensor (97) (Tc_t ⁇ Tw_o)” is used as the pressure difference for the heating operation. It may be configured to be used as an index value.
  • the heat exchanger controller (84) of the present modification determines whether Tc_t ⁇ Tw_o ⁇ Ts_h is successful or not in step ST42.
  • the value of the reference temperature difference ⁇ Ts_h in this modification is different from the value of the reference temperature difference ⁇ Ts_h when (Tc_t ⁇ Te_hs) is used as the pressure difference index value.
  • the heat exchanger controller (84) of the present modified example assumes that the estimated value Tw_o ′ of the outlet water temperature when it is assumed in step ST47 that the heat source side heat exchanger (40) has been switched from the small capacity state to the large capacity state. ”Is calculated, and whether or not (Tc_t ⁇ Tw_o ′) ⁇ ⁇ Ts_h is satisfied is determined in step ST48.
  • the evaporating temperature of the refrigerant in the heat source side heat exchanger (40) is lower than the outlet water temperature Tw_o by a substantially constant value.
  • the target condensation temperature Tc_t correlates with the high pressure of the refrigeration cycle
  • the refrigerant evaporation temperature in the heat source side heat exchanger (40) correlates with the low pressure of the refrigeration cycle.
  • the difference between the target condensation temperature Tc_t and the outlet water temperature Tw_o (Tc_t ⁇ Tw_o) increases when the difference between the high pressure and the low pressure of the refrigeration cycle increases, and decreases when the difference between the high pressure and the low pressure of the refrigeration cycle decreases. Therefore, (Tc_t ⁇ Tw_o) can be a pressure difference index value indicating the difference between the high pressure and the low pressure of the refrigeration cycle performed in the refrigerant circuit (15).
  • Embodiment 3 A third embodiment will be described.
  • the air conditioner (10) of the present embodiment is obtained by changing the configuration of the heat source side heat exchanger (40) of the heat source unit (11) in the air conditioner (10) of the first embodiment.
  • the air conditioning apparatus (10) of this embodiment a different point from the air conditioning apparatus (10) of Embodiment 1 is demonstrated.
  • the heat source side heat exchanger (40) of the present embodiment includes a heat exchange section (41a, 41b, 41c), a liquid side passage (44a, 44b, 44c), and a gas side passage (45a , 45b, 45c), three water introduction paths (46a, 46b, 46c) and three water outlet paths (47a, 47b, 47c).
  • the configuration of each heat exchange unit (41a, 41b, 41c) is the same as the configuration of the heat exchange unit (41a, 41b) of the first embodiment.
  • the refrigerant flow paths (42a, 42b, 42c) of the heat exchange units (41a, 41b, 41c) are connected in parallel to each other. Specifically, one end of the first liquid side passage (44a) is connected to one end of the refrigerant flow path (42a) of the first heat exchange section (41a), and the refrigerant flow path of the second heat exchange section (41b) ( 42b) is connected to one end of the second liquid side passage (44b), and one end of the third liquid side passage (44c) is connected to one end of the refrigerant flow path (42c) of the third heat exchange section (41c). It is connected.
  • the other end of the first liquid side passage (44a), the other end of the second liquid side passage (44b), and the other end of the third liquid side passage (44c) are the liquid side ends of the heat source side heat exchanger (40). And connected to a pipe connecting the heat source side heat exchanger (40) and the heat source side expansion valve (23).
  • One end of the first gas side passage (45a) is connected to the other end of the refrigerant flow path (42a) of the first heat exchange section (41a), and the refrigerant flow path (42b) of the second heat exchange section (41b).
  • the liquid side valve (48a) is provided in the second liquid side passage (44b), and the liquid side valve (48b) is provided in the third liquid side passage (44c).
  • the second gas side passage (45b) is provided with a gas side valve (49a), and the third gas side passage (45c) is provided with a gas side valve (49b).
  • These two liquid side valves (48a, 48b) and the two gas side valves (49a, 49b) are both electromagnetic valves, and the number of heat exchange parts (41a, 41b, 41c) into which refrigerant flows is determined.
  • the refrigerant side valve mechanism for changing is constituted.
  • the heat source water flow paths (43a, 43b, 43c) of the heat exchange units (41a, 41b, 41c) are connected in parallel to each other. Specifically, one end of the first water introduction path (46a) is connected to one end of the heat source water flow path (43a) of the first heat exchange section (41a), and the heat source water flow path of the second heat exchange section (41b) ( One end of the second water introduction path (46b) is connected to one end of 43b), and one end of the third water introduction path (46c) is connected to one end of the heat source water flow path (43c) of the third heat exchange section (41c). It is connected.
  • the other end of the first water introduction path (46a), the other end of the second water introduction path (46b), and the other end of the third water introduction path (46c) are connected to the forward line (101 of the heat source water circuit (100)).
  • )It is connected to the.
  • One end of the first water outlet channel (47a) is connected to the other end of the heat source water channel (43a) of the first heat exchange unit (41a), and the heat source water channel (43b) of the second heat exchange unit (41b).
  • Is connected to one end of the second water outlet passage (47b), and the other end of the heat source water passage (43c) of the third heat exchange section (41c) is one end of the third water outlet passage (47c). Is connected.
  • the other end of the first water lead-out path (47a), the other end of the second water lead-out path (47b), and the other end of the third water lead-out path (47c) are connected to the return pipe path (102 of the heat source water circuit (100). )It is connected to the.
  • the second water introduction path (46b) is provided with a water side valve (50a), and the third water introduction path (46c) is provided with a water side valve (50b).
  • These two water side valves (50a, 50b) are electromagnetic valves, and constitute a water side valve mechanism for changing the number of heat exchanging parts (41a, 41b) into which heat source water flows.
  • the first water introduction passage (46a) is provided with an inlet water temperature sensor (96) for measuring the temperature of the heat source water, and the first water lead-out passage (47a) is provided with the heat source water.
  • An outlet water temperature sensor (97) for measuring the temperature of the water is provided.
  • the heat source side heat exchanger (40) has a large capacity state in which refrigerant and heat source water circulate in all of the first heat exchange part (41a), the second heat exchange part (41b), and the third heat exchange part (41c).
  • the medium capacity state where the refrigerant and the heat source water circulate only in the first heat exchange part (41a) and the second heat exchange part (41b), and the small quantity where the refrigerant and the heat source water circulate only in the first heat exchange part (41a). It can be switched to the capacity state. Switching between the large capacity state, the medium capacity state, and the small capacity state is performed by operating the liquid side valve (48a, 48b), the gas side valve (49a, 49b), and the water side valve (50a, 50b).
  • the first heat exchange unit (41a), the second heat exchange unit (41b), and the third heat exchange unit (41c) serve as a heat exchange region in which the refrigerant exchanges heat with the heat source water.
  • the middle capacity state only the first heat exchange part (41a) and the second heat exchange part (41b) serve as a heat exchange region in which the refrigerant exchanges heat with the heat source water.
  • the small capacity state only the first heat exchanging part (41a) becomes a heat exchanging region in which the refrigerant exchanges heat with the heat source water.
  • the heat source side heat exchanger (40) is configured to be able to change the size of the heat exchange region.
  • the heat exchanger controller (84) adjusts the size of the heat exchange region in the heat source side heat exchanger (40) based on the measured value of the inlet water temperature sensor (96).
  • the heat source side heat exchanger (40) of the present embodiment is provided with three heat exchange units (41a, 41b, 41c).
  • the heat exchanger control part (84) of this embodiment changes a heat source side heat exchanger (40) into the 1st heat exchange part (41a), the 2nd heat exchange part (41b), and the 3rd heat exchange part ( A large capacity state where all of 41c) function as a condenser or an evaporator, and a third heat exchange unit where the first heat exchange part (41a) and the second heat exchange part (41b) function as a condenser or an evaporator.
  • (41c) is a medium capacity state where it pauses, and the first heat exchange part (41a) functions as a condenser or an evaporator and the second heat exchange part (41b) and the third heat exchange part (41c) are paused. Switch to the capacity state.
  • the heat exchanger controller (84) of the present embodiment applies the difference (Tw_i ⁇ Te_t) between the inlet water temperature Tw_i and the target evaporation temperature Te_t as in the first embodiment.
  • the pressure difference index value is used as a difference index value and compared with a reference temperature difference ⁇ Ts_c for cooling operation.
  • the heat exchanger control unit (84) adjusts the size of the heat exchange region of the heat source side heat exchanger (40) according to the success or failure of the condition of Tw_i ⁇ Te_t ⁇ Ts_c.
  • the heat exchanger control unit (84) increases the heat source side heat exchanger (40). Switch from the capacity state to the medium capacity state. If Tw_i ⁇ Te_t ⁇ Ts_c is satisfied when the heat source side heat exchanger (40) is in the middle capacity state, the heat exchanger control unit (84) places the heat source side heat exchanger (40) in the middle. Switch from the capacity state to the small capacity state.
  • the heat exchanger control unit (84) places the heat source side heat exchanger (40) in the small capacity state. To the medium capacity state. If Tw_i ⁇ Te_t ⁇ Ts_c does not hold when the heat source side heat exchanger (40) is in the middle capacity state, the heat exchanger control unit (84) places the heat source side heat exchanger (40) in the middle capacity state. Switch from to high capacity.
  • the target evaporation temperature Te_t increases as the cooling load of the air conditioner (10) decreases, and decreases as the cooling load of the air conditioner (10) increases.
  • the temperature of the heat source water supplied to the heat source side heat exchanger (40) is substantially constant. Therefore, the value of (Tw_i ⁇ Te_t) decreases as the cooling load of the air conditioner (10) decreases, and increases as the cooling load of the air conditioner (10) increases. Therefore, the heat exchanger control unit (84) of the present embodiment allows the heat of the heat source side heat exchanger (40) to decrease as the cooling load of the air conditioner (10) decreases during the cooling operation of the air conditioner (10).
  • liquid side valve (48a, 48b), gas side valve (49a, 49b) and water side valve (50a, 50b) Operate the liquid side valve (48a, 48b), gas side valve (49a, 49b) and water side valve (50a, 50b) to reduce the exchange area, and the cooling load of the air conditioner (10) is large.
  • the liquid side valves (48a, 48b), the gas side valves (49a, 49b), and the water side valves (50a, 50b) are operated so that the heat exchange area of the heat source side heat exchanger (40) becomes larger.
  • the heat exchanger controller (84) of the present embodiment pressures the difference (Tc_t ⁇ Tw_i) between the target condensing temperature Tc_t and the inlet water temperature Tw_i, as in the first embodiment.
  • the pressure difference index value is used as a difference index value and compared with a reference temperature difference ⁇ Ts_h for heating operation.
  • the heat exchanger control unit (84) adjusts the size of the heat exchange region of the heat source side heat exchanger (40) according to whether or not the condition of Tc_t ⁇ Tw_i ⁇ Ts_h is satisfied.
  • the heat exchanger control unit (84) increases the size of the heat source side heat exchanger (40). Switch from the capacity state to the medium capacity state.
  • Tc_t ⁇ Tw_i ⁇ Ts_h is established when the heat source side heat exchanger (40) is in the middle capacity state
  • the heat exchanger control unit (84) places the heat source side heat exchanger (40) in the middle. Switch from the capacity state to the small capacity state.
  • the heat exchanger control unit (84) places the heat source side heat exchanger (40) in the small capacity state. To the medium capacity state. If Tc_t ⁇ Tw_i ⁇ Ts_h does not hold when the heat source side heat exchanger (40) is in the middle capacity state, the heat exchanger control unit (84) places the heat source side heat exchanger (40) in the middle capacity state. Switch from to high capacity.
  • the target condensation temperature Tc_t decreases as the heating load of the air conditioner (10) decreases, and increases as the heating load of the air conditioner (10) increases.
  • the temperature of the heat source water supplied to the heat source side heat exchanger (40) is substantially constant. Therefore, the value of (Tc_t ⁇ Tw_i) decreases as the heating load of the air conditioner (10) decreases, and increases as the heating load of the air conditioner (10) increases. Therefore, during the heating operation of the air conditioner (10), the heat exchanger controller (84) of the present embodiment reduces the heat of the heat source side heat exchanger (40) as the heating load of the air conditioner (10) decreases.
  • liquid side valve (48a, 48b), gas side valve (49a, 49b) and water side valve (50a, 50b) Operate the liquid side valve (48a, 48b), gas side valve (49a, 49b) and water side valve (50a, 50b) to reduce the exchange area, and the heating load of the air conditioner (10) is large.
  • the liquid side valves (48a, 48b), the gas side valves (49a, 49b), and the water side valves (50a, 50b) are operated so that the heat exchange area of the heat source side heat exchanger (40) becomes larger.
  • the heat source side heat exchanger (40) of the present embodiment includes a heat exchange section (41a, 41b,%), A liquid side passage (44a, 44b,%), And a gas side passage (45a, 45b,%)
  • Each of the water introduction paths (46a, 46b,%) And the water outlet paths (47a, 47b,%) May be provided in four or more.
  • the air conditioning apparatus (10) of this embodiment changes the structure of the heat source side heat exchanger (40) of a heat source unit (11) in the air conditioning apparatus (10) of Embodiment 1
  • the heat source side heat exchanger (40) of this embodiment may be provided in the heat source unit (11) of the air conditioner (10) of Embodiment 2.
  • Embodiment 4 A fourth embodiment will be described.
  • This embodiment is an air conditioning system (1) including a plurality of the air conditioning apparatuses (10) of the first, second, or third embodiment.
  • the air conditioning system (1) of this embodiment includes a plurality of air conditioning apparatuses (10a, 10b, 10c) and a heat source water circuit (100).
  • the heat source units (11) of the air conditioners (10a, 10b, 10c) are connected in parallel. That is, the outgoing pipe (101) of the heat source water circuit (100) is connected to the water introduction path (46a, 46b, 46c) of the heat source side heat exchanger (40) of each heat source unit (11), and the heat source water circuit
  • the return pipe (102) of (100) is connected to the water outlet (47a, 47b, 47c) of the heat source side heat exchanger (40) of each heat source unit (11).
  • the heat source water circuit (100) supplies heat source water having the same temperature to the heat source side heat exchanger (40) of each heat source unit (11).
  • the heat source side heat exchanger (40) is configured to be able to change the size of the heat exchange region, and the heat source unit (11)
  • the controller (70) includes a heat exchanger controller (84).
  • the air conditioning loads (cooling loads or heating loads) of the air conditioning apparatuses (10a, 10b, 10c) do not always coincide with each other, but are usually different.
  • the heat source water circuit (100) supplies heat source water of the same temperature to all the air conditioners (10a, 10b, 10c). For this reason, in the air conditioner (10a, 10b, 10c) with a small air conditioning load, the capacity of the heat source side heat exchanger (40) becomes excessive, and there is a possibility that the operation cannot be continued.
  • the heat exchanger controller (84) of the controller (70) has a size of the heat exchange area of the heat source side heat exchanger (40). Is adjusted based on the measured value of the inlet water temperature sensor (96) (that is, the temperature of the heat source water supplied from the forward pipe (101) to the heat source side heat exchanger (40)) or a predetermined pressure difference index value. .
  • the heat source water circuit (100) is connected to each air conditioner (10a, 10b). , 10c), it is possible to continue the operation of all the air conditioners (10a, 10b, 10c) without controlling the temperature of the heat source water to be supplied.
  • FIG. 11 shows an application of the present modification to the air conditioner (10) of the first embodiment.
  • the heat source water always circulates through the heat source water flow paths (43a, 43b, 43c) of all the heat exchange parts (41a, 41b, 41c). And about the heat exchange part (41b, 41c) to suspend, only supply of the refrigerant
  • FIG. 12 shows an application of the present modification to the air conditioner (10) of the first modification shown in FIG. In the air conditioner (10) shown in FIG.
  • the heat source side expansion valve (23), the liquid side valve (48), and the gas side valve (49) are omitted, while the heat source side heat exchanger (40)
  • One expansion valve (23a, 23b) is provided in each of the first liquid side passage (44a) and the second liquid side passage (44b).
  • the expansion valves (23a, 23b) of the liquid side passages (44a, 44b) constitute a refrigerant side valve mechanism for changing the number of heat exchange parts (41a, 41b) into which the refrigerant flows.
  • the heat exchanger controller (84) of the controller (70) replaces the target evaporation temperature Te_t with the “actual measured value of the refrigerant evaporation temperature in the indoor unit (12)”.
  • the target condensation temperature Tc_t “actual measurement value of refrigerant condensation temperature in the indoor unit (12)” may be used.
  • the “measured value of the use side refrigerant temperature sensor (98)” may be used, or the “measured value LP of the low pressure sensor (92) may be used.
  • a corresponding refrigerant saturation temperature may be used.
  • the “actual value of the refrigerant condensing temperature in the indoor unit (12)” the “measured value of the use side refrigerant temperature sensor (98)” may be used, or the “measured value of the high pressure sensor (91)”.
  • the saturation temperature of the refrigerant corresponding to HP may be used.
  • the present invention is useful for the heat source unit of the refrigeration apparatus including the heat source side heat exchanger that exchanges heat between the refrigerant and the heat source water.
  • Air conditioning equipment (refrigeration equipment) 11 Heat source unit 12 Indoor unit (use side unit) 15 Refrigerant circuit 21 Compressor 40 Heat source side heat exchanger 41a First heat exchange part 41b Second heat exchange part 48 Liquid side valve (refrigerant side valve mechanism) 49 Gas side valve (refrigerant side valve mechanism) 50 Water side valve (Water side valve mechanism) 70 Controller 96 Water temperature sensor 100 Heat source water circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

冷凍装置である空気調和装置(10)の熱源ユニット(11)には、冷媒を熱源水と熱交換させる熱源側熱交換器(40)が設けられる。熱源側熱交換器(40)は、複数の熱交換部(41a,41b)を備え、冷媒が流入する熱交換部(41a,41b)の数を変更することによって熱交換領域の大きさを調節可能である。熱源ユニット(11)のコントローラ(70)は、圧力差指標値に基づいて、熱源側熱交換器(40)の熱交換領域の大きさを調節する。その結果、冷凍装置の熱源ユニットにおいて、運転可能な熱源水の温度範囲が拡大する。

Description

冷凍装置の熱源ユニット
 本発明は、冷凍サイクルを行う冷凍装置の熱源ユニットに関するものである。
 例えば、特許文献1及び2には、冷凍サイクルを行う冷凍装置によって構成された空気調和装置が開示されている。特許文献1,2の空気調和装置は、一台の熱源ユニット(室外ユニット)と複数台の室内ユニットとを備えている。また、特許文献1,2の空気調和装置では、熱源ユニットに圧縮機や熱源側熱交換器等が収容されると共に、熱源側熱交換器が冷媒回路の冷媒を熱源水と熱交換させるように構成される。熱源側熱交換器は、冷房運転(冷却運転)時には凝縮器として機能し、暖房運転(加熱運転)時には蒸発器として機能する。
特開平7-012417号公報 特開平8-210719号公報
 冷媒を熱源水と熱交換させる熱源側熱交換器を備えた冷凍装置では、運転可能な熱源水の温度範囲が比較的狭いという問題があった。この問題について、図13A及び図13Bを参照しながら説明する。
 ここで、図13A及び図13Bに記載された「負荷率」は、冷凍装置に要求される能力(即ち、冷却能力または加熱能力の要求値)を、冷凍装置の定格能力(即ち、定格冷却能力または定格加熱能力)で除した値を百分率で示したものである。なお、冷凍装置が発揮できる能力の最大値は、熱源水の温度Twによって変化する。
 先ず、図13Aに示すように、冷却運転時には、熱源水の温度TwがT0_c以上T2_c以下の範囲(T0_c≦Tw≦T2_c)であれば、負荷率がいかなる値の場合でも冷凍装置は運転可能である。
 しかし、熱源水の温度Twが比較的低く且つ負荷率が比較的小さい領域Aでは、冷凍サイクルの高圧(冷媒の凝縮圧力)と低圧(冷媒の蒸発圧力)の差が小さくなり過ぎるため、冷凍装置を運転できない。つまり、領域Aでは、凝縮器として機能する熱源側熱交換器の能力が過剰となって冷凍サイクルの高圧が低下する一方、冷媒の蒸発温度は概ね一定に保たれて冷凍サイクルの低圧は殆ど変化しないため、冷凍サイクルの高圧と低圧の差が小さくなり過ぎる。
 次に、図13Bに示すように、加熱運転時には、熱源水の温度TwがT3以上T4以下の範囲(T3≦Tw≦T4)であれば、負荷率がいかなる値の場合でも冷凍装置は運転可能である。
 しかし、熱源水の温度Twが比較的低く且つ負荷率が比較的大きい領域Bでは、冷凍サイクルの低圧が低くなり過ぎるため、冷凍装置を運転できない。つまり、領域Bでは、蒸発器として機能する熱源側熱交換器の能力が不足する一方、負荷率が大きいので冷媒の循環量を確保するために圧縮機の回転速度が高く設定されるため、冷凍サイクルの低圧が低くなり過ぎる。
 また、熱源水の温度Twが比較的高く且つ負荷率が比較的小さい領域Cでは、冷凍サイクルの高圧と低圧の差が小さくなり過ぎるため、冷凍装置を運転できない。つまり、領域Cでは、蒸発器として機能する熱源側熱交換器の能力が過剰となって冷凍サイクルの低圧が上昇する一方、冷媒の凝縮温度は概ね一定に保たれて冷凍サイクルの高圧は殆ど変化しないため、冷凍サイクルの高圧と低圧の差が小さくなり過ぎる。
 ところで、凝縮器として機能する熱源側熱交換器へ供給される冷却用の熱源水としては、冷却塔によって冷却された熱源水を用いるのが一般的であった。しかし、近年は、地中に埋設された地中熱交換器における土壌との熱交換によって冷却された熱源水が冷却用の熱源水として利用される場合があり、この場合には、冷却塔を利用する場合に比べて冷却用の熱源水の温度が低くなるのが通常である。このため、冷凍装置には、従来よりも低温(具体的には、図13Aの温度T0_c未満)の熱源水を用いた場合でも、いかなる負荷率においても冷却運転を実行できることが求められる。
 更に、蒸発器として機能する熱源側熱交換器へ供給される加熱用の熱源水としては、ボイラによって加熱された熱源水を用いるのが一般的であった。しかし、近年は、地中に埋設された地中熱交換器における土壌との熱交換によって加熱された熱源水が加熱用の熱源水として利用される場合があり、この場合には、ボイラを利用する場合に比べて加熱用の熱源水の温度が低くなるのが通常である。このため、冷凍装置には、従来よりも低温(具体的には、図13Bの温度T3未満)の熱源水を用いた場合でも、いかなる負荷率においても加熱運転を実行できることが求められる。
 また、一般的なボイラでの加熱によって得られる温水の温度は、冷凍サイクルの蒸発器において冷媒と熱交換させるには高すぎる。そこで、従来は、熱源水の一部だけをボイラで加熱して、ボイラをバイパスした熱源水とボイラで加熱された熱源水を混合してから冷凍装置の蒸発器へ供給したり、ボイラでの加熱によって得られた温水を熱源水と熱交換させて、間接的に加熱された熱源水を冷凍装置の蒸発器へ供給することが行われていた。しかし、このような手法によって冷凍装置へ供給される熱源水の温度を引き下げると、ボイラの効率が低下したり、熱源水の循環量が増えて熱源水の搬送に要する動力が増加するおそれがある。このため、冷凍装置には、従来よりも高温(具体的には、図13Bの温度T4よりも高温)の熱源水を用いた場合でも、いかなる負荷率においても加熱運転を実行できることが求められる。
 このように、冷媒を熱源水と熱交換させる熱源側熱交換器を備えた冷凍装置の熱源ユニットついては、近年、運転可能な熱源水の温度範囲を拡大する必要性が高まっている。
 本発明は、かかる点に鑑みてなされたものであり、その目的は、冷媒を熱源水と熱交換させる熱源側熱交換器を備えた冷凍装置の熱源ユニットにおいて、運転可能な熱源水の温度範囲を拡大することにある。
 本開示の第1の態様は、冷凍サイクルを行う冷媒回路(15)を備えた冷凍装置(10)を利用側ユニット(12)と共に構成し、上記冷媒回路(15)に設けられた圧縮機(21)と熱源側熱交換器(40)とを少なくとも収容する熱源ユニットを対象とする。そして、上記熱源側熱交換器(40)は、熱源水が循環する熱源水回路(100)に接続されて上記冷媒回路(15)を循環する冷媒を上記熱源水と熱交換させるように構成され、且つ上記冷媒が流通して上記熱源水と熱交換する熱交換領域の大きさを変更可能に構成される一方、上記冷媒回路(15)において行われる冷凍サイクルの高圧と低圧の差を示す圧力差指標値に基づいて、上記熱源側熱交換器(40)における上記熱交換領域の大きさを調節するように構成された制御器(70)を備えるものである。
 第1の態様において、制御器(70)は、熱源側熱交換器(40)の熱交換領域の大きさを、圧力差指標値に応じて調節する。熱源側熱交換器(40)の熱交換領域の大きさを変更すると、熱源側熱交換器(40)の能力(即ち、冷媒と熱源水の間で交換される熱量)が変化する。このため、制御器(70)が熱源側熱交換器(40)の熱交換領域の大きさを調節することによって、熱源側熱交換器(40)の能力を適切に制御することが可能となる。
 本開示の第2の態様は、上記第1の態様において、上記制御器(70)は、上記圧力差指標値が所定の基準指標値以上となるように、上記熱源側熱交換器(40)における上記熱交換領域の大きさを調節するように構成されるものである。
 第2の態様において、制御器(70)は、熱源側熱交換器(40)の熱交換領域の大きさを、圧力差指標値が所定の基準指標値以上となるように調節する。圧力差指標値が基準指標値以上であれば、冷媒回路(15)において行われる冷凍サイクルの高圧と低圧の差がある程度以上となる。
 本開示の第3の態様は、上記第2の態様において、上記制御器(70)は、上記圧力差指標値が上記基準指標値を下回ると、上記熱源側熱交換器(40)における上記熱交換領域の大きさを減らすように構成されるものである。
 第3の態様において、圧力差指標値が基準指標値を下回ると、制御器(70)は、熱源側熱交換器(40)における熱交換領域の大きさを減らす。熱源側熱交換器(40)の熱交換領域の大きさが小さくなると、熱源側熱交換器(40)の能力が小さくなる。そのため、熱源側熱交換器(40)が凝縮器として機能する場合は、冷凍サイクルの高圧が上昇し、熱源側熱交換器(40)が蒸発器として機能する場合は、冷凍サイクルの低圧が低下する。その結果、冷媒回路(15)において行われる冷凍サイクルの高圧と低圧の差が拡大する。
 本開示の第4の態様は、上記第2又は第3の態様において、上記制御器(70)は、上記熱源側熱交換器(40)における上記熱交換領域の大きさが最大よりも小さいときに、上記熱交換領域の大きさを増やした場合の上記圧力差指標値を推定し、算出した上記圧力差指標値の推定値が上記基準指標値を上回ると、上記熱源側熱交換器(40)における上記熱交換領域の大きさを増やすように構成されるものである。
 第4の態様において、熱源側熱交換器(40)における熱交換領域の大きさが既に削減されて最大よりも小さくなっている場合、制御器(70)は、熱交換領域の大きさを増やした場合の圧力差指標値を推定する。そして、制御器(70)は、圧力差指標値の推定値が基準指標値を上回ると、熱源側熱交換器(40)の熱交換領域の大きさを増やす。
 熱源側熱交換器(40)の熱交換領域の大きさが大きくなると、熱源側熱交換器(40)の能力が大きくなる。そのため、熱源側熱交換器(40)が凝縮器として機能する場合は、冷凍サイクルの高圧が低下し、熱源側熱交換器(40)が蒸発器として機能する場合は、冷凍サイクルの低圧が上昇する。その結果、冷媒回路(15)において行われる冷凍サイクルの高圧と低圧の差が縮小する。
 このため、熱源側熱交換器(40)の熱交換領域の大きさが最大よりも小さい状態において、圧力差指標値が基準指標値を上回ったときに直ちに熱交換領域の大きさを大きくすると、圧力差指標値が基準指標値を下回り、再び制御器(70)が熱源側熱交換器(40)の熱交換領域の大きさを小さくする可能性がある。そのため、熱源側熱交換器(40)の熱交換領域の大きさが大きくなったり小さくなったりを繰り返し、冷媒回路(15)において行われる冷凍サイクルが安定しないおそれがある。
 一方、第4の態様の制御器(70)は、熱交換領域の大きさを増やした場合の圧力差指標値の推定値が基準指標値を上回ると、熱源側熱交換器(40)の熱交換領域の大きさを増やす。従って、熱源側熱交換器(40)の熱交換領域の大きさを大きくなり、その結果、冷媒回路(15)において行われる冷凍サイクルの高圧と低圧の差が縮小しても、圧力差指標値が基準指標値を下回る可能性は小さい。
 本開示の第5の態様は、上記第1~第3のいずれか一つの態様において、上記利用側ユニット(12)において対象物を冷却するために上記熱源側熱交換器(40)を凝縮器として機能させる冷却用動作を行うように構成される一方、上記制御器(70)は、上記冷却用動作中に、上記熱源側熱交換器(40)へ供給される上記熱源水の温度である入口水温と、上記利用側ユニット(12)における冷媒の蒸発温度または該蒸発温度の目標値である目標蒸発温度との差を上記圧力差指標値とするように構成されるものである。
 第5の態様の熱源ユニット(11)は、熱源側熱交換器(40)を凝縮器として機能させる冷却用動作を実行可能である。熱源側熱交換器(40)における冷媒の凝縮温度は、入口水温よりも概ね一定の値だけ高い温度となる。また、熱源側熱交換器(40)における冷媒の凝縮温度は冷凍サイクルの高圧に相関し、利用側ユニット(12)における冷媒の蒸発温度は冷凍サイクルの低圧に相関する。このため、入口水温Tw_iと、利用側ユニット(12)における冷媒の蒸発温度Teまたは該蒸発温度の目標値である目標蒸発温度Te_tとの差((Tw_i-Te)または(Tw_i-Te_t))は、冷凍サイクルの高圧と低圧の差が拡大すると拡大し、冷凍サイクルの高圧と低圧の差が縮小すると縮小する。従って、(Tw_i-Te)または(Tw_i-Te_t)は、冷媒回路(15)において行われる冷凍サイクルの高圧と低圧の差を示す圧力差指標値となり得る。
 本開示の第6の態様は、上記第1~第3のいずれか一つの態様において、上記利用側ユニット(12)において対象物を加熱するために上記熱源側熱交換器(40)を蒸発器として機能させる加熱用動作を行うように構成される一方、上記制御器(70)は、上記加熱用動作中に、上記利用側ユニット(12)における冷媒の凝縮温度または該凝縮温度の目標値である目標凝縮温度と、上記熱源側熱交換器(40)へ供給される上記熱源水の温度である入口水温との差を上記圧力差指標値とするように構成されるものである。
 第6の態様の熱源ユニット(11)は、熱源側熱交換器(40)を蒸発器として機能させる加熱用動作を実行可能である。熱源側熱交換器(40)における冷媒の蒸発温度は、入口水温よりも概ね一定の値だけ低い温度となる。また、利用側ユニット(12)における冷媒の凝縮温度は冷凍サイクルの高圧に相関し、熱源側熱交換器(40)における冷媒の蒸発温度は冷凍サイクルの低圧に相関する。このため、利用側ユニット(12)における冷媒の凝縮温度Tcまたは該凝縮温度の目標値である目標凝縮温度Tc_tと、入口水温Tw_iとの差((Tc-Tw_i)または(Tc_t-Tw_i))は、冷凍サイクルの高圧と低圧の差が拡大すると拡大し、冷凍サイクルの高圧と低圧の差が縮小すると縮小する。従って、(Tc-Tw_i)または(Tc_t-Tw_i)は、冷媒回路(15)において行われる冷凍サイクルの高圧と低圧の差を示す圧力差指標値となり得る。
 本開示の第7の態様は、上記第1~第4のいずれか一つの態様において、上記利用側ユニット(12)において対象物を冷却するために上記熱源側熱交換器(40)を凝縮器として機能させる冷却用動作を行うように構成される一方、上記制御器(70)は、上記冷却用動作中に、上記熱源側熱交換器(40)における冷媒の凝縮温度と、上記利用側ユニット(12)における冷媒の蒸発温度または該蒸発温度の目標値である目標蒸発温度との差を上記圧力差指標値とするように構成されるものである。
 第7の態様の熱源ユニット(11)は、熱源側熱交換器(40)を凝縮器として機能させる冷却用動作を実行可能である。熱源側熱交換器(40)における冷媒の凝縮温度は冷凍サイクルの高圧に相関し、利用側ユニット(12)における冷媒の蒸発温度は冷凍サイクルの低圧に相関する。このため、熱源側熱交換器(40)における冷媒の凝縮温度Tc_hsと、利用側ユニット(12)における冷媒の蒸発温度Teまたは該蒸発温度の目標値である目標蒸発温度Te_tとの差((Tc_hs-Te)または(Tc_hs-Te_t))は、冷凍サイクルの高圧と低圧の差が拡大すると拡大し、冷凍サイクルの高圧と低圧の差が縮小すると縮小する。従って、(Tc_hs-Te)または(Tc_hs-Te_t)は、冷媒回路(15)において行われる冷凍サイクルの高圧と低圧の差を示す圧力差指標値となり得る。
 本開示の第8の態様は、上記第1~第4のいずれか一つの態様において、上記利用側ユニット(12)において対象物を加熱するために上記熱源側熱交換器(40)を蒸発器として機能させる加熱用動作を行うように構成される一方、上記制御器(70)は、上記加熱用動作中に、上記利用側ユニット(12)における冷媒の凝縮温度または該凝縮温度の目標値である目標凝縮温度と、上記熱源側熱交換器(40)における冷媒の蒸発温度との差を上記圧力差指標値とするように構成されるものである。
 第8の態様の熱源ユニット(11)は、熱源側熱交換器(40)を蒸発器として機能させる加熱用動作を実行可能である。利用側ユニット(12)における冷媒の凝縮温度は冷凍サイクルの高圧に相関し、熱源側熱交換器(40)における冷媒の蒸発温度は冷凍サイクルの低圧に相関する。このため、利用側ユニット(12)における冷媒の凝縮温度Tcまたは該凝縮温度の目標値である目標凝縮温度Tc_tと、熱源側熱交換器(40)における冷媒の蒸発温度Te_hsとの差((Tc-Te_hs)または(Tc_t-Te_hs))は、冷凍サイクルの高圧と低圧の差が拡大すると拡大し、冷凍サイクルの高圧と低圧の差が縮小すると縮小する。従って、(Tc-Te_hs)または(Tc_t-Te_hs)は、冷媒回路(15)において行われる冷凍サイクルの高圧と低圧の差を示す圧力差指標値となり得る。
 本開示の第9の態様は、上記第1~第4のいずれか一つの態様において、上記利用側ユニット(12)において対象物を冷却するために上記熱源側熱交換器(40)を凝縮器として機能させる冷却用動作を行うように構成される一方、上記制御器(70)は、上記冷却用動作中に、上記熱源側熱交換器(40)から流出する上記熱源水の温度である出口水温と、上記利用側ユニット(12)における冷媒の蒸発温度または該蒸発温度の目標値である目標蒸発温度との差を上記圧力差指標値とするように構成されるものである。
 第9の態様の熱源ユニット(11)は、熱源側熱交換器(40)を凝縮器として機能させる冷却用動作を実行可能である。熱源側熱交換器(40)における冷媒の凝縮温度は、出口水温よりも概ね一定の値だけ高い温度となる。また、熱源側熱交換器(40)における冷媒の凝縮温度は冷凍サイクルの高圧に相関し、利用側ユニット(12)における冷媒の蒸発温度は冷凍サイクルの低圧に相関する。このため、出口水温Tw_oと、利用側ユニット(12)における冷媒の蒸発温度Teまたは該蒸発温度の目標値である目標蒸発温度Te_tとの差((Tw_o-Te)または(Tw_o-Te_t))は、冷凍サイクルの高圧と低圧の差が拡大すると拡大し、冷凍サイクルの高圧と低圧の差が縮小すると縮小する。従って、(Tw_o-Te)または(Tw_o-Te_t)は、冷媒回路(15)において行われる冷凍サイクルの高圧と低圧の差を示す圧力差指標値となり得る。
 本開示の第10の態様は、上記第1~第4のいずれか一つの態様において、上記利用側ユニット(12)において対象物を加熱するために上記熱源側熱交換器(40)を蒸発器として機能させる加熱用動作を行うように構成される一方、上記制御器(70)は、上記加熱用動作中に、上記利用側ユニット(12)における冷媒の凝縮温度または該凝縮温度の目標値である目標凝縮温度と、上記熱源側熱交換器(40)から流出する上記熱源水の温度である出口水温との差を上記圧力差指標値とするように構成されるものである。
 第10の態様の熱源ユニット(11)は、熱源側熱交換器(40)を蒸発器として機能させる加熱用動作を実行可能である。熱源側熱交換器(40)における冷媒の蒸発温度は、出口水温よりも概ね一定の値だけ低い温度となる。また、利用側ユニット(12)における冷媒の凝縮温度は冷凍サイクルの高圧に相関し、熱源側熱交換器(40)における冷媒の蒸発温度は冷凍サイクルの低圧に相関する。このため、利用側ユニット(12)における冷媒の凝縮温度Tcまたは該凝縮温度の目標値である目標凝縮温度Tc_tと、出入口水温Tw_oとの差((Tc-Tw_o)または(Tc_t-Tw_o))は、冷凍サイクルの高圧と低圧の差が拡大すると拡大し、冷凍サイクルの高圧と低圧の差が縮小すると縮小する。従って、(Tc-Tw_o)または(Tc_t-Tw_o)は、冷媒回路(15)において行われる冷凍サイクルの高圧と低圧の差を示す圧力差指標値となり得る。
 本開示の第11の態様は、冷凍サイクルを行う冷媒回路(15)を備えた冷凍装置(10)を利用側ユニット(12)と共に構成し、上記冷媒回路(15)に設けられた圧縮機(21)と熱源側熱交換器(40)とを少なくとも収容する熱源ユニットを対象とする。そして、上記熱源側熱交換器(40)は、熱源水が循環する熱源水回路(100)に接続されて上記冷媒回路(15)を循環する冷媒を上記熱源水と熱交換させるように構成され、且つ上記冷媒が流通して上記熱源水と熱交換する熱交換領域の大きさを変更可能に構成される一方、上記熱源側熱交換器(40)へ供給される上記熱源水の温度である入口水温に基づいて上記熱源側熱交換器(40)における上記熱交換領域の大きさを調節する制御器(70)を備えるものである。
 第11の態様において、制御器(70)は、熱源側熱交換器(40)の熱交換領域の大きさを、入口水温(即ち、熱源側熱交換器(40)へ供給される熱源水の温度)に応じて調節する。熱源側熱交換器(40)の熱交換領域の大きさを変更すると、熱源側熱交換器(40)の能力(即ち、冷媒と熱源水の間で交換される熱量)が変化する。このため、制御器(70)が熱源側熱交換器(40)の熱交換領域の大きさを調節することによって、熱源側熱交換器(40)の能力を、熱源側熱交換器(40)へ供給される熱源水の温度に応じた適切な値に設定することが可能となる。
 本開示の第12の態様は、上記第11の態様において、上記利用側ユニット(12)において対象物を冷却するために上記熱源側熱交換器(40)を放熱器として機能させる冷却用動作を行うように構成される一方、上記制御器(70)は、上記冷却用動作中に上記入口水温が所定の基準温度を下回ると上記熱源側熱交換器(40)の上記熱交換領域を小さくするように構成されるものである。
 第12の態様の熱源ユニット(11)は、熱源側熱交換器(40)を放熱器として機能させる冷却用動作を実行可能である。放熱器として機能する熱源側熱交換器(40)は、熱源側熱交換器(40)へ供給される熱源水の温度が低くなるほど、その能力が大きくなる。そこで、冷却用動作中に入口水温が所定の基準温度を下回り、放熱器として機能する熱源側熱交換器(40)の能力が過剰となるおそれがある場合、制御器(70)は、熱源側熱交換器(40)の熱交換領域を小さくする。その結果、熱源側熱交換器(40)へ供給される熱源水の温度が基準温度を下回る状態でも、熱源ユニット(11)の冷却用動作を継続させることが可能となる。
 本開示の第13の態様は、上記第11の態様において、上記利用側ユニット(12)において対象物を加熱するために上記熱源側熱交換器(40)を蒸発器として機能させる加熱用動作を行うように構成される一方、上記制御器(70)は、上記加熱用動作中に上記入口水温が所定の基準温度を上回ると上記熱源側熱交換器(40)の上記熱交換領域を小さくするように構成されるものである。
 第13の態様の熱源ユニット(11)は、熱源側熱交換器(40)を蒸発器として機能させる加熱用動作を実行可能である。蒸発器として機能する熱源側熱交換器(40)は、熱源側熱交換器(40)へ供給される熱源水の温度が高くなるほど、その能力が大きくなる。そこで、加熱用動作中に入口水温が所定の基準温度を上回り、蒸発器として機能する熱源側熱交換器(40)の能力が過剰となるおそれがある場合、制御器(70)は、熱源側熱交換器(40)の熱交換領域を小さくする。その結果、熱源側熱交換器(40)へ供給される熱源水の温度が基準温度を上回る状態でも、熱源ユニット(11)の加熱用動作を継続させることが可能となる。
 本開示の第14の態様は、上記第12又は第13の態様において、上記制御器(70)は、上記冷凍装置(10)の負荷に応じて上記基準温度を調節するように構成されるものである。
 第14の態様において、制御器(70)は、冷凍装置(10)の負荷(即ち、冷凍装置(10)に要求される冷却能力または加熱能力)に応じて上記基準温度を調節する。従って、この態様の制御器(70)は、 “熱源側熱交換器(40)へ供給される熱源水の温度”と“冷凍装置(10)の負荷”の両方を考慮して、熱源側熱交換器(40)の熱交換領域の大きさを調節する。
 本開示の第15の態様は、上記第1~第14の態様のいずれか一つにおいて、上記熱源側熱交換器(40)は、それぞれが上記冷媒を上記熱源水と熱交換させるように構成された複数の熱交換部(41a,41b)と、上記冷媒が流入する上記熱交換部(41a,41b)の数を変更するための冷媒側弁機構(48,49)とを備え、上記冷媒が流入する上記熱交換部(41a,41b)の数を変更することによって上記熱交換領域の大きさを変更するように構成され、上記制御器(70)は、上記冷媒側弁機構(48,49)を操作することによって上記熱交換領域の大きさを調節するように構成されるものである。
 第15の態様の熱源側熱交換器(40)では、複数の熱交換部(41a,41b)のうち冷媒が流通する熱交換部だけが、熱交換領域となる。このため、冷媒側弁機構(48,49)によって冷媒が流入する熱交換部(41a,41b)の数を変更すると、熱源側熱交換器(40)の熱交換領域の大きさが変化する。そこで、この態様の制御器(70)は、冷媒が流入する熱交換部(41a,41b)の数を調節することによって、熱源側熱交換器(40)の熱交換領域の大きさを調節する。
 本開示の第16の態様は、上記第15の態様において、上記熱源側熱交換器(40)は、上記熱源水が流入する上記熱交換部(41a,41b)の数を変更するための水側弁機構(50)を更に備え、上記制御器(70)は、上記冷媒側弁機構(48,49)が上記冷媒の流入を遮断する上記熱交換部(41a,41b)への上記熱源水の流入が遮断されるように上記水側弁機構(50)を操作するように構成されるものである。
 第16の態様の制御器(70)は、熱源側熱交換器(40)の熱交換領域の大きさを調節する際に、冷媒側弁機構(48,49)と水側弁機構(50)の両方を操作する。つまり、制御器(70)は、ある熱交換部(41b)への冷媒の流入を冷媒側弁機構(48,49)によって遮断する際には、その熱交換部(41b)への熱源水の流入を水側弁機構(50)によって遮断する。
 上記第1の態様では、制御器(70)が、熱源側熱交換器(40)の熱交換領域の大きさを、圧力差指標値に応じて調節する。また、上記第11の態様では、制御器(70)が、熱源側熱交換器(40)の熱交換領域の大きさを、入口水温(即ち、熱源側熱交換器(40)へ供給される熱源水の温度)に応じて調節する。このため、本開示の態様によれば、熱源側熱交換器(40)の能力を熱源側熱交換器(40)へ供給される熱源水の温度に応じた適切な値に設定することが可能となる。その結果、従来は運転できなかった熱源水の温度範囲においても、あらゆる負荷率において冷凍装置(10)の運転を継続させることが可能となる。
 上記第2の態様では、熱源側熱交換器(40)の熱交換領域の大きさを、圧力差指標値に基づいて調節することによって、熱源側熱交換器(40)の能力を適切に制御することが可能となる。
 上記第3の態様では、圧力差指標値が基準指標値を下回ると、制御器(70)が熱源側熱交換器(40)における熱交換領域の大きさを減らすため、冷媒回路(15)において行われる冷凍サイクルの高圧と低圧の差が拡大する。その結果、冷媒回路(15)において行われる冷凍サイクルの高圧と低圧の差が適切な範囲に保たれ、冷凍装置(10)の運転を継続させることが可能となる。
 上記第4の態様では、熱交換領域の大きさを増やした場合の圧力差指標値の推定値が基準指標値を上回ると、制御器(70)が熱源側熱交換器(40)の熱交換領域の大きさを増やす。そのため、この態様によれば、熱源側熱交換器(40)の熱交換領域の大きさが増減を繰り返す可能性の低い場合に、熱源側熱交換器(40)の熱交換領域の大きさを増やすことができる。その結果、冷媒回路(15)において行われる冷凍サイクルを安定に保てる状況において、熱源側熱交換器(40)の熱交換領域の大きさを増やすことが可能となる。
 上記第5~第10の各態様では、様々な温度の差を圧力差指標値として用いて、制御器(70)が熱源側熱交換器(40)の熱交換領域の大きさを調節する。従って、これらの各態様によれば、様々な温度の差を圧力差指標値として用いて、熱源側熱交換器(40)の熱交換領域の大きさを確実に調節できる。
 上記第12の態様において、制御器(70)は、冷却用動作中に入口水温が基準温度を下回ると、熱源側熱交換器(40)の熱交換領域を小さくする。このため、熱源側熱交換器(40)へ供給される熱源水の温度が基準温度を下回る状態でも、熱源ユニット(11)の冷却用動作を継続させることが可能となる。従って、この態様によれば、冷凍装置(10)が運転を継続できる熱源水の温度範囲を、低温側へ確実に拡大できる。
 上記第13の態様において、制御器(70)は、加熱用動作中に入口水温が基準温度を上回ると、熱源側熱交換器(40)の熱交換領域を小さくする。このため、熱源側熱交換器(40)へ供給される熱源水の温度が基準温度を上回る状態でも、熱源ユニット(11)の加熱用動作を継続させることが可能となる。従って、この態様によれば、冷凍装置(10)が運転を継続できる熱源水の温度範囲を、高温側へ確実に拡大できる。
 上記第14の態様の制御器(70)は、冷凍装置(10)の負荷に応じて上記基準温度を調節する。従って、この態様によれば、“熱源側熱交換器(40)へ供給される熱源水の温度”と“冷凍装置(10)の負荷”の両方を考慮して、熱源側熱交換器(40)の熱交換領域の大きさを調節することが可能となる。
 上記第16の態様では、熱交換領域を構成しない熱交換部(41b)について、冷媒だけでなく熱源水の流入も遮断される。このため、熱交換領域を構成しない熱交換部(41b)に対して熱源水を供給し続ける場合に比べ、熱源水の搬送に要する動力を削減することができる。
図1は、実施形態1の空気調和装置の構成を示す冷媒回路図である。 図2は、実施形態1のコントローラの構成を示すブロック図である。 図3は、実施形態1の空気調和装置の冷房運転を示す冷媒回路図であって、熱源側熱交換器が小容量状態となっている場合を示すものである。 図4は、実施形態1の空気調和装置の暖房運転を示す冷媒回路図であって、熱源側熱交換器が小容量状態となっている場合を示すものである。 図5は、実施形態1のコントローラの熱交換器制御部が行う制御動作を示すフロー図である。 図6は、実施形態1の変形例3のコントローラの熱交換器制御部が行う制御動作を示すフロー図である。 図7は、実施形態2のコントローラの熱交換器制御部が冷房運転中に行う制御動作を示すフロー図である。 図8は、実施形態2のコントローラの熱交換器制御部が暖房運転中に行う制御動作を示すフロー図である。 図9は、実施形態3の空気調和装置の構成を示す冷媒回路図である。 図10は、実施形態4の空気調和システムの構成を示す配管系統図である。 図11は、その他の実施形態の第1変形例の空気調和システムの構成を示す配管系統図である。 図12は、その他の実施形態の第2変形例の空気調和システムの構成を示す配管系統図である。 図13Aは、従来の空気調和装置の冷房運転の運転可能領域を示す図である。 図13Bは、従来の空気調和装置の暖房運転の運転可能領域を示す図である。
 本発明の実施形態を図面に基づいて詳細に説明する。なお、以下で説明する実施形態および変形例は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 《実施形態1》
 実施形態1について説明する。本実施形態は、熱源ユニット(11)を備えた冷凍装置によって構成された空気調和装置(10)である。
 図1に示すように、本実施形態の空気調和装置(10)は、一台の熱源ユニット(11)と、複数台の室内ユニット(12)とを備えている。この空気調和装置(10)では、熱源ユニット(11)と各室内ユニット(12)を液側連絡配管(18)及びガス側連絡配管(19)で接続することによって、冷媒回路(15)が形成されている。この冷媒回路(15)では、充填された冷媒が循環することによって冷凍サイクルが行われる。
   〈熱源ユニット〉
 図1に示すように、熱源ユニット(11)には、熱源側回路(16)とコントローラ(70)とが収容されている。また、熱源ユニット(11)には、後述する熱源水回路(100)が接続されている。ここでは、熱源側回路(16)について説明する。コントローラ(70)と熱源水回路(100)については、後述する。
 熱源側回路(16)には、圧縮機(21)と、四方切換弁(22)と、熱源側熱交換器(40)と、熱源側膨張弁(23)と、アキュームレータ(24)と、液側閉鎖弁(25)と、ガス側閉鎖弁(26)とが設けられている。また、熱源側回路(16)には、過冷却用熱交換器(30)と、過冷却用回路(31)と、油分離器(35)と、油戻し配管(36)とが設けられている。
 熱源側回路(16)において、圧縮機(21)は、その吐出管が四方切換弁(22)の第1のポートに接続され、その吸入管がアキュームレータ(24)を介して四方切換弁(22)の第2のポートに接続されている。圧縮機(21)と四方切換弁(22)の第1のポートを繋ぐ配管には、逆止弁(CV)が設けられている。熱源側熱交換器(40)は、そのガス側端が四方切換弁(22)の第3のポートに接続され、その液側端が熱源側膨張弁(23)の一端に接続されている。熱源側膨張弁(23)の他端は、過冷却用熱交換器(30)を介して液側閉鎖弁(25)に接続されている。四方切換弁(22)の第4のポートは、ガス側閉鎖弁(26)に接続されている。
 圧縮機(21)は、全密閉型のスクロール圧縮機である。四方切換弁(22)は、第1のポートが第3のポートと連通し且つ第2のポートが第4のポートと連通する第1状態(図1に実線で示す状態)と、第1のポートが第4のポートと連通し且つ第2のポートが第3のポートと連通する第2状態(図1に破線で示す状態)とに切り換え可能に構成されている。熱源側熱交換器(40)は、冷媒回路(15)の冷媒を熱源水回路(100)の熱源水と熱交換させるように構成されている。熱源側熱交換器(40)の詳細な構造については、後述する。熱源側膨張弁(23)は、開度可変の電子膨張弁である。逆止弁(CV)は、圧縮機(21)から四方切換弁(22)へ向かう冷媒の流通を許容し、逆向きの冷媒の流れを阻止する。
 過冷却用熱交換器(30)は、いわゆるプレート式熱交換器によって構成されている。この過冷却用熱交換器(30)には、高圧側流路(30a)と低圧側流路(30b)とが複数ずつ形成されている。過冷却用回路(31)は、一端が熱源側膨張弁(23)と過冷却用熱交換器(30)を繋ぐ配管に接続され、他端が四方切換弁(22)の第2のポートとアキュームレータ(24)を繋ぐ配管に接続されている。また、過冷却用回路(31)には、過冷却用膨張弁(32)が設けられている。過冷却用膨張弁(32)は、開度可変の電子膨張弁である。
 過冷却用熱交換器(30)は、高圧側流路(30a)が熱源側回路(16)における熱源側膨張弁(23)と液側閉鎖弁(25)の間に配置され、低圧側流路(30b)が過冷却用回路(31)における過冷却用膨張弁(32)の下流側に配置されている。過冷却用熱交換器(30)は、高圧側流路(30a)を流れる冷媒を、低圧側流路(30b)を流れる冷媒と熱交換させることによって冷却する。
 油分離器(35)は、熱源側回路(16)における圧縮機(21)の吐出管と逆止弁(CV)を繋ぐ配管に設けられている。油分離器(35)は、圧縮機(21)からガス冷媒と共に吐出された冷凍機油をガス冷媒から分離する。油戻し配管(36)は、一端が油分離器(35)に接続され、他端が熱源側回路(16)におけるアキュームレータ(24)と圧縮機(21)の吸入管の間に接続されている。また、油戻し配管(36)には、その一端から他端へ向かって順に、油戻し電磁弁(37)とキャピラリチューブ(38)とが設けられている。この油戻し配管(36)は、油分離器(35)においてガス冷媒と分離された冷凍機油を圧縮機(21)へ戻すための配管である。
 熱源側回路(16)には、高圧圧力センサ(P1)と、低圧圧力センサ(P2)とが設けられている。高圧圧力センサ(P1)は、熱源側回路(16)における圧縮機(21)と油分離器(35)の間に配置され、圧縮機(21)から吐出された冷媒の圧力を計測する。低圧圧力センサ(P2)は、熱源側回路(16)における四方切換弁(22)とアキュームレータ(24)の間に配置され、圧縮機(21)へ吸入される冷媒の圧力を計測する。なお、熱源側回路(16)には複数の温度センサが設けられているが、それらの図示は省略する。
   〈室内ユニット〉
 室内ユニット(12)は、利用側ユニットを構成している。各室内ユニット(12)には、利用側回路(17)と室内コントローラ(13)とが一つずつ収容されている。
 各利用側回路(17)には、その液側端からガス側端へ向かって順に、利用側膨張弁である室内膨張弁(61)と、利用側熱交換器である室内熱交換器(61)とが一つずつ配置されている。室内膨張弁(61)は、開度可変の電子膨張弁である。室内熱交換器(61)は、冷媒を室内空気と熱交換させるための熱交換器である。
 また、図示は省略するが、各室内ユニット(12)には、室内ファンが一つずつ設けられている。室内ファンは、室内熱交換器(61)へ室内空気を供給するためのファンである。
 各室内ユニット(12)の利用側回路(17)は、それぞれの液側端が液側連絡配管(18)を介して熱源側回路(16)の液側閉鎖弁(25)に接続され、それぞれのガス側端がガス側連絡配管(19)を介して熱源側回路(16)のガス側閉鎖弁(26)に接続されている。
 各室内ユニット(12)の室内コントローラ(13)は、その室内ユニット(12)に設けられた室内膨張弁(61)と室内ファンを制御する。つまり、室内コントローラ(13)は、室内膨張弁(61)の開度と、室内ファンの回転速度とを調節する。
 各室内ユニット(12)の室内熱交換器(61)には、利用側冷媒温度センサ(98)が取り付けられている。利用側冷媒温度センサ(98)は、室内熱交換器(61)の伝熱管を流れる気液二相状態の冷媒の温度を計測する。つまり、利用側冷媒温度センサ(98)の計測値は、室内熱交換器(61)が蒸発器として機能する場合は冷媒の蒸発温度であり、室内熱交換器(61)が凝縮器として機能する場合は冷媒の凝縮温度である。
   〈熱源側熱交換器〉
 熱源側熱交換器(40)は、熱交換部(41a,41b)と、液側通路(44a,44b)と、ガス側通路(45a,45b)と、水導入路(46a,46b)と、水導出路(47a,47b)とを二つずつ備えている。
 各熱交換部(41a,41b)は、いわゆるプレート式熱交換器によって構成されている。各熱交換部(41a,41b)には、冷媒流路(42a,42b)と熱源水流路(43a,43b)とが複数ずつ形成されている。各熱交換部(41a,41b)は、冷媒流路(42a,42b)を流れる冷媒を、熱源水流路(43a,43b)を流れる熱源水と熱交換させるように構成されている。
 各熱交換部(41a,41b)の冷媒流路(42a,42b)は、互いに並列に接続されている。具体的に、第1熱交換部(41a)の冷媒流路(42a)の一端には第1液側通路(44a)の一端が接続され、第2熱交換部(41b)の冷媒流路(42b)の一端には第2液側通路(44b)の一端が接続されている。第1液側通路(44a)の他端と第2液側通路(44b)の他端とは、熱源側熱交換器(40)の液側端を構成し、熱源側熱交換器(40)と熱源側膨張弁(23)を繋ぐ配管に接続されている。また、第1熱交換部(41a)の冷媒流路(42a)の他端には第1ガス側通路(45a)の一端が接続され、第2熱交換部(41b)の冷媒流路(42b)の他端には第2ガス側通路(45b)の一端が接続されている。第1ガス側通路(45a)の他端と第2ガス側通路(45b)の他端とは、熱源側熱交換器(40)のガス側端を構成し、熱源側熱交換器(40)と四方切換弁(22)の第3のポートを繋ぐ配管に接続されている。
 第2液側通路(44b)には、電磁弁から成る液側弁(48)が設けられている。また、第2ガス側通路(45b)には、電磁弁から成るガス側弁(49)が設けられている。液側弁(48)及びガス側弁(49)は、冷媒が流入する熱交換部(41a,41b)の数を変更するための冷媒側弁機構を構成している。
 各熱交換部(41a,41b)の熱源水流路(43a,43b)は、互いに並列に接続されている。具体的に、第1熱交換部(41a)の熱源水流路(43a)の一端には第1水導入路(46a)の一端が接続され、第2熱交換部(41b)の熱源水流路(43b)の一端には第2水導入路(46b)の一端が接続されている。第1水導入路(46a)の他端と第2水導入路(46b)の他端とは、後述する熱源水回路(100)の往管路(101)に接続されている。また、第1熱交換部(41a)の熱源水流路(43a)の他端には第1水導出路(47a)の一端が接続され、第2熱交換部(41b)の熱源水流路(43b)の他端には第2水導出路(47b)の一端が接続されている。第1水導出路(47a)の他端と第2水導出路(47b)の他端とは、後述する熱源水回路(100)の復管路(102)に接続されている。
 第2水導入路(46b)には、電磁弁から成る水側弁(50)が設けられている。水側弁(50)は、熱源水が流入する熱交換部(41a,41b)の数を変更するための水側弁機構を構成している。第1水導入路(46a)には、入口水温センサ(96)が設けられている。入口水温センサ(96)は、第1水導入路(46a)を流れる熱源水(即ち、第1熱交換部(41a)の熱源水流路(43a)へ供給される熱源水)の温度を計測する。第1水導出路(47a)には、出口水温センサ(97)が設けられている。出口水温センサ(97)は、第1水導出路(47a)を流れる熱源水(即ち、第1熱交換部(41a)の熱源水流路(43a)から流出した熱源水)の温度を計測する。
 熱源側熱交換器(40)は、第1熱交換部(41a)と第2熱交換部(41b)の両方において冷媒と熱源水が流通する大容量状態と、第1熱交換部(41a)だけにおいて冷媒と熱源水が流通する小容量状態とに切り換え可能に構成されている。大容量状態と小容量状態の切り換えは、液側弁(48)、ガス側弁(49)、及び水側弁(50)を操作することによって行われる。
 大容量状態では、第1熱交換部(41a)と第2熱交換部(41b)の両方が、冷媒が熱源水と熱交換する熱交換領域となる。一方、小容量状態では、第1熱交換部(41a)だけが、冷媒が熱源水と熱交換する熱交換領域となる。このように、熱源側熱交換器(40)は、熱交換領域の大きさを変更可能に構成されている。
   〈コントローラ〉
 熱源ユニット(11)に設けられたコントローラ(70)は、制御器を構成している。このコントローラ(70)は、演算処理を行うCPU(71)と、制御動作を行うためのプログラムやデータ等を記憶するメモリ(72)とを備えている。
 コントローラ(70)には、高圧圧力センサ(P1)、低圧圧力センサ(P2)、及び入口水温センサ(96)の計測値が入力される。更に、コントローラ(70)には、熱源回路に設けられた図示しない温度センサの計測値も入力される。また、コントローラ(70)は、各室内ユニット(12)に設けられた室内コントローラ(13)との間で通信を行うように構成されている。
 図2に示すように、コントローラ(70)には、目標蒸発温度設定部(81)と、目標凝縮温度設定部(82)と、圧縮機制御部(83)と、熱交換器制御部(84)とが形成されている。また、コントローラ(70)は、熱源側膨張弁(23)及び過冷却用膨張弁(32)の開度制御と、四方切換弁(22)及び油戻し電磁弁(37)の制御も行うように構成されている。
 目標蒸発温度設定部(81)は、冷房運転時の室内熱交換器(61)における冷媒の蒸発温度の目標値Te_tを設定するように構成されている。目標凝縮温度設定部(82)は、暖房運転時の室内熱交換器(61)における冷媒の凝縮温度の目標値Tc_tを設定するように構成されている。圧縮機制御部(83)は、圧縮機(21)の運転周波数(具体的には、圧縮機(21)の電動機へ供給される交流の周波数)を制御することによって、圧縮機(21)の運転容量(具体的には、圧縮機(21)の回転速度)を調節するように構成されている。熱交換器制御部(84)は、熱源側熱交換器(40)に設けられた液側弁(48)、ガス側弁(49)、及び水側弁(50)を制御するように構成されている。目標蒸発温度設定部(81)、目標凝縮温度設定部(82)、圧縮機制御部(83)、及び熱交換器制御部(84)が行う動作の詳細は、後述する。
   〈熱源水回路〉
 熱源水回路(100)は、熱源水が循環する回路である。熱源水回路(100)は、熱源ユニット(11)へ熱源水を供給するための往管路(101)と、熱源ユニット(11)から熱源水を導出するための復管路(102)とを備えている。また、図示しないが、熱源水回路(100)には、熱源水を循環させるためのポンプが設けられている。
 空気調和装置(10)の冷房運転中には、熱源水回路(100)は、熱源ユニット(11)の熱源側熱交換器(40)と冷却塔等の冷熱源との間で熱源水を循環させ、冷熱源において冷却された熱源水を熱源側熱交換器(40)へ供給する。一方、空気調和装置(10)の暖房運転中には、熱源水回路(100)は、熱源ユニット(11)の熱源側熱交換器(40)とボイラ等の温熱源との間で熱源水を循環させ、温熱源において加熱された熱源水を熱源側熱交換器(40)へ供給する。
  -空気調和装置の運転動作-
 本実施形態の空気調和装置(10)は、室内を冷房する冷房運転(冷却運転)と、室内を暖房する暖房運転(加熱運転)とを選択的に行う。
   〈冷房運転〉
 冷房運転中は、冷媒回路(15)において冷媒が循環し、熱源側熱交換器(40)が凝縮器(放熱器)として機能して室内熱交換器(61)が蒸発器として機能する冷凍サイクルが行われる。空気調和装置(10)の冷房運転において、熱源ユニット(11)は、室内ユニット(12)において対象物(室内空気)を冷却するために熱源側熱交換器(40)を凝縮器として機能させる冷却用動作を行う。
 冷房運転では、四方切換弁(22)が第1状態(図1に実線で示す状態)に設定され、熱源側膨張弁(23)が全開状態に設定され、過冷却用膨張弁(32)及び室内膨張弁(61)の開度が適宜調節される。ここでは、熱源側熱交換器(40)の液側弁(48)、ガス側弁(49)、及び水側弁(50)が開いている状態を例に、冷房運転中の空気調和装置(10)の動作を説明する。
 圧縮機(21)から吐出された冷媒は、四方切換弁(22)を通って熱源側熱交換器(40)へ流入する。熱源側熱交換器(40)では、流入した冷媒の一部が第1熱交換部(41a)の冷媒流路(42a)へ流入し、その残りが第2熱交換部(41b)の冷媒流路(42b)へ流入する。各熱交換部(41a,41b)の熱源水流路(43a,43b)には、冷熱源において冷却された熱源水が往管路(101)を通じて供給される。各熱交換部(41a,41b)では、冷媒流路(42a,42b)を流れる冷媒が、熱源水流路(43a,43b)を流れる熱源水へ放熱して凝縮する。各熱交換部(41a,41b)において凝縮した冷媒は、合流後に熱源側膨張弁(23)を通過する。
 熱源側膨張弁(23)を通過した冷媒は、その一部が過冷却用回路(31)へ流入し、残りが過冷却用熱交換器(30)の高圧側流路(30a)へ流入する。過冷却用回路(31)へ流入した冷媒は、過冷却用膨張弁(32)を通過する際に膨張し、その後に過冷却用熱交換器(30)の低圧側流路(30b)へ流入する。過冷却用熱交換器(30)では、高圧側流路(30a)を流れる冷媒が、低圧側流路(30b)を流れる冷媒と熱交換することによって冷却される。低圧側流路(30b)を流れる冷媒は、高圧側流路(30a)を流れる冷媒から吸熱して蒸発する。
 過冷却用熱交換器(30)の高圧側流路(30a)において冷却された冷媒は、液側連絡配管(18)を通って各利用側回路(17)へ分配される。各利用側回路(17)では、流入した冷媒が室内膨張弁(61)を通過する際に膨張し、その後に室内熱交換器(61)において室内空気から吸熱して蒸発する。各室内ユニット(12)は、室内熱交換器(61)において冷却された空気を室内へ吹き出す。各室内熱交換器(61)において蒸発した冷媒は、ガス側連絡配管(19)へ流入して合流した後に熱源側回路(16)へ流入する。その後、冷媒は、四方切換弁(22)を通過後に過冷却用回路(31)の冷媒と合流し、その後にアキュームレータ(24)を通過してから圧縮機(21)へ吸入される。圧縮機(21)は、吸入した冷媒を圧縮して吐出する。
   〈暖房運転〉
 暖房運転中は、冷媒回路(15)において冷媒が循環し、室内熱交換器(61)が凝縮器(放熱器)として機能して熱源側熱交換器(40)が蒸発器として機能する冷凍サイクルが行われる。空気調和装置(10)の暖房運転において、熱源ユニット(11)は、室内ユニット(12)において対象物(室内空気)を加熱するために熱源側熱交換器(40)を蒸発器として機能させる加熱用動作を行う。
 暖房運転では、四方切換弁(22)が第2状態(図1に破線で示す状態)に設定され、熱源側膨張弁(23)、過冷却用膨張弁(32)、及び室内膨張弁(61)の開度が適宜調節される。ここでは、熱源側熱交換器(40)の液側弁(48)、ガス側弁(49)、及び水側弁(50)が開いている状態を例に、暖房運転中の空気調和装置(10)の動作を説明する。
 圧縮機(21)から吐出された冷媒は、四方切換弁(22)を通過後にガス側連絡配管(19)を通って各利用側回路(17)へ分配される。各利用側回路(17)では、流入した冷媒が室内熱交換器(61)において室内空気へ放熱して凝縮する。各室内ユニット(12)は、室内熱交換器(61)において加熱された空気を室内へ吹き出す。各室内熱交換器(61)において凝縮した冷媒は、室内膨張弁(61)を通過後に液側連絡配管(18)へ流入して合流し、その後に熱源側回路(16)へ流入する。
 熱源側回路(16)へ流入した冷媒は、過冷却用熱交換器(30)の高圧側流路(30a)へ流入し、低圧側流路(30b)を流れる冷媒によって冷却される。過冷却用熱交換器(30)の高圧側流路(30a)において冷却された冷媒は、その一部が過冷却用回路(31)へ流入し、残りが熱源側膨張弁(23)へ流入する。過冷却用回路(31)へ流入した冷媒は、過冷却用膨張弁(32)を通過する際に膨張し、その後に過冷却用熱交換器(30)の低圧側流路(30b)へ流入する。低圧側流路(30b)を流れる冷媒は、高圧側流路(30a)を流れる冷媒から吸熱して蒸発する。
 熱源側膨張弁(23)へ流入した冷媒は、熱源側膨張弁(23)を通過する際に膨張し、その後に熱源側熱交換器(40)へ流入する。熱源側熱交換器(40)では、流入した冷媒の一部が第1熱交換部(41a)の冷媒流路(42a)へ流入し、その残りが第2熱交換部(41b)の冷媒流路(42b)へ流入する。各熱交換部(41a,41b)の熱源水流路(43a,43b)には、温熱源において加熱された熱源水が往管路(101)を通じて供給される。各熱交換部(41a,41b)では、冷媒流路(42a,42b)を流れる冷媒が、熱源水流路(43a,43b)を流れる熱源水から吸熱して蒸発する。
 各熱交換部(41a,41b)において蒸発した冷媒は、合流後に四方切換弁(22)を通過してから過冷却用回路(31)の冷媒と合流する。その後、冷媒は、アキュームレータ(24)を通過してから圧縮機(21)へ吸入される。圧縮機(21)は、吸入した冷媒を圧縮して吐出する。
  -コントローラの制御動作-
 コントローラ(70)が行う制御動作について説明する。ここでは、目標蒸発温度設定部(81)、目標凝縮温度設定部(82)、圧縮機制御部(83)、及び熱交換器制御部(84)が行う制御動作について説明する。
   〈目標蒸発温度設定部〉
 目標蒸発温度設定部(81)は、冷房運転時の室内熱交換器(61)における冷媒の蒸発温度の目標値Te_tを設定する動作を行う。
 冷房運転中の各室内ユニット(12)において、室内コントローラ(13)は、その室内ユニット(12)が要求された冷房能力を発揮できるような冷媒の蒸発温度を算出し、その値を冷媒の蒸発温度の要求値として熱源ユニット(11)のコントローラ(70)へ送信する。その際、室内コントローラ(13)は、室内熱交換器(61)の温度や室内ファンの回転速度等に基づいて、冷媒の蒸発温度の要求値を算出する。つまり、室内コントローラ(13)は、その室内コントローラ(13)が設けられた室内ユニット(12)の冷房負荷を考慮して、冷媒の蒸発温度の要求値を算出する。
 コントローラ(70)の目標蒸発温度設定部(81)は、各室内ユニット(12)の室内コントローラ(13)から送信された冷媒の蒸発温度の要求値を比較し、そのうちの最も低い値を冷媒の蒸発温度の目標値(即ち、目標蒸発温度Te_t)に設定する。
 上述したように、室内コントローラ(13)が送信する冷媒の蒸発温度の要求値は、室内ユニット(12)の冷房負荷を考慮して算出された値である。従って、室内コントローラ(13)が送信する冷媒の蒸発温度の要求値に基づいて設定された目標蒸発温度Te_tは、空気調和装置(10)の冷房負荷を考慮して設定された値である。この目標蒸発温度Te_tは、空気調和装置(10)の冷房負荷が小さいほど高い値となり、空気調和装置(10)の冷房負荷が大きいほど低い値となる。
   〈目標凝縮温度設定部〉
 目標凝縮温度設定部(82)は、暖房運転時の室内熱交換器(61)における冷媒の凝縮温度の目標値Tc_tを設定する動作を行う。
 暖房運転中の各室内ユニット(12)において、室内コントローラ(13)は、その室内ユニット(12)が要求された暖房能力を発揮できるような冷媒の凝縮温度を算出し、その値を冷媒の凝縮温度の要求値として熱源ユニット(11)のコントローラ(70)へ送信する。その際、室内コントローラ(13)は、室内熱交換器(61)の温度や室内ファンの回転速度等に基づいて、冷媒の凝縮温度の要求値を算出する。つまり、室内コントローラ(13)は、その室内コントローラ(13)が設けられた室内ユニット(12)の暖房負荷を考慮して、冷媒の凝縮温度の要求値を算出する。
 コントローラ(70)の目標凝縮温度設定部(82)は、各室内ユニット(12)の室内コントローラ(13)から送信された冷媒の凝縮温度の要求値を比較し、そのうちの最も高い値を冷媒の凝縮温度の目標値(即ち、目標凝縮温度Tc_t)に設定する。
 上述したように、室内コントローラ(13)が送信する冷媒の凝縮温度の要求値は、室内ユニット(12)の暖房負荷を考慮して算出された値である。従って、室内コントローラ(13)が送信する冷媒の凝縮温度の要求値に基づいて設定された目標凝縮温度Tc_tは、空気調和装置(10)の暖房負荷を考慮して設定された値である。この目標凝縮温度Tc_tは、空気調和装置(10)の暖房負荷が小さいほど低い値となり、空気調和装置(10)の暖房負荷が大きいほど高い値となる。
   〈圧縮機制御部〉
 圧縮機制御部(83)は、圧縮機(21)の運転周波数を制御することによって、圧縮機(21)の運転容量を調節する。
 冷房運転時において、圧縮機制御部(83)は、目標蒸発温度設定部(81)が設定した目標蒸発温度Te_tに基づいて圧縮機(21)の運転容量を調節する。具体的に、圧縮機制御部(83)は、目標蒸発温度Te_tにおける冷媒の飽和圧力(即ち、冷媒の飽和温度が目標蒸発温度Te_tとなるときの圧力)を算出し、その値を目標蒸発圧力Pe_tとする。そして、圧縮機制御部(83)は、低圧圧力センサ(P2)の計測値が目標蒸発圧力Pe_tとなるように、圧縮機(21)の運転周波数を調節する。その際、圧縮機制御部(83)は、低圧圧力センサ(P2)の計測値が目標蒸発圧力Pe_tよりも低ければ圧縮機(21)の運転周波数を引き下げ、低圧圧力センサ(P2)の計測値が目標蒸発圧力Pe_tよりも高ければ圧縮機(21)の運転周波数を引き上げる。
 一方、暖房運転時において、圧縮機制御部(83)は、目標凝縮温度設定部(82)が設定した目標凝縮温度Tc_tに基づいて圧縮機(21)の運転容量を調節する。具体的に、圧縮機制御部(83)は、目標凝縮温度Tc_tにおける冷媒の飽和圧力(即ち、冷媒の飽和温度が目標凝縮温度Tc_tとなるときの圧力)を算出し、その値を目標凝縮圧力Pc_tとする。そして、圧縮機制御部(83)は、高圧圧力センサ(P1)の計測値が目標凝縮圧力Pc_tとなるように、圧縮機(21)の運転周波数を調節する。その際、圧縮機制御部(83)は、高圧圧力センサ(P1)の計測値が目標凝縮圧力Pc_tよりも高ければ圧縮機(21)の運転周波数を引き下げ、高圧圧力センサ(P1)の計測値が目標凝縮圧力Pc_tよりも低ければ圧縮機(21)の運転周波数を引き上げる。
   〈熱交換器制御部〉
 熱交換器制御部(84)は、入口水温センサ(96)の計測値に基づいて熱源側熱交換器(40)における熱交換領域の大きさを調節する。この熱交換器制御部(84)は、熱源側熱交換器(40)に設けられた液側弁(48)、ガス側弁(49)、及び水側弁(50)を制御し、冷媒と熱源水が流通する熱交換部(41a,41b)の数を変更することによって、熱源側熱交換器(40)における熱交換領域の大きさを調節する。
 本実施形態の熱源側熱交換器(40)には、二つの熱交換部(41a,41b)が設けられている。本実施形態の熱交換器制御部(84)は、熱源側熱交換器(40)を、第1熱交換部(41a)と第2熱交換部(41b)の両方において冷媒と熱源水が流通する大容量状態と、第1熱交換部(41a)だけを冷媒と熱源水が流通して第2熱交換部(41b)が休止する小容量状態とに切り換える。
 熱源ユニット(11)の冷却用動作中(即ち、空気調和装置(10)の冷房運転中)において、熱交換器制御部(84)は、液側弁(48)とガス側弁(49)と水側弁(50)とを開状態に設定することによって、熱源側熱交換器(40)を大容量状態にする。また、熱源ユニット(11)の冷却用動作中において、熱交換器制御部(84)は、図3に示すように、ガス側弁(49)と水側弁(50)とを閉状態に設定し且つ液側弁(48)を開状態に設定することによって、熱源側熱交換器(40)を小容量状態にする。このように、熱源ユニット(11)の冷却用動作中において、熱交換器制御部(84)は、ガス側弁(49)及び水側弁(50)を開状態と閉状態に切り換える一方、液側弁(48)を開状態に保持する。
 一方、熱源ユニット(11)の加熱用動作中(即ち、空気調和装置(10)の暖房運転中)において、熱交換器制御部(84)は、液側弁(48)とガス側弁(49)と水側弁(50)とを開状態に設定することによって、熱源側熱交換器(40)を大容量状態にする。また、熱源ユニット(11)の加熱用動作中において、熱交換器制御部(84)は、図4に示すように、液側弁(48)と水側弁(50)とを閉状態に設定し且つガス側弁(49)を開状態に設定することによって、熱源側熱交換器(40)を小容量状態にする。このように、熱源ユニット(11)の加熱用動作中において、熱交換器制御部(84)は、液側弁(48)及び水側弁(50)を開状態と閉状態に切り換える一方、ガス側弁(49)を開状態に保持する。
 上述したように、熱交換器制御部(84)は、入口水温センサ(96)の計測値に基づいて熱源側熱交換器(40)における熱交換領域の大きさを調節する。つまり、熱交換器制御部(84)は、入口水温センサ(96)の計測値に基づいて、熱源側熱交換器(40)を大容量状態と小容量状態とに切り換える制御動作を行う。熱交換器制御部(84)は、この制御動作を所定時間毎に繰り返し行う。
 熱交換器制御部(84)が行う制御動作について、図5のフロー図を参照しながら説明する。後述するように、空気調和装置(10)の冷房運転において、熱交換器制御部(84)は、入口水温Tw_iと目標蒸発温度Te_tの差(Tw_i-Te_t)を圧力差指標値として用い、この圧力差指標値が基準指標値である基準温度差ΔTs_c以上となるように、熱源側熱交換器(40)における熱交換領域の大きさを調節する。また、空気調和装置(10)の暖房運転において、熱交換器制御部(84)は、目標凝縮温度Tc_tと入口水温Tw_iの差(Tc_t-Tw_i)を圧力差指標値として用い、この圧力差指標値が基準指標値である基準温度差ΔTs_h以上となるように、熱源側熱交換器(40)における熱交換領域の大きさを調節する。
 先ず、ステップST10において、熱交換器制御部(84)は、空気調和装置(10)の運転状態が冷房運転か否かを判断する。空気調和装置(10)の運転状態が冷房運転ではないと判断した場合、熱交換器制御部(84)は、ステップST20へ移行し、空気調和装置(10)の運転状態が暖房運転か否かを判断する。ステップST20において空気調和装置(10)の運転状態が暖房運転ではないと判断された場合は、空気調和装置(10)が冷房運転と暖房運転のどちらも行っていないことになるため、熱交換器制御部(84)は制御動作を一旦終了する。
 ステップST10において空気調和装置(10)の運転状態が冷房運転であると判断した場合、熱交換器制御部(84)は、ステップST11へ移行し、入口水温センサ(96)の計測値である入口水温Tw_i(即ち、熱源水回路(100)の往管路(101)から熱源側熱交換器(40)へ供給される熱源水の温度)と、目標蒸発温度設定部(81)が設定した目標蒸発温度Te_tとを読み込む。次のステップST12において、熱交換器制御部(84)は、入口水温Tw_iと目標蒸発温度Te_tの差(Tw_i-Te_t)と、冷房運転用の基準温度差ΔTs_cとを比較する。この基準温度差ΔTs_cは、例えば9℃に設定されている。
 ステップST12において(Tw_i-Te_t)がΔTs_c未満である(即ち、Tw_i-Te_t<ΔTs_cが成立する)場合は、熱源側熱交換器(40)へ供給される熱源水の温度が比較的低く、凝縮器として機能する熱源側熱交換器(40)の能力が過剰になって冷凍サイクルの高圧(即ち、冷媒の凝縮圧力)が低くなり過ぎるおそれがある。また、圧力差指標値である(Tw_i-Te_t)が小さくなっており、冷凍サイクルの高圧と低圧の差が小さくなり過ぎるおそれがある。従って、この場合には、熱源側熱交換器(40)の能力を削減するのが望ましい。そこで、この場合、熱交換器制御部(84)は、ステップST13へ移行し、ガス側弁(49)及び水側弁(50)が開状態であるか否かを判断する。
 ガス側弁(49)及び水側弁(50)が開状態の場合、熱源側熱交換器(40)では、第1熱交換部(41a)と第2熱交換部(41b)の両方において冷媒と熱源水が流通する。つまり、熱源側熱交換器(40)は、第1熱交換部(41a)と第2熱交換部(41b)の両方が凝縮器として機能する大容量状態となっている。従って、この場合は、熱源側熱交換器(40)の能力を削減することが可能である。
 そこで、ステップST13においてガス側弁(49)及び水側弁(50)が開状態であると判断した場合、熱交換器制御部(84)は、ステップST14へ移行し、ガス側弁(49)及び水側弁(50)を閉じる。ガス側弁(49)及び水側弁(50)が閉状態になると、熱源側熱交換器(40)では、第1熱交換部(41a)だけにおいて冷媒と熱源水が流通する。つまり、熱源側熱交換器(40)は、第1熱交換部(41a)だけが凝縮器として機能して第2熱交換部(41b)が休止する小容量状態となる。
 一方、ガス側弁(49)及び水側弁(50)が閉状態の場合は、熱源側熱交換器(40)が既に小容量状態となっており、熱源側熱交換器(40)の能力を削減することはできない。そこで、この場合、熱交換器制御部(84)は、制御動作を一旦終了する。
 ステップST12において(Tw_i-Te_t)がΔTs_c以上である(即ち、Tw_i-Te_t<ΔTs_cが成立しない)場合は、熱源側熱交換器(40)へ供給される熱源水の温度が比較的高く、凝縮器として機能する熱源側熱交換器(40)の能力が不足して冷凍サイクルの高圧(即ち、冷媒の凝縮圧力)が高くなり過ぎるおそれがある。また、圧力差指標値である(Tw_i-Te_t)が大きくなっており、冷凍サイクルの高圧と低圧の差が大きくなり過ぎて圧縮機(21)の消費電力が嵩むおそれがある。従って、この場合には、熱源側熱交換器(40)の能力を増加させるのが望ましい。そこで、この場合、熱交換器制御部(84)は、ステップST15へ移行し、ガス側弁(49)及び水側弁(50)が閉状態であるか否かを判断する。
 ガス側弁(49)及び水側弁(50)が閉状態の場合、熱源側熱交換器(40)では、第1熱交換部(41a)だけにおいて冷媒と熱源水が流通する。つまり、熱源側熱交換器(40)は、第1熱交換部(41a)だけが凝縮器として機能して第2熱交換部(41b)が休止する小容量状態となっている。従って、この場合は、熱源側熱交換器(40)の能力を増加させることが可能である。
 そこで、ステップST15においてガス側弁(49)及び水側弁(50)が閉状態であると判断した場合、熱交換器制御部(84)は、ステップST16へ移行し、ガス側弁(49)及び水側弁(50)を開く。ガス側弁(49)及び水側弁(50)が開状態になると、熱源側熱交換器(40)では、第1熱交換部(41a)と第2熱交換部(41b)の両方において冷媒と熱源水が流通する。つまり、熱源側熱交換器(40)は、第1熱交換部(41a)と第2熱交換部(41b)の両方が凝縮器として機能する大容量状態となる。
 一方、ガス側弁(49)及び水側弁(50)が開状態の場合は、熱源側熱交換器(40)が既に大容量状態となっており、熱源側熱交換器(40)の能力を増加させることはできない。そこで、この場合、熱交換器制御部(84)は、制御動作を一旦終了する。
 ステップST20において空気調和装置(10)の運転状態が暖房運転であると判断した場合、熱交換器制御部(84)は、ステップST21へ移行し、入口水温センサ(96)の計測値である入口水温Tw_iと、目標凝縮温度設定部(82)が設定した目標凝縮温度Tc_tとを読み込む。次のステップST22において、熱交換器制御部(84)は、目標凝縮温度Tc_tと入口水温Tw_iの差(Tc_t-Tw_i)と、暖房運転用の基準温度差ΔTs_hとを比較する。この基準温度差ΔTs_hは、例えば2℃に設定されている。
 ステップST22において(Tc_t-Tw_i)がΔTs_h未満である(即ち、Tc_t-Tw_i<ΔTs_hが成立する)場合は、熱源側熱交換器(40)へ供給される熱源水の温度が比較的高く、蒸発器として機能する熱源側熱交換器(40)の能力が過剰になって冷凍サイクルの低圧(即ち、冷媒の蒸発圧力)が高くなり過ぎるおそれがある。また、圧力差指標値である(Tc_t-Tw_i)が小さくなっており、冷凍サイクルの高圧と低圧の差が小さくなり過ぎるおそれがある。従って、この場合には、熱源側熱交換器(40)の能力を削減するのが望ましい。そこで、この場合、熱交換器制御部(84)は、ステップST23へ移行し、液側弁(48)及び水側弁(50)が開状態であるか否かを判断する。
 液側弁(48)及び水側弁(50)が開状態の場合、熱源側熱交換器(40)では、第1熱交換部(41a)と第2熱交換部(41b)の両方において冷媒と熱源水が流通する。つまり、熱源側熱交換器(40)は、第1熱交換部(41a)と第2熱交換部(41b)の両方が蒸発器として機能する大容量状態となっている。従って、この場合は、熱源側熱交換器(40)の能力を削減することが可能である。
 そこで、ステップST23において液側弁(48)及び水側弁(50)が開状態であると判断した場合、熱交換器制御部(84)は、ステップST24へ移行し、液側弁(48)及び水側弁(50)を閉じる。液側弁(48)及び水側弁(50)が閉状態になると、熱源側熱交換器(40)では、第1熱交換部(41a)だけにおいて冷媒と熱源水が流通する。つまり、熱源側熱交換器(40)は、第1熱交換部(41a)だけが蒸発器として機能して第2熱交換部(41b)が休止する小容量状態となる。
 一方、液側弁(48)及び水側弁(50)が閉状態の場合は、熱源側熱交換器(40)が既に小容量状態となっており、熱源側熱交換器(40)の能力を削減することはできない。そこで、この場合、熱交換器制御部(84)は、制御動作を一旦終了する。
 ステップST22において(Tc_t-Tw_i)がΔTs_h以上である(即ち、Tc_t-Tw_i<ΔTs_hが成立しない)場合は、熱源側熱交換器(40)へ供給される熱源水の温度が比較的低く、蒸発器として機能する熱源側熱交換器(40)の能力が不足して冷凍サイクルの低圧(即ち、冷媒の蒸発圧力)が低くなり過ぎるおそれがある。また、圧力差指標値である(Tc_t-Tw_i)が大きくなっており、冷凍サイクルの高圧と低圧の差が大きくなり過ぎて圧縮機(21)の消費電力が嵩むおそれがある。従って、この場合には、熱源側熱交換器(40)の能力を増加させるのが望ましい。そこで、この場合、熱交換器制御部(84)は、ステップST25へ移行し、液側弁(48)及び水側弁(50)が閉状態であるか否かを判断する。
 液側弁(48)及び水側弁(50)が閉状態の場合、熱源側熱交換器(40)では、第1熱交換部(41a)だけにおいて冷媒と熱源水が流通する。つまり、熱源側熱交換器(40)は、第1熱交換部(41a)だけが蒸発器として機能して第2熱交換部(41b)が休止する小容量状態となっている。従って、この場合は、熱源側熱交換器(40)の能力を増加させることが可能である。
 そこで、ステップST25において液側弁(48)及び水側弁(50)が閉状態であると判断した場合、熱交換器制御部(84)は、ステップST26へ移行し、液側弁(48)及び水側弁(50)を開く。液側弁(48)及び水側弁(50)が開状態になると、熱源側熱交換器(40)では、第1熱交換部(41a)と第2熱交換部(41b)の両方において冷媒と熱源水が流通する。つまり、熱源側熱交換器(40)は、第1熱交換部(41a)と第2熱交換部(41b)の両方が蒸発器として機能する大容量状態となる。
 一方、液側弁(48)及び水側弁(50)が開状態の場合は、熱源側熱交換器(40)が既に大容量状態となっており、熱源側熱交換器(40)の能力を増加させることはできない。そこで、この場合、熱交換器制御部(84)は、制御動作を一旦終了する。
  -圧力差指標値-
 上述したように、空気調和装置(10)の冷房運転において、熱交換器制御部(84)は、入口水温Tw_iと目標蒸発温度Te_tの差(Tw_i-Te_t)を圧力差指標値として用いる。熱源側熱交換器(40)における冷媒の凝縮温度は、入口水温Tw_iよりも概ね一定の値だけ高い温度となる。また、熱源側熱交換器(40)における冷媒の凝縮温度は冷凍サイクルの高圧に相関し、室内ユニット(12)における冷媒の蒸発温度は冷凍サイクルの低圧に相関する。このため、入口水温Tw_iと目標蒸発温度Te_tの差(Tw_i-Te_t)は、冷凍サイクルの高圧と低圧の差が拡大すると拡大し、冷凍サイクルの高圧と低圧の差が縮小すると縮小する。従って、(Tw_i-Te_t)は、冷媒回路(15)において行われる冷凍サイクルの高圧と低圧の差を示す圧力差指標値となり得る。
 また、上述したように、空気調和装置(10)の暖房運転において、熱交換器制御部(84)は、目標凝縮温度Tc_tと入口水温Tw_iの差(Tc_t-Tw_i)を圧力差指標値として用いる。熱源側熱交換器(40)における冷媒の蒸発温度は、入口水温Tw_iよりも概ね一定の値だけ低い温度となる。また、室内ユニット(12)における冷媒の凝縮温度は冷凍サイクルの高圧に相関し、熱源側熱交換器(40)における冷媒の蒸発温度は冷凍サイクルの低圧に相関する。このため、目標凝縮温度Tc_tと入口水温Tw_iとの差(Tc_t-Tw_i)は、冷凍サイクルの高圧と低圧の差が拡大すると拡大し、冷凍サイクルの高圧と低圧の差が縮小すると縮小する。従って、冷媒回路(15)において行われる冷凍サイクルの高圧と低圧の差を示す圧力差指標値となり得る。
  -実施形態1の効果-
 空気調和装置(10)の冷房運転中において、熱源水の温度が比較的低い場合は、凝縮器として機能する熱源側熱交換器(40)の能力が過剰となって冷凍サイクルの高圧が低くなり、冷凍サイクルの高圧と低圧の差が小さくなり過ぎて冷凍サイクルを継続できない状態に陥ることがある。特に、空気調和装置(10)の冷房負荷が小さい時は、このような状態に陥る可能性が高い。
 また、空気調和装置(10)の暖房運転中において、熱源水の温度が比較的高い場合は、蒸発器として機能する熱源側熱交換器(40)の能力が過剰となって冷凍サイクルの低圧が高くなり、冷凍サイクルの高圧と低圧の差が小さくなり過ぎて冷凍サイクルを継続できない状態に陥ることがある。特に、空気調和装置(10)の暖房負荷が小さい時は、このような状態に陥る可能性が高い。
 そして、このような冷凍サイクルを継続できない状態に陥ると、空気調和装置(10)は、起動と停止を繰り返すことになる。空気調和装置(10)が起動と停止を頻繁に繰り返すと、例えば、室内の気温が変動して快適性が損なわれるという問題や、圧縮機(21)が起動と停止を繰り返すことによって損傷しやすくなるという問題が生じる。
 これに対し、本実施形態の空気調和装置(10)では、コントローラ(70)の熱交換器制御部(84)が、入口水温センサ(96)の計測値である入口水温Tw_i(即ち、熱源側熱交換器(40)へ供給される熱源水の温度)に基づいて、熱源側熱交換器(40)を大容量状態と小容量状態に切り換える。具体的に、熱交換器制御部(84)は、入口水温Tw_iと目標蒸発温度Te_tの差(Tw_i-Te_t)を冷房運転用の圧力差指標値として用いる一方、目標凝縮温度Tc_tと入口水温Tw_iの差(Tc_t-Tw_i)を暖房運転用の圧力差指標値として用い、これらの圧力差指標値に基づいて熱源側熱交換器(40)の熱交換領域の大きさを調節する。
 このため、入口水温Tw_iが“熱源側熱交換器(40)の熱交換領域の大きさが一定のままだと、熱源側熱交換器(40)の能力が過剰となって冷凍サイクルを継続できなくなる可能性が高い温度範囲”である場合であっても、熱交換器制御部(84)が熱源側熱交換器(40)を大容量状態から小容量状態へ切り換えることによって熱源側熱交換器(40)の能力を引き下げることができ、その結果、冷凍サイクルを継続して行うことが可能となる。従って、本実施形態によれば、“空気調和装置(10)が空調負荷にかかわらず運転を継続できる熱源水の温度範囲”を、従来よりも拡大することができる。
 また、本実施形態のコントローラ(70)の熱交換器制御部(84)は、冷房運転中に熱源側熱交換器(40)を小容量状態に設定する場合にはガス側弁(49)及び水側弁(50)を閉じ、暖房運転中に熱源側熱交換器(40)を小容量状態に設定する場合には液側弁(48)及び水側弁(50)を閉じる。つまり、小容量状態の熱源側熱交換器(40)では、第2熱交換部(41b)における冷媒の流通だけでなく熱源水の流通も遮断される。このため、小容量状態の熱源側熱交換器(40)において第2熱交換部(41b)へ熱源水を供給し続ける場合に比べ、熱源水の搬送に要する動力を削減することができる。
  -実施形態1の変形例1-
 上述したように、空気調和装置(10)の冷房運転中において、コントローラ(70)の熱交換器制御部(84)は、Tw_i-Te_t<ΔTs_cが成立する場合は熱源側熱交換器(40)の熱交換領域を縮小し、Tw_i-Te_t<ΔTs_cが成立しない場合は熱源側熱交換器(40)の熱交換領域を拡大する動作を行う(図5のステップST12~ST16を参照)。この動作は、Tw_i<Te_t+ΔTs_cが成立する場合は熱源側熱交換器(40)の熱交換領域を縮小し、Tw_i<Te_t+ΔTs_cが成立しない場合は熱源側熱交換器(40)の熱交換領域を拡大する動作と実質的に同じである。
 従って、本実施形態の熱交換器制御部(84)は、入口水温Tw_iが冷房運転用の基準温度(Te_t+ΔTs_c)を下回ると熱源側熱交換器(40)の熱交換領域を縮小するように構成されていてもよい。また、本実施形態の熱交換器制御部(84)は、入口水温Tw_iが冷房運転用の基準温度(Te_t+ΔTs_c)を以上になると熱源側熱交換器(40)の熱交換領域を拡大するように構成されていてもよい。
 本変形例の熱交換器制御部(84)は、図5のステップST12において、入口水温Tw_iが冷房運転用の基準温度(Te_t+ΔTs_c)を下回るか否か(即ち、Tw_i<Te_t+ΔTs_cという条件の成否)を判断する。そして、熱交換器制御部(84)は、Tw_i<Te_t+ΔTs_cが成立する場合は図5のステップST13へ移行し、Tw_i<Te_t+ΔTs_cが成立しない場合は図5のステップST15へ移行する。
 上述したように、目標蒸発温度Te_tは、空気調和装置(10)の冷房負荷が小さいほど高い値となり、空気調和装置(10)の冷房負荷が大きいほど低い値となる。一方、冷房運転用の基準温度差ΔTs_cは、一定の値である。従って、実施形態1とその変形例1の熱交換器制御部(84)は、冷房運転用の基準温度(Te_t+ΔTs_c)を、空気調和装置(10)の冷房負荷が小さいほど高い値とし、空気調和装置(10)の冷房負荷が大きいほど低い値とするように構成されていることになる。
 また、上述したように、目標蒸発温度Te_tは、空気調和装置(10)の冷房負荷が小さいほど高い値となり、空気調和装置(10)の冷房負荷が大きいほど低い値となる。従って、実施形態1とその変形例1の熱交換器制御部(84)は、冷房運転用の基準温度(Te_t+ΔTs_c)を、空気調和装置(10)の冷房負荷が小さいほど高い値とし、空気調和装置(10)の冷房負荷が大きいほど低い値とするように構成されていることになる。
  -実施形態1の変形例2-
 上述したように、空気調和装置(10)の暖房運転中において、熱交換器制御部(84)は、Tc_t-Tw_i<ΔTs_hが成立する場合は熱源側熱交換器(40)の熱交換領域を縮小し、Tc_t-Tw_i<ΔTs_hが成立しない場合は熱源側熱交換器(40)の熱交換領域を拡大する動作を行う(図5のステップST12~ST16を参照)。この動作は、Tc_t-ΔTs_h<Tw_iが成立する場合は熱源側熱交換器(40)の熱交換領域を縮小し、Tc_t-ΔTs_h<Tw_iが成立しない場合は熱源側熱交換器(40)の熱交換領域を拡大する動作と実質的に同じである。
 従って、本実施形態の熱交換器制御部(84)は、入口水温Tw_iが暖房運転用の基準温度(Tc_t-ΔTs_h)を上回ると熱源側熱交換器(40)の熱交換領域を縮小するように構成されていてもよい。また、本実施形態の熱交換器制御部(84)は、入口水温Tw_iが暖房運転用の基準温度(Tc_t-ΔTs_h)以下になると熱源側熱交換器(40)の熱交換領域を拡大するように構成されていてもよい。
 本変形例の熱交換器制御部(84)は、図5のステップST22において、入口水温Tw_iが暖房運転用の基準温度(Tc_t-ΔTs_h)を上回るか否か(即ち、Tc_t-ΔTs_h<Tw_iという条件の成否)を判断する。そして、熱交換器制御部(84)は、Tc_t-ΔTs_h<Tw_iが成立する場合は図5のステップST23へ移行し、Tc_t-ΔTs_h<Tw_iが成立しない場合は図5のステップST25へ移行する。
 上述したように、目標凝縮温度Tc_tは、空気調和装置(10)の暖房負荷が小さいほど低い値となり、空気調和装置(10)の暖房負荷が大きいほど高い値となる。一方、暖房運転用の基準温度差ΔTs_hは、一定の値である。従って、実施形態1とその変形例2の熱交換器制御部(84)は、暖房運転用の基準温度(Tc_t-ΔTs_h)を、空気調和装置(10)の暖房負荷が小さいほど低い値とし、空気調和装置(10)の暖房負荷が大きいほど高い値とするように構成されていることになる。
 また、上述したように、目標凝縮温度Tc_tは、空気調和装置(10)の暖房負荷が小さいほど低い値となり、空気調和装置(10)の暖房負荷が大きいほど高い値となる。従って、実施形態1とその変形例2の熱交換器制御部(84)は、暖房運転用の基準温度(Tc_t-ΔTs_h)を、空気調和装置(10)の暖房負荷が小さいほど低い値とし、空気調和装置(10)の暖房負荷が大きいほど高い値とするように構成されていることになる。
  -実施形態1の変形例3-
 本実施形態の熱交換器制御部(84)は、圧力差指標値が“基準指標値よりも大きな値”以上になったときに、熱源側熱交換器(40)を小容量状態から大容量状態へ切り換えるように構成されていてもよい。ここでは、本変形例の熱交換器制御部(84)が行う制御動作について、図6のフロー図を参照しながら説明する。
 図6に示すフロー図では、図5に示すフロー図にステップST17とステップST27とが追加されている。ここでは、図6に示す熱交換器制御部(84)の制御動作について、図5に示す熱交換器制御部(84)の制御動作と異なる点を説明する。
   〈冷房運転時の熱交換器制御部の制御動作〉
 空気調和装置(10)の冷房運転において、本変形例の熱交換器制御部(84)は、ステップST12においてTw_i-Te_t<ΔTs_cが成立しないと判断し、続くステップST15においてガス側弁(49)及び水側弁(50)が閉状態であると判断した場合に、ステップST17へ移行する。ステップST17において、熱交換器制御部(84)は、(Tw_i-Te_t)と(ΔTs_c+α)を比較する。なお、Tw_iは入口水温であり、Te_tは目標蒸発温度であり、ΔTs_cは冷房用の基準温度差である。また、αは、熱交換器制御部(84)が予め記憶する定数である。
 (Tw_i-Te_t)が(ΔTs_c+α)以上の場合、熱交換器制御部(84)は、ステップST16へ移行し、ガス側弁(49)及び水側弁(50)を開く。その結果、熱源側熱交換器(40)は、小容量状態から大容量状態へ切り換わる。一方、(Tw_i-Te_t)が(ΔTs_c+α)未満の場合、熱交換器制御部(84)は、ガス側弁(49)及び水側弁(50)を閉状態に保つ。その結果、熱源側熱交換器(40)は、小容量状態に保持される。
 このように、熱交換器制御部(84)が小容量状態の場合、本変形例の熱交換器制御部(84)は、圧力差指標値である(Tw_i-Te_t)が基準指標値であるΔTs_c以上となっても熱交換器制御部(84)を小容量状態に保持し続け、(Tw_i-Te_t)が(ΔTs_c+α)以上となったときに熱源側熱交換器(40)を小容量状態から大容量状態へ切り換える。このため、短時間の間に熱源側熱交換器(40)が小容量状態と大容量状態に交互に切り換わる現象(いわゆるハンチング)が抑制される。
   〈暖房運転時の熱交換器制御部の制御動作〉
 空気調和装置(10)の暖房運転において、本変形例の熱交換器制御部(84)は、ステップST22においてTc_t-Tw_i<ΔTs_hが成立しないと判断し、続くステップST25においてガス側弁(49)及び水側弁(50)が閉状態であると判断した場合に、ステップST27へ移行する。ステップST27において、熱交換器制御部(84)は、(Tc_t-Tw_i)と(ΔTs_h+α)を比較する。なお、Tw_iは入口水温であり、Tc_tは目標凝縮温度であり、ΔTs_hは暖房用の基準温度差である。また、αは、熱交換器制御部(84)が予め記憶する定数である。
 (Tc_t-Tw_i)が(ΔTs_h+α)以上の場合、熱交換器制御部(84)は、ステップST26へ移行し、ガス側弁(49)及び水側弁(50)を開く。その結果、熱源側熱交換器(40)は、小容量状態から大容量状態へ切り換わる。一方、(Tc_t-Tw_i)が(ΔTs_h+α)未満の場合、熱交換器制御部(84)は、ガス側弁(49)及び水側弁(50)を閉状態に保つ。その結果、熱源側熱交換器(40)は、小容量状態に保持される。
 このように、熱交換器制御部(84)が小容量状態の場合、本変形例の熱交換器制御部(84)は、圧力差指標値である(Tc_t-Tw_i)が基準指標値であるΔTs_h以上となっても熱交換器制御部(84)を小容量状態に保持し続け、(Tc_t-Tw_i)が(ΔTs_h+α)以上となったときに熱源側熱交換器(40)を小容量状態から大容量状態へ切り換える。このため、短時間の間に熱源側熱交換器(40)が小容量状態と大容量状態に交互に切り換わる現象(いわゆるハンチング)が抑制される。
  -実施形態1の変形例4-
 本実施形態の熱交換器制御部(84)は、基準指標値(具体的には、冷房運転用の基準温度差ΔTs_cと暖房運転用の基準温度差ΔTs_h)を一定の値としているが、熱交換器制御部(84)は、基準指標値を空気調和装置(10)の運転状態に応じて変更するように構成されていてもよい。
 例えば、熱交換器制御部(84)は、冷房運転用の基準温度差ΔTs_cと暖房運転用の基準温度差ΔTs_hのそれぞれを、入口水温Tw_iに応じて変更するように構成されていてもよい。また、熱交換器制御部(84)は、冷房運転用の基準温度差ΔTs_cを、入口水温Tw_iと、室内ユニット(12)における冷媒の蒸発温度と、冷媒回路(15)における冷媒の循環量とに応じて変更すると共に、暖房運転用の基準温度差ΔTs_hを、入口水温Tw_iと、室内ユニット(12)における冷媒の凝縮温度と、冷媒回路(15)における冷媒の循環量とに応じて変更するように構成されていてもよい。
 《実施形態2》
 実施形態2について説明する。本実施形態の空気調和装置(10)は、実施形態1の空気調和装置(10)において、コントローラ(70)の熱交換器制御部(84)の構成を変更したものである。ここでは、本実施形態の空気調和装置(10)について、実施形態1の空気調和装置(10)と異なる点を説明する。
  -熱交換器制御部の制御動作(冷房運転)-
 空気調和装置(10)の冷房運転中に熱交換器制御部(84)が行う制御動作について、図7のフロー図を参照しながら説明する。
 空気調和装置(10)の冷房運転中において、熱交換器制御部(84)は、熱源ユニット(11)における冷媒の凝縮温度Tc_hsと目標蒸発温度Te_tの差(Tc_hs-Te_t)を圧力差指標値として用い、この圧力差指標値が基準指標値である基準温度差ΔTs_c以上となるように、熱源側熱交換器(40)における熱交換領域の大きさを調節する。
 ステップST31において、熱交換器制御部(84)は、高圧圧力センサ(91)の計測値(即ち、冷媒回路(15)において行われる冷凍サイクルの高圧HP)と、目標蒸発温度設定部(81)が設定した目標蒸発温度Te_tとを読み込む。また、ステップST31において、熱交換器制御部(84)は、冷凍サイクルの高圧HPに対応する冷媒の飽和温度(即ち、冷媒の飽和圧力がHPとなるときの温度)を算出し、その値を熱源ユニット(11)における冷媒の凝縮温度Tc_hsとする。
 次のステップST32において、熱交換器制御部(84)は、熱源ユニット(11)における冷媒の凝縮温度Tc_hsと目標蒸発温度Te_tの差(Tc_hs-Te_t)と、冷房運転用の基準温度差ΔTs_cとを比較する。ただし、本実施形態の基準温度差ΔTs_cの値は、実施形態1の基準温度差ΔTs_cの値と異なる。
 ステップST32において(Tc_hs-Te_t)がΔTs_c未満である(即ち、Tc_hs-Te_t<ΔTs_cが成立する)場合は、圧力差指標値である(Tc_hs-Te_t)が小さくなっており、冷凍サイクルの高圧と低圧の差が小さくなり過ぎるおそれがある。従って、この場合には、熱源側熱交換器(40)の能力を削減するのが望ましい。そこで、この場合、熱交換器制御部(84)は、ステップST33へ移行し、ガス側弁(49)及び水側弁(50)が開状態であるか否かを判断する。
 ガス側弁(49)及び水側弁(50)が開状態の場合、熱源側熱交換器(40)は、第1熱交換部(41a)と第2熱交換部(41b)の両方が凝縮器として機能する大容量状態となっている。従って、この場合は、熱源側熱交換器(40)の能力を削減することが可能である。
 そこで、ステップST33においてガス側弁(49)及び水側弁(50)が開状態であると判断した場合、熱交換器制御部(84)は、ステップST34へ移行し、ガス側弁(49)及び水側弁(50)を閉じる。ガス側弁(49)及び水側弁(50)が閉状態になると、熱源側熱交換器(40)は、第1熱交換部(41a)だけが凝縮器として機能して第2熱交換部(41b)が休止する小容量状態となる。
 一方、ガス側弁(49)及び水側弁(50)が閉状態の場合は、熱源側熱交換器(40)が既に小容量状態となっており、熱源側熱交換器(40)の能力を削減することはできない。そこで、この場合、熱交換器制御部(84)は、制御動作を一旦終了する。
 ステップST32において(Tc_hs-Te_t)がΔTs_c以上である(即ち、Tc_hs-Te_t<ΔTs_cが成立しない)場合は、圧力差指標値である(Tc_hs-Te_t)が大きくなっており、冷凍サイクルの高圧と低圧の差が大きくなり過ぎて圧縮機(21)の消費電力が嵩むおそれがある。従って、この場合には、熱源側熱交換器(40)の能力を増加させるのが望ましい。そこで、この場合、熱交換器制御部(84)は、ステップST35へ移行し、ガス側弁(49)及び水側弁(50)が閉状態であるか否かを判断する。
 ガス側弁(49)及び水側弁(50)が閉状態の場合、熱源側熱交換器(40)は、第1熱交換部(41a)だけが凝縮器として機能して第2熱交換部(41b)が休止する小容量状態となっている。従って、この場合は、熱源側熱交換器(40)の能力を増加させることが可能である。
 しかし、熱源側熱交換器(40)を直ちに小容量状態から大容量状態へ切り換えると、熱源側熱交換器(40)における冷媒の凝縮温度Tc_hsが低下し、(Tc_hs-Te_t)がΔTs_cを下回るおそれがある。そうなると、熱源側熱交換器(40)は、再び大容量状態から小容量状態へ切り換えられる。そして、熱源側熱交換器(40)が短時間の間に大容量状態と小容量状態に交互に繰り返し切り換わるハンチング状態に陥るおそれがある。
 そこで、熱交換器制御部(84)は、ステップST37へ移行する。ステップST37において、熱交換器制御部(84)は、熱源側熱交換器(40)を小容量状態から大容量状態へ切り換えたと仮定した場合の、熱源側熱交換器(40)における冷媒の凝縮温度の推定値Tc_hs’を算出する。
 具体的に、熱交換器制御部(84)は、入口水温センサ(96)の計測値である入口水温Tw_iと、出口水温センサ(97)の計測値である出口水温Tw_oと、熱源側熱交換器(40)へ供給される熱源水の流量とを用いて、熱源側熱交換器(40)における熱源水と冷媒の熱交換量Qを算出する。また、熱交換器制御部(84)は、予め記憶する熱源側熱交換器(40)の特性式に基づいて、熱源側熱交換器(40)を小容量状態から大容量状態へ切り換えた場合の、熱源側熱交換器(40)の総括熱伝達係数Kと伝熱面積Aを算出する。
 熱交換器制御部(84)は、熱交換量Q、総括熱伝達係数K、伝熱面積A、及び入口水温Tw_iを用いて、熱源側熱交換器(40)を小容量状態から大容量状態へ切り換えた場合の出口水温の推定値Tw_o’を算出する。熱源側熱交換器(40)における冷媒の凝縮温度は、出口水温よりも概ね一定の値だけ高い温度となる。そこで、熱交換器制御部(84)は、出口水温の推定値Tw_o’に予め記憶する定数を加算して得られた値を、熱源側熱交換器(40)における冷媒の凝縮温度の推定値Tc_hs’とする。
 続くステップST38において、熱交換器制御部(84)は、ステップST37において算出した凝縮温度の推定値Tc_hs’と目標蒸発温度Te_tの差(Tc_hs’-Te_t)と、冷房運転用の基準温度差ΔTs_cとを比較する。
 (Tc_hs’-Te_t)がΔTs_c以上である場合は、熱源側熱交換器(40)を小容量状態から大容量状態へ切り換えた後も、(Tc_hs-Te_t)がΔTs_c以上に保たれる可能性が高い。そこで、ステップST38において(Tc_hs’-Te_t)≧ΔTs_cが成立した場合、熱交換器制御部(84)は、ステップST36へ移行し、液側弁(48)及び水側弁(50)を開く。液側弁(48)及び水側弁(50)が開状態になると、熱源側熱交換器(40)は、第1熱交換部(41a)と第2熱交換部(41b)の両方が凝縮器として機能する大容量状態となる。
 一方、(Tc_hs’-Te_t)がΔTs_c未満である場合は、熱源側熱交換器(40)を小容量状態から大容量状態へ切り換えると、(Tc_hs-Te_t)がΔTs_c未満になる可能性が高い。そこで、ステップST38において(Tc_hs’-Te_t)≧ΔTs_cが成立しない場合、熱交換器制御部(84)は、液側弁(48)及び水側弁(50)を閉状態に保持し、制御動作を一旦終了する。
  -熱交換器制御部の制御動作(暖房運転)-
 空気調和装置(10)の暖房運転中に熱交換器制御部(84)が行う制御動作について、図8のフロー図を参照しながら説明する。
 空気調和装置(10)の暖房運転中において、熱交換器制御部(84)は、目標凝縮温度Tc_tと熱源ユニット(11)における冷媒の蒸発温度Te_hsの差(Tc_t-Te_hs)を圧力差指標値として用い、この圧力差指標値が基準指標値である基準温度差ΔTs_h以上となるように、熱源側熱交換器(40)における熱交換領域の大きさを調節する。
 ステップST41において、熱交換器制御部(84)は、低圧圧力センサ(92)の計測値(即ち、冷媒回路(15)において行われる冷凍サイクルの低圧LP)と、目標凝縮温度設定部(82)が設定した目標凝縮温度Tc_tとを読み込む。また、ステップST41において、熱交換器制御部(84)は、冷凍サイクルの低圧LPに対応する冷媒の飽和温度(即ち、冷媒の飽和圧力がLPとなるときの温度)を算出し、その値を熱源ユニット(11)における冷媒の蒸発温度Te_hsとする。
 次のステップST42において、熱交換器制御部(84)は、目標凝縮温度Tc_tと熱源ユニット(11)における冷媒の蒸発温度Te_hsの差(Tc_t-Te_hs)と、暖房運転用の基準温度差ΔTs_hとを比較する。ただし、本実施形態の基準温度差ΔTs_hの値は、実施形態1の基準温度差ΔTs_hの値と異なる。
 ステップST42において(Tc_t-Te_hs)がΔTs_h未満である(即ち、Tc_t-Te_hs<ΔTs_hが成立する)場合は、圧力差指標値である(Tc_t-Te_hs)が小さくなっており、冷凍サイクルの高圧と低圧の差が小さくなり過ぎるおそれがある。従って、この場合には、熱源側熱交換器(40)の能力を削減するのが望ましい。そこで、この場合、熱交換器制御部(84)は、ステップST43へ移行し、ガス側弁(49)及び水側弁(50)が開状態であるか否かを判断する。
 ガス側弁(49)及び水側弁(50)が開状態の場合、熱源側熱交換器(40)は、第1熱交換部(41a)と第2熱交換部(41b)の両方が蒸発器として機能する大容量状態となっている。従って、この場合は、熱源側熱交換器(40)の能力を削減することが可能である。
 そこで、ステップST43においてガス側弁(49)及び水側弁(50)が開状態であると判断した場合、熱交換器制御部(84)は、ステップST44へ移行し、ガス側弁(49)及び水側弁(50)を閉じる。ガス側弁(49)及び水側弁(50)が閉状態になると、熱源側熱交換器(40)は、第1熱交換部(41a)だけが蒸発器として機能して第2熱交換部(41b)が休止する小容量状態となる。
 一方、ガス側弁(49)及び水側弁(50)が閉状態の場合は、熱源側熱交換器(40)が既に小容量状態となっており、熱源側熱交換器(40)の能力を削減することはできない。そこで、この場合、熱交換器制御部(84)は、制御動作を一旦終了する。
 ステップST42において(Tc_t-Te_hs)がΔTs_h以上である(即ち、Tc_t-Te_hs<ΔTs_hが成立しない)場合は、圧力差指標値である(Tc_t-Te_hs)が大きくなっており、冷凍サイクルの高圧と低圧の差が大きくなり過ぎて圧縮機(21)の消費電力が嵩むおそれがある。従って、この場合には、熱源側熱交換器(40)の能力を増加させるのが望ましい。そこで、この場合、熱交換器制御部(84)は、ステップST45へ移行し、ガス側弁(49)及び水側弁(50)が閉状態であるか否かを判断する。
 ガス側弁(49)及び水側弁(50)が閉状態の場合、熱源側熱交換器(40)は、第1熱交換部(41a)だけが凝縮器として機能して第2熱交換部(41b)が休止する小容量状態となっている。従って、この場合は、熱源側熱交換器(40)の能力を増加させることが可能である。
 しかし、熱源側熱交換器(40)を直ちに小容量状態から大容量状態へ切り換えると、熱源側熱交換器(40)における冷媒の凝縮温度Tc_hsが低下し、(Tc_t-Te_hs)がΔTs_hを下回るおそれがある。そうなると、熱源側熱交換器(40)は、再び大容量状態から小容量状態へ切り換えられる。そして、熱源側熱交換器(40)が短時間の間に大容量状態と小容量状態に交互に繰り返し切り換わるハンチング状態に陥るおそれがある。
 そこで、熱交換器制御部(84)は、ステップST47へ移行する。ステップST47において、熱交換器制御部(84)は、熱源側熱交換器(40)を小容量状態から大容量状態へ切り換えたと仮定した場合の、熱源側熱交換器(40)における冷媒の蒸発温度の推定値Te_hs’を算出する。
 ステップST47において、熱交換器制御部(84)は、図7のステップST37と同様にして、熱源側熱交換器(40)を小容量状態から大容量状態へ切り換えた場合の出口水温の推定値Tw_o’を算出する。熱源側熱交換器(40)における冷媒の蒸発温度は、出口水温Tw_oよりも概ね一定の値だけ低い温度となる。そこで、熱交換器制御部(84)は、出口水温の推定値Tw_o’に予め記憶する定数を減算して得られた値を、熱源側熱交換器(40)における冷媒の蒸発温度の推定値Te_hs’とする。
 続くステップST48において、熱交換器制御部(84)は、ステップST47において算出した蒸発温度の推定値Te_hs’と目標凝縮温度Tc_tの差(Tc_t-Te_hs’)と、暖房運転用の基準温度差ΔTs_hとを比較する。
 (Tc_t-Te_hs’)がΔTs_h以上である場合は、熱源側熱交換器(40)を小容量状態から大容量状態へ切り換えた後も、(Tc_t-Te_hs)がΔTs_h以上に保たれる可能性が高い。そこで、ステップST46において(Tc_t-Te_hs’)≧ΔTs_hが成立した場合、熱交換器制御部(84)は、ステップST48へ移行し、液側弁(48)及び水側弁(50)を開く。液側弁(48)及び水側弁(50)が開状態になると、熱源側熱交換器(40)は、第1熱交換部(41a)と第2熱交換部(41b)の両方が蒸発器として機能する大容量状態となる。
 一方、(Tc_t-Te_hs’)がΔTs_h未満である場合は、熱源側熱交換器(40)を小容量状態から大容量状態へ切り換えると、(Tc_t-Te_hs)がΔTs_h未満になる可能性が高い。そこで、ステップST48において(Tc_t-Te_hs’)≧ΔTs_hが成立しない場合、熱交換器制御部(84)は、液側弁(48)及び水側弁(50)を閉状態に保持し、制御動作を一旦終了する。
  -圧力差指標値-
 上述したように、空気調和装置(10)の冷房運転において、熱交換器制御部(84)は、熱源ユニット(11)における冷媒の凝縮温度Tc_hsと目標蒸発温度Te_tの差(Tc_hs-Te_t)を圧力差指標値として用いる。熱源ユニット(11)における冷媒の凝縮温度Tc_hsは冷凍サイクルの高圧に相関し、目標蒸発温度Te_tは冷凍サイクルの低圧に相関する。このため、冷媒の凝縮温度Tc_hsと目標蒸発温度Te_tの差(Tc_hs-Te_t)は、冷凍サイクルの高圧と低圧の差が拡大すると拡大し、冷凍サイクルの高圧と低圧の差が縮小すると縮小する。従って、(Tc_hs-Te_t)は、冷媒回路(15)において行われる冷凍サイクルの高圧と低圧の差を示す圧力差指標値となり得る。
 また、上述したように、空気調和装置(10)の暖房運転において、目標凝縮温度Tc_tと熱源ユニット(11)における冷媒の蒸発温度Te_hsの差(Tc_t-Te_hs)を圧力差指標値として用いる。また、目標凝縮温度Tc_tは冷凍サイクルの高圧に相関し、熱源ユニット(11)における冷媒の蒸発温度Te_hsは冷凍サイクルの低圧に相関する。このため、目標凝縮温度Tc_tと熱源ユニット(11)における冷媒の蒸発温度Te_hsの差(Tc_t-Te_hs)は、冷凍サイクルの高圧と低圧の差が拡大すると拡大し、冷凍サイクルの高圧と低圧の差が縮小すると縮小する。従って、冷媒回路(15)において行われる冷凍サイクルの高圧と低圧の差を示す圧力差指標値となり得る。
  -実施形態2の変形例-
 本実施形態の熱交換器制御部(84)は、冷房運転用の圧力差指標値として“熱源ユニット(11)における冷媒の凝縮温度Tc_hsと目標蒸発温度Te_tの差(Tc_hs-Te_t)”を用いるように構成されているが、これに代えて、“出口水温センサ(97)の計測値である出口水温Tw_oと目標蒸発温度Te_tの差(Tw_o-Te_t)” を冷房運転用の圧力差指標値として用いるように構成されていてもよい。
 図7に示す冷房運転中の制御動作において、本変形例の熱交換器制御部(84)は、ステップST32においてTw_o-Te_t<ΔTs_cの成否を判断する。なお、本変形例における基準温度差ΔTs_cの値は、(Tc_hs-Te_t)を圧力差指標値として用いる場合の基準温度差ΔTs_cの値と異なる。また、本変形例の熱交換器制御部(84)は、ステップST37において“熱源側熱交換器(40)を小容量状態から大容量状態へ切り換えたと仮定した場合の出口水温の推定値Tw_o’”を算出し、ステップST38において(Tw_o’-Te_t)≧ΔTs_cの成否を判断する。
 熱源側熱交換器(40)における冷媒の凝縮温度は、出口水温Tw_oよりも概ね一定の値だけ高い温度となる。また、熱源側熱交換器(40)における冷媒の凝縮温度は冷凍サイクルの高圧に相関し、目標蒸発温度Te_tは冷凍サイクルの低圧に相関する。このため、出口水温Tw_oと目標蒸発温度Te_tの差(Tw_o-Te_t)は、冷凍サイクルの高圧と低圧の差が拡大すると拡大し、冷凍サイクルの高圧と低圧の差が縮小すると縮小する。従って、(Tw_o-Te_t)は、冷媒回路(15)において行われる冷凍サイクルの高圧と低圧の差を示す圧力差指標値となり得る。
 また、本実施形態の熱交換器制御部(84)は、暖房運転用の圧力差指標値として“目標凝縮温度Tc_tと熱源ユニット(11)における冷媒の蒸発温度Te_hsの差(Tc_t-Te_hs)”を用いるように構成されているが、これに代えて、“目標凝縮温度Tc_tと出口水温センサ(97)の計測値である出口水温Tw_oの差(Tc_t-Tw_o)” を暖房運転用の圧力差指標値として用いるように構成されていてもよい。
 図8に示す暖房運転中の制御動作において、本変形例の熱交換器制御部(84)は、ステップST42においてTc_t-Tw_o<ΔTs_hの成否を判断する。なお、本変形例における基準温度差ΔTs_hの値は、(Tc_t-Te_hs)を圧力差指標値として用いる場合の基準温度差ΔTs_hの値と異なる。また、本変形例の熱交換器制御部(84)は、ステップST47において“熱源側熱交換器(40)を小容量状態から大容量状態へ切り換えたと仮定した場合の出口水温の推定値Tw_o’”を算出し、ステップST48において(Tc_t-Tw_o’)≧ΔTs_hの成否を判断する。
 熱源側熱交換器(40)における冷媒の蒸発温度は、出口水温Tw_oよりも概ね一定の値だけ低い温度となる。また、目標凝縮温度Tc_t冷凍サイクルの高圧に相関し、熱源側熱交換器(40)における冷媒の蒸発温度は冷凍サイクルの低圧に相関する。このため、目標凝縮温度Tc_tと出口水温Tw_oの差(Tc_t-Tw_o)は、冷凍サイクルの高圧と低圧の差が拡大すると拡大し、冷凍サイクルの高圧と低圧の差が縮小すると縮小する。従って、(Tc_t-Tw_o)は、冷媒回路(15)において行われる冷凍サイクルの高圧と低圧の差を示す圧力差指標値となり得る。
 《実施形態3》
 実施形態3について説明する。本実施形態の空気調和装置(10)は、実施形態1の空気調和装置(10)において、熱源ユニット(11)の熱源側熱交換器(40)の構成を変更したものである。ここでは、本実施形態の空気調和装置(10)について、実施形態1の空気調和装置(10)と異なる点を説明する。
   〈熱源側熱交換器〉
 図9に示すように、本実施形態の熱源側熱交換器(40)は、熱交換部(41a,41b,41c)と、液側通路(44a,44b,44c)と、ガス側通路(45a,45b,45c)と、水導入路(46a,46b,46c)と、水導出路(47a,47b,47c)とを三つずつ備えている。各熱交換部(41a,41b,41c)の構成は、実施形態1の熱交換部(41a,41b)の構成と同じである。
 各熱交換部(41a,41b,41c)の冷媒流路(42a,42b,42c)は、互いに並列に接続されている。具体的に、第1熱交換部(41a)の冷媒流路(42a)の一端には第1液側通路(44a)の一端が接続され、第2熱交換部(41b)の冷媒流路(42b)の一端には第2液側通路(44b)の一端が接続され、第3熱交換部(41c)の冷媒流路(42c)の一端には第3液側通路(44c)の一端が接続されている。第1液側通路(44a)の他端と第2液側通路(44b)の他端と第3液側通路(44c)の他端とは、熱源側熱交換器(40)の液側端を構成し、熱源側熱交換器(40)と熱源側膨張弁(23)を繋ぐ配管に接続されている。また、第1熱交換部(41a)の冷媒流路(42a)の他端には第1ガス側通路(45a)の一端が接続され、第2熱交換部(41b)の冷媒流路(42b)の他端には第2ガス側通路(45b)の一端が接続され、第3熱交換部(41c)の冷媒流路(42c)の他端には第3ガス側通路(45c)の一端が接続されている。第1ガス側通路(45a)の他端と第2ガス側通路(45b)の他端と第3ガス側通路(45c)の他端とは、熱源側熱交換器(40)のガス側端を構成し、熱源側熱交換器(40)と四方切換弁(22)の第3のポートを繋ぐ配管に接続されている。
 第2液側通路(44b)には液側弁(48a)が設けられ、第3液側通路(44c)には液側弁(48b)が設けられている。また、第2ガス側通路(45b)にはガス側弁(49a)が設けられ、第3ガス側通路(45c)にはガス側弁(49b)が設けられている。これら二つの液側弁(48a,48b)と二つのガス側弁(49a,49b)とは、いずれも電磁弁であって、冷媒が流入する熱交換部(41a,41b,41c)の数を変更するための冷媒側弁機構を構成している。
 各熱交換部(41a,41b,41c)の熱源水流路(43a,43b,43c)は、互いに並列に接続されている。具体的に、第1熱交換部(41a)の熱源水流路(43a)の一端には第1水導入路(46a)の一端が接続され、第2熱交換部(41b)の熱源水流路(43b)の一端には第2水導入路(46b)の一端が接続され、第3熱交換部(41c)の熱源水流路(43c)の一端には第3水導入路(46c)の一端が接続されている。第1水導入路(46a)の他端と第2水導入路(46b)の他端と第3水導入路(46c)の他端とは、熱源水回路(100)の往管路(101)に接続されている。また、第1熱交換部(41a)の熱源水流路(43a)の他端には第1水導出路(47a)の一端が接続され、第2熱交換部(41b)の熱源水流路(43b)の他端には第2水導出路(47b)の一端が接続され、第3熱交換部(41c)の熱源水流路(43c)の他端には第3水導出路(47c)の一端が接続されている。第1水導出路(47a)の他端と第2水導出路(47b)の他端と第3水導出路(47c)の他端とは、熱源水回路(100)の復管路(102)に接続されている。
 第2水導入路(46b)には水側弁(50a)が設けられ、第3水導入路(46c)には水側弁(50b)が設けられている。これら二つの水側弁(50a,50b)は、電磁弁であって、熱源水が流入する熱交換部(41a,41b)の数を変更するための水側弁機構を構成している。なお、実施形態1と同様に、第1水導入路(46a)には、熱源水の温度を計測する入口水温センサ(96)が設けられ、第1水導出路(47a)には、熱源水の温度を計測する出口水温センサ(97)が設けられている。
 熱源側熱交換器(40)は、第1熱交換部(41a)と第2熱交換部(41b)と第3熱交換部(41c)の全てにおいて冷媒と熱源水が流通する大容量状態と、第1熱交換部(41a)と第2熱交換部(41b)だけにおいて冷媒と熱源水が流通する中容量状態と、第1熱交換部(41a)だけにおいて冷媒と熱源水が流通する小容量状態とに切り換え可能に構成されている。大容量状態と中容量状態と小容量状態の切り換えは、液側弁(48a,48b)、ガス側弁(49a,49b)、及び水側弁(50a,50b)を操作することによって行われる。
 大容量状態では、第1熱交換部(41a)と第2熱交換部(41b)と第3熱交換部(41c)の全てが、冷媒が熱源水と熱交換する熱交換領域となる。また、中容量状態では、第1熱交換部(41a)と第2熱交換部(41b)だけが、冷媒が熱源水と熱交換する熱交換領域となる。また、小容量状態では、第1熱交換部(41a)だけが、冷媒が熱源水と熱交換する熱交換領域となる。このように、熱源側熱交換器(40)は、熱交換領域の大きさを変更可能に構成されている。
   〈熱交換器制御部〉
 実施形態1と同様に、熱交換器制御部(84)は、入口水温センサ(96)の計測値に基づいて熱源側熱交換器(40)における熱交換領域の大きさを調節する。上述したように、本実施形態の熱源側熱交換器(40)には、三つの熱交換部(41a,41b,41c)が設けられている。そして、本実施形態の熱交換器制御部(84)は、熱源側熱交換器(40)を、第1熱交換部(41a)と第2熱交換部(41b)と第3熱交換部(41c)の全てが凝縮器または蒸発器として機能する大容量状態と、第1熱交換部(41a)及び第2熱交換部(41b)が凝縮器または蒸発器として機能して第3熱交換部(41c)が休止する中容量状態と、第1熱交換部(41a)が凝縮器または蒸発器として機能して第2熱交換部(41b)及び第3熱交換部(41c)が休止する小容量状態とに切り換える。
 空気調和装置(10)の冷房運転中において、本実施形態の熱交換器制御部(84)は、実施形態1と同様に、入口水温Tw_iと目標蒸発温度Te_tの差(Tw_i-Te_t)を圧力差指標値として用い、この圧力差指標値を冷房運転用の基準温度差ΔTs_cと比較する。そして、熱交換器制御部(84)は、Tw_i-Te_t<ΔTs_cという条件の成否に応じて、熱源側熱交換器(40)の熱交換領域の大きさを調節する。
 例えば、熱源側熱交換器(40)が大容量状態であるときにTw_i-Te_t<ΔTs_cが成立している場合、熱交換器制御部(84)は、熱源側熱交換器(40)を大容量状態から中容量状態に切り換える。また、熱源側熱交換器(40)が中容量状態であるときにTw_i-Te_t<ΔTs_cが成立している場合、熱交換器制御部(84)は、熱源側熱交換器(40)を中容量状態から小容量状態に切り換える。
 一方、熱源側熱交換器(40)が小容量状態であるときにTw_i-Te_t<ΔTs_cが成立しない場合、熱交換器制御部(84)は、熱源側熱交換器(40)を小容量状態から中容量状態に切り換える。また、熱源側熱交換器(40)が中容量状態であるときにTw_i-Te_t<ΔTs_cが成立しない場合、熱交換器制御部(84)は、熱源側熱交換器(40)を中容量状態から大容量状態に切り換える。
 上述したように、目標蒸発温度Te_tは、空気調和装置(10)の冷房負荷が小さいほど高い値となり、空気調和装置(10)の冷房負荷が大きいほど低い値となる。一方、熱源側熱交換器(40)へ供給される熱源水の温度は、概ね一定である。このため、(Tw_i-Te_t)の値は、空気調和装置(10)の冷房負荷が小さいほど小さい値となり、空気調和装置(10)の冷房負荷が大きいほど大きい値となる。従って、本実施形態の熱交換器制御部(84)は、空気調和装置(10)の冷房運転中において、空気調和装置(10)の冷房負荷が小さいほど熱源側熱交換器(40)の熱交換領域が小さくなるように、液側弁(48a,48b)とガス側弁(49a,49b)と水側弁(50a,50b)とを操作し、空気調和装置(10)の冷房負荷が大きいほど熱源側熱交換器(40)の熱交換領域が大きくなるように、液側弁(48a,48b)とガス側弁(49a,49b)と水側弁(50a,50b)とを操作する。
 空気調和装置(10)の暖房運転中において、本実施形態の熱交換器制御部(84)は、実施形態1と同様に、目標凝縮温度Tc_tと入口水温Tw_iの差(Tc_t-Tw_i)を圧力差指標値として用い、この圧力差指標値を暖房運転用の基準温度差ΔTs_hと比較する。そして、熱交換器制御部(84)は、Tc_t-Tw_i<ΔTs_hという条件の成否に応じて、熱源側熱交換器(40)の熱交換領域の大きさを調節する。
 例えば、熱源側熱交換器(40)が大容量状態であるときにTc_t-Tw_i<ΔTs_hが成立している場合、熱交換器制御部(84)は、熱源側熱交換器(40)を大容量状態から中容量状態に切り換える。また、熱源側熱交換器(40)が中容量状態であるときにTc_t-Tw_i<ΔTs_hが成立している場合、熱交換器制御部(84)は、熱源側熱交換器(40)を中容量状態から小容量状態に切り換える。
 一方、熱源側熱交換器(40)が小容量状態であるときにTc_t-Tw_i<ΔTs_hが成立しない場合、熱交換器制御部(84)は、熱源側熱交換器(40)を小容量状態から中容量状態に切り換える。また、熱源側熱交換器(40)が中容量状態であるときにTc_t-Tw_i<ΔTs_hが成立しない場合、熱交換器制御部(84)は、熱源側熱交換器(40)を中容量状態から大容量状態に切り換える。
 上述したように、目標凝縮温度Tc_tは、空気調和装置(10)の暖房負荷が小さいほど低い値となり、空気調和装置(10)の暖房負荷が大きいほど高い値となる。一方、熱源側熱交換器(40)へ供給される熱源水の温度は、概ね一定である。このため、(Tc_t-Tw_i)の値は、空気調和装置(10)の暖房負荷が小さいほど小さい値となり、空気調和装置(10)の暖房負荷が大きいほど大きい値となる。従って、本実施形態の熱交換器制御部(84)は、空気調和装置(10)の暖房運転中において、空気調和装置(10)の暖房負荷が小さいほど熱源側熱交換器(40)の熱交換領域が小さくなるように、液側弁(48a,48b)とガス側弁(49a,49b)と水側弁(50a,50b)とを操作し、空気調和装置(10)の暖房負荷が大きいほど熱源側熱交換器(40)の熱交換領域が大きくなるように、液側弁(48a,48b)とガス側弁(49a,49b)と水側弁(50a,50b)とを操作する。
  -実施形態3の変形例-
 本実施形態の熱源側熱交換器(40)には、熱交換部(41a,41b,…)と、液側通路(44a,44b, …)と、ガス側通路(45a,45b, …)と、水導入路(46a,46b, …)と、水導出路(47a,47b, …)とのそれぞれが、四つ以上ずつ設けられていてもよい。
 また、本実施形態の空気調和装置(10)は、実施形態1の空気調和装置(10)において、熱源ユニット(11)の熱源側熱交換器(40)の構成を変更したものであるが、実施形態2の空気調和装置(10)の熱源ユニット(11)に、本実施形態の熱源側熱交換器(40)を設けてもよい。
 《実施形態4》
 実施形態4について説明する。本実施形態は、実施形態1,2又は3の空気調和装置(10)を複数台備えた空気調和システム(1)である。
 図10に示すように、本実施形態の空気調和システム(1)は、複数台の空気調和装置(10a,10b,10c)と、熱源水回路(100)とを備えている。熱源水回路(100)では、各空気調和装置(10a,10b,10c)の熱源ユニット(11)が並列に接続されている。つまり、熱源水回路(100)の往管路(101)は、各熱源ユニット(11)の熱源側熱交換器(40)の水導入路(46a,46b,46c)に接続され、熱源水回路(100)の復管路(102)は、各熱源ユニット(11)の熱源側熱交換器(40)の水導出路(47a,47b,47c)に接続されている。熱源水回路(100)は、各熱源ユニット(11)の熱源側熱交換器(40)へ同じ温度の熱源水を供給する。
 実施形態1~3について述べたとおり、各空気調和装置(10a,10b,10c)では、熱源側熱交換器(40)が熱交換領域の大きさを変更可能に構成され、熱源ユニット(11)のコントローラ(70)が熱交換器制御部(84)を備えている。
 本実施形態の空気調和システム(1)において、各空気調和装置(10a,10b,10c)の空調負荷(冷房負荷または暖房負荷)が一致するとは限らず、むしろ異なるのが通常である。一方、熱源水回路(100)は、全ての空気調和装置(10a,10b,10c)へ同じ温度の熱源水を供給する。このため、空調負荷の小さい空気調和装置(10a,10b,10c)では、熱源側熱交換器(40)の能力が過剰となり、運転を継続できなくなるおそれがある。
 これに対し、本実施形態の空気調和装置(10a,10b,10c)では、コントローラ(70)の熱交換器制御部(84)が、熱源側熱交換器(40)の熱交換領域の大きさを、入口水温センサ(96)の計測値(即ち、往管路(101)から熱源側熱交換器(40)へ供給される熱源水の温度)又は所定の圧力差指標値に基づいて調節する。このため、ある空気調和装置(10c)の空調負荷が他の空気調和装置(10a,10b)の空調負荷に比べて大幅に小さい場合であっても、空気調和装置(10c)の熱源側熱交換器(40)を小容量状態とすることによって、その空気調和装置(10c)の運転を継続させることができる。
 従って、本実施形態によれば、各空気調和装置(10a,10b,10c)の空調負荷が比較的大幅に異なる場合であっても、熱源水回路(100)が各空気調和装置(10a,10b,10c)へ供給する熱源水の温度を制御することなく、全ての空気調和装置(10a,10b,10c)の運転を継続させることが可能となる。
 《その他の実施形態》
 上記実施形態1~4の空気調和装置(10)には、下記のような変形例が適用できる。
  -第1変形例-
 図11に示すように、各実施形態の空気調和装置(10)の熱源側熱交換器(40)では、水側弁機構を構成する水側弁(50,50a,50b)が省略されていてもよい。図11は、実施形態1の空気調和装置(10)に、本変形例を適用したものを示す。
 本変形例の熱源側熱交換器(40)では、全ての熱交換部(41a,41b,41c)の熱源水流路(43a,43b,43c)を常に熱源水が流通する。そして、休止する熱交換部(41b,41c)については、その冷媒流路(42b,42c)に対する冷媒の供給だけが停止される。
  -第2変形例-
 図12に示すように、各実施形態の空気調和装置(10)では、熱源側膨張弁(23)、液側弁(48,48a,48b)、及びガス側弁(49,49a,49b)に代えて、熱源側熱交換器(40)の各液側通路に膨張弁が一つずつ設けられていてもよい。図12は、図11に示す第1変形例の空気調和装置(10)に、本変形例を適用したものを示す。図12に示す空気調和装置(10)では、熱源側膨張弁(23)と液側弁(48)とガス側弁(49)とが省略される一方、熱源側熱交換器(40)の第1液側通路(44a)と第2液側通路(44b)のそれぞれに、膨張弁(23a,23b)が一つずつ設けられる。各液側通路(44a,44b)の膨張弁(23a,23b)は、冷媒が流入する熱交換部(41a,41b)の数を変更するための冷媒側弁機構を構成する。
  -第3変形例-
 各実施形態の空気調和装置(10)において、コントローラ(70)の熱交換器制御部(84)は、目標蒸発温度Te_tに代えて“室内ユニット(12)における冷媒の蒸発温度の実測値”を用いてもよいし、目標凝縮温度Tc_tに代えて“室内ユニット(12)における冷媒の凝縮温度の実測値”を用いてもよい。
 “室内ユニット(12)における冷媒の蒸発温度の実測値”としては、“利用側冷媒温度センサ(98)の計測値”を用いてもよいし、“低圧圧力センサ(92)の計測値LPに対応する冷媒の飽和温度”を用いてもよい。また、“室内ユニット(12)における冷媒の凝縮温度の実測値”としては、“利用側冷媒温度センサ(98)の計測値”を用いてもよいし、“高圧圧力センサ(91)の計測値HPに対応する冷媒の飽和温度”を用いてもよい。
 以上説明したように、本発明は、冷媒を熱源水と熱交換させる熱源側熱交換器を備えた冷凍装置の熱源ユニットについて有用である。
  10  空気調和装置(冷凍装置)
  11  熱源ユニット
  12  室内ユニット(利用側ユニット)
  15  冷媒回路
  21  圧縮機
  40  熱源側熱交換器
  41a  第1熱交換部
  41b  第2熱交換部
  48  液側弁(冷媒側弁機構)
  49  ガス側弁(冷媒側弁機構)
  50  水側弁(水側弁機構)
  70  コントローラ(制御器)
  96  水温センサ
  100  熱源水回路

Claims (16)

  1.  冷凍サイクルを行う冷媒回路(15)を備えた冷凍装置(10)を利用側ユニット(12)と共に構成し、上記冷媒回路(15)に設けられた圧縮機(21)と熱源側熱交換器(40)とを少なくとも収容する熱源ユニットであって、
     上記熱源側熱交換器(40)は、熱源水が循環する熱源水回路(100)に接続されて上記冷媒回路(15)を循環する冷媒を上記熱源水と熱交換させるように構成され、且つ上記冷媒が流通して上記熱源水と熱交換する熱交換領域の大きさを変更可能に構成される一方、
     上記冷媒回路(15)において行われる冷凍サイクルの高圧と低圧の差を示す圧力差指標値に基づいて、上記熱源側熱交換器(40)における上記熱交換領域の大きさを調節するように構成された制御器(70)を備えている
    ことを特徴とする冷凍装置の熱源ユニット。
  2.  請求項1において、
     上記制御器(70)は、上記圧力差指標値が所定の基準指標値以上となるように、上記熱源側熱交換器(40)における上記熱交換領域の大きさを調節するように構成されている
    ことを特徴とする冷凍装置の熱源ユニット。
  3.  請求項2において、
     上記制御器(70)は、上記圧力差指標値が上記基準指標値を下回ると、上記熱源側熱交換器(40)における上記熱交換領域の大きさを減らすように構成されている
    ことを特徴とする冷凍装置の熱源ユニット。
  4.  請求項2又は3において、
     上記制御器(70)は、上記熱源側熱交換器(40)における上記熱交換領域の大きさが最大よりも小さいときに、上記熱交換領域の大きさを増やした場合の上記圧力差指標値を推定し、算出した上記圧力差指標値の推定値が上記基準指標値を上回ると、上記熱源側熱交換器(40)における上記熱交換領域の大きさを増やすように構成されている
    ことを特徴とする冷凍装置の熱源ユニット。
  5.  請求項1乃至3のいずれか一つにおいて、
     上記利用側ユニット(12)において対象物を冷却するために上記熱源側熱交換器(40)を凝縮器として機能させる冷却用動作を行うように構成される一方、
     上記制御器(70)は、上記冷却用動作中に、上記熱源側熱交換器(40)へ供給される上記熱源水の温度である入口水温と、上記利用側ユニット(12)における冷媒の蒸発温度または該蒸発温度の目標値である目標蒸発温度との差を上記圧力差指標値とするように構成されている
    ことを特徴とする冷凍装置の熱源ユニット。
  6.  請求項1乃至3のいずれか一つにおいて、
     上記利用側ユニット(12)において対象物を加熱するために上記熱源側熱交換器(40)を蒸発器として機能させる加熱用動作を行うように構成される一方、
     上記制御器(70)は、上記加熱用動作中に、上記利用側ユニット(12)における冷媒の凝縮温度または該凝縮温度の目標値である目標凝縮温度と、上記熱源側熱交換器(40)へ供給される上記熱源水の温度である入口水温との差を上記圧力差指標値とするように構成されている
    ことを特徴とする冷凍装置の熱源ユニット。
  7.  請求項1乃至4のいずれか一つにおいて、
     上記利用側ユニット(12)において対象物を冷却するために上記熱源側熱交換器(40)を凝縮器として機能させる冷却用動作を行うように構成される一方、
     上記制御器(70)は、上記冷却用動作中に、上記熱源側熱交換器(40)における冷媒の凝縮温度と、上記利用側ユニット(12)における冷媒の蒸発温度または該蒸発温度の目標値である目標蒸発温度との差を上記圧力差指標値とするように構成されている
    ことを特徴とする冷凍装置の熱源ユニット。
  8.  請求項1乃至4のいずれか一つにおいて、
     上記利用側ユニット(12)において対象物を加熱するために上記熱源側熱交換器(40)を蒸発器として機能させる加熱用動作を行うように構成される一方、
     上記制御器(70)は、上記加熱用動作中に、上記利用側ユニット(12)における冷媒の凝縮温度または該凝縮温度の目標値である目標凝縮温度と、上記熱源側熱交換器(40)における冷媒の蒸発温度との差を上記圧力差指標値とするように構成されている
    ことを特徴とする冷凍装置の熱源ユニット。
  9.  請求項1乃至4のいずれか一つにおいて、
     上記利用側ユニット(12)において対象物を冷却するために上記熱源側熱交換器(40)を凝縮器として機能させる冷却用動作を行うように構成される一方、
     上記制御器(70)は、上記冷却用動作中に、上記熱源側熱交換器(40)から流出する上記熱源水の温度である出口水温と、上記利用側ユニット(12)における冷媒の蒸発温度または該蒸発温度の目標値である目標蒸発温度との差を上記圧力差指標値とするように構成されている
    ことを特徴とする冷凍装置の熱源ユニット。
  10.  請求項1乃至4のいずれか一つにおいて、
     上記利用側ユニット(12)において対象物を加熱するために上記熱源側熱交換器(40)を蒸発器として機能させる加熱用動作を行うように構成される一方、
     上記制御器(70)は、上記加熱用動作中に、上記利用側ユニット(12)における冷媒の凝縮温度または該凝縮温度の目標値である目標凝縮温度と、上記熱源側熱交換器(40)から流出する上記熱源水の温度である出口水温との差を上記圧力差指標値とするように構成されている
    ことを特徴とする冷凍装置の熱源ユニット。
  11.  冷凍サイクルを行う冷媒回路(15)を備えた冷凍装置(10)を利用側ユニット(12)と共に構成し、上記冷媒回路(15)に設けられた圧縮機(21)と熱源側熱交換器(40)とを少なくとも収容する熱源ユニットであって、
     上記熱源側熱交換器(40)は、熱源水が循環する熱源水回路(100)に接続されて上記冷媒回路(15)を循環する冷媒を上記熱源水と熱交換させるように構成され、且つ上記冷媒が流通して上記熱源水と熱交換する熱交換領域の大きさを変更可能に構成される一方、
     上記熱源側熱交換器(40)へ供給される上記熱源水の温度である入口水温に基づいて上記熱源側熱交換器(40)における上記熱交換領域の大きさを調節する制御器(70)を備えている
    ことを特徴とする冷凍装置の熱源ユニット。
  12.  請求項11において、
     上記利用側ユニット(12)において対象物を冷却するために上記熱源側熱交換器(40)を放熱器として機能させる冷却用動作を行うように構成される一方、
     上記制御器(70)は、上記冷却用動作中に上記入口水温が所定の基準温度を下回ると上記熱源側熱交換器(40)の上記熱交換領域を小さくするように構成されている
    ことを特徴とする冷凍装置の熱源ユニット。
  13.  請求項11において、
     上記利用側ユニット(12)において対象物を加熱するために上記熱源側熱交換器(40)を蒸発器として機能させる加熱用動作を行うように構成される一方、
     上記制御器(70)は、上記加熱用動作中に上記入口水温が所定の基準温度を上回ると上記熱源側熱交換器(40)の上記熱交換領域を小さくするように構成されている
    ことを特徴とする冷凍装置の熱源ユニット。
  14.  請求項12又は13において、
     上記制御器(70)は、上記冷凍装置(10)の負荷に応じて上記基準温度を調節するように構成されている
    ことを特徴とする冷凍装置の熱源ユニット。
  15.  請求項1乃至14のいずれか一つにおいて、
     上記熱源側熱交換器(40)は、それぞれが上記冷媒を上記熱源水と熱交換させるように構成された複数の熱交換部(41a,41b)と、上記冷媒が流入する上記熱交換部(41a,41b)の数を変更するための冷媒側弁機構(48,49)とを備え、上記冷媒が流入する上記熱交換部(41a,41b)の数を変更することによって上記熱交換領域の大きさを変更するように構成され、
     上記制御器(70)は、上記冷媒側弁機構(48,49)を操作することによって上記熱交換領域の大きさを調節するように構成されている
    ことを特徴とする冷凍装置の熱源ユニット。
  16.  請求項15において、
     上記熱源側熱交換器(40)は、上記熱源水が流入する上記熱交換部(41a,41b)の数を変更するための水側弁機構(50)を更に備え、
     上記制御器(70)は、上記冷媒側弁機構(48,49)が上記冷媒の流入を遮断する上記熱交換部(41a,41b)への上記熱源水の流入が遮断されるように上記水側弁機構(50)を操作するように構成されている
    ことを特徴とする冷凍装置の熱源ユニット。
PCT/JP2017/028134 2016-08-03 2017-08-02 冷凍装置の熱源ユニット WO2018025934A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17837036.7A EP3483518B1 (en) 2016-08-03 2017-08-02 Heat source unit for refrigeration device
ES17837036T ES2884203T3 (es) 2016-08-03 2017-08-02 Unidad de fuente de calor para dispositivo de refrigeración
US16/321,341 US11112151B2 (en) 2016-08-03 2017-08-02 Heat source unit for refrigeration apparatus including a heat-source-side heat exchanger having a heat exchange region of variable size
CN201780038234.7A CN109312961B (zh) 2016-08-03 2017-08-02 制冷装置的热源机组

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-153006 2016-08-03
JP2016153006 2016-08-03

Publications (1)

Publication Number Publication Date
WO2018025934A1 true WO2018025934A1 (ja) 2018-02-08

Family

ID=61074041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028134 WO2018025934A1 (ja) 2016-08-03 2017-08-02 冷凍装置の熱源ユニット

Country Status (6)

Country Link
US (1) US11112151B2 (ja)
EP (1) EP3483518B1 (ja)
JP (1) JP6341326B2 (ja)
CN (1) CN109312961B (ja)
ES (1) ES2884203T3 (ja)
WO (1) WO2018025934A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111700431A (zh) * 2020-06-09 2020-09-25 广东美的制冷设备有限公司 温度调节系统及其控制方法
CN113654196B (zh) * 2021-07-15 2023-03-24 青岛海尔空调器有限总公司 室内换热器的管内自清洁控制方法
CN114216237A (zh) * 2021-11-12 2022-03-22 青岛海尔空调器有限总公司 用于空调的控制方法
CN116951888A (zh) * 2022-07-19 2023-10-27 广东凯得智能科技股份有限公司 一种多温区冷柜的控制方法、装置、设备及介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712417A (ja) * 1993-06-25 1995-01-17 Toshiba Corp 空気調和機
JPH08210719A (ja) * 1995-02-06 1996-08-20 Daikin Ind Ltd 空気調和装置
JPH1123111A (ja) * 1997-06-27 1999-01-26 Hoshizaki Electric Co Ltd 冷凍システム及び同システム用水冷式冷凍装置
JP2005069554A (ja) * 2003-08-22 2005-03-17 Kimura Kohki Co Ltd 水熱源空調システム
JP2011038711A (ja) * 2009-08-12 2011-02-24 Hitachi Appliances Inc ターボ冷凍機
JP2011075222A (ja) * 2009-09-30 2011-04-14 Daikin Industries Ltd 冷凍システム
US20130091877A1 (en) * 2011-10-17 2013-04-18 Changwon Cho Air conditioner and method of operating an air conditioner
WO2015162679A1 (ja) * 2014-04-21 2015-10-29 三菱電機株式会社 冷凍サイクル装置
JP2016008788A (ja) * 2014-06-25 2016-01-18 ダイキン工業株式会社 空気調和システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6138919A (en) * 1997-09-19 2000-10-31 Pool Fact, Inc. Multi-section evaporator for use in heat pump
CN200940979Y (zh) * 2006-06-08 2007-08-29 特灵空调器有限公司 能力可调型水冷多联式空调
JP5518089B2 (ja) * 2009-10-28 2014-06-11 三菱電機株式会社 空気調和装置
US10001317B2 (en) * 2012-11-29 2018-06-19 Mitsubishi Electric Corporation Air-conditioning apparatus providing defrosting without suspending a heating operation
CN203100279U (zh) * 2013-02-22 2013-07-31 合肥天鹅制冷科技有限公司 一种多路控温的水冷装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712417A (ja) * 1993-06-25 1995-01-17 Toshiba Corp 空気調和機
JPH08210719A (ja) * 1995-02-06 1996-08-20 Daikin Ind Ltd 空気調和装置
JPH1123111A (ja) * 1997-06-27 1999-01-26 Hoshizaki Electric Co Ltd 冷凍システム及び同システム用水冷式冷凍装置
JP2005069554A (ja) * 2003-08-22 2005-03-17 Kimura Kohki Co Ltd 水熱源空調システム
JP2011038711A (ja) * 2009-08-12 2011-02-24 Hitachi Appliances Inc ターボ冷凍機
JP2011075222A (ja) * 2009-09-30 2011-04-14 Daikin Industries Ltd 冷凍システム
US20130091877A1 (en) * 2011-10-17 2013-04-18 Changwon Cho Air conditioner and method of operating an air conditioner
WO2015162679A1 (ja) * 2014-04-21 2015-10-29 三菱電機株式会社 冷凍サイクル装置
JP2016008788A (ja) * 2014-06-25 2016-01-18 ダイキン工業株式会社 空気調和システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3483518A4 *

Also Published As

Publication number Publication date
US11112151B2 (en) 2021-09-07
EP3483518B1 (en) 2021-07-07
US20190170416A1 (en) 2019-06-06
JP6341326B2 (ja) 2018-06-13
CN109312961B (zh) 2021-04-30
EP3483518A4 (en) 2020-02-19
EP3483518A1 (en) 2019-05-15
ES2884203T3 (es) 2021-12-10
JP2018025381A (ja) 2018-02-15
CN109312961A (zh) 2019-02-05

Similar Documents

Publication Publication Date Title
US9683768B2 (en) Air-conditioning apparatus
KR100856991B1 (ko) 냉동 공조장치, 냉동 공조장치의 운전 제어 방법, 냉동공조장치의 냉매량 제어 방법
US9958171B2 (en) Air-conditioning apparatus
JP5318099B2 (ja) 冷凍サイクル装置、並びにその制御方法
JP4920432B2 (ja) 空気調和システム
JP5709844B2 (ja) 空気調和装置
CN110337570B (zh) 空调装置
KR100758902B1 (ko) 멀티 공기조화 시스템 및 그 제어방법
JPWO2017006596A1 (ja) 冷凍サイクル装置
JP6341326B2 (ja) 冷凍装置の熱源ユニット
JP2006284035A (ja) 空気調和装置およびその制御方法
CN115234993A (zh) 空调装置
WO2016208042A1 (ja) 空気調和装置
JP6880213B2 (ja) 空気調和装置
EP3282208A1 (en) Refrigeration apparatus
US8166771B2 (en) Refrigeration system
US20220090815A1 (en) Air-conditioning apparatus
JP2009243881A (ja) ヒートポンプ装置及びヒートポンプ装置の室外機
JP6336066B2 (ja) 空気調和装置
JP4902585B2 (ja) 空気調和機
JP2004020070A (ja) ヒートポンプ式冷温水機
CN114402171A (zh) 热泵
JP6978242B2 (ja) 冷媒回路装置
KR100666057B1 (ko) 히트펌프를 이용한 냉각수 또는 온수 발생시스템
KR102559522B1 (ko) 공기 조화 장치 및 이의 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17837036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017837036

Country of ref document: EP

Effective date: 20190207