JP6995481B2 - ソースドライバ - Google Patents

ソースドライバ Download PDF

Info

Publication number
JP6995481B2
JP6995481B2 JP2017007170A JP2017007170A JP6995481B2 JP 6995481 B2 JP6995481 B2 JP 6995481B2 JP 2017007170 A JP2017007170 A JP 2017007170A JP 2017007170 A JP2017007170 A JP 2017007170A JP 6995481 B2 JP6995481 B2 JP 6995481B2
Authority
JP
Japan
Prior art keywords
insulator
transistor
oxide
conductor
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017007170A
Other languages
English (en)
Other versions
JP2017138588A (ja
JP2017138588A5 (ja
Inventor
英智 小林
朗央 山本
圭 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2017138588A publication Critical patent/JP2017138588A/ja
Publication of JP2017138588A5 publication Critical patent/JP2017138588A5/ja
Application granted granted Critical
Publication of JP6995481B2 publication Critical patent/JP6995481B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C27/00Electric analogue stores, e.g. for storing instantaneous values
    • G11C27/02Sample-and-hold arrangements
    • G11C27/024Sample-and-hold arrangements using a capacitive memory element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0291Details of output amplifiers or buffers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0294Details of sampling or holding circuits arranged for use in a driver for data electrodes

Description

本発明の一態様は、半導体装置、表示パネル、及び電子機器に関する。
なお本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の技術分野は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、それらの駆動方法、または、それらの製造方法、を一例として挙げることができる。
なお、本明細書等において、半導体装置は、半導体特性を利用することで機能しうる素子、回路、又は装置等を指す。一例としては、トランジスタ、ダイオード等の半導体素子は半導体装置である。別の一例としては、半導体素子を有する回路は、半導体装置である。別の一例としては、半導体素子を有する回路を備えた装置は、半導体装置である。
フレームメモリとソースドライバとをIC(Integrated Circuit)の内部に混載したソースドライバIC(Integrated Circuit)が知られている(例えば、特許文献1を参照)。フレームメモリには、一般的にSRAM(Static Random Access Memory)が用いられている。
米国特許出願公開第2008/0186266号明細書
ソースドライバICは、フレームメモリを有することで、ホストとの間のデータの送受信を減らせるため、電力を削減することができる。しかしながら、SRAMに記憶されるデータは、デジタルデータである。したがってソースドライバICは、デジタルデータをアナログデータに変換する分の電力が削減できない。
また画素数の増加に伴って、SRAMに保持するデータ量が増大している。このデータ量の増加に対応するため、セル面積の縮小を図るべく、SRAMを構成するトランジスタの微細化が進んでいる。トランジスタの微細化によって、リーク電流が増大する問題といった別の問題が生じる。そのため、SRAMを用いたフレームメモリを混載したソースドライバICは、消費電力が増加するといった問題が生じる。
またSRAMは、トランジスタ数が多く、セル面積が大きい。そのため、SRAMを用いたフレームメモリを混載したソースドライバICは、チップ面積の増加を招くといった問題が生じる。
本発明の一態様は、既存のソースドライバICとして機能する半導体装置とは異なる構成を有する、新規な半導体装置、表示パネル、及び電子機器を提供することを課題の一とする。または、本発明の一態様は、低消費電力化が図られた、新規な構成の半導体装置等を提供することを課題の一とする。または、本発明の一態様は、チップ面積の縮小が図られた、新規な構成の半導体装置等を提供することを課題の一とする。
なお本発明の一態様の課題は、上記列挙した課題に限定されない。上記列挙した課題は、他の課題の存在を妨げるものではない。なお他の課題は、以下の記載で述べる、本項目で言及していない課題である。本項目で言及していない課題は、当業者であれば明細書又は図面等の記載から導き出せるものであり、これらの記載から適宜抽出することができる。なお、本発明の一態様は、上記列挙した記載、及び/又は他の課題のうち、少なくとも一つの課題を解決するものである。
本発明の一態様は、デジタルアナログ変換回路と、フレームメモリと、を有し、フレームメモリは、サンプルホールド回路と、補正回路と、ソースフォロワ回路と、を有し、サンプルホールド回路は、デジタルアナログ変換回路が出力するアナログ電圧を保持する機能を有し、補正回路は、サンプルホールド回路に保持されたアナログ電圧を補正する機能を有し、ソースフォロワ回路は、補正されたアナログ電圧を出力する機能を有し、サンプルホールド回路、補正回路、およびソースフォロワ回路は、それぞれ第1のトランジスタを有し、第1のトランジスタは、半導体層に酸化物半導体層を有する半導体装置である。
本発明の一態様は、デジタルアナログ変換回路と、フレームメモリと、バッファ回路と、を有し、フレームメモリは、サンプルホールド回路と、補正回路と、ソースフォロワ回路と、を有し、サンプルホールド回路は、デジタルアナログ変換回路が出力するアナログ電圧を保持する機能を有し、補正回路は、サンプルホールド回路に保持されたアナログ電圧を補正する機能を有し、ソースフォロワ回路は、補正されたアナログ電圧をバッファ回路に出力する機能を有し、サンプルホールド回路、補正回路、およびソースフォロワ回路は、それぞれ第1のトランジスタを有し、第1のトランジスタは、半導体層に酸化物半導体層を有する半導体装置である。
本発明の一態様は、デジタルアナログ変換回路と、フレームメモリと、バッファ回路と、を有し、フレームメモリは、サンプルホールド回路と、補正回路と、ソースフォロワ回路と、を有し、サンプルホールド回路は、デジタルアナログ変換回路が出力するアナログ電圧を保持する機能を有し、補正回路は、サンプルホールド回路に保持されたアナログ電圧を補正する機能を有し、ソースフォロワ回路は、補正されたアナログ電圧をバッファ回路に出力する機能を有し、サンプルホールド回路、補正回路、およびソースフォロワ回路は、それぞれ第1のトランジスタを有し、デジタルアナログ変換回路およびバッファ回路は、それぞれ第2のトランジスタを有し、第1のトランジスタは、半導体層に酸化物半導体層を有し、第2のトランジスタは、半導体層にシリコンを有する半導体装置である。
本発明の一態様において、第1のトランジスタを有する層は、第2のトランジスタを有する層の上層に設けられる半導体装置が好ましい。
なおその他の本発明の一態様については、以下で述べる実施の形態における説明、及び図面に記載されている。
本発明の一態様は、既存のソースドライバICとして機能する半導体装置とは異なる構成を有する、新規な半導体装置、表示パネル、及び電子機器を提供することができる。または、本発明の一態様は、低消費電力化が図られた、新規な構成の半導体装置等を提供することができる。または、本発明の一態様は、チップ面積の縮小が図られた、新規な構成の半導体装置等を提供することができる。
なお本発明の一態様の効果は、上記列挙した効果に限定されない。上記列挙した効果は、他の効果の存在を妨げるものではない。なお他の効果は、以下の記載で述べる、本項目で言及していない効果である。本項目で言及していない効果は、当業者であれば明細書又は図面等の記載から導き出せるものであり、これらの記載から適宜抽出することができる。なお、本発明の一態様は、上記列挙した効果、及び/又は他の効果のうち、少なくとも一つの効果を有するものである。従って本発明の一態様は、場合によっては、上記列挙した効果を有さない場合もある。
半導体装置の一例を説明する図。 半導体装置の一例を説明する図。 半導体装置の一例を説明する図。 半導体装置の一例を説明する図。 半導体装置および動作の一例を説明する図。 動作の一例を説明する図。 動作の一例を説明する図。 半導体装置の一例を説明する図。 半導体装置の一例を説明する図。 半導体装置の一例を説明する図。 半導体装置および動作の一例を説明する図。 半導体装置の一例を説明する図。 動作の一例を説明する図。 半導体装置および動作の一例を説明する図。 半導体装置の一例を説明する図。 半導体装置の一例を説明する図。 半導体装置の一例を説明する図。 表示パネルの一例を説明する図。 表示パネルの一例を説明する図。 表示パネルの一例を説明する図。 表示パネルの一例を説明する図。 表示パネルの一例を説明する図。 断面模式図の一例を説明する図。 断面模式図の一例を説明する図。 断面模式図の一例を説明する図。 酸化物半導体の原子数比の範囲を説明する図。 InMZnOの結晶を説明する図。 酸化物半導体の積層構造におけるバンド図。 半導体装置の作製方法例を説明する図。 半導体装置の作製方法例を説明する図。 半導体装置の作製方法例を説明する図。 半導体装置の作製方法例を説明する図。 半導体装置の作製方法例を説明する図。 半導体装置の作製方法例を説明する図。 半導体装置の作製方法例を説明する図。 表示パネルの一例を説明する図。 表示モジュールの一例を説明する図。 電子機器の一例を説明する図。
以下、実施の形態について図面を参照しながら説明する。但し、実施の形態は多くの異なる態様で実施することが可能であり、趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
なお本明細書等において、「第1」、「第2」、「第3」という序数詞は、構成要素の混同を避けるために付したものである。従って、構成要素の数を限定するものではない。構成要素の順序を限定するものではない。例えば、本明細書等の実施の形態の一において「第1」に言及された構成要素が、他の実施の形態、あるいは特許請求の範囲において「第2」に言及された構成要素とすることもありうる。例えば、本明細書等の実施の形態の一において「第1」に言及された構成要素を、他の実施の形態、あるいは特許請求の範囲において省略することもありうる。
なお図面において、同一の要素または同様な機能を有する要素、同一の材質の要素、あるいは同時に形成される要素等には同一の符号を付す場合があり、その繰り返しの説明は省略する場合がある。
(実施の形態1)
本実施の形態では、ソースドライバICとしての機能を有する半導体装置の一例について説明する。
図1は半導体装置の構成を模式的に表したブロック図の一例である。
図1に示す半導体装置100(図中、SDICと図示)は、インターフェース101(図中、I/Fと図示)、ロジック回路102(図中、LOGICと図示)、ラッチ回路103(図中、LATと図示)、デジタルアナログ変換回路104(図中、D/Aと図示)、フレームメモリ105(図中、RAMと図示)およびバッファ回路106(図中、AMPと図示)を有する。
半導体装置100には、ホストプロセッサ110(図中、Hostと図示)から出力されるデジタル信号が入力される。半導体装置からは、表示装置120(図中、Displayと図示)にアナログ信号であるデータ信号を出力する。
インターフェース101は、ホストプロセッサ110から入力されるデジタル信号をデコードする機能を有する。
ロジック回路102は、デジタル信号を演算処理すること、あるいはシフトレジスタでラッチ回路103にデジタル信号を分配する、等の機能を有する。
ラッチ回路103は、表示装置の画素に出力する画像信号であるデジタル信号を保持する機能を有する。
デジタルアナログ変換回路104は、デジタル信号をアナログ信号に変換して出力する機能を有する。このアナログ信号は、フレームメモリ105の入力信号DINである。
バッファ回路106は、入力されるアナログ信号の電流供給能力を高めて出力する機能を有する。バッファ回路106に入力されるアナログ信号は、フレームメモリ105の出力信号DOUTである。バッファ回路106で電流供給能力を高められたアナログ信号は、表示装置120に出力される。
フレームメモリ105は、アナログ信号である入力信号DINを保持する機能を有する。フレームメモリ105は、保持したアナログ信号をバッファ回路106に出力信号DOUTとして出力する機能を有する。
フレームメモリ105が有するメモリセルは、チャネル形成領域に酸化物半導体を有するトランジスタ(以下、OSトランジスタ)を有する。OSトランジスタは、オフ状態時に流れる電流であるオフ電流が低い。そのためOSトランジスタを有するフレームメモリ105では、アナログ信号に応じた電荷を保持することができる。そして該電荷に応じたアナログ信号を出力することができる。
図2は、図1における半導体装置100のデジタルアナログ変換回路104、フレームメモリ105およびバッファ回路106、ならびに表示装置120のブロック図である。
図2において、表示装置120は、複数の画素121を図示している。図2において、画素121は、m行n列(m、nは自然数)に配置している例を図示している。
図2において、フレームメモリ105は、複数のメモリセル140を図示している。図2において、メモリセル140は、画素121と同数である、m行n列に配置している例を図示している。
なおメモリセル140は、画素121の数以上に配置することが有効である。当該構成にすることで、各画素に供給するデータ信号に応じたアナログ信号をフレームメモリ105に保持させることができる。
図2において、フレームメモリ105は、デジタルアナログ変換回路104の出力信号である入力信号DIN_1乃至DIN_nが各列に入力される。図2において、フレームメモリ105は、バッファ回路106の入力信号である出力信号DOUT_1乃至DOUT_nが各列に出力される。
図2に示すデジタルアナログ変換回路104およびバッファ回路106は、高速で動作することが要求される。そのため、チャネル形成領域にシリコンを有するトランジスタ(以下、Siトランジスタ)を有することが好適である。一方、図2に示すフレームメモリ105は、上述したように、アナログ信号に応じた電荷を保持するためのOSトランジスタを有する。
そのため、デジタルアナログ変換回路104およびバッファ回路106と、フレームメモリ105と、は、別の層にそれぞれの回路を設けることができる。デジタルアナログ変換回路104およびバッファ回路106と、フレームメモリ105と、を別の層に設けたブロック図の模式図を図3に示す。
図3に図示するように、デジタルアナログ変換回路104およびバッファ回路106は、第1の層141に設けられる。また、フレームメモリ105は、第1の層141の上層にあたる第2の層142に設けられる。当該構成とすることで、ソースドライバICとして機能する半導体装置100は、フレームメモリ105以外の回路、例えばデジタルアナログ変換回路104、バッファ回路106が有するSiトランジスタの上に、フレームメモリ105が有するOSトランジスタを配置することができる。
フレームメモリ105のメモリセル140は、表示装置120の画素121の数に応じて設ける必要がある。そのため、フレームメモリ105が占める回路面積は増大する。上述したように、フレームメモリ105以外の回路の上層に、OSトランジスタを有するフレームメモリを有する構成とすることで、フレームメモリ105が占める回路面積の増加が問題とならず、メモリセル数の増加に伴う回路面積の増加を小さいものとすることができる。
図4は、図2におけるフレームメモリ105のメモリセル140のブロック図である。図4に示すメモリセル140は、サンプルホールド回路131(図中、S/Hと図示)と、補正回路132(図中、CORと図示)と、ソースフォロワ回路133(図中、S/Fと図示)と、を有する。入力信号DINは、サンプルホールド回路131および補正回路132に与えられる。出力信号DOUTは、ソースフォロワ回路133から出力される。
次いで図5(A)は、図4におけるメモリセル140の具体的な回路構成の一例を示す図である。
図5(A)に示すメモリセル140Aは、トランジスタM1乃至M5、および容量素子C1、C2を有する。トランジスタM1乃至M5は、いずれもnチャネル型トランジスタであるとして説明する。トランジスタM1、M3のゲートは、制御信号EN1を与える配線に接続される。トランジスタM2のゲートは、制御信号EN2を与える配線に接続される。図5(A)において、容量素子C1の一方の電極をノードND1とする。図5(A)において、容量素子C2の一方の電極をノードND2とする。トランジスタM5のゲートは、参照電圧VREFが与えられる。参照電圧VREFは、トランジスタM5に流れる電流を一定にするための電圧である。トランジスタM4のソースまたはドレインの一方には、電圧VDDが与えられる。トランジスタM5のソースまたはドレインの一方には、電圧VSSが与えられる。なお電圧VDDは電圧VSSより大きい。容量素子C2の他方の電極には、電圧Vが与えられる。電圧Vは、固定電圧であればよく、例えばグラウンド電圧(GND)が好ましい。
図5(B)は、図5(A)の回路構成の動作を説明するためのタイミングチャートである。図5(B)では、制御信号EN1、制御信号EN2の信号波形を図示している。また図6(A)、(B)および図7は、図5(B)に示すタイミングチャートにおける期間P1乃至P3での各トランジスタM1乃至M5、およびノードND1、ND2の電圧について説明するための図である。
第1の期間P1において、制御信号EN1をハイレベル、制御信号EN2をローレベルとする。このときの各トランジスタの状態を図6(A)に図示する。トランジスタM1、M3は、導通状態となる。トランジスタM2は、非導通状態となる。図6(A)で非導通状態のトランジスタには、バツ印を付している。
トランジスタM1が導通状態となることで、ノードND1は入力信号DINである電圧VDATAとなる。
トランジスタM4、M5は、トランジスタM5に流れる電流が流れる。トランジスタM4のゲートとソースとの間の電圧(ゲートソース間電圧ともいう)は、前述の電流を流すための電圧が加わる。図6(A)中、トランジスタM4のゲートソース間電圧をVGSとして図示している。このとき、出力信号DOUTの電圧は、電圧(VDATA-VGS)となる。トランジスタM3が導通状態となることで、ノードND2は電圧(VDATA-VGS)となる。
第2の期間P2において、制御信号EN1をローレベル、制御信号EN2をハイレベルとする。このときの各トランジスタの状態を図6(B)に図示する。トランジスタM2は、導通状態となる。トランジスタM1、M3は、非導通状態となる。図6(B)で非導通状態のトランジスタには、バツ印を付している。
トランジスタM2が導通状態となることで、ノードND2は電圧(VDATA-VGS)から電圧VDATAとなる。このときトランジスタM1は非導通状態であるため、ノードND1は電気的に浮遊状態である。そのためノードND1の電圧は、ノードND2の電圧(VDATA-VGS)から電圧VDATAへの変化に伴って上昇する。容量素子C1の容量成分が、ノードND1の容量成分より十分大きければ、ノードND1の電圧は電圧(VDATA+VGS)まで上昇する。トランジスタM4のVGSは変化しないため、出力信号DOUTの電圧は、電圧VDATAとなり、入力信号DINの電圧VDATAに補正することができる。
第3の期間P3において、制御信号EN1をローレベル、制御信号EN2をローレベルとする。このときの各トランジスタの状態を図7に図示する。トランジスタM1乃至M3は、非導通状態となる。図7で非導通状態のトランジスタには、バツ印を付している。
トランジスタM1乃至M3が非導通状態となることで、ノードND1およびND2の電圧は、それぞれ電圧(VDATA+VGS)、電圧VDATAに保持される。トランジスタM4のVGSは変化しないため、出力信号DOUTの電圧は、電圧VDATAとなり、入力信号DINの電圧VDATAに補正した電圧を出力し続けることができる。
上述したように、フレームメモリ105が有するメモリセルは、OSトランジスタを有する。つまりトランジスタM1乃至M5は、いずれもOSトランジスタである。OSトランジスタは、オフ状態時に流れる電流であるオフ電流が低い。そのためトランジスタM1乃至M3が非導通状態となることで、ノードND1およびND2の電圧をそれぞれ電圧(VDATA+VGS)、電圧VDATAに保持し続けることができる。そして該電圧に応じたアナログ信号である電圧VDATAを出力することができる。
なお図5(A)で説明したメモリセル140Aは、図8(A)に示すメモリセル140Bとすることもできる。図8(A)では、ノードND1およびND2の電圧を保持するトランジスタM1乃至M3に閾値電圧を制御するためのバックゲート電極を有する構成を示している。トランジスタM1乃至M3のバックゲート電極には、閾値電圧を制御するための固定電圧、たとえば電圧Vを与えることで閾値電圧を制御することができる。閾値電圧を制御することにより、例えば、バックゲート電極に加える電圧を、閾値電圧をプラスシフトする電圧として、オフ電流をより確実に小さくすることができる。
別の変化例として、図8(B)に示すメモリセル140Cでは、一定の電流を流すトランジスタM4、M5にバックゲート電極を有する構成を示している。トランジスタM4、M5のバックゲート電極には、ゲート電極と同じ電圧を与える構成とすることで、チャネル形成領域の上下の電極から電界が加わるため、トランジスタM4、M5のサイズを大きくすることなく、流れる電流量を増加させることができる。
図9は、図2における半導体装置100のブロック図に、フレームメモリ105の動作を制御するための駆動回路143を追加した図である。なお図9では、表示装置120を省略している。
駆動回路143は、行[1]乃至[m]毎にメモリセル140の動作を制御する。駆動回路143は、例えば、シフトレジスタを有する。表示装置120の画素を制御するゲートドライバと同様に、行ごとに一括してデータ信号の書き込み、保持、および読み出しを制御することができる。
なおフレームメモリ105に保持するデータ信号は、表示する画像が連続するフレーム毎に異なる場合、そのままデジタルアナログ変換回路104が出力するデータ信号を表示装置120に出力することになる。そのため、フレームメモリ105とバッファ回路106との間に、図10に示すように切り替え回路144を設けることが好ましい。
切り替え回路144は、表示する画像が連続するフレーム毎に異なる場合、デジタルアナログ変換回路104が出力するデータ信号をバッファ回路106に出力するように切り替える。また切り替え回路144は、表示する画像が連続するフレーム毎に同じ場合、フレームメモリ105が出力するデータ信号をバッファ回路106に出力するように切り替える。そのため、インターフェース101、ロジック回路102、ラッチ回路103およびデジタルアナログ変換回路104を動作するために必要な電力を削減でき、半導体装置100における低消費電力化を図ることができる。
フレームメモリ105が出力するデータ信号を止める場合のメモリセルの回路構成について図11(A)に示す。図11(A)に示すメモリセル140Dは、図5(A)に示すメモリセル140Aの回路構成にトランジスタM6、M7を追加した構成に相当する。トランジスタM6、M7は、トランジスタM1乃至M5と同様に、いずれもnチャネル型トランジスタであるとして説明する。
トランジスタM6、M7のゲートは、制御信号EN3を与える配線に接続される。トランジスタM6、M7は、ソースフォロワ回路133の電流が流れる経路にそれぞれ配置される。
図11(B)は、図11(A)の回路構成の動作を説明するためのタイミングチャートである。図11(B)では、制御信号EN1、制御信号EN2、および制御信号EN3の信号波形を図示している。
図11(B)に示す期間P1乃至P3での動作は、図5(B)と概ね同様である。具体的には、期間P1、P2において、制御信号EN3をハイレベルとし、図5(B)と同じ動作を行う。そして、それ以外の期間P3では、制御信号EN3をローレベルとし、ソースフォロワ回路133の電流が流れる経路でトランジスタM6、M7が非導通状態となるように制御する。
上述したように、フレームメモリ105が有するメモリセルは、OSトランジスタを有する。つまりトランジスタM1乃至M7は、いずれもOSトランジスタである。OSトランジスタは、オフ状態時に流れる電流であるオフ電流が低い。そのためトランジスタM1乃至M3が非導通状態となることで、ノードND1およびND2の電圧をそれぞれ電圧(VDATA+VGS)、電圧VDATAに保持し続けることができる。そして該電圧に応じたアナログ信号である電圧VDATAを出力することができる。
なお図11(A)で説明したメモリセル140Dは、同じ列にあるメモリセル間において、トランジスタM5を共有することができる。図12では、同じ列に設けられるメモリセル140D_1とメモリセル140D_2とでトランジスタM5を共有する回路構成を図示している。
なおメモリセル140D_1は、1行目のメモリセルに対応する入力信号DIN_1[1]の入力および保持、ならびに出力信号DOUT_1[1]の出力を行う。メモリセル140D_2は、2行目のメモリセルに対応する入力信号DIN_1[2]の入力および保持、ならびに出力信号DOUT_1[2]の出力を行う。制御信号EN1[1]、EN2[1]、EN3[1]は、メモリセル140D_1の動作を制御する信号である。制御信号EN1[2]、EN2[2]、EN3[2]は、メモリセル140D_2の動作を制御する信号である。
図13は、図11(A)の回路構成の動作を説明するためのタイミングチャートである。図13では、制御信号EN1[1]、EN2[1]、EN3[1]、制御信号EN1[2]、EN2[2]、EN3[2]の信号波形を図示している。
なお図5(A)で説明したメモリセル140Aは、図14(A)に示すメモリセル140Eとすることもできる。図14(A)では、ノードND2に容量素子C3の一方の電極を接続する構成を示している。容量素子C3の他方の電極は、制御信号EN2_Bを与える配線に接続される。制御信号EN2_Bは、制御信号EN2の反転信号である。
図14(B)は、図14(A)の回路構成の動作を説明するためのタイミングチャートである。図14(B)では、制御信号EN1、制御信号EN2、および制御信号EN2_Bの信号波形を図示している。
図14(A)、(B)に示す構成では、第2の期間P2において、制御信号EN2をハイレベルからローレベルとする際、ノードND2とトランジスタM2との寄生容量による電圧の低下を抑制できる。具体的には、第2の期間P2において、制御信号EN2_Bをローレベルからハイレベルとし、ノードND2の電圧の低下分を上昇させることができる。そのため、電気的に浮遊状態であるノードND1の電圧は電圧(VDATA+VGS)まで上昇しやすくすることができる。
また別の構成として図15に示すメモリセル140Fでは、図14(A)の回路構成における容量素子C3をトランジスタM8のゲート容量に置き換えた構成を示している。
また別の構成として図16に示すメモリセル140Gでは、図14(A)の回路構成で追加した構成を、図11(A)の回路構成に適用した構成を示している。
また別の構成として図17に示すメモリセル140Hでは、図15の回路構成で追加した構成を、図11(A)の回路構成に適用した構成を示している。
以上説明したように、本発明の一態様の構成は、低消費電力化が図られた半導体装置とすることができる。また、チップ面積の縮小された半導体装置とすることができる。
(実施の形態2)
本実施の形態では、上記実施の形態で説明した、ソースドライバICとして機能する半導体装置と、当該半導体装置によって動作する表示パネル、およびその変形例について説明する。
図18のブロック図では、半導体装置100、ホストプロセッサ110、ゲートドライバ150(図中、GDと図示)および表示装置120を図示している。図18では、表示装置120中に複数の走査線XL、複数の信号線YL、および画素121を示している。半導体装置100は、実施の形態1の図1で説明した構成と同様である。
ゲートドライバ150は、走査線XLに走査信号を与える機能を有する。ソースドライバICとして機能する半導体装置100は、信号線YLにアナログ信号であるデータ信号を与える機能を有する。
表示装置120は、走査線XL、及び信号線YLが概略直交するように設けられている。走査線XLと信号線YLの交差部には、画素121が設けられる。なお画素121の配置は、カラー表示であれば、RGB(赤緑青)の各色に対応した画素が順に設けられる。なお、RGBの画素の配列は、ストライプ配列、モザイク配列、デルタ配列等適宜用いることができる。RGBに限らず、白あるいは黄といった色を追加してカラー表示を行う構成としてもよい。
なお表示装置120にタッチセンサの機能を付加する場合、図19に示す半導体装置100Aのようにタッチセンサ160を追加する構成とすればよい。なおタッチセンサ160を表示装置120と組み合わせてインセル型のタッチパネルとすることも可能である。なおタッチセンサ160で得られる信号は、半導体装置100の構成にタッチセンサ駆動回路181を加えた半導体装置100Aで処理する構成とすることができる。なお図19の構成において、タッチセンサの駆動と、表示装置の駆動と、は、異なるタイミングで制御することで、ノイズによるタッチセンサの誤作動を低減することができる。
図20のブロック図における半導体装置100Bは、演算装置182を有する。演算装置182は、データを演算処理する機能を有する。演算処理の一例としては、画像の回転処理、バックライトの点灯制御、または超解像処理等を行うことができる。半導体装置100に演算装置182を搭載する構成とすることで、より高性能な半導体装置とすることができる。
図21(A)のブロック図における半導体装置100Cは、FPGA183を有する。FPGA183は、コンフィギュレーションデータに応じてデータを演算処理する機能を有する。演算処理の一例としては、上述した演算装置182と同様に、画像の回転処理、バックライトの点灯制御、または超解像処理等を行うことができる。
図21(B)は、コンフィギュレーションデータを記憶するコンフィギュレーションメモリを説明するためのブロック図である。例えば、ロジックエレメント185間の接続を制御する切り替えスイッチ184の導通状態は、コンフィギュレーションメモリ186によって制御される。図21(C)には、コンフィギュレーションメモリ186に適用可能な回路構成の一例を示す。コンフィギュレーションメモリ186は、トランジスタ187、188を有し、フローティングノードFNにコンフィギュレーションデータに応じた電荷を保持させる。フローティングノードFNの電圧にしたがって、トランジスタ188の導通状態を切り替えて、切り替えスイッチ184の機能を実現することができる。図21(C)の回路構成は、上記実施の形態1で説明したメモリセル140と同様にすることができ、この場合酸化物半導体を有するトランジスタ187とすることが有効である。当該構成とすることで、メモリセル140と同じ工程で、FPGA183のコンフィギュレーションメモリ186を作製することができる。
次いで画素121の構成例について、図22(A)、(B)に一例を示し説明する。
図22(A)の画素162Aは、液晶表示装置が有する画素の一例であり、トランジスタ191、キャパシタ192、及び液晶素子193を有する。
トランジスタ191は、液晶素子193と信号線YLとの接続を制御するスイッチング素子としての機能を有する。トランジスタ191は、走査線XLを介して、そのゲートから入力される走査電圧により導通状態が制御される。
キャパシタ192は、一例として、導電層を積層して形成される素子である。
液晶素子193は、一例として、共通電極、画素電極及び液晶層で構成される素子である。共通電極と画素電極間に形成される電界の作用により液晶層の液晶材料の配向が変化される。
図22(B)の画素162Bは、EL表示装置が有する画素の一例であり、トランジスタ194、トランジスタ195、及びEL素子196を有する。なお図22(B)では、走査線XL及び信号線YLに加えて、電流供給線ZLを図示している。電流供給線ZLは、EL素子196に電流を供給するための配線である。
トランジスタ194は、トランジスタ195のゲートと信号線YLとの接続を制御するスイッチング素子としての機能を有する。トランジスタ194は、走査線XLを介して、そのゲートから入力される走査電圧により導通状態が制御される。
トランジスタ195は、ゲートに印加される電圧に従って、電流供給線ZLとEL素子196との間に流れる電流を制御する機能を有する。
EL素子196は、一例として、電極に挟持された発光層で構成される素子である。EL素子196は、発光層を流れる電流量に従って輝度を制御することができる。
(実施の形態3)
本実施の形態では、本発明の一態様に係る半導体装置の断面構造の一例について、図23乃至図35を参照して説明する。
先の実施の形態に示す半導体装置は、シリコンなどを用いたトランジスタ(Siトランジスタ)を有する層、酸化物半導体を用いたトランジスタ(OSトランジスタ)を有する層、および配線層を積層して設けることで形成することができる。
<半導体装置の層構造について>
図23には、半導体装置の層構造の模式図を示す。トランジスタ層10、配線層20、トランジスタ層30、および配線層40が順に重なって設けられる。一例として示す配線層20は、配線層20A、配線層20Bを有する。また配線層40は、複数の配線層40A、配線層40Bを有する。配線層20および/または配線層40は、絶縁体を挟んで導電体を配置することでキャパシタを形成することができる。
トランジスタ層10は、複数のトランジスタ12を有する。トランジスタ12は、半導体層14およびゲート電極16を有する。半導体層14は、島状に加工されたものを図示しているが、半導体基板を素子分離して得られる半導体層であってもよい。またゲート電極16は、トップゲート型を図示したが、ボトムゲート型またはダブルゲート型、デュアルゲート型等としてもよい。
配線層20Aおよび配線層20Bは、絶縁層24に設けられた開口に埋め込んだ配線22を有する。配線22は、トランジスタ等の素子間を接続するための配線としての機能を有する。
トランジスタ層30は、複数のトランジスタ32を有する。トランジスタ32は、半導体層34およびゲート電極36を有する。半導体層34は、島状に加工されたものを図示しているが、半導体基板を素子分離して得られる半導体層であってもよい。またゲート電極36は、トップゲート型を図示したが、ボトムゲート型またはダブルゲート型、デュアルゲート型等としてもよい。
配線層40Aおよび配線層40Bは、絶縁層44に設けられた開口に埋め込んだ配線42を有する。配線42は、トランジスタ等の素子間を接続するための配線としての機能を有する。
半導体層14は、半導体層34とは異なる半導体材料である。一例としては、トランジスタ12はSiトランジスタであり、トランジスタ32はOSトランジスタであるとすると、半導体層14の半導体材料はシリコンであり、半導体層34の半導体材料は、酸化物半導体である。
[構成例]
半導体装置の断面図の一例を図24(A)に示す。図24(B)は、図24(A)を構成の一部を拡大したものである。
図24(A)に示す半導体装置は、キャパシタ300と、トランジスタ400と、トランジスタ500と、を有している。
キャパシタ300は、絶縁体602上に設けられ、導電体604と、絶縁体612と、導電体616とを有する。
導電体604は、金属材料、合金材料、または金属酸化物材料などの導電性材料を用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、特にタングステンを用いることが好ましい。また、プラグや配線などの他の構造と同時に形成する場合は、低抵抗金属材料であるCu(銅)やAl(アルミニウム)等を用いればよい。
絶縁体612は、導電体604の側面および上面を覆うように設けられる。絶縁体612には例えば酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウム、酸化ハフニウム、酸化窒化ハフニウム、窒化酸化ハフニウム、窒化ハフニウムなどを用いればよく、積層または単層で設ける。
導電体616は、絶縁体612を介して、導電体604の側面および上面を覆うように設けられる。
なお、導電体616は、金属材料、合金材料、または金属酸化物材料などの導電性材料を用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、特にタングステンを用いることが好ましい。また、導電体などの他の構造と同時に形成する場合は、低抵抗金属材料であるCu(銅)やAl(アルミニウム)等を用いればよい。
キャパシタ300が有する導電体616は、絶縁体612を介して、導電体604の側面および上面を覆う構成とすることで、キャパシタの投影面積当たりの容量を増加させることができる。従って、半導体装置の小面積化、高集積化、微細化が可能となる。
トランジスタ500は、基板301上に設けられ、導電体306、絶縁体304、基板301の一部からなる半導体領域302、およびソース領域またはドレイン領域として機能する低抵抗領域308aおよび低抵抗領域308bを有する。
トランジスタ500は、pチャネル型、あるいはnチャネル型のいずれでもよい。
半導体領域302のチャネルが形成される領域、その近傍の領域、ソース領域、またはドレイン領域となる低抵抗領域308a、および低抵抗領域308bなどにおいて、シリコン系半導体などの半導体を含むことが好ましく、単結晶シリコンを含むことが好ましい。または、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、GaAlAs(ガリウムアルミニウムヒ素)などを有する材料で形成してもよい。結晶格子に応力を与え、格子間隔を変化させることで有効質量を制御したシリコンを用いた構成としてもよい。またはGaAsとGaAlAs等を用いることで、トランジスタ500をHEMT(High Electron Mobility Transistor)としてもよい。
低抵抗領域308a、および低抵抗領域308bは、半導体領域302に適用される半導体材料に加え、ヒ素、リンなどのn型の導電性を付与する元素、またはホウ素などのp型の導電性を付与する元素を含む。
ゲート電極として機能する導電体306は、ヒ素、リンなどのn型の導電性を付与する元素、もしくはホウ素などのp型の導電性を付与する元素を含むシリコンなどの半導体材料、金属材料、合金材料、または金属酸化物材料などの導電性材料を用いることができる。
なお、導電体の材料により、仕事関数を定めることで、しきい値電圧を調整することができる。具体的には、導電体に窒化チタンや窒化タンタルなどの材料を用いることが好ましい。さらに導電性と埋め込み性を両立するために導電体にタングステンやアルミニウムなどの金属材料を積層として用いることが好ましく、特にタングステンを用いることが耐熱性の点で好ましい。
また、図24(A)に示すトランジスタ500はチャネルが形成される半導体領域302(基板301の一部)が凸形状を有する。また、半導体領域302の側面および上面を、絶縁体304を介して、導電体306が覆うように設けられている。なお、導電体306は仕事関数を調整する材料を用いてもよい。このようなトランジスタ500は半導体基板の凸部を利用していることからFIN型トランジスタとも呼ばれる。なお、凸部の上部に接して、凸部を形成するためのマスクとして機能する絶縁体を有していてもよい。また、ここでは半導体基板の一部を加工して凸部を形成する場合を示したが、SOI基板を加工して凸形状を有する半導体膜を形成してもよい。
なお、図24(A)に示すトランジスタ500は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。例えば、図25(A)に示すようにトランジスタ500Aの構成を、プレーナ型として設けてもよい。
トランジスタ500を覆って、絶縁体320、絶縁体322、絶縁体324、および絶縁体326が、順に積層して設けられている。
絶縁体322はその下方に設けられるトランジスタ500などによって生じる段差を平坦化する平坦化膜として機能する。絶縁体322の上面は、平坦性を高めるために化学機械研磨(CMP:Chemical Mechanical Polishing)法等を用いた平坦化処理により平坦化されていてもよい。
絶縁体324は、基板301、またはトランジスタ500などから、トランジスタ400が設けられる領域に、水素や不純物が拡散しないように、バリア膜として機能する。例えば、絶縁体324には、窒化シリコンなどの窒化物を用いればよい。
また、絶縁体320、絶縁体322、絶縁体324、および絶縁体326にはキャパシタ300、またはトランジスタ400と電気的に接続する導電体328、導電体330等が埋め込まれている。なお、導電体328、および導電体330はプラグ、または配線として機能を有する。なお、後述するが、プラグまたは配線として機能を有する導電体は、複数の構造をまとめて同一の符号を付与する場合がある。また、本明細書等において、配線と、配線と電気的に接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、および導電体の一部がプラグとして機能する場合もある。
各プラグ、および配線(導電体328、および導電体330等)の材料としては、金属材料、合金材料、または金属酸化物材料などの導電性材料を、単層または積層して用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、特にタングステンを用いることが好ましい。特に、アルミニウムや銅などの低抵抗導電性材料で形成することが好ましい。上記のような材料を用いることで配線抵抗を低くすることができる。
絶縁体326、および導電体330上に、配線層を設けてもよい。例えば、図24(A)において、絶縁体350、絶縁体352、及び絶縁体354が順に積層して設けられている。また、絶縁体350、絶縁体352、及び絶縁体354には、導電体356、および導電体358が埋め込まれている。導電体356、および導電体358はプラグ、または配線として機能を有する。
なお、例えば、絶縁体350は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体356および導電体358は、水素に対するバリア性を有する導電体を用いることが好ましい。水素に対するバリア性を有する絶縁体350が有する開口部には、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ500とトランジスタ400とは、バリア層により分離することができ、トランジスタ500からトランジスタ400への水素の拡散を抑制することができる。
なお、水素に対するバリア性を有する導電体としては、例えば、窒化タンタル等を用いるとよい。また、窒化タンタルと導電性が高いタングステンを積層することで、配線としての導電性を保持したまま、トランジスタ500からの水素の拡散を抑制することができる。
絶縁体354の上方には、トランジスタ400が設けられている。なお、トランジスタ400の拡大図を図24(B)に示す。なお、図24(B)に示すトランジスタ400は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。
トランジスタ400は、酸化物半導体を有する半導体層にチャネルが形成されるトランジスタである。トランジスタ400は、オフ電流が小さいため、これを半導体装置のフレームメモリに用いることにより長期にわたり記憶内容を保持することが可能である。
絶縁体354上には、絶縁体210、絶縁体212、絶縁体214、及び絶縁体216が、順に積層して設けられている。また、絶縁体210、絶縁体212、絶縁体214、及び絶縁体216には、導電体218、及び導電体205等が埋め込まれている。なお、導電体218は、キャパシタ300、またはトランジスタ500と電気的に接続するプラグ、または配線としての機能を有する。導電体205は、トランジスタ400のゲート電極としての機能を有する。
絶縁体210、絶縁体212、絶縁体214、及び絶縁体216のいずれかを、酸素や水素に対してバリア性のある物質を用いることが好ましい。特に、トランジスタ400に酸化物半導体を用いる場合、トランジスタ400近傍の層間膜などに、酸素過剰領域を有する絶縁体を設けることで、トランジスタ400の信頼性を向上させることができる。従って、トランジスタ400近傍の層間膜から、効率的にトランジスタ400へ拡散させるために、トランジスタ400と層間膜の上下を、水素及び酸素に対するバリア性を有する層で挟む構造とするとよい。
例えば、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどを用いるとよい。なお、バリア性を有する膜を積層することで、当該機能をより確実にすることができる。
絶縁体216上には、絶縁体220、絶縁体222、および絶縁体224が順に積層して設けられている。また、絶縁体220、絶縁体222、および絶縁体224には導電体244の一部が埋め込まれている。なお、導電体218は、キャパシタ300、またはトランジスタ500と電気的に接続するプラグ、または配線として機能を有する。
絶縁体220、および絶縁体224は、酸化シリコン膜や酸化窒化シリコン膜などの、酸素を含む絶縁体であることが好ましい。特に、絶縁体224として過剰酸素を含む(化学量論的組成よりも過剰に酸素を含む)絶縁体を用いることが好ましい。このような過剰酸素を含む絶縁体を、トランジスタ400のチャネル領域が形成される酸化物230に接して設けることにより、酸化物中の酸素欠損を補償することができる。なお、絶縁体220と絶縁体224とは、必ずしも同じ材料を用いて形成しなくともよい。
絶縁体222は、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)または(Ba,Sr)TiO(BST)などを含む絶縁体を単層または積層で用いることが好ましい。またはこれらの絶縁体に例えば酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理しても良い。上記の絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。
なお、絶縁体222が、2層以上の積層構造を有していてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。
絶縁体220及び絶縁体224の間に、high-k材料を含む絶縁体222を有することで、特定の条件で絶縁体222が電子を捕獲し、しきい値電圧を増大させることができる。つまり、絶縁体222が負に帯電する場合がある。
例えば、絶縁体220、および絶縁体224に、酸化シリコンを用い、絶縁体222に、酸化ハフニウム、酸化アルミニウム、酸化タンタルのような電子捕獲準位の多い材料を用いた場合、半導体装置の使用温度、あるいは保管温度よりも高い温度(例えば、125℃以上450℃以下、代表的には150℃以上300℃以下)の下で、導電体205の電位をソース電極やドレイン電極の電位より高い状態を、10ミリ秒以上、代表的には1分以上維持することで、酸化物230から導電体205に向かって、電子が移動する。この時、移動する電子の一部が、絶縁体222の電子捕獲準位に捕獲される。
絶縁体222の電子捕獲準位に必要な量の電子を捕獲させたトランジスタは、しきい値電圧がプラス側にシフトする。なお、導電体205の電圧の制御によって電子の捕獲する量を制御することができ、それに伴ってしきい値電圧を制御することができる。当該構成を有することで、トランジスタ400は、ゲート電圧が0Vであっても非導通状態(オフ状態ともいう)であるノーマリーオフ型のトランジスタとなる。
また、電子を捕獲する処理は、トランジスタの作製過程におこなえばよい。例えば、トランジスタのソース導電体あるいはドレイン導電体に接続する導電体の形成後、あるいは、前工程(ウェハー処理)の終了後、あるいは、ウェハーダイシング工程後、パッケージ後等、工場出荷前のいずれかの段階で行うとよい。
また、絶縁体222には、酸素や水素に対してバリア性のある物質を用いることが好ましい。このような材料を用いて形成した場合、酸化物230からの酸素の放出や、外部からの水素等の不純物の混入を防ぐことができる。
酸化物230a、酸化物230b、および酸化物230cは、In-M-Zn酸化物(MはAl、Ga、Y、またはSn)等の金属酸化物で形成される。また、酸化物230として、In-Ga酸化物、In-Zn酸化物を用いてもよい。以下において、酸化物230a、酸化物230b、および酸化物230cをまとめて酸化物230という場合がある。
以下に、本発明に係る酸化物230について説明する。
酸化物230に用いる酸化物としては、少なくともインジウムまたは亜鉛を含むことが好ましい。特にインジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウムまたはスズなどが含まれていることが好ましい。また、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれていてもよい。
ここで、酸化物が、インジウム、元素M及び亜鉛を有するInMZnOである場合を考える。なお、元素Mは、アルミニウム、ガリウム、イットリウムまたはスズなどとする。そのほかの元素Mに適用可能な元素としては、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウムなどがある。ただし、元素Mとして、前述の元素を複数組み合わせても構わない場合がある。
まず、図26(A)、図26(B)、および図26(C)を用いて、本発明に係る酸化物が有するインジウム、元素M及び亜鉛の原子数比の好ましい範囲について説明する。なお、図26には、酸素の原子数比については記載しない。また、酸化物が有するインジウム、元素M、及び亜鉛の原子数比のそれぞれの項を[In]、[M]、および[Zn]とする。
図26(A)、図26(B)、および図26(C)において、破線は、[In]:[M]:[Zn]=(1+α):(1-α):1の原子数比(-1≦α≦1)となるライン、[In]:[M]:[Zn]=(1+α):(1-α):2の原子数比となるライン、[In]:[M]:[Zn]=(1+α):(1-α):3の原子数比となるライン、[In]:[M]:[Zn]=(1+α):(1-α):4の原子数比となるライン、および[In]:[M]:[Zn]=(1+α):(1-α):5の原子数比となるラインを表す。
また、一点鎖線は、[In]:[M]:[Zn]=1:1:βの原子数比(β≧0)となるライン、[In]:[M]:[Zn]=1:2:βの原子数比となるライン、[In]:[M]:[Zn]=1:3:βの原子数比となるライン、[In]:[M]:[Zn]=1:4:βの原子数比となるライン、[In]:[M]:[Zn]=2:1:βの原子数比となるライン、及び[In]:[M]:[Zn]=5:1:βの原子数比となるラインを表す。
また、二点鎖線は、[In]:[M]:[Zn]=(1+γ):2:(1-γ)の原子数比(-1≦γ≦1)となるラインを表す。また、図26(A)、図26(B)、および図26(C)に示す、[In]:[M]:[Zn]=0:2:1の原子数比またはその近傍値の酸化物は、スピネル型の結晶構造をとりやすい。
図26(A)および図26(B)では、本発明の一態様の酸化物が有する、インジウム、元素M、及び亜鉛の原子数比の好ましい範囲の一例について示している。
一例として、図27に、[In]:[M]:[Zn]=1:1:1である、InMZnOの結晶構造を示す。また、図27は、b軸に平行な方向から観察した場合のInMZnOの結晶構造である。なお、図27に示すM、Zn、酸素を有する層(以下、(M,Zn)層)金属元素は、元素Mまたは亜鉛を表している。この場合、元素Mと亜鉛の割合が等しいものとする。元素Mと亜鉛とは、置換が可能であり、配列は不規則である。
InMZnOは、層状の結晶構造(層状構造ともいう)をとり、図27に示すように、インジウム、および酸素を有する層(以下、In層)が1に対し、元素M、亜鉛、および酸素を有する(M,Zn)層が2となる。
また、インジウムと元素Mは、互いに置換可能である。そのため、(M,Zn)層の元素Mがインジウムと置換し、(In,M,Zn)層と表すこともできる。その場合、In層が1に対し、(In,M,Zn)層が2である層状構造をとる。
[In]:[M]:[Zn]=1:1:2となる原子数比の酸化物は、In層が1に対し、(M,Zn)層が3である層状構造をとる。つまり、[In]および[M]に対し[Zn]が大きくなると、酸化物が結晶化した場合、In層に対する(M,Zn)層の割合が増加する。
ただし、酸化物中において、In層が1層に対し、(M,Zn)層の層数が非整数である場合、In層が1層に対し、(M,Zn)層の層数が整数である層状構造を複数種有する場合がある。例えば、[In]:[M]:[Zn]=1:1:1.5である場合、In層が1に対し、(M,Zn)層が2である層状構造と、(M,Zn)層が3である層状構造とが混在する層状構造となる場合がある。
例えば、酸化物をスパッタリング装置にて成膜する場合、ターゲットの原子数比からずれた原子数比の膜が形成される。特に、成膜時の基板温度によっては、ターゲットの[Zn]よりも、膜の[Zn]が小さくなる場合がある。
また、酸化物中に複数の相が共存する場合がある(二相共存、三相共存など)。例えば、[In]:[M]:[Zn]=0:2:1の原子数比の近傍値である原子数比では、スピネル型の結晶構造と層状の結晶構造との二相が共存しやすい。また、[In]:[M]:[Zn]=1:0:0を示す原子数比の近傍値である原子数比では、ビックスバイト型の結晶構造と層状の結晶構造との二相が共存しやすい。酸化物中に複数の相が共存する場合、異なる結晶構造の間において、粒界(グレインバウンダリーともいう)が形成される場合がある。
また、インジウムの含有率を高くすることで、酸化物のキャリア移動度(電子移動度)を高くすることができる。これは、インジウム、元素M及び亜鉛を有する酸化物では、主として重金属のs軌道がキャリア伝導に寄与しており、インジウムの含有率を高くすることにより、s軌道が重なる領域がより大きくなるため、インジウムの含有率が高い酸化物はインジウムの含有率が低い酸化物と比較してキャリア移動度が高くなるためである。
一方、酸化物中のインジウムおよび亜鉛の含有率が低くなると、キャリア移動度が低くなる。従って、[In]:[M]:[Zn]=0:1:0を示す原子数比、およびその近傍値である原子数比(例えば図26(C)に示す領域C)では、絶縁性が高くなる。
従って、本発明の一態様の酸化物は、キャリア移動度が高く、かつ、粒界が少ない層状構造となりやすい、図26(A)の領域Aで示される原子数比を有することが好ましい。
また、図26(B)に示す領域Bは、[In]:[M]:[Zn]=4:2:3から4.1、およびその近傍値を示している。近傍値には、例えば、原子数比が[In]:[M]:[Zn]=5:3:4が含まれる。領域Bで示される原子数比を有する酸化物は、特に、結晶性が高く、キャリア移動度も高い優れた酸化物である。
なお、酸化物が、層状構造を形成する条件は、原子数比によって一義的に定まらない。原子数比により、層状構造を形成するための難易の差はある。一方、同じ原子数比であっても、形成条件により、層状構造になる場合も層状構造にならない場合もある。従って、図示する領域は、酸化物が層状構造を有する原子数比を示す領域であり、領域A乃至領域Cの境界は厳密ではない。
続いて、上記酸化物をトランジスタに用いる場合について説明する。
なお、上記酸化物をトランジスタに用いることで、粒界におけるキャリア散乱等を減少させることができるため、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
また、トランジスタには、キャリア密度の低い酸化物を用いることが好ましい。例えば、酸化物は、キャリア密度が8×1011/cm未満、好ましくは1×1011/cm未満、さらに好ましくは1×1010/cm未満であり、1×10-9/cm以上とすればよい。
なお、高純度真性または実質的に高純度真性である酸化物は、キャリア発生源が少ないため、キャリア密度を低くすることができる。また、高純度真性または実質的に高純度真性である酸化物は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
また、酸化物のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物にチャネル領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
従って、トランジスタの電気特性を安定にするためには、酸化物中の不純物濃度を低減することが有効である。また、酸化物中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
ここで、酸化物中における各不純物の影響について説明する。
酸化物において、第14族元素の一つであるシリコンや炭素が含まれると、酸化物において欠陥準位が形成される。このため、酸化物におけるシリコンや炭素の濃度と、酸化物との界面近傍のシリコンや炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
また、酸化物にアルカリ金属またはアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。従って、アルカリ金属またはアルカリ土類金属が含まれている酸化物を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物中のアルカリ金属またはアルカリ土類金属の濃度を低減することが好ましい。具体的には、SIMSにより得られる酸化物中のアルカリ金属またはアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
また、酸化物において、窒素が含まれると、キャリアである電子が生じ、キャリア密度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物を半導体に用いたトランジスタはノーマリーオン特性となりやすい。従って、該酸化物において、窒素はできる限り低減されていることが好ましい、例えば、酸化物中の窒素濃度は、SIMSにおいて、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下とする。
また、酸化物に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている酸化物を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物中の水素はできる限り低減されていることが好ましい。具体的には、酸化物において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満とする。
不純物が十分に低減された酸化物をトランジスタのチャネル領域に用いることで、安定した電気特性を付与することができる。
続いて、該酸化物を2層構造、または3層構造とした場合について述べる。酸化物S1、酸化物S2、および酸化物S3の積層構造、および積層構造に接する絶縁体のバンド図と、酸化物S1および酸化物S2の積層構造、および積層構造に接する絶縁体のバンド図と、酸化物S2および酸化物S3の積層構造、および積層構造に接する絶縁体のバンド図と、について、図28を用いて説明する。
図28(A)は、絶縁体I1、酸化物S1、酸化物S2、酸化物S3、及び絶縁体I2を有する積層構造の膜厚方向のバンド図の一例である。また、図28(B)は、絶縁体I1、酸化物S2、酸化物S3、及び絶縁体I2を有する積層構造の膜厚方向のバンド図の一例である。また、図28(C)は、絶縁体I1、酸化物S1、酸化物S2、及び絶縁体I2を有する積層構造の膜厚方向のバンド図の一例である。なお、バンド図は、理解を容易にするため絶縁体I1、酸化物S1、酸化物S2、酸化物S3、及び絶縁体I2の伝導帯下端のエネルギー準位(Ec)を示す。
酸化物S1、酸化物S3は、酸化物S2よりも伝導帯下端のエネルギー準位が真空準位に近く、代表的には、酸化物S2の伝導帯下端のエネルギー準位と、酸化物S1、酸化物S3の伝導帯下端のエネルギー準位との差が、0.15eV以上、または0.5eV以上であり、かつ2eV以下、または1eV以下であることが好ましい。すなわち、酸化物S1、酸化物S3の電子親和力と、酸化物S2の電子親和力との差が、0.15eV以上、または0.5eV以上であり、かつ2eV以下、または1eV以下であることが好ましい。
図28(A)、図28(B)、および図28(C)に示すように、酸化物S1、酸化物S2、酸化物S3において、伝導帯下端のエネルギー準位はなだらかに変化する。換言すると、連続的に変化または連続接合するともいうことができる。このようなバンド図を有するためには、酸化物S1と酸化物S2との界面、または酸化物S2と酸化物S3との界面において形成される混合層の欠陥準位密度を低くするとよい。
具体的には、酸化物S1と酸化物S2、酸化物S2と酸化物S3が、酸素以外に共通の元素を有する(主成分とする)ことで、欠陥準位密度が低い混合層を形成することができる。例えば、酸化物S2がIn-Ga-Zn酸化物の場合、酸化物S1、酸化物S3として、In-Ga-Zn酸化物、Ga-Zn酸化物、酸化ガリウムなどを用いるとよい。
このとき、キャリアの主たる経路は酸化物S2となる。酸化物S1と酸化物S2との界面、および酸化物S2と酸化物S3との界面における欠陥準位密度を低くすることができるため、界面散乱によるキャリア伝導への影響が小さく、高いオン電流が得られる。
トラップ準位に電子が捕獲されることで、捕獲された電子は固定電荷のように振る舞うため、トランジスタのしきい値電圧はプラス方向にシフトしてしまう。酸化物S1、酸化物S3を設けることにより、トラップ準位を酸化物S2より遠ざけることができる。当該構成とすることで、トランジスタのしきい値電圧がプラス方向にシフトすることを防止することができる。
酸化物S1、酸化物S3は、酸化物S2と比較して、導電率が十分に低い材料を用いる。このとき、酸化物S2、酸化物S2と酸化物S1との界面、および酸化物S2と酸化物S3との界面が、主にチャネル領域として機能する。例えば、酸化物S1、酸化物S3には、図26(C)において、絶縁性が高くなる領域Cで示す原子数比の酸化物を用いればよい。なお、図26(C)に示す領域Cは、[In]:[M]:[Zn]=0:1:0、またはその近傍値である原子数比を示している。
特に、酸化物S2に領域Aで示される原子数比の酸化物を用いる場合、酸化物S1および酸化物S3には、[M]/[In]が1以上、好ましくは2以上である酸化物を用いることが好ましい。また、酸化物S3として、十分に高い絶縁性を得ることができる[M]/([Zn]+[In])が1以上である酸化物を用いることが好適である。
導電体240a、および導電体240bは、一方がソース電極として機能し、他方がドレイン電極として機能する。
導電体240a、および導電体240bは、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、またはタングステンなどの金属、またはこれを主成分とする合金を単層構造または積層構造として用いる。例えば、シリコンを含むアルミニウム膜の単層構造、タンタル膜または窒化タンタル膜を積層する二層構造、チタン膜上にアルミニウム膜を積層する二層構造、タングステン膜上にアルミニウム膜を積層する二層構造、銅-マグネシウム-アルミニウム合金膜上に銅膜を積層する二層構造、チタン膜上に銅膜を積層する二層構造、タングステン膜上に銅膜を積層する二層構造、チタン膜または窒化チタン膜と、そのチタン膜または窒化チタン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にチタン膜または窒化チタン膜を形成する三層構造、モリブデン膜または窒化モリブデン膜と、そのモリブデン膜または窒化モリブデン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にモリブデン膜または窒化モリブデン膜を形成する三層構造等がある。なお、酸化インジウム、酸化錫または酸化亜鉛を含む透明導電材料を用いてもよい。
絶縁体250は、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)または(Ba,Sr)TiO(BST)などを含む絶縁体を単層または積層で用いることができる。またはこれらの絶縁体に例えば酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理しても良い。上記の絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。
また、絶縁体250として、絶縁体224と同様に、化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物絶縁体を用いることが好ましい。
なお、絶縁体250は、絶縁体220、絶縁体222、および絶縁体224と同様の積層構造を有していてもよい。絶縁体250が、電子捕獲準位に必要な量の電子を捕獲させた絶縁体を有することで、トランジスタ400は、しきい値電圧をプラス側にシフトすることができる。当該構成を有することで、トランジスタ400は、ゲート電圧が0Vであっても非導通状態(オフ状態ともいう)であるノーマリーオフ型のトランジスタとなる。
ゲート電極として機能を有する導電体260は、例えばアルミニウム、クロム、銅、タンタル、チタン、モリブデン、タングステンから選ばれた金属、または上述した金属を成分とする合金か、上述した金属を組み合わせた合金等を用いて形成することができる。また、マンガン、ジルコニウムのいずれか一または複数から選択された金属を用いてもよい。また、リン等の不純物元素をドーピングした多結晶シリコンに代表される半導体、ニッケルシリサイド等のシリサイドを用いてもよい。例えば、アルミニウム膜上にチタン膜を積層する二層構造、窒化チタン膜上にチタン膜を積層する二層構造、窒化チタン膜上にタングステン膜を積層する二層構造、窒化タンタル膜または窒化タングステン膜上にタングステン膜を積層する二層構造、チタン膜と、そのチタン膜上にアルミニウム膜を積層し、さらにその上にチタン膜を形成する三層構造等がある。また、アルミニウムに、チタン、タンタル、タングステン、モリブデン、クロム、ネオジム、スカンジウムから選ばれた一または複数の金属を組み合わせた合金膜、もしくは窒化膜を用いてもよい。
また、導電体260は、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化シリコンを添加したインジウム錫酸化物等の透光性を有する導電性材料を適用することもできる。また、上記透光性を有する導電性材料と、上記金属の積層構造とすることもできる。
絶縁体280は、加熱により一部の酸素が脱離する酸化物材料を用いることが好ましい。
加熱により酸素を脱離する酸化物材料として、化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物を用いることが好ましい。化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物膜は、加熱により一部の酸素が脱離する。化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物膜は、昇温脱離ガス分光法(TDS:Thermal Desorption Spectroscopy)分析にて、酸素原子に換算しての酸素の脱離量が1.0×1018atoms/cm以上、好ましくは3.0×1020atoms/cm以上である酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下、または100℃以上500℃以下の範囲が好ましい。
例えばこのような材料として、酸化シリコンまたは酸化窒化シリコンを含む材料を用いることが好ましい。または、金属酸化物を用いることもできる。なお、本明細書中において、酸化窒化シリコンとは、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化シリコンとは、その組成として、酸素よりも窒素の含有量が多い材料を示す。
また、トランジスタ400を覆う絶縁体280は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。
また、導電体260を覆うように、絶縁体270を設けてもよい。絶縁体280に酸素が脱離する酸化物材料を用いる場合、導電体260が、脱離した酸素により酸化することを防止するため、絶縁体270は、酸素に対してバリア性を有する物質を用いる。当該構成とすることで、導電体260の酸化を抑制し、絶縁体280から、脱離した酸素を効率的に酸化物230へと供給することができる。
絶縁体280上には、絶縁体282、および絶縁体284が順に積層して設けられている。また、絶縁体280、絶縁体282、および絶縁体284には、導電体244、導電体246a、及び導電体246b等が埋め込まれている。なお、導電体244は、キャパシタ300、またはトランジスタ500と電気的に接続するプラグ、または配線として機能を有する。導電体246a、及び導電体246bは、キャパシタ300、またはトランジスタ400と電気的に接続するプラグ、または配線として機能を有する。
絶縁体282、および絶縁体284のいずれか、または両方に、酸素や水素に対してバリア性のある物質を用いることが好ましい。当該構成とすることで、トランジスタ400近傍の層間膜から脱離する酸素を、効率的にトランジスタ400へ、拡散させることができる。
絶縁体284の上方には、キャパシタ300が設けられている。
絶縁体602上には、導電体604、および導電体624が設けられている。なお、導電体624は、トランジスタ400、またはトランジスタ500と電気的に接続するプラグ、または配線として機能を有する。
導電体604上に絶縁体612、絶縁体612上に導電体616が設けられている。また、導電体616は、絶縁体612を介して、導電体604の側面を覆っている。つまり、導電体604の側面においても、容量として機能するため、キャパシタの投影面積当たりの容量を増加させることができる。従って、半導体装置の小面積化、高集積化、微細化が可能となる。
なお、絶縁体602は、少なくとも導電体604、と重畳する領域に設けられていればよい。例えば、図25(B)に示すキャパシタ300Aのように、絶縁体602を、導電体604、及び導電体624と重畳する領域にのみ設け、絶縁体602と、絶縁体612とが接する構造としてもよい。
導電体616上には、絶縁体620、および絶縁体622が順に積層して設けられている。また、絶縁体620、絶縁体622、および絶縁体602には導電体626、および導電体628が埋め込まれている。なお、導電体626、および導電体628は、トランジスタ400、またはトランジスタ500と電気的に接続するプラグ、または配線として機能を有する。
また、キャパシタ300を覆う絶縁体620は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。
以上が構成例についての説明である。
[作製方法例]
以下では、上記構成例で示した半導体装置の作製方法の一例について、図29乃至図35を用いて説明する。
まず、基板301を準備する。基板301としては、半導体基板を用いる。例えば、単結晶シリコン基板(p型の半導体基板、またはn型の半導体基板を含む)、炭化シリコンや窒化ガリウムを材料とした化合物半導体基板などを用いることができる。また、基板301として、SOI基板を用いてもよい。以下では、基板301として単結晶シリコンを用いた場合について説明する。
続いて、基板301に素子分離層を形成する。素子分離層はLOCOS(Local Oxidation of Silicon)法またはSTI(Shallow Trench Isolation)法等を用いて形成すればよい。
なお、同一基板上にp型のトランジスタとn型のトランジスタを形成する場合、基板301の一部にnウェルまたはpウェルを形成してもよい。例えば、n型の基板301にp型の導電性を付与するホウ素などの不純物元素を添加してpウェルを形成し、同一基板上にn型のトランジスタとp型のトランジスタを形成してもよい。
続いて、基板301上に絶縁体304となる絶縁体を形成する。例えば、表面窒化処理後に酸化処理を行い、シリコンと窒化シリコン界面を酸化して酸化窒化シリコン膜を形成してもよい。例えばNH雰囲気中で700℃にて熱窒化シリコン膜を表面に形成後に酸素ラジカル酸化を行うことで酸化窒化シリコン膜が得られる。
当該絶縁体は、スパッタリング法、CVD(Chemical Vapor Deposition)法(熱CVD法、MOCVD(Metal Organic CVD)法、PECVD(Plasma Enhanced CVD)法等を含む)、MBE(Molecular Beam Epitaxy)法、ALD(Atomic Layer Deposition)法、またはPLD(Pulsed Laser Deposition)法等で成膜することにより形成してもよい。
続いて、導電体306となる導電膜を成膜する。導電膜としては、タンタル、タングステン、チタン、モリブデン、クロム、ニオブ等から選択された金属、またはこれらの金属を主成分とする合金材料若しくは化合物材料を用いることが好ましい。また、リン等の不純物を添加した多結晶シリコンを用いることができる。また、金属窒化物膜と上記の金属膜の積層構造を用いてもよい。金属窒化物としては、窒化タングステン、窒化モリブデン、窒化チタンを用いることができる。金属窒化物膜を設けることにより、金属膜の密着性を向上させることができ、剥離を防止することができる。なお、導電体306の仕事関数を定めることで、トランジスタ500のしきい値電圧を調整することができるため、導電膜の材料は、トランジスタ500に求められる特性に応じて、適宜選択するとよい。
導電膜は、スパッタリング法、蒸着法、CVD法(熱CVD法、MOCVD法、PECVD法等を含む)などにより成膜することができる。また、プラズマによるダメージを減らすには、熱CVD法、MOCVD法あるいはALD法が好ましい。
続いて、当該導電膜上にリソグラフィ法等を用いてレジストマスクを形成し、当該導電膜の不要な部分を除去する。その後、レジストマスクを除去することにより、導電体306を形成することができる。
ここで、被加工膜の加工方法について説明する。被加工膜を微細に加工する場合には、様々な微細加工技術を用いることができる。例えば、リソグラフィ法等で形成したレジストマスクに対してスリミング処理を施す方法を用いてもよい。また、リソグラフィ法等でダミーパターンを形成し、当該ダミーパターンにサイドウォールを形成した後にダミーパターンを除去し、残存したサイドウォールをレジストマスクとして用いて、被加工膜をエッチングしてもよい。また、被加工膜のエッチングとして、高いアスペクト比を実現するために、異方性のドライエッチングを用いることが好ましい。また、無機膜または金属膜からなるハードマスクを用いてもよい。
レジストマスクの形成に用いる光は、例えばi線(波長365nm)、g線(波長436nm)、h線(波長405nm)、またはこれらを混合させた光を用いることができる。そのほか、紫外線やKrFレーザ光、またはArFレーザ光等を用いることもできる。また、液浸露光技術により露光を行ってもよい。また、露光に用いる光として、極端紫外光(EUV:Extreme Ultra-violet)やX線を用いてもよい。また、露光に用いる光に換えて、電子ビームを用いることもできる。極端紫外光、X線または電子ビームを用いると、極めて微細な加工が可能となるため好ましい。なお、電子ビームなどのビームを走査することにより露光を行う場合には、フォトマスクは不要である。
また、レジストマスクとなるレジスト膜を形成する前に、被加工膜とレジスト膜との密着性を改善する機能を有する有機樹脂膜を形成してもよい。当該有機樹脂膜は、例えばスピンコート法などにより、その下方の段差を被覆して表面を平坦化するように形成することができ、当該有機樹脂膜の上方に設けられるレジストマスクの厚さのばらつきを低減できる。また、特に微細な加工を行う場合には、当該有機樹脂膜として、露光に用いる光に対する反射防止膜として機能する材料を用いることが好ましい。このような機能を有する有機樹脂膜としては、例えばBARC(Bottom Anti-Reflection Coating)膜などがある。当該有機樹脂膜は、レジストマスクの除去と同時に除去するか、レジストマスクを除去した後に除去すればよい。
導電体306の形成後、導電体306の側面を覆うサイドウォールを形成してもよい。サイドウォールは、導電体306の厚さよりも厚い絶縁体を成膜した後に、異方性エッチングを施し、導電体306の側面部分のみ当該絶縁体を残存させることにより形成できる。
サイドウォールの形成時に絶縁体304となる絶縁体も同時にエッチングされることにより、導電体306およびサイドウォールの下部に絶縁体304が形成される。または、導電体306を形成した後に導電体306、または導電体306を加工するためのレジストマスクをエッチングマスクとして当該絶縁体をエッチングすることにより絶縁体304を形成してもよい。この場合、導電体306の下部に絶縁体304が形成される。または、当該絶縁体に対してエッチングによる加工を行わずに、そのまま絶縁体304として用いることもできる。
続いて、基板301の導電体306(およびサイドウォール)が設けられていない領域にリンなどのn型の導電性を付与する元素、またはホウ素などのp型の導電性を付与する元素を添加する。
続いて、絶縁体320を形成した後、上述した導電性を付与する元素の活性化のための加熱処理を行う。
絶縁体320は、例えば酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウムなどを用いればよく、積層または単層で設ける。また、酸素と水素を含む窒化シリコン(SiNOH)を用いると、加熱によって脱離する水素の量を多くすることができるため好ましい。また、TEOS(Tetra-Ethyl-Ortho-Silicate)若しくはシラン等と、酸素若しくは亜酸化窒素等とを反応させて形成した段差被覆性の良い酸化シリコンを用いることもできる。
絶縁体320は、例えば、スパッタリング法、CVD法(熱CVD法、MOCVD法、PECVD法等を含む)、MBE法、ALD法またはPLD法などを用いて形成することができる。特に、当該絶縁体をCVD法、好ましくはプラズマCVD法によって成膜すると、被覆性を向上させることができるため好ましい。また、プラズマによるダメージを減らすには、熱CVD法、MOCVD法あるいはALD法が好ましい。
加熱処理は、希ガスや窒素ガスなどの不活性ガス雰囲気下、または減圧雰囲気下にて、例えば、400℃以上でかつ基板の歪み点未満で行うことができる。
この段階でトランジスタ500が形成される。
続いて、絶縁体320上に絶縁体322を形成する。絶縁体322は、絶縁体320と同様の材料および方法で作成することができる。また、絶縁体322の上面を、CMP法等を用いて平坦化する(図29(A))。
続いて、絶縁体320、および絶縁体322に、低抵抗領域308a、低抵抗領域308bおよび導電体306等に達する開口部を形成する(図29(B))。その後、開口部を埋めるように導電膜を形成する(図29(C))。導電膜の形成は、例えばスパッタリング法、CVD法(熱CVD法、MOCVD法、PECVD法等を含む)、MBE法、ALD法またはPLD法などを用いて形成することができる。
続いて、絶縁体322の上面が露出するように該導電膜に平坦化処理を施すことにより、導電体328a、導電体328b、および導電体328c等を形成する(図29(D))。なお、図中の矢印は、CMP処理を表す。また、明細書中、及び図中において、導電体328a、導電体328b、および導電体328cは、プラグ、または配線として機能を有し、まとめて導電体328と付記する場合もある。なお、本明細書中において、プラグ、または配線として機能を有する場合は、同様に取り扱うものとする。
続いて、絶縁体320上に、絶縁体322、および絶縁体324を形成した後、ダマシン法などを用いて導電体330a、導電体330b、および導電体330cを形成する(図30(A))。絶縁体322、および絶縁体324は絶縁体320と同様の材料および方法で作成することができる。また、導電体330となる導電膜は、導電体328と同様の材料および方法で作成することができる。
次に、絶縁体352、および絶縁体354を形成した後、デュアルダマシン法などを用いて、絶縁体352、および絶縁体354に、導電体358a、導電体358b、および導電体358cを形成する(図30(B))。絶縁体352、および絶縁体354は絶縁体320と同様の材料および方法で作成することができる。また、導電体358となる導電膜は、導電体328と同様の材料および方法で作成することができる。
次に、トランジスタ400を形成する。絶縁体210を形成した後、水素または酸素に対してバリア性を有する絶縁体212、および絶縁体214を形成する。絶縁体210は、絶縁体320と同様の材料および方法で作成することができる。
また、絶縁体212、および絶縁体214は、例えばスパッタリング法、CVD法(熱CVD法、MOCVD法、PECVD法等を含む)、MBE法、ALD法またはPLD法などを用いて形成することができる。特に、当該絶縁体のいずれかを、ALD法を用いて形成することで、緻密な、クラックやピンホールなどの欠陥が低減された、または均一な厚さを備える絶縁体を形成することができる。
続いて、絶縁体214上に絶縁体216を形成する。絶縁体216は、絶縁体210と同様の材料および方法で作成することができる(図30(C))。
次に、絶縁体210、絶縁体212、絶縁体214、および絶縁体216に、導電体358a、導電体358b、および導電体358c等に達する開口部を形成する(図31(A))。
続いて、絶縁体216に、トランジスタ400のゲート電極となる領域に開口部を形成する。この時、絶縁体216に形成された開口部を広げてもよい(図31(B))。絶縁体216に形成された開口部を広くすることで、後の工程で形成されるプラグ、または配線に対し、十分な設計マージンを確保することができる。
その後、開口部を埋めるように導電膜を形成する(図31(C))。導電膜の形成は、導電体328と同様の材料および方法で作成することができる。続いて、導電膜に平坦化処理を施すことにより、絶縁体216の上面を露出させ、導電体218a、導電体218b、導電体218c、および導電体205を形成する(図32(A))。なお、図中の矢印は、CMP処理を表す。
次に、絶縁体220、絶縁体222、および絶縁体224を形成する。絶縁体220、絶縁体222、および絶縁体224は、絶縁体210と同様の材料および方法で作成することができる。特に、絶縁体222にはhigh-k材料を用いることが好ましい。
続いて、酸化物230aとなる酸化物と、酸化物230bとなる酸化物を順に成膜する。当該酸化物は、大気に触れさせることなく連続して成膜することが好ましい。
酸化物230bとなる酸化物を成膜後、加熱処理を行うことが好ましい。加熱処理は、250℃以上650℃以下、好ましくは300℃以上500℃以下の温度で、不活性ガス雰囲気、酸化性ガスを10ppm以上含む雰囲気、または減圧状態で行えばよい。また、加熱処理の雰囲気は、不活性ガス雰囲気で加熱処理した後に、脱離した酸素を補うために酸化性ガスを10ppm以上含む雰囲気で行ってもよい。加熱処理は、酸化物230bとなる酸化物を成膜した直後に行ってもよいし、酸化物230bとなる酸化物を加工して島状の酸化物230bを形成した後に行ってもよい。加熱処理により、酸化物230aの下方に形成された絶縁体から、酸化物230a、および酸化物230bに酸素が供給され、酸化物中の酸素欠損を低減することができる。
その後、酸化物230bとなる酸化物上に、導電体240a、および導電体240bとなる導電膜を形成する。続いて、上記と同様の方法によりレジストマスクを形成し、導電膜の不要な部分をエッチングにより除去する。その後、導電膜をマスクとして酸化物の不要な部分をエッチングにより除去する。その後レジストマスクを除去することにより、島状の酸化物230a、島状の酸化物230b、および島状の導電体の積層構造を形成することができる。
次に、島状の導電膜上に上記と同様の方法によりレジストマスクを形成し、導電膜の不要な部分をエッチングにより除去する。その後レジストマスクを除去することにより、導電体240a、および導電体240bを形成する。
続いて、酸化物230cとなる酸化物、絶縁体250となる絶縁体、および導電体260となる導電膜を順に成膜する。続いて、当該導電膜上に、上記と同様の方法によりレジストマスクを形成し、導電膜の不要な部分をエッチングにより除去することで、導電体260を形成する。
次に、絶縁体250となる絶縁体、および導電体260上に絶縁体270となる絶縁体を形成する。絶縁体270となる絶縁体は、水素および酸素に対するバリア性を有する材料を用いることが好ましい。続いて、当該絶縁体上に上記と同様の方法によりレジストマスクを形成し、絶縁体270となる絶縁体、絶縁体250となる絶縁体、および酸化物230cとなる酸化物の不要な部分をエッチングにより除去する。その後レジストマスクを除去することにより、トランジスタ400が形成される。
次に、絶縁体280を形成する。絶縁体280は、化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物を用いることが好ましい。また、絶縁体280となる絶縁体を形成した後、その上面の平坦性を高めるためにCMP法等を用いた平坦化処理を行ってもよい。
なお、絶縁体280に酸素を過剰に含有させるためには、例えば酸素雰囲気下にて絶縁体280の成膜を行えばよい。または、成膜後の絶縁体280に酸素を導入して酸素を過剰に含有する領域を形成してもよく、双方の手段を組み合わせてもよい。
例えば、成膜後の絶縁体280に酸素(少なくとも酸素ラジカル、酸素原子、酸素イオンのいずれかを含む)を導入して酸素を過剰に含有する領域を形成する。酸素の導入方法としては、イオン注入法、イオンドーピング法、プラズマイマージョンイオン注入法、プラズマ処理などを用いることができる。
また、酸素導入処理として、酸素を含むガスを用いることができる。酸素を含むガスとしては、酸素、一酸化二窒素、二酸化窒素、二酸化炭素、一酸化炭素などを用いることができる。また、酸素導入処理において、酸素を含むガスに希ガスを含ませてもよく、例えば、二酸化炭素と水素とアルゴンの混合ガスを用いることができる。
また、酸素導入処理として、絶縁体280上に、スパッタリング装置を用いて、酸化物を積層する方法がある。例えば、絶縁体282を成膜する手段として、スパッタリング装置を用いて、酸素ガス雰囲気下で成膜を行うことで、絶縁体282を成膜しながら、絶縁体280に酸素を導入することができる。
続いて、絶縁体284を形成する。絶縁体284は、絶縁体210と、同様の材料および方法で作成することができる。また、絶縁体284は、酸素や水素に対してバリア性のある酸化アルミニウムなどを用いることが好ましい。特に、絶縁体284を、ALD法を用いて形成することで、緻密な、クラックやピンホールなどの欠陥が低減された、または均一な厚さを備える絶縁体を形成することができる。
絶縁体282に、緻密な膜質の絶縁体284を積層することで、絶縁体280に導入した過剰酸素を、トランジスタ400側に、効果的に封じ込めることができる(図32(B))。
次に、キャパシタ300を形成する。まず、絶縁体284上に、絶縁体602を形成する。絶縁体602は、絶縁体210と同様の材料および方法で作成することができる。
次に、絶縁体220、絶縁体222、絶縁体224、絶縁体280、絶縁体282、および絶縁体284に、導電体218a、導電体218b、導電体218c、導電体240a、および導電体240b等に達する開口部を形成する。
その後、開口部を埋めるように導電膜を形成し、導電膜に平坦化処理を施すことにより、絶縁体216の上面を露出させ、導電体244a、導電体244b、導電体244c、導電体246a、および導電体246bを形成する。なお、導電膜の形成は、導電体328と同様の材料および方法で作成することができる。
次に、絶縁体602上に導電膜604Aを成膜する。なお、導電膜604Aの形成は、導電体328と同様の材料および方法で作成することができる。続いて、導電膜604A上に、レジストマスク690を形成する(図33(A))。
導電膜604Aをエッチングすることで、導電体624a、導電体624b、導電体624c、および導電体604を形成する。当該エッチング処理を、オーバーエッチング処理とすることで、絶縁体602の一部も同時に除去することができる(図33(B))。絶縁体602は、後に形成する絶縁体612の膜厚よりも、深く除去されていればよい。また、導電体604をオーバーエッチング処理により形成することで、エッチング残渣を残すことなくエッチングすることができる。
また、当該エッチング処理の途中で、エッチングガスの種類を切り替えることにより、効率よく絶縁体602の一部を除去することができる。
また、例えば、導電体604を形成した後、レジストマスク690を除去し、導電体604をハードマスクとして、絶縁体602の一部を除去してもよい。
また、導電体604を形成した後、導電体604の表面を、クリーニング処理してもよい。クリーニング処理をすることで、エッチング残渣等を除去することができる。
さらに、絶縁体602及び絶縁体284の膜種が異なる場合、絶縁体284をエッチングストッパ膜としてもよい。その場合、図25(B)に示すように、導電体624、および導電体604と重畳する領域に絶縁体602が形成される構造となる。
続いて、導電体604の側面、および上面を覆う絶縁体612を成膜する(図34(A))。絶縁体612には例えば酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウム、酸化ハフニウム、酸化窒化ハフニウム、窒化酸化ハフニウム、窒化ハフニウムなどを用いればよく、積層または単層で設ける。
例えば、酸化アルミニウムなどのhigh-k材料と、酸化窒化シリコンなどの絶縁耐力が大きい材料の積層構造とすることが好ましい。当該構成により、キャパシタ300は、high-k材料により十分な容量を確保でき、絶縁耐力が大きい材料により絶縁耐力が向上するため、キャパシタ300の静電破壊を抑制し、キャパシタ300の信頼性を向上させることができる。
続いて、絶縁体612上に導電膜616Aを成膜する(図34(A))。なお、導電膜616Aの形成は、導電体604と同様の材料および方法で作成することができる。続いて、導電膜616A上に、レジストマスクを形成し、導電膜616Aの不要な部分をエッチングにより除去する。その後レジストマスクを除去することにより、導電体616を形成する。
続いて、キャパシタ300を覆う絶縁体620を成膜する(図34(B))。絶縁体620となる絶縁体は、絶縁体602等と同様の材料および方法により形成することができる。
次に、絶縁体620に、導電体624a、導電体624b、導電体624c、および導電体604等に達する開口部を形成する。
その後、開口部を埋めるように導電膜を形成し、導電膜に平坦化処理を施すことにより、絶縁体620の上面を露出させ、導電体626を形成する。なお、導電膜の形成は、導電体244と同様の材料および方法で作成することができる。
続いて、導電体626となる導電膜を形成する。導電膜の形成は、例えばスパッタリング法、CVD法(熱CVD法、MOCVD法、PECVD法等を含む)、MBE法、ALD法またはPLD法などを用いて形成することができる。特に、当該導電膜をCVD法、好ましくはプラズマCVD法によって成膜すると、被覆性を向上させることができるため好ましい。また、プラズマによるダメージを減らすには、熱CVD法、MOCVD法あるいはALD法が好ましい。
導電体626となる導電膜としては、例えば、アルミニウム、クロム、銅、タンタル、チタン、モリブデン、タングステンから選ばれた金属、または上述した金属を成分とする合金か、上述した金属を組み合わせた合金等を用いて形成することができる。また、マンガン、ジルコニウムのいずれか一または複数から選択された金属を用いてもよい。また、リン等の不純物元素をドーピングした多結晶シリコンに代表される半導体、ニッケルシリサイド等のシリサイドを用いてもよい。例えば、アルミニウム膜上にチタン膜を積層する二層構造、窒化チタン膜上にチタン膜を積層する二層構造、窒化チタン膜上にタングステン膜を積層する二層構造、窒化タンタル膜または窒化タングステン膜上にタングステン膜を積層する二層構造、チタン膜と、そのチタン膜上にアルミニウム膜を積層し、さらにその上にチタン膜を形成する三層構造等がある。また、アルミニウムに、チタン、タンタル、タングステン、モリブデン、クロム、ネオジム、スカンジウムから選ばれた一または複数の金属を組み合わせた合金膜、もしくは窒化膜を用いてもよい。
次に、導電体626となる導電膜上に上記と同様の方法によりレジストマスクを形成し、導電膜の不要な部分をエッチングにより除去する。その後レジストマスクを除去することにより、導電体626a、導電体626b、導電体626c、および導電体626dを形成する。
続いて、絶縁体620上に、絶縁体622を成膜する(図35)。絶縁体622となる絶縁体は、絶縁体602等と同様の材料および方法により形成することができる。
次に、絶縁体622に、導電体626a、導電体626b、導電体626c、および導電体626dに達する開口部を形成する。
その後、開口部を埋めるように導電膜を形成し、導電膜に平坦化処理を施すことにより、絶縁体622の上面を露出させ、導電体628a、導電体628b、導電体628c、および導電体628dを形成する。なお、導電膜の形成は、導電体244と同様の材料および方法で作成することができる。
以上の工程により、本発明の一態様の半導体装置を作製することができる。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態4)
本実施の形態では、上述の実施の形態で説明した半導体装置を用いた応用例として、表示パネルに適用する例、該表示パネルを表示モジュールに適用する例、該表示モジュールの応用例、及び電子機器への応用例について、図36乃至図38を用いて説明する。
<表示パネルへの実装例>
ソースドライバICとして機能する半導体装置を、表示パネルに適用する例について、図36(A)、(B)を用いて説明する。
図36(A)の場合には、表示パネルが有する表示部711の周辺にソースドライバ712、及びゲートドライバ712A、712Bが設けられ、ソースドライバ712として基板713上に半導体装置を有するソースドライバIC714が実装される例を示している。
ソースドライバIC714は、異方性導電接着剤、及び異方性導電フィルムを用いて基板713上に実装される。
なおソースドライバIC714は、FPC715を介して、外部回路基板716と接続される。
図36(B)の場合には、表示部711の周辺にソースドライバ712、及びゲートドライバ712A、712Bが設けられ、ソースドライバ712としてFPC715上にソースドライバIC714が実装される例を示している。
ソースドライバIC714をFPC715上に実装することで、基板713に表示部711を大きく設けることができ、狭額縁化を達成することができる。
<表示モジュールの応用例>
次いで図36(A)、(B)の表示パネルを用いた表示モジュールの応用例について、図37を用いて説明を行う。
図37に示す表示モジュール8000は、上部カバー8001と下部カバー8002との間に、FPC8003に接続されたタッチパネル8004、FPC8005に接続された表示パネル8006、フレーム8009、プリント基板8010、バッテリー8011を有する。なお、バッテリー8011、タッチパネル8004などは、設けられない場合もある。
上記図36(A)、(B)で説明した表示パネルは、図37における表示パネル8006に用いることができる。
上部カバー8001及び下部カバー8002は、タッチパネル8004及び表示パネル8006のサイズに合わせて、形状および/または寸法を適宜変更することができる。
タッチパネル8004は、抵抗膜方式または静電容量方式のタッチパネルを表示パネル8006に重畳して用いることができる。表示パネル8006の対向基板(封止基板)に、タッチパネル機能を持たせるようにすることも可能である。または、表示パネル8006の各画素内に光センサを設け、光学式のタッチパネルとすることも可能である。または、表示パネル8006の各画素内にタッチセンサ用電極を設け、静電容量方式のタッチパネルとすることも可能である。この場合、タッチパネル8004を省略することも可能である。
フレーム8009は、表示パネル8006の保護機能の他、プリント基板8010の動作により発生する電磁波を遮断するための電磁シールドとしての機能を有する。フレーム8009は、放熱板としての機能を有していてもよい。
プリント基板8010は、電源回路、ビデオ信号及びクロック信号を出力するための信号処理回路を有する。電源回路に電力を供給する電源としては、外部の商用電源であっても良いし、別途設けたバッテリー8011による電源であってもよい。バッテリー8011は、商用電源を用いる場合には、省略可能である。
表示モジュール8000には、偏光板、位相差板、プリズムシートなどの部材を追加して設けてもよい。
<電子機器への応用例>
次いで、コンピュータ、携帯情報端末(携帯電話、携帯型ゲーム機、音響再生装置なども含む)、電子ペーパー、テレビジョン装置(テレビ、又はテレビジョン受信機ともいう)、デジタルビデオカメラなどの電子機器の表示パネルを、上述の表示モジュールを適用した表示パネルとする場合について説明する。
図38(A)は、携帯型の情報端末であり、筐体901、筐体902、第1の表示部903a、第2の表示部903bなどによって構成されている。筐体901と筐体902の少なくとも一部には、先の実施の形態に示す半導体装置を有する表示モジュールが設けられている。そのため、回路面積の縮小が図られた携帯型の情報端末が実現される。
なお、第1の表示部903aはタッチ入力機能を有するパネルとなっており、例えば図38(A)の左図のように、第1の表示部903aに表示される選択ボタン904により「タッチ入力」を行うか、「キーボード入力」を行うかを選択できる。選択ボタンは様々な大きさで表示できるため、幅広い世代の人が使いやすさを実感できる。ここで、例えば「キーボード入力」を選択した場合、図38(A)の右図のように第1の表示部903aにはキーボード905が表示される。これにより、従来の情報端末と同様に、キー入力による素早い文字入力などが可能となる。
図38(A)に示す携帯型の情報端末は、図38(A)の右図のように、第1の表示部903a及び第2の表示部903bのうち、一方を取り外すことができる。第2の表示部903bもタッチ入力機能を有するパネルとし、持ち運びの際、さらなる軽量化を図ることができ、一方の手で筐体902を持ち、他方の手で操作することができるため便利である。
図38(A)に示す携帯型の情報端末は、様々な情報(静止画、動画、テキスト画像など)を表示する機能、カレンダー、日付又は時刻などを表示部に表示する機能、表示部に表示した情報を操作又は編集する機能、様々なソフトウェア(プログラム)によって処理を制御する機能、等を有することができる。筐体の裏面または側面に、外部接続用端子(イヤホン端子、USB端子など)、記録媒体挿入部などを備える構成としてもよい。
図38(A)に示す携帯型の情報端末は、無線で情報を送受信できる構成としてもよい。無線により、電子書籍サーバから、所望の書籍データなどを購入し、ダウンロードする構成とすることも可能である。
更に、図38(A)に示す筐体902にアンテナ、マイク機能、および/または無線機能を持たせ、携帯電話として用いてもよい。
図38(B)は、電子ペーパーを実装した電子書籍端末910であり、筐体911と筐体912の2つの筐体で構成されている。筐体911及び筐体912には、それぞれ表示部913及び表示部914が設けられている。筐体911と筐体912は、軸部915により接続されており、該軸部915を軸として開閉動作を行うことができる。筐体911は、電源916、操作キー917、スピーカー918などを備えている。筐体911、筐体912の少なくとも一には、先の実施の形態に示す半導体装置を有する表示モジュールが設けられている。そのため、回路面積の縮小が図られた電子書籍端末が実現される。
図38(C)は、テレビジョン装置であり、筐体921、表示部922、スタンド923などで構成されている。テレビジョン装置の操作は、筐体921が備えるスイッチおよび/またはリモコン操作機924により行うことができる。筐体921及びリモコン操作機924には、先の実施の形態に示す半導体装置を有する表示モジュールが搭載されている。そのため、回路面積の縮小が図られたテレビジョン装置が実現される。
図38(D)は、スマートフォンであり、本体930には、表示部931と、スピーカー932と、マイク933と、操作ボタン934等が設けられている。本体930内には、先の実施の形態に示す半導体装置を有する表示モジュールが設けられている。そのため回路面積の縮小が図られたスマートフォンが実現される。
図38(E)は、デジタルカメラであり、本体941、表示部942、操作スイッチ943などによって構成されている。本体941内には、先の実施の形態に示す半導体装置を有する表示モジュールが設けられている。そのため、回路面積の縮小が図られたデジタルカメラが実現される。
以上のように、本実施の形態に示す電子機器には、先の実施の形態に示す半導体装置を有する表示モジュールが搭載されている。そのため、回路面積の縮小が図られた電子機器が実現される。
(本明細書等の記載に関する付記)
以上の実施の形態、及び実施の形態における各構成の説明について、以下に付記する。
<実施の形態で述べた本発明の一態様に関する付記>
各実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて、本発明の一態様とすることができる。1つの実施の形態の中に、複数の構成例が示される場合は、互い構成例を適宜組み合わせることが可能である。
なお、ある一つの実施の形態の中で述べる内容(一部の内容でもよい)は、その実施の形態で述べる別の内容(一部の内容でもよい)、及び/又は、一つ若しくは複数の別の実施の形態で述べる内容(一部の内容でもよい)に対して、適用、組み合わせ、又は置き換えなどを行うことが出来る。
なお、実施の形態の中で述べる内容とは、各々の実施の形態において、様々な図を用いて述べる内容、又は明細書に記載される文章を用いて述べる内容のことである。
なお、ある一つの実施の形態において述べる図(一部でもよい)は、その図の別の部分、その実施の形態において述べる別の図(一部でもよい)、及び/又は、一つ若しくは複数の別の実施の形態において述べる図(一部でもよい)に対して、組み合わせることにより、さらに多くの図を構成させることが出来る。
<図面を説明する記載に関する付記>
本明細書等において、「上に」、「下に」などの配置を示す語句は、構成同士の位置関係を、図面を参照して説明するために、便宜上用いている。構成同士の位置関係は、各構成を描写する方向に応じて適宜変化する。そのため、配置を示す語句は、明細書で説明した記載に限定されず、状況に応じて適切に言い換えることができる。
「上」または「下」の用語は、構成要素の位置関係が直上または直下で、かつ、直接接していることを限定するものではない。例えば、「絶縁層A上の電極B」の表現であれば、絶縁層Aの上に電極Bが直接接して形成されている必要はなく、絶縁層Aと電極Bとの間に他の構成要素を含むものを除外しない。
本明細書等において、ブロック図では、構成要素を機能毎に分類し、互いに独立したブロックとして示している。しかしながら実際の回路等においては、構成要素を機能毎に切り分けることが難しく、一つの回路に複数の機能が係わる場合、または、複数の回路にわたって一つの機能が関わる場合、があり得る。そのため、ブロック図のブロックは、明細書で説明した構成要素に限定されず、状況に応じて適切に言い換えることができる。
図面において、大きさ、層の厚さ、又は領域は、説明の便宜上任意の大きさに示したものである。よって、必ずしもそのスケールに限定されない。なお図面は明確性を期すために模式的に示したものであり、図面に示す形状又は値などに限定されない。例えば、ノイズによる信号、電圧、若しくは電流のばらつき、又は、タイミングのずれによる信号、電圧、若しくは電流のばらつきなどを含むことが可能である。
<言い換え可能な記載に関する付記>
本明細書等において、トランジスタの接続関係を説明する際、ソースとドレインとの一方を、「ソース又はドレインの一方」(又は第1電極、又は第1端子)と表記し、ソースとドレインとの他方を「ソース又はドレインの他方」(又は第2電極、又は第2端子)と表記している。これは、トランジスタのソースとドレインは、トランジスタの構造又は動作条件等によって変わるためである。なおトランジスタのソースとドレインの呼称については、ソース(ドレイン)端子、またはソース(ドレイン)電極等、状況に応じて適切に言い換えることができる。
本明細書等において「電極」または「配線」の用語は、これらの構成要素を機能的に限定するものではない。例えば、「電極」は「配線」の一部として用いられることがあり、その逆もまた同様である。さらに、「電極」または「配線」の用語は、複数の「電極」または「配線」が一体となって形成されている場合なども含む。
本明細書等において、電圧と電位は、適宜言い換えることができる。電圧は、基準となる電位からの電位差のことであり、例えば基準となる電位をグラウンド電圧(接地電圧)とすると、電圧を電位に言い換えることができる。グラウンド電位は必ずしも0Vを意味するとは限らない。なお電位は相対的なものであり、基準となる電位によっては、配線等に与える電位を変化させる場合がある。
なお本明細書等において、「膜」、「層」などの語句は、場合によっては、または、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能な場合がある。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能な場合がある。
なお本明細書等において、1つの画素に1つのトランジスタ及び1つの容量素子を備えた1T-1Cの回路構成、あるいは1つの画素に2つのトランジスタ及び1つの容量素子を備えた2T-1C構造の回路構成を示しているが、本実施の形態はこれに限定されない。1つの画素に3つ以上のトランジスタ及び2つ以上の容量素子を有する回路構成とすることもでき、別途の配線がさらに形成されて、多様な回路構成としてもよい。
<語句の定義に関する付記>
以下では、上記実施の形態中で言及した語句の定義について説明する。
<<スイッチについて>>
本明細書等において、スイッチとは、導通状態(オン状態)、または、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有するものをいう。または、スイッチとは、電流を流す経路を選択して切り替える機能を有するものをいう。
一例としては、電気的スイッチ又は機械的なスイッチなどを用いることができる。つまり、スイッチは、電流を制御できるものであればよく、特定のものに限定されない。
電気的なスイッチの一例としては、トランジスタ(例えば、バイポーラトランジスタ、MOSトランジスタなど)、ダイオード(例えば、PNダイオード、PINダイオード、ショットキーダイオード、MIM(Metal Insulator Metal)ダイオード、MIS(Metal Insulator Semiconductor)ダイオード、ダイオード接続のトランジスタなど)、又はこれらを組み合わせた論理回路などがある。
なお、スイッチとしてトランジスタを用いる場合、トランジスタの「導通状態」とは、トランジスタのソースとドレインが電気的に短絡されているとみなせる状態をいう。トランジスタの「非導通状態」とは、トランジスタのソースとドレインが電気的に遮断されているとみなせる状態をいう。なおトランジスタを単なるスイッチとして動作させる場合には、トランジスタの極性(導電型)は特に限定されない。
機械的なスイッチの一例としては、デジタルマイクロミラーデバイス(DMD)のように、MEMS(マイクロ・エレクトロ・メカニカル・システム)技術を用いたスイッチがある。そのスイッチは、機械的に動かすことが可能な電極を有し、その電極が動くことによって、導通と非導通とを制御して動作する。
<<画素について>>
本明細書等において、画素とは、例えば、明るさを制御できる要素一つ分を示すものとする。よって、一例としては、一画素とは、一つの色要素を示すものとし、その色要素一つで明るさを表現する。従って、そのときは、R(赤)G(緑)B(青)の色要素からなるカラー表示装置の場合には、画像の最小単位は、Rの画素とGの画素とBの画素との三画素から構成されるものとする。
なお、色要素は、三色に限定されず、それ以上でもよく、例えば、RGBW(Wは白)とすることもできるし、または、RGBに、イエロー、シアン、マゼンタを追加することもできる。
<<表示素子について>>
本明細書等において、表示素子とは、電気的作用または磁気的作用により、コントラスト、輝度、反射率、透過率などが変化する表示媒体を有するものである。表示素子の一例としては、EL(エレクトロルミネッセンス)素子、LEDチップ(白色LEDチップ、赤色LEDチップ、緑色LEDチップ、青色LEDチップなど)、トランジスタ(電流に応じて発光するトランジスタ)、電子放出素子、カーボンナノチューブを用いた表示素子、液晶素子、電子インク、エレクトロウェッティング素子、電気泳動素子、プラズマディスプレイパネル(PDP)、MEMS(マイクロ・エレクトロ・メカニカル・システム)を用いた表示素子(例えば、グレーティングライトバルブ(GLV)、デジタルマイクロミラーデバイス(DMD)、DMS(デジタル・マイクロ・シャッター)、MIRASOL(登録商標)、IMOD(インターフェロメトリック・モジュレーション)素子、シャッター方式のMEMS表示素子、光干渉方式のMEMS表示素子、圧電セラミックディスプレイなど)、カーボンナノチューブ、または、量子ドットなど、がある。EL素子を用いた表示装置の一例としては、ELディスプレイなどがある。電子放出素子を用いた表示装置の一例としては、フィールドエミッションディスプレイ(FED)又はSED方式平面型ディスプレイ(SED:Surface-conduction Electron-emitter Display)などがある。液晶素子を用いた表示装置の一例としては、液晶ディスプレイ(透過型液晶ディスプレイ、半透過型液晶ディスプレイ、反射型液晶ディスプレイ、直視型液晶ディスプレイ、投射型液晶ディスプレイ)などがある。電子インク、電子粉流体(登録商標)、又は電気泳動素子を用いた表示装置の一例としては、電子ペーパーなどがある。量子ドットを各画素に用いた表示装置の一例としては、量子ドットディスプレイなどがある。なお、量子ドットは、表示素子としてではなく、バックライトの一部に設けてもよい。量子ドットを用いることにより、色純度の高い表示を行うことができる。なお、半透過型液晶ディスプレイまたは反射型液晶ディスプレイを実現する場合には、画素電極の一部、または、全部が、反射電極としての機能を有するようにすればよい。例えば、画素電極の一部、または、全部が、アルミニウム、銀、などを有するようにすればよい。さらに、その場合、反射電極の下に、SRAMなどの記憶回路を設けることも可能である。これにより、さらに、消費電力を低減することができる。なお、LEDチップを用いる場合、LEDチップの電極または窒化物半導体の下に、グラフェンまたはグラファイトを配置してもよい。グラフェンまたはグラファイトは、複数の層を重ねて、多層膜としてもよい。このように、グラフェンまたはグラファイトを設けることにより、その上に、窒化物半導体、例えば、結晶を有するn型GaN半導体層などを容易に成膜することができる。さらに、その上に、結晶を有するp型GaN半導体層などを設けて、LEDチップを構成することができる。なお、グラフェンまたはグラファイトと、結晶を有するn型GaN半導体層との間に、AlN層を設けてもよい。なお、LEDチップが有するGaN半導体層は、MOCVDで成膜してもよい。ただし、グラフェンを設けることにより、LEDチップが有するGaN半導体層は、スパッタ法で成膜することも可能である。MEMS(マイクロ・エレクトロ・メカニカル・システム)を用いた表示素子においては、表示素子が封止されている空間(例えば、表示素子が配置されている素子基板と、素子基板に対向して配置されている対向基板との間)に、乾燥剤を配置してもよい。乾燥剤を配置することにより、MEMSなどが水分によって動きにくくなること、および/または、劣化しやすくなることを防止すること、ができる。
<<接続について>>
本明細書等において、AとBとが接続されている、とは、AとBとが直接接続されているものの他、電気的に接続されているものを含むものとする。ここで、AとBとが電気的に接続されているとは、AとBとの間で、何らかの電気的作用を有する対象物が存在するとき、AとBとの電気信号の授受を可能とするものをいう。
100 半導体装置
110 ホストプロセッサ
120 表示装置
101 インターフェース
102 ロジック回路
103 ラッチ回路
104 デジタルアナログ変換回路
105 フレームメモリ
106 バッファ回路
121 画素
140 メモリセル
140A メモリセル
140B メモリセル
140C メモリセル
140D メモリセル
140E メモリセル
140F メモリセル
140G メモリセル
140H メモリセル
141 第1の層
142 第2の層
131 サンプルホールド回路
132 補正回路
133 ソースフォロワ回路
M1 トランジスタ
M2 トランジスタ
M3 トランジスタ
M4 トランジスタ
M5 トランジスタ
M6 トランジスタ
M7 トランジスタ
M8 トランジスタ
ND1 ノード
ND2 ノード
C1 容量素子
C2 容量素子
C3 容量素子
P1 期間
P2 期間
P3 期間
143 駆動回路
144 切り替え回路
EN1 制御信号
EN2 制御信号
EN3 制御信号
EN2_B 制御信号
150 ゲートドライバ
160 タッチセンサ
181 タッチセンサ駆動回路
100A 半導体装置
100B 半導体装置
100C 半導体装置
182 演算装置
183 FPGA
184 切り替えスイッチ
185 ロジックエレメント
186 コンフィギュレーションメモリ
187 トランジスタ
188 トランジスタ
162A 画素
162B 画素
XL 走査線
YL 信号線
ZL 電流供給線
191 トランジスタ
192 キャパシタ
193 液晶素子
194 トランジスタ
195 トランジスタ
196 EL素子
10 トランジスタ層
12 トランジスタ
14 半導体層
16 ゲート電極
20 配線層
22 配線
24 絶縁層
20A 配線層
20B 配線層
30 トランジスタ層
32 トランジスタ
34 半導体層
36 ゲート電極
40 配線層
40A 配線層
40B 配線層
42 配線
44 絶縁層
300 キャパシタ
602 絶縁体
604 導電体
604A 導電体
612 絶縁体
616 導電体
620 絶縁体
622 絶縁体
624 導電体
624a 導電体
624b 導電体
624c 導電体
626 導電体
626a 導電体
626b 導電体
626c 導電体
626d 導電体
628 導電体
628a 導電体
628b 導電体
628c 導電体
628d 導電体
690 レジストマスク
400 トランジスタ
205 導電体
210 絶縁体
212 絶縁体
214 絶縁体
216 絶縁体
218 導電体
218a 導電体
218b 導電体
218c 導電体
220 絶縁体
222 絶縁体
224 絶縁体
230 酸化物
230a 酸化物
230b 酸化物
230c 酸化物
240a 導電体
240b 導電体
244 導電体
244a 導電体
244b 導電体
244c 導電体
246a 導電体
246b 導電体
250 絶縁体
260 導電体
270 絶縁体
280 絶縁体
282 絶縁体
284 絶縁体
500 トランジスタ
500A トランジスタ
301 基板
302 半導体領域
304 絶縁体
306 導電体
308a 低抵抗領域
308b 低抵抗領域
320 絶縁体
322 絶縁体
324 絶縁体
326 絶縁体
328 導電体
330 導電体
350 絶縁体
352 絶縁体
354 絶縁体
356 導電体
358 導電体
358a 導電体
358b 導電体
358c 導電体
711 表示部
712 ソースドライバ
712A ゲートドライバ
712B ゲートドライバ
713 基板
714 ソースドライバIC
715 FPC
716 外部回路基板
901 筐体
902 筐体
903a 表示部
903b 表示部
904 選択ボタン
905 キーボード
910 電子書籍端末
911 筐体
912 筐体
913 表示部
914 表示部
915 軸部
916 電源
917 操作キー
918 スピーカー
920 テレビジョン装置
921 筐体
922 表示部
923 スタンド
924 リモコン操作機
930 本体
931 表示部
932 スピーカー
933 マイク
934 操作ボタン
941 本体
942 表示部
943 操作スイッチ
8000 表示モジュール
8001 上部カバー
8002 下部カバー
8003 FPC
8004 タッチパネル
8005 FPC
8006 表示パネル
8009 フレーム
8010 プリント基板
8011 バッテリー

Claims (4)

  1. 表示パネルの画素部を駆動するソースドライバであって、
    前記ソースドライバは、デジタルアナログ変換回路と、フレームメモリと、を有し、
    前記フレームメモリは、サンプルホールド回路と、補正回路と、ソースフォロワ回路と、を有し、
    前記サンプルホールド回路は、前記デジタルアナログ変換回路が出力するアナログ電圧を保持する機能を有し、
    前記補正回路は、前記サンプルホールド回路に保持された前記アナログ電圧を補正する機能を有し、
    前記ソースフォロワ回路は、補正された前記アナログ電圧を出力する機能を有し、
    前記サンプルホールド回路は、第1のトランジスタを有し、
    前記補正回路は、第2のトランジスタを有し、
    前記ソースフォロワ回路は、第3のトランジスタを有し、
    前記第1乃至第3のトランジスタは、半導体層に酸化物半導体層を有するソースドライバ
  2. 表示パネルの画素部を駆動するソースドライバであって、
    前記ソースドライバは、デジタルアナログ変換回路と、フレームメモリと、バッファ回路と、を有し、
    前記フレームメモリは、サンプルホールド回路と、補正回路と、ソースフォロワ回路と、を有し、
    前記サンプルホールド回路は、前記デジタルアナログ変換回路が出力するアナログ電圧を保持する機能を有し、
    前記補正回路は、前記サンプルホールド回路に保持された前記アナログ電圧を補正する機能を有し、
    前記ソースフォロワ回路は、補正された前記アナログ電圧を前記バッファ回路に出力する機能を有し、
    前記サンプルホールド回路は、第1のトランジスタを有し、
    前記補正回路は、第2のトランジスタを有し、
    前記ソースフォロワ回路は、第3のトランジスタを有し、
    前記第1乃至第3のトランジスタは、半導体層に酸化物半導体層を有するソースドライバ
  3. 表示パネルの画素部を駆動するソースドライバであって、
    前記ソースドライバは、デジタルアナログ変換回路と、フレームメモリと、バッファ回路と、を有し、
    前記フレームメモリは、サンプルホールド回路と、補正回路と、ソースフォロワ回路と、を有し、
    前記サンプルホールド回路は、前記デジタルアナログ変換回路が出力するアナログ電圧を保持する機能を有し、
    前記補正回路は、前記サンプルホールド回路に保持された前記アナログ電圧を補正する機能を有し、
    前記ソースフォロワ回路は、補正された前記アナログ電圧を前記バッファ回路に出力する機能を有し、
    前記サンプルホールド回路は、第1のトランジスタを有し、
    前記補正回路は、第2のトランジスタを有し、
    前記ソースフォロワ回路は、第3のトランジスタを有し、
    前記デジタルアナログ変換回路は、第4のトランジスタを有し、
    前記バッファ回路は、第5のトランジスタを有し、
    前記第1乃至第3のトランジスタは、半導体層に酸化物半導体層を有し、
    前記第4及び第5のトランジスタは、半導体層にシリコンを有するソースドライバ
  4. 請求項3において、
    前記第1乃至第3のトランジスタを有する層は、前記第4及び第5のトランジスタを有する層の上層に設けられるソースドライバ
JP2017007170A 2016-01-29 2017-01-19 ソースドライバ Active JP6995481B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016014992 2016-01-29
JP2016014992 2016-01-29

Publications (3)

Publication Number Publication Date
JP2017138588A JP2017138588A (ja) 2017-08-10
JP2017138588A5 JP2017138588A5 (ja) 2020-02-20
JP6995481B2 true JP6995481B2 (ja) 2022-02-04

Family

ID=59386937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017007170A Active JP6995481B2 (ja) 2016-01-29 2017-01-19 ソースドライバ

Country Status (2)

Country Link
US (1) US10490142B2 (ja)
JP (1) JP6995481B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10490116B2 (en) 2016-07-06 2019-11-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, memory device, and display system
US10586495B2 (en) * 2016-07-22 2020-03-10 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US9977857B1 (en) * 2017-05-19 2018-05-22 Taiwan Semiconductor Manufacturing Company, Ltd. Method and circuit for via pillar optimization
KR20230164225A (ko) * 2018-02-01 2023-12-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 전자 기기
US11908947B2 (en) 2019-08-08 2024-02-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN114641818A (zh) * 2019-11-01 2022-06-17 株式会社半导体能源研究所 显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005266365A (ja) 2004-03-18 2005-09-29 Semiconductor Energy Lab Co Ltd ソースフォロワ回路及びその駆動方法、ボルテージフォロワ回路、表示装置
JP2007108575A (ja) 2005-10-17 2007-04-26 Canon Inc 電流供給装置及び表示装置
JP2008139861A (ja) 2006-11-10 2008-06-19 Toshiba Matsushita Display Technology Co Ltd 有機発光素子を用いたアクティブマトリクス型表示装置、および有機発光素子を用いたアクティブマトリクス型表示装置の駆動方法
US20110032129A1 (en) 2009-08-07 2011-02-10 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuits, liquid crystal display (lcd) drivers, and systems
JP2011158922A (ja) 2011-05-07 2011-08-18 Renesas Electronics Corp 表示制御回路及び表示駆動回路
JP2011085918A5 (ja) 2010-09-14 2013-10-17 表示装置
JP2014510295A (ja) 2011-01-31 2014-04-24 グローバル・オーエルイーディー・テクノロジー・リミテッド・ライアビリティ・カンパニー マルチレベルドライブを用いるエレクトロルミネッセントデバイス経時変化補償
JP2015181081A (ja) 2014-03-07 2015-10-15 株式会社半導体エネルギー研究所 半導体装置および電子機器

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770623B2 (ja) 1988-07-08 1995-07-31 三菱電機株式会社 スタティックランダムアクセスメモリ装置
KR0161361B1 (ko) * 1993-04-28 1999-03-20 사또 후미오 구동 회로 장치
JP3277056B2 (ja) * 1993-12-09 2002-04-22 シャープ株式会社 信号増幅回路及びこれを用いた画像表示装置
JP2667373B2 (ja) * 1994-12-13 1997-10-27 インターナショナル・ビジネス・マシーンズ・コーポレイション アナログ・ビデオ信号補正装置及びtft液晶表示装置
JP3488577B2 (ja) * 1996-08-30 2004-01-19 株式会社東芝 マトリクス型表示装置
JPH1195727A (ja) * 1997-09-24 1999-04-09 Fujitsu Ltd サンプルホールド回路並びにこれを用いたデータドライバ及びフラットパネル型表示装置
JP3985340B2 (ja) * 1997-09-26 2007-10-03 ソニー株式会社 液晶表示装置駆動回路
JP3930992B2 (ja) * 1999-02-10 2007-06-13 株式会社日立製作所 液晶表示パネル用駆動回路及び液晶表示装置
JP4388274B2 (ja) 2002-12-24 2009-12-24 株式会社ルネサステクノロジ 半導体記憶装置
TWI293446B (en) 2004-11-30 2008-02-11 Himax Tech Ltd Power saving flat display and method thereof
KR101085908B1 (ko) * 2004-12-30 2011-11-23 매그나칩 반도체 유한회사 스위치드 캐패시터 회로와 스위치드 캐패시터 회로를이용한 아날로그 메모리
US7280397B2 (en) 2005-07-11 2007-10-09 Sandisk 3D Llc Three-dimensional non-volatile SRAM incorporating thin-film device layer
JP5158624B2 (ja) 2006-08-10 2013-03-06 ルネサスエレクトロニクス株式会社 半導体記憶装置
EP1895545B1 (en) 2006-08-31 2014-04-23 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
JP2008191442A (ja) 2007-02-06 2008-08-21 Nec Electronics Corp 表示ドライバic
US7443714B1 (en) 2007-10-23 2008-10-28 Juhan Kim DRAM including segment read circuit
US9715845B2 (en) * 2009-09-16 2017-07-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
WO2011058913A1 (en) * 2009-11-13 2011-05-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
CN102598266B (zh) 2009-11-20 2015-04-22 株式会社半导体能源研究所 半导体装置
KR101803254B1 (ko) 2009-11-27 2017-11-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR101760537B1 (ko) 2009-12-28 2017-07-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
WO2011081011A1 (en) 2009-12-28 2011-07-07 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and manufacturing method thereof
KR101884031B1 (ko) 2010-04-07 2018-07-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 기억 장치
WO2011129233A1 (en) 2010-04-16 2011-10-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8634228B2 (en) 2010-09-02 2014-01-21 Semiconductor Energy Laboratory Co., Ltd. Driving method of semiconductor device
KR102082794B1 (ko) 2012-06-29 2020-02-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치의 구동 방법, 및 표시 장치
JP6807725B2 (ja) 2015-12-22 2021-01-06 株式会社半導体エネルギー研究所 半導体装置、表示パネル、及び電子機器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005266365A (ja) 2004-03-18 2005-09-29 Semiconductor Energy Lab Co Ltd ソースフォロワ回路及びその駆動方法、ボルテージフォロワ回路、表示装置
JP2007108575A (ja) 2005-10-17 2007-04-26 Canon Inc 電流供給装置及び表示装置
JP2008139861A (ja) 2006-11-10 2008-06-19 Toshiba Matsushita Display Technology Co Ltd 有機発光素子を用いたアクティブマトリクス型表示装置、および有機発光素子を用いたアクティブマトリクス型表示装置の駆動方法
US20110032129A1 (en) 2009-08-07 2011-02-10 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuits, liquid crystal display (lcd) drivers, and systems
JP2011085918A5 (ja) 2010-09-14 2013-10-17 表示装置
JP2014510295A (ja) 2011-01-31 2014-04-24 グローバル・オーエルイーディー・テクノロジー・リミテッド・ライアビリティ・カンパニー マルチレベルドライブを用いるエレクトロルミネッセントデバイス経時変化補償
JP2011158922A (ja) 2011-05-07 2011-08-18 Renesas Electronics Corp 表示制御回路及び表示駆動回路
JP2015181081A (ja) 2014-03-07 2015-10-15 株式会社半導体エネルギー研究所 半導体装置および電子機器

Also Published As

Publication number Publication date
US10490142B2 (en) 2019-11-26
US20170221429A1 (en) 2017-08-03
JP2017138588A (ja) 2017-08-10

Similar Documents

Publication Publication Date Title
JP6807725B2 (ja) 半導体装置、表示パネル、及び電子機器
JP6995481B2 (ja) ソースドライバ
JP7392024B2 (ja) 半導体装置
JP7204829B2 (ja) 半導体装置
US9423657B2 (en) TFT arrangement for display device
JP2023052247A (ja) 半導体装置
JP2021090079A (ja) 半導体装置
JP6884569B2 (ja) 半導体装置及びその作製方法
JP2017010000A (ja) 表示装置
TWI591805B (zh) 半導體裝置製造方法
US10700212B2 (en) Semiconductor device, semiconductor wafer, module, electronic device, and manufacturing method thereof
KR20110093822A (ko) 구동 회로 및 표시 장치
US20160056179A1 (en) Semiconductor device, manufacturing method thereof, and electronic device
TW201125115A (en) Light-emitting device and manufacturing method thereof
JP7354219B2 (ja) 半導体装置
JP2021170665A (ja) 半導体装置
WO2022118141A1 (ja) 表示装置、および表示補正システム
WO2022162490A1 (ja) 表示装置、及び電子機器
JP6553266B2 (ja) 金属酸化物膜及び半導体装置
CN116762476A (zh) 显示装置的制造方法
JP2024010113A (ja) 金属酸化物膜

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211215

R150 Certificate of patent or registration of utility model

Ref document number: 6995481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150