JP6988179B2 - 複合樹脂 - Google Patents

複合樹脂 Download PDF

Info

Publication number
JP6988179B2
JP6988179B2 JP2017117102A JP2017117102A JP6988179B2 JP 6988179 B2 JP6988179 B2 JP 6988179B2 JP 2017117102 A JP2017117102 A JP 2017117102A JP 2017117102 A JP2017117102 A JP 2017117102A JP 6988179 B2 JP6988179 B2 JP 6988179B2
Authority
JP
Japan
Prior art keywords
group
composite resin
liquid crystal
crystal compound
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017117102A
Other languages
English (en)
Other versions
JP2019003009A (ja
Inventor
秀和 川▲崎▼
聖二郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2017117102A priority Critical patent/JP6988179B2/ja
Publication of JP2019003009A publication Critical patent/JP2019003009A/ja
Application granted granted Critical
Publication of JP6988179B2 publication Critical patent/JP6988179B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、複合樹脂に関する。
現代生活において樹脂製品は欠かせないものとなっており、2012年には世界で2億8千万トンの樹脂製品が生産されている。樹脂製品は、その加工の際に熱エネルギーを用いた溶融を行うことが多いが、その際用いられる熱量は莫大である。省エネの観点から、加工時に使用する熱量を低減させることが望まれており、そのために樹脂の軟化温度やガラス転移温度を低下させ、加工時の熱量を低減させる、低温加工の技術が種々検討されている。
樹脂の軟化温度やガラス転移温度を低下させると、ある程度の温度の低温化は可能であるが、経時により熱安定性等が低下してしまうという問題も生じる。そこで、樹脂に対して機能性材料を添加することで、樹脂の軟化温度やガラス転移温度を低下させ、加工温度を低下させる技術の検討がなされている。たとえば特許文献1では、結着樹脂と、着色剤と、添加剤とを含有し、前記添加剤が、光吸収によりシス−トランス異性化反応し、相転移する化合物を含む、現像剤が開示されている。
特開2014−191078号公報
しかしながら、上記特許文献1に記載されている技術では、樹脂の軟化温度やガラス転移温度は低下するものの、加工後に加圧や摩擦などで物理的な力を加えると、添加剤が染み出すなどの現象が見られ、加工後の耐久性が不十分であるという問題があった。
そこで、本発明は、より低い温度での加工が可能となり、加工後の耐久性に優れた複合樹脂を提供することを目的とする。
本発明者らは鋭意研究を積み重ねた。その結果、窒素含有基を有する高分子と;前記窒素含有基と水素結合を形成する官能基を有し、光照射により異性化する液晶性化合物と;が水素結合を形成してなる複合樹脂であって、前記水素結合は光照射により切断されうる結合である、複合樹脂によって、上記課題が解決することを見出した。
本発明によれば、より低い温度での加工が可能となり、加工後の耐久性に優れた複合樹脂が提供される。
本発明の一形態による複合樹脂の効果発現のメカニズムを示す模式図である。 本発明の一実施形態による画像形成方法で用いられる画像形成装置を示す概略構成図である。 画像形成装置における照射部の概略構成図である。
本発明は、窒素含有基を有する高分子と;前記窒素含有基と水素結合を形成する官能基を有し、光照射により異性化する液晶性化合物と;が水素結合を形成してなる複合樹脂であって、前記水素結合は光照射により切断されうる結合である、複合樹脂である。かような構成を有する本発明の複合樹脂は、より低い温度での加工が可能となり、加工後にも優れた耐久性を有する。
なぜ、本発明の複合樹脂により上記効果が得られるのか、詳細は不明であるが、下記のようなメカニズムが考えられる。なお、下記のメカニズムは推測によるものであり、本発明は下記メカニズムに何ら制限されるものではない。また、本明細書では、窒素含有基を有する高分子を単に「高分子」とも称し、前記窒素含有基と水素結合を形成する官能基を有し、光照射により異性化する液晶性化合物を単に「液晶性化合物」とも称する。
図1は、本発明の一形態による複合樹脂の効果発現のメカニズムを示す模式図である。
窒素含有基を有する高分子(高分子)と液晶性化合物とを混合すると、当該高分子中の窒素含有基(図1中の黒塗り部分)と、液晶性化合物中の、前記窒素含有基と水素結合を形成する官能基(図1中の灰色塗り部分)との水素結合が形成され、液晶性化合物によって、その一部が架橋構造となった複合樹脂が形成される。この際、窒素含有基を有する高分子と水素結合を形成しない液晶性化合物も存在し、その液晶性化合物は、分子間相互作用により互いに集まりやすく結晶構造をとる。よって、複合樹脂全体としては結晶性樹脂としての挙動を示す(図1中の1)。そこに液晶性化合物の吸収波長の光(たとえば紫外光)を照射すると、液晶性化合物は幾何異性体の混合物へと構造が変化し、また、その構造変化により高分子中の窒素含有基と液晶性化合物中の官能基とで形成されている水素結合が切断され、複合樹脂の分子運動の自由度が増加する。このように、幾何異性体の混合物となった部分は、異方性(結晶性)が低下し液晶性(液性)を示すようになり、いわば複合樹脂の可塑剤として働くため、複合樹脂の軟化温度やガラス転移温度(Tg)が低下する(図1中の2)。よって、本発明の複合樹脂は、より低い温度での加工が可能となる。本発明の複合樹脂がトナーに用いられる場合は、複合樹脂を軟化させた後加圧することにより、記録媒体上にトナーが定着する(図1中の3)。
さらに、軟化した複合樹脂に可視光を照射すると、幾何異性体の混合物の状態であった液晶性化合物は、元の幾何異性を有する化合物へと再び構造変化し、切断されていた水素結合も再形成されるため、複合樹脂の強度は回復する(図1中の4)。このような強度が回復した本発明の複合樹脂に加圧や摩擦など物理的な力を加えても、液晶性化合物が染み出すなどの現象も見られない。すなわち、本発明の複合樹脂は、加工後の耐久性に優れる。なお、図1において、窒素含有基を有する高分子として、窒素含有基が側鎖として含まれるものを例示したが、窒素含有基の窒素原子は、高分子の主鎖に含まれる形態であっても、上記と同様のメカニズムにより説明されると考えられる。
以下、本発明の好ましい実施形態を説明する。なお、本明細書において、範囲を示す「X〜Y」は「X以上Y以下」を意味する。また、本明細書において、特記しない限り、操作および物性等の測定は、室温(20〜25℃)/相対湿度40〜50%RHの条件で行う。
[複合樹脂の構成]
<窒素含有基を有する高分子(高分子)>
窒素含有基を有する高分子は、窒素含有基を有する重量平均分子量が1,000以上の有機化合物をいう。窒素含有基を有する高分子は、窒素原子を含むものであれば特に制限されず、窒素含有基の窒素原子は、高分子の主鎖に含まれていてもよいし、側鎖に含まれていてもよい。液晶性化合物と水素結合を形成しやすいという観点からは、高分子は、側鎖に窒素含有基を含んでいると好ましい。
窒素含有基は、以下で詳説する液晶性化合物の官能基と水素結合を形成する、窒素原子を有する基である。かような窒素含有基としては、例えば、アミノ基;メチルアミノ基、ジメチルアミノ基等のアルキルアミノ基;フェニルアミノ基、ジフェニルアミノ基、ジナフチルアミノ基等のアリールアミノ基;メチルフェニルアミノ基等のアルキルアリールアミノ基;ニトロ基;シアノ基;ウレイド基;ピリジニル基、ピラジニル基、ピリミジニル基、ピリダジニル基、ピラニル基、チオピラニル基、チオキサンテニル基、イミダゾリル基、ピラゾリニル基、ベンゾピラゾリニル基、ピラゾリジニル基、チアゾリル基、イソチアゾリル基、トリアゾリル基、テトラゾリル基、オキサチアゾリル基、オキサチアジニル基、ベンゾキサゾリル基、ベンゾチアゾリル基、ベンゾイミダゾリル基、チアナフテル基、チアジアゾリル基、トリアジニル基、オキサゾリル基、イソオキサゾリル基、ベンゾオキサゾリル基、ベンゾイソオキサゾリル基、ベンゾイソチアゾリル基、フラザニル基、インドリジニル基、インドリル基、イソインドリル基、インダゾリル基、プリニル基、キノリジニル基、キノリニル基、イソキノリニル基、ナフチジニル基、フタラジニル基、キノキサリニル基、シンノリニル基、ベンゾキサジニル基、プテリジニル基、カルバゾリル基、フェナントリジニル基、アクリジニル基、ペリミジニル基、フェナントロリニル基、フェナジニル基、フェノテルラジニル基、フェノセレナジニル基、フェノチアジニル基、フェノキサジニル基、アンチリジニル基、キナゾリニル基、アゼチジニル基、ピロリドニル基、ピロリジニル基、ピロリニル基、ピペリジニル基、ピペラジニル基、モルホリニル基、チオモルホリニル基、プリニル基、ナフチリジニル基、ピリドピリミジニル基等の窒素原子を有する複素環基等が挙げられる。また、これらの置換基が、2価以上の基の形態で高分子中に含まれていてもよい。例えば、ピリジニル基は、ピリジンジイル基として高分子中に含まれていてもよい。
さらに、上記窒素含有基以外にも、窒素含有基としては、アミド基(−NRC(=O)−;Rは水素原子または1価の有機基);イミド基(−C(=O)−N−C(=O)−)、カルバメート基(−NHC(=O)O−)等の二価の基が挙げられる。さらに、窒素含有基を有する高分子は、これらの基を単独で含んでいてもよく、または2種以上の組み合わせで含んでいてもよい。
前記アルキルアミノ基、アリールアミノ基、アルキルアリールアミノ基、窒素原子を含有する複素環基の1つ以上の水素原子は、他の置換基で置換されていてもよい。当該置換基として、具体的には、ハロゲン原子;ヒドロキシ基;ニトロ基;シアノ基;−NH基;−NH(R)基(Rは炭素数1〜10の直鎖状または分枝状のアルキル基である);−N(R’)(R”)基(R’およびR”は互いに独立して、炭素数1〜10の直鎖状または分枝状のアルキル基である);アミジノ基;ヒドラジン基;ヒドラゾン基;炭素数1〜20の直鎖状もしくは分枝状のアルキル基;炭素数1〜20の直鎖状もしくは分枝状のハロゲン化アルキル基;炭素数2〜20の直鎖状もしくは分枝状のアルケニル基;炭素数2〜20の直鎖状もしくは分枝状のアルキニル基;炭素数6〜20のアリール基;炭素数7〜20のアリールアルキル基;窒素原子、酸素原子、リン原子、および硫黄原子からなる群より選択される少なくとも1つのヘテロ原子を含む炭素数5〜20のヘテロアリール基;または窒素原子、酸素原子、リン原子、および硫黄原子からなる群より選択される少なくとも1つのヘテロ原子を含む炭素数6〜20のヘテロアリールアルキル基;等の置換基が挙げられる。なお、これらの基は、同一の置換基で置換されることはない。たとえば、アルキルアミノ基は、アルキルアミノ基で置換されることはない。
なかでも、窒素含有基を有する高分子は、窒素含有基として、窒素原子を有する複素環基を有していると好ましい。窒素原子を有する複素環基に含まれる窒素原子の求核性が弱いため、複素環基を含む高分子は、液晶性化合物との間に適度な強度の(強すぎない)水素結合を形成できる。したがって、光照射により、液晶性化合物との間の水素結合が容易に切断される。その結果、光照射後のガラス転移温度(Tg)を低下させやすくなり、より低い温度での加工が可能となる。
上記窒素含有基を含む単量体を公知の手法により重合させることにより、窒素含有基を有する高分子が製造される。このとき、より低い温度で加工することができ、耐久性にも優れる複合樹脂を得るために、高分子を形成する単量体として、窒素原子を有する複素環基を有するビニル化合物を用いると好ましい。すなわち、窒素含有基を有する高分子は、窒素原子を有する複素環基を有するビニル化合物に由来する構成単位を有していると好ましい。ビニル化合物のビニル基が重合されることにより、適度な柔軟性を有する主鎖が形成されるため、光照射後において、より低い温度で加工することができる。また、ビニル基に由来する構成単位を含む高分子は、立体障害が少なく液晶性化合物との水素結合を形成しやすいため、加工後の耐久性もまた向上する。
かようなビニル化合物としては、特に制限されないが、例えば、1−ビニルピロール、1−ビニル−2−イミダゾリン、1−ビニル−2−メチル−2−イミダゾリン、1−ビニルイミダゾール、1−ビニル−1H−ピラゾール、1−ビニル−3,5−ジメチル−1H−ピラゾール、3−メチル−5−フェニル−1−ビニルピラゾール、1−ビニルインドール、1−ビニル−2−メチル−1H−インドール、1−ビニルイソインドール、1−ビニルインダゾール、1−ビニルキノリン、1−ビニルイソキサリン、1−ビニルキナゾリン、1−ビニルシンノリン、1−ビニルカルバゾール、1,1’−ジビニル−2,2’−ビ(1H−イミダゾール)、N−ビニル−2−ピロリドン、N−ビニル−ε−カプロラクタム、1−ビニルピリジン−2(1H)−オン、1−ビニル−2(1H)−ピリジンチオン、2−ビニルピリジン、3−ビニルピリジン、4−ビニルピリジン、6−メチル−2−エテニルピリジン、2−ビニルピリミジン、2−ビニルピラジン、2−メチル−5−ビニルピラジン、2−メチル−6−ビニルピラジン、2,5−ジメチル−3−ビニルピラジン、2−ビニルピリダジン、2−ビニルキノリン、4−ビニルキノリン、2−ビニルイソキノリン、2−ビニルイソキサリン、2−ビニルキノキサリン、2−ビニルキナゾリン、2−ビニルシンノリン、1−ビニル−1H−ベンゾイミダゾール、1−ビニル−5,6−ジメチル−1H−ベンゾイミダゾール、1−ビニルインダゾール、1−ビニルキノリン、1−ビニルキノリン、1−ビニルイソキノリン、1−ビニルイソキサリン、1−ビニルキノキサリン、1−ビニルキナゾリン、1−ビニルシンノリン、1−ベンジル−2−ビニルピペラジン、1−ベンジル−3−ビニルピペラジン、1、4−ジメチル−3−ビニルピペラジン等が挙げられる。これら化合物は、単独で、または2種以上を組み合わせて用いてもよい。
さらに、窒素含有基を有する高分子は、窒素含有基として、含窒素芳香族複素環基を有していると好ましい。含窒素芳香族複素環基は、液晶性化合物との間で適度な強度の(強すぎない)水素結合を形成するため、光照射後における複合樹脂の加工温度をより低くすることができる。よって、窒素含有基を有する高分子は、含窒素芳香族複素環基を有する単量体に由来する構成単位を有していると好ましい。さらに、上記と同様の理由により、窒素含有基を有する高分子は、含窒素芳香族複素環基を有するビニル化合物に由来する構成単位を有しているとより好ましい。なかでも、水素結合の結合強度がより適度なものになるという観点から、窒素含有基を有する高分子は、1−ビニルイミダゾール、2−ビニルピリジン、3−ビニルピリジンおよび4−ビニルピリジンからなる群から選択される少なくとも1種に由来する構成単位を含んでいると好ましい。
窒素含有基を有する高分子は、窒素含有基を含む単量体の単独重合体であってもよいし、窒素含有基を含む単量体と当該単量体と共重合可能な他の窒素含有基を含まない単量体との共重合体であってもよい。このとき、共重合体は、ランダム共重合体、ブロック共重合体、グラフト共重合体、交互共重合体等、いずれの形態であってもよい。
より低温で加工できる複合樹脂を得るためには、窒素含有基を有する高分子は、上記共重合体であると好ましい。すなわち、窒素含有基を有する高分子は、窒素含有基を含まない単量体に由来する構成単位をさらに含んでいると好ましい。かような構成単位を含むことにより、液晶性化合物との水素結合に関与しない部分が形成されるため、高分子の自由度が向上し、光照射により、ガラス転移温度(Tg)が低下しやすくなり、より低い温度での加工が可能となる。
窒素含有基を含まない単量体(共重合可能な他の単量体)の例としては、特に制限されないが、例えば、エチレン、プロピレン、ブタジエン等のオレフィン;スチレン、α−メチルスチレン、ビニルトルエン等のスチレン単量体;アクリル酸、メタクリル酸等のカルボキシ基およびエチレン性不飽和基を有する単量体等が挙げられる。これら化合物は、単独で、または2種以上を組み合わせて用いてもよい。
なかでも、窒素含有基を含まない単量体としては、スチレン単量体を用いると好ましい。すなわち、窒素含有基を有する高分子は、窒素含有基を含む単量体に由来する構成単位とスチレン単量体に由来する構成単位とを含む共重合体であると好ましい。かような共重合体は、特に、液晶性化合物が以下の化学式(1)で表される化合物である場合に、当該液晶性化合物とπ−π相互作用しやすい。これにより、液晶性化合物との水素結合を形成しやすくなり、本発明の効果がさらに得られやすくなる。
窒素原子を有する複素環基(含窒素芳香族複素環基)を有する高分子の具体例としては、ポリピロール、ポリビニルピロール、ポリビニルイミダゾール、スチレン−ビニルイミダゾール共重合体、ポリビニルピリジン(ポリ(2−ビニルピリジン)、ポリ(3−ビニルピリジン)、ポリ(4−ビニルピリジン)等)、スチレン−ビニルピリジン共重合体(スチレン−2−ビニルピリジン共重合体、スチレン−3−ビニルピリジン共重合体、スチレン−4−ビニルピリジン共重合体等)、スチレン−ブタジエン−ビニルピリジン共重合体、ポリベンゾイミダゾ−ル等が挙げられる。これら高分子は、単独で使用されても、または2種以上を組み合わせて使用されてもよい。
なかでも、液晶性化合物との水素結合の強さや、高分子自体の剛直性の観点から、高分子は、ポリビニルイミダゾール、スチレン−ビニルイミダゾール共重合体、ポリビニルピリジン、スチレン−ビニルピリジン共重合体、メラミン樹脂およびポリベンゾイミダゾ−ルからなる群から選択される少なくとも1種を含むと好ましく、ポリビニルピリジンおよびスチレン−ビニルピリジン共重合体からなる群から選択される少なくとも1種を含むとより好ましい。
窒素含有基を有する高分子の他の具体例としては、熱可塑性ポリイミド、熱可塑性ポリアミド、熱可塑性ポリウレタン、熱可塑性ポリウレア、ポリアミドイミド、ポリアミドアミン、ポリエチレンイミン、ポリカルボジイミド、ジアミノマレオニトリル重合体、ポリアクリロニトリル、アクリロニトリル−メタクリル酸共重合体、アクリロニトリル−スチレン共重合体、ポリビニルピロリドン、ポリアニリン、ポリビスマレイミド、ポリアミノビスマレイミド等が挙げられる。これら高分子は、単独で使用されても、または2種以上を組み合わせて使用されてもよい。
なかでも、液晶性化合物との水素結合の強さや、高分子自体の剛直性の観点から、高分子は、熱可塑性ポリアミド、熱可塑性ポリウレタン、熱可塑性ポリウレアおよびアクリロニトリル−スチレン共重合体からなる群から選択される少なくとも1種を含むと好ましく、熱可塑性ポリアミドおよび熱可塑性ポリウレタンからなる群から選択される少なくとも1種を含むとより好ましい。
熱可塑性ポリアミドは、ジアミンとジカルボン酸、あるいはω−アミノ酸、ラクタムまたはこれらの誘導体等から公知の方法に従って合成される。熱可塑性ポリアミドとしては、例えば、ナイロン6、ナイロン66、ナイロン610、ナイロン6/66/610等のナイロン;メタキシレンジアミンとアジピン酸との共重合体;3,3’−ジメチル−4,4’−ジアミノジシクロヘキシルメタンとドデカン二酸との共重合体、4,4’−ジアミノジシクロヘキシルメタンとドデカン二酸との共重合体;N,N’−ビス(3−アミノプロピル)ピペラジンとアジピン酸と共重合体等が挙げられる。なかでも、ナイロン6、ナイロン66、ナイロン610、ナイロン6/66/610が好ましい。これらのナイロンは、液晶性化合物との水素結合を形成しやすく、また、主鎖の自由度が高い(剛直性が高すぎない)。よって、これらのナイロンを含む複合樹脂は、より低い温度での加工が可能となる。
熱可塑性ポリウレタンとしては、例えば、ポリエステルジオール、ポリエーテルジオール、またはポリカーボネート系ジオールと;ヘキサメチレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、4,4’−ジフェニルメタンジイソシアネートの水添体等のジイソシアネート化合物と;必要に応じて添加される、エチレンジアミン、1,6−ヘキサンジオール、テトラメチレングリコール等の鎖伸長剤と;の反応によって得られるポリエステル系ポリウレタン、ポリエーテル系ポリウレタン、ポリカーボネート系ポリウレタンが挙げられる。
以上より、液晶性化合物との水素結合の強さや、高分子自体の剛直性の観点から、本発明において用いられる窒素含有基を有する高分子は、ポリビニルイミダゾール、スチレン−ビニルイミダゾール共重合体、ポリビニルピリジン(ポリ(2−ビニルピリジン)、ポリ(3−ビニルピリジン)、ポリ(4−ビニルピリジン)等)、スチレン−ビニルピリジン共重合体(スチレン−2−ビニルピリジン共重合体、スチレン−3−ビニルピリジン共重合体、スチレン−4−ビニルピリジン共重合体等)、ポリベンゾイミダゾ−ル、熱可塑性ポリアミド、熱可塑性ポリウレタン、熱可塑性ポリウレアおよびアクリロニトリル−スチレン共重合体からなる群から選択される少なくとも1種を含んでいると好ましく、ポリビニルピリジン、スチレン−ビニルピリジン共重合体、熱可塑性ポリアミド、および熱可塑性ポリウレタンからなる群から選択される少なくとも1種を含んでいるとより好ましい。これらの高分子を含むことにより、複合樹脂は、より低い温度での加工が可能となり、また、加工後の耐久性もより向上する。
上記窒素含有基を有する高分子は、市販品を用いてもよいし合成品を用いてもよい。合成する場合は、乳化重合、懸濁重合、溶液重合、または塊状重合など公知の重合方法を適宜採用することができる。
窒素含有基を有する高分子の重量平均分子量は、1,000〜100,000が好ましく、3,000〜50,000がより好ましい。この範囲であれば、窒素含有基を有する高分子と、液晶性化合物とが効率よく水素結合を形成することができる。上記重量平均分子量は、高分子を製造する際の重合条件(単量体および触媒の濃度、反応温度、反応時間)を制御することにより調整できる。なお、窒素含有基を有する高分子の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定される。この際、使用する溶離液、カラム、標準物質等は、当業者によって適宜選択される。
窒素含有基を有する高分子のガラス転移温度(複合樹脂とする前の高分子のTg)は、特に制限されないが、例えば、電子写真用トナーに用いられる場合、一般的に用いられる加工温度(熱圧着温度)を考慮すると、60〜200℃であると好ましく、80〜150℃であるとより好ましい。なお、高分子のTgは、示差走査熱量測定(DSC)により測定することができ、より具体的には実施例の項に記載の方法(常態Tgの測定方法)に従って測定することができる。
<液晶性化合物>
液晶性化合物は、上記高分子が有する窒素含有基と水素結合を形成する官能基を有し、かつ、光照射により異性化する(光異性化する)液晶性化合物である。この水素結合は、光照射により切断されうる比較的弱い結合である。また、「光照射により異性化する(光異性化する)」とは、具体的には、光(好ましくは紫外光、より好ましくは300nm以上400nm未満の波長を有する紫外光)の照射により、E型(トランス体)からZ型(シス体)へ、またはZ型(シス体)からE型(トランス体)へ異性化することをいう。さらに、「液晶性」とは、液晶相を呈することを意味する。
本発明では、光照射によって液晶性化合物を異性化させることにより、液晶性化合物と窒素含有基を有する高分子との間の水素結合を切断する。これにより、図1中の2のように、複合樹脂の分子運動の自由度が増加する結果、複合樹脂の軟化温度やガラス転移温度(Tg)が低下し、低い温度での加工が可能となる。
液晶性化合物は、上記特性を示すものであれば特に制限されないが、剛直なπ共役骨格と柔軟な長鎖アルキル基とを組み合わせた構造を有する化合物であると好ましい。
より好ましくは、液晶性化合物は、下記化学式(1)で表される化合物である。かような構造を有する化合物は、光(紫外光)の照射により容易に異性化し、また、窒素含有基を有する高分子との間の水素結合を形成する。
Figure 0006988179
上記化学式(1)中、
Xは、CHまたは窒素原子であり、
およびYは、それぞれ独立して、前記窒素含有基を有する高分子中の窒素含有基と水素結合を形成しうる基であり、
ArおよびAr’は、それぞれ独立して、置換または非置換のフェニレン基または2価の複素環基であり、
〜Rは、それぞれ独立して、水素原子、ハロゲン原子、ヒドロキシ基、チオール基、シアノ基、または置換もしくは非置換のアルキル基、アルケニル基、アルコキシ基、アミノ基、アリール基もしくは複素環基であり、互いに連結して環状構造を形成してもよく、
nおよびmは、それぞれ独立して、3以上10以下の整数である。
なお、上記化学式(1)で表される化合物中のX同士の二重結合の幾何異性はE型であるが、Z型の液晶性化合物を用いてもよい。
上記化学式(1)中のXは、CHまたは窒素原子である。XがCHであれば、化学式(1)で表される化合物はスチルベン誘導体となり、Xが窒素原子であれば、化学式(1)で表される化合物はアゾベンゼン誘導体となる。ここで、Xは窒素原子であることが好ましい。すなわち、上記化学式(1)で表される化合物は、アゾベンゼン誘導体であることが好ましい。アゾベンゼン誘導体であれば、光に対する感度が向上し、幾何異性体混合物への構造変化がより速い速度で起き、加工時の温度が低下しやすくなる。
上記化学式(1)中のYおよびYは、それぞれ独立して、前記窒素含有基を有する高分子中の窒素含有基と水素結合を形成しうる基である。YおよびYで表される、窒素含有基と水素結合を形成しうる基の具体例としては、オキソ酸基、ヒドロキシ基等が挙げられる。ここで、「オキソ酸基」とは、プロトンとして解離しうる水素原子が酸素原子に結合した構造を有する基をいう。オキソ酸基の例としては、カルボキシ基(−COOH)、リン酸基(−O−PO(OH))、ホスホン酸基(−PO(OH))、スルホン酸基(−SOH)、スルフィン酸基(−SOH)等が挙げられる。
なかでも、YおよびYは、それぞれ独立して、オキソ酸基であると好ましい。オキソ酸基を含むことにより、窒素含有基を有する高分子と、液晶性化合物との間において水素結合が形成されやすくなる。さらに、適度な強さの水素結合を形成するという観点から、YおよびYは、それぞれ独立して、カルボキシ基、リン酸基、またはホスホン酸基であるとより好ましく、カルボキシ基であると特に好ましい。
上記化学式(1)中のArおよびAr’は、それぞれ独立して、置換または非置換のフェニレン基または2価の複素環基である。2価の複素環基の例としては、ピリジンジイル基、ジアザフェニレン基、キノリンジイル基、キノキサリンジイル基、アクリジンジイル基、ビピリジルジイル基等が挙げられる。ArおよびAr’で用いられうるフェニレン基または2価の複素環基は置換されていてもよい。置換基の例としては、上記において、アルキルアミノ基等に置換されていてもよい置換基として説明したものと同様のものが挙げられるため、ここでは説明を省略する。
上記化学式(1)中のR〜Rは、それぞれ独立して、水素原子、ハロゲン原子、ヒドロキシ基、チオール基、シアノ基、または置換もしくは非置換のアルキル基、アルケニル基、アルコキシ基、アミノ基、アリール基もしくは複素環基である。
〜Rで表されるアルキル基の例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、s−ブチル基、t−ブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、n−へキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基等の炭素数1〜10のアルキル基が挙げられる。
〜Rで表されるアルケニル基の例としては、ビニル基、1−プロペニル基、2−プロペニル基、1−ブテニル基、2−ブテニル基、3−ブテニル基、1,3−ブテニル基、1−ペンテニル基、1−ヘキセニル基、1−ヘプテニル基、1−オクテニル基、1−ノネニル基、1−デセニル基等の炭素数2〜10のアルケニル基が挙げられる。
〜Rで表されるアルコキシ基の例としては、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、s−ブトキシ基、t−ブトキシ基、n−ペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、n−へキシルオキシ基、n−ヘプチルオキシ基、n−オクチルオキシ基、n−ノニルオキシ基、n−デシルオキシ基等の炭素数1〜10のアルコキシ基が挙げられる。
〜Rで表されるアリール基の例としては、フェニル基、ベンジル基、フェネチル基、o−,m−もしくはp−トリル基、2,3−もしくは2,4−キシリル基、メシチル基、ナフチル基、アントリル基、フェナントリル基、ビフェニリル基、ベンズヒドリル基、トリチル基、ピレニル基等の炭素数6〜20のアリール基が挙げられる。
〜Rで表される複素環基の例としては、フラニル基、ピラニル基、テトラヒドロフラニル基、テトラヒドロ−2H−ピラニル基、ジオキサニル基等の酸素原子を含有する複素環基が挙げられる。
〜Rで表されるアルキル基、アルケニル基、アルコキシ基、アミノ基、アリール基または複素環基は置換されていてもよい。置換基の例としては、上記において、アルキルアミノ基等に置換されていてもよい置換基として説明したものと同様のものが挙げられるため、ここでは説明を省略する。
上記化学式(1)中のR〜Rは、水素原子であることが好ましい。R〜Rが水素原子であることにより、液晶性化合物の分子間の疎水性相互作用が生じて液晶性化合物の分子がスタックしやすくなって液晶性(液性)をより示しやすくなり、可塑剤としての働きをより得やすくなる。よって、複合樹脂のガラス転移温度が低下しやすくなり、より低い温度での加工が可能となる。
上記化学式(1)中のZおよびZは、窒素含有基を有する高分子との相溶性の観点から、酸素原子、またはR〜Rが水素原子である基(すなわちメチレン基)が好ましく、酸素原子がより好ましい。ZおよびZが酸素原子であると、メチレン基と比較して嵩高くならないため、「−CR−」、「−CR−」によって表される分子鎖が、自由に動きやすくなる。その結果、光異性化を促進しやすく、幾何異性体の混合物となりやすくなるため、光照射後の複合樹脂のガラス転移温度(Tg)を下げることができ、低温での加工が可能となる。
mおよびnは、それぞれ独立して、3以上10以下の整数であるが、3以上8以下の整数が好ましく、4以上7以下の整数がより好ましい。この範囲であれば、液晶性(液性)をより示しやすくなり、可塑剤としての働きをより得やすくなる。よって、複合樹脂のガラス転移温度が低下しやすくなり、よい低い温度での加工が可能となる。
液晶性化合物の分子量は、特に制限されないが、光異性化を生じやすくさせ、幾何異性体の混合物を生成して複合樹脂のガラス転移温度(Tg)を下げやすくするという観点から、1,000未満であると好ましい。さらに、上記観点からは、液晶性化合物の分子量は、800以下であるとより好ましく、600以下であるとさらにより好ましく、500以下であると特に好ましい。他方、液晶性化合物の分子量の下限値は、特に制限されないが、液晶性を呈する観点から、300以上であると好ましく、350以上であるとより好ましい。なお、上記分子量は、例えば、TOF−MSやLC−MS等の公知の質量分析手段を用いて行うことができる。
液晶性化合物のより具体的な例としては、下記のような化合物が挙げられる。
Figure 0006988179
なかでも、上記化合物1〜5が好ましく、化合物1〜4が特に好ましい。
液晶性化合物は、単独でもまたは2種以上組み合わせても用いることができる。また、液晶性化合物は、市販品を用いてもよいし、合成品を用いてもよい。合成する場合は、公知の合成方法を適宜採用することができる。
アゾベンゼン構造を有する液晶性化合物(一般式(1)中のXが窒素原子であり、ZおよびZが酸素原子(O)である化合物)は、たとえば、ジヒドロキシアゾベンゼンと、高分子と水素結合を形成しうる基(当該基は、保護基によって保護されていてもよい)およびハロゲンを有する化合物と、を適宜反応させ、その後、必要に応じて脱保護反応を行うことにより、合成することができる(実施例の項で説明する反応式(1)〜(2)参照)。
また、アゾベンゼン構造を有する液晶性化合物(一般式(1)中のXが窒素原子であり、ZおよびZが−CR−、−CR−である化合物)は、たとえば、高分子と水素結合を形成しうる基(当該基は、保護基によって保護されていてもよい)を有するアニリンを適宜カップリングさせ、その後、必要に応じて脱保護反応を行うことにより、合成することができる(実施例の項で説明する反応式(3)参照)。
さらに、スチルベン構造を有する液晶性化合物(一般式(1)中のXがCHである化合物)は、たとえば、4−ヒドロキシベンズアルデヒドからジヒドロキシスチルベンを得た後、高分子と水素結合を形成しうる基(当該基は、保護基によって保護されていてもよい)を有する化合物を反応させ、その後、必要に応じて適宜脱保護反応を行うことにより、合成することができる(実施例の項で説明する反応式(5)参照)。
さらにまた、非対称な構造を有する液晶性化合物を製造するには、以下の方法を用いることができる。たとえば、ジヒドロキシアゾベンゼンまたはジヒドロキシスチルベンと、高分子と水素結合を形成しうる基(当該基は、保護基によって保護されていてもよい)およびハロゲンを有する化合物Xと、を適宜反応させる。その後、当該反応により得られた化合物と、高分子と水素結合を形成しうる基(当該基は、保護基によって保護されていてもよい)およびハロゲンを有する化合物Y(ただし、上記Xとは異なる化合物)とをさらに反応させ、必要に応じて脱保護反応を行うことにより、合成することができる(実施例の項で説明する反応式(4)参照)。
複合樹脂中の液晶性化合物の含有量(二種以上を含む場合は、その合計量)は、窒素含有基を有する高分子の総量に対して、好ましくは1〜50質量%、より好ましくは3〜30質量%であり、特に好ましくは5〜10質量%である。1質量%以上とすることにより、加工可能な温度を下げる効果を十分に得ることができる。また、50質量%以下、さらには10質量%以下とすることにより、液晶性化合物の染み出しが抑制され、耐久性に優れる複合樹脂が得られる。
〔複合樹脂の製造方法〕
本発明の複合樹脂の製造方法は、特に制限されない。たとえば、窒素含有基を有する高分子と液晶性化合物とを溶媒中で混合した後、乾燥等により溶媒を除去することにより、複合樹脂を得ることができる。該溶液を、ガラス基板等の基板上に塗布し、乾燥して溶媒を除去すれば、フィルム状の複合樹脂を得ることができる。
用いられる溶媒の例としては、たとえば、塩化メチレン、クロロホルム、ジクロロエタン、トリクロロエタン、四塩化炭素等のハロゲン化炭化水素類;n−ヘキサン、n−ヘプタン等の炭化水素類;酢酸メチル、酢酸エチルなどのエステル類;アセトニトリル、N,N−ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、ジメチルアセトアミド(DMA)、スルホラン等の非プロトン性極性溶媒;ジエチルエーテル、t−ブチルメチルエーテル、1,4−ジオキサン、テトラヒドロフラン(THF)、1,2−ジメトキシエタン等のエーテル類等が挙げられる。これら溶媒は、単独でもまたは2種以上を混合して用いてもよい。
上記したように、本発明の複合樹脂は光(好ましくは紫外光)を照射することにより、ガラス転移温度が低下し、より低い温度での加工が可能となる。本発明の複合樹脂において、紫外光照射前のガラス転移温度に対する紫外光照射後のガラス転移温度の低下幅は、3℃以上であることが好ましく、5℃以上であることがより好ましく、10℃以上であることがさらに好ましい。ガラス転移温度の低下幅の上限は、特に制限されないが、50℃以下であることが好ましい。なお、このときの光(好ましくは紫外光)照射条件は、以下の通りであると好ましい。
本発明の複合樹脂は、紫外光を照射して軟化させた後、可視光を照射することにより固化(硬化)させることができる。このようにして得られる可視光照射後(硬化後)の複合樹脂のガラス転移温度(Tg)は、40〜200℃の範囲であることが好ましく、60〜150℃の範囲であることがより好ましい。このような範囲であれば、加工後の耐久性に優れた複合樹脂となる。複合樹脂のガラス転移温度(Tg)は、示差走査熱量測定(DSC)により測定することができ、より具体的には実施例の項に記載の方法により測定することができる。なお、このときの可視光照射条件は、以下の通りであると好ましい。
複合樹脂の水素結合を切断し軟化(溶融)させる場合は、好ましくは300nm以上400nm未満の範囲内、より好ましくは330nm以上390nm未満の範囲内の波長を有する紫外光を照射する。また、この際、紫外光の照射量は、好ましくは0.1〜200J/cmの範囲内、より好ましくは0.5〜100J/cmの範囲内、さらに好ましくは1.0〜70J/cmの範囲内である。上記範囲の光の波長および光照射量であれば、幾何異性体の混合物への構造変化が効率よく進み、水素結合も効率よく切断されうる。
複合樹脂を軟化(溶融)させた後固化(硬化)させる場合は、好ましくは400nm以上800nm以下の範囲内、より好ましくは450nm以上650nm以下の範囲内の波長を有する可視光を照射する。また、この際、可視光の照射量は、好ましくは0.1〜200J/cmの範囲内、より好ましくは0.5〜100J/cmの範囲内、さらに好ましくは1.0〜70J/cmの範囲内である。上記範囲の光の波長および光照射量であれば、幾何異性体の混合物から元の幾何異性を有する化合物への構造変化が効率よく進み、水素結合も効率よく再形成されうる。
[用途]
本発明の複合樹脂は、電子写真用トナーや、光照射により液化と固化とを繰り返す光制御接着剤等に好適に用いられうる。中でも、画像形成時における省エネルギー化や、操作性向上等のメリットが得られることから、電子写真用トナーに用いられることが好ましい。すなわち、本発明は、上記複合樹脂を含む電子写真用トナーをも提供する。
以下、本発明の複合樹脂を含む電子写真用トナー(以下、単に「本発明に係るトナー」、または「トナー」とも称する)について説明する。
本発明に係るトナーは、本発明の複合樹脂をトナーの全質量に対して10質量%以上含むことが好ましく、20質量%以上含むことがより好ましい。なお、本発明の複合樹脂は、それ自身単独でトナーとして用いられうるため、トナー中の複合樹脂の好ましい含有量の上限は100質量%である。
本発明に係るトナーは、複合樹脂以外に、結着樹脂、着色剤、離型剤、荷電制御剤、外添剤等、他の成分を含んでもよい。以下、これら他の成分について説明する。
<結着樹脂>
本発明に係るトナーは、結着樹脂を含んでもよい。かような結着樹脂は、一般にトナーを構成する結着樹脂として用いられている樹脂を制限なく用いることができる。具体的には、たとえば、スチレン樹脂、アクリル樹脂、スチレンアクリル樹脂、ポリエステル樹脂、シリコーン樹脂、オレフィン樹脂、アミド樹脂、およびエポキシ樹脂などが挙げられる。これら結着樹脂は、単独でもまたは2種以上組み合わせても用いることができる。
これらの中でも、溶融すると低粘度になり、かつ高いシャープメルト性を有するという観点から、結着樹脂は、スチレン樹脂、アクリル樹脂、スチレンアクリル樹脂、およびポリエステル樹脂からなる群より選択される少なくとも1種を含むことが好ましく、スチレンアクリル樹脂およびポリエステル樹脂からなる群より選択される少なくとも1種を含むことがより好ましい。
以下では、好ましい結着樹脂であるスチレンアクリル樹脂およびポリエステル樹脂について説明する。
(スチレンアクリル樹脂)
本発明でいうスチレンアクリル樹脂とは、少なくともスチレン単量体と(メタ)アクリル酸エステル単量体とを用いて、重合を行うことにより形成されるものである。ここで、スチレン単量体とは、CH=CH−Cの構造式で表されるスチレンの他、スチレン構造中に公知の側鎖や官能基を有する構造のものも含まれる。
また、(メタ)アクリル酸エステル単量体とは、エステル結合を有する官能基を側鎖に有するものである。具体的には、CH=CHCOOR(Rはアルキル基)で表されるアクリル酸エステル単量体の他、CH=C(CH)COOR(Rはアルキル基)で表されるメタクリル酸エステル単量体などのビニル系エステル化合物が含まれる。
以下に、スチレンアクリル樹脂を形成することが可能なスチレン単量体および(メタ)アクリル酸エステル単量体の具体例を示すが、以下に示すものに限定されるものではない。
スチレン単量体としては、たとえば、スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、α−メチルスチレン、p−フェニルスチレン、p−エチルスチレン、2,4−ジメチルスチレン、p−t−ブチルスチレン、p−n−ヘキシルスチレン、p−n−オクチルスチレン、p−n−ノニルスチレン、p−n−デシルスチレン、p−n−ドデシルスチレンなどが挙げられる。
また、(メタ)アクリル酸エステル単量体は、以下に示すアクリル酸エステル単量体およびメタクリル酸エステル単量体が代表的なもので、アクリル酸エステル単量体としては、たとえば、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、イソブチルアクリレート、t−ブチルアクリレート、n−オクチルアクリレート、2−エチルヘキシルアクリレート、ステアリルアクリレート、ラウリルアクリレート、フェニルアクリレートなどが挙げられる。メタクリル酸エステル単量体としては、たとえば、メチルメタクリレート、エチルメタクリレート、n−プロピルメタクリレート、イソプロピルメタクリレート、n−ブチルメタクリレート、イソブチルメタクリレート、t−ブチルメタクリレート、n−オクチルメタクリレート、2−エチルヘキシルメタクリレート、ステアリルメタクリレート、ラウリルメタクリレート、フェニルメタクリレート、ジエチルアミノエチルメタクリレート、ジメチルアミノエチルメタクリレートなどが挙げられる。
これらのスチレン単量体、アクリル酸エステル単量体、またはメタクリル酸エステル単量体は、単独でもまたは2種以上を組み合わせても使用することができる。
また、スチレンアクリル共重合体には、上述したスチレン単量体および(メタ)アクリル酸エステル単量体のみで形成された共重合体の他に、これらスチレン単量体および(メタ)アクリル酸エステル単量体に加えて、一般のビニル単量体を併用して形成されるものもある。以下に、本発明でいうスチレンアクリル共重合体を形成する際に併用可能なビニル単量体を例示するが、併用可能なビニル単量体は以下に示すものに限定されるものではない。
(1)オレフィン類
エチレン、プロピレン、イソブチレン等
(2)ビニルエステル類
プロピオン酸ビニル、酢酸ビニル、ベンゾエ酸ビニル等
(3)ビニルエーテル類
ビニルメチルエーテル、ビニルエチルエーテル等
(4)ビニルケトン類
ビニルメチルケトン、ビニルエチルケトン、ビニルヘキシルケトン等
(5)N−ビニル化合物類
N−ビニルカルバゾール、N−ビニルインドール、N−ビニルピロリドン等
(6)その他
ビニルナフタレン、ビニルピリジン等のビニル化合物類、アクリロニトリル、メタクリロニトリル、アクリルアミド等のアクリル酸あるいはメタクリル酸誘導体等。
また、多官能性ビニル単量体を使用して、架橋構造の樹脂を作製することも可能である。さらに、側鎖にイオン性解離基を有するビニル単量体を使用することも可能である。イオン性解離基の具体例としては、たとえば、カルボキシ基、スルホン酸基、リン酸基などが挙げられる。以下に、これらイオン性解離基を有するビニル単量体の具体例を示す。
カルボキシ基を有するビニル単量体の具体例としては、たとえば、アクリル酸、メタクリル酸、マレイン酸、イタコン酸、ケイ皮酸、フマル酸、マレイン酸モノアルキルエステル、イタコン酸モノアルキルエステルなどが挙げられる。
スチレンアクリル樹脂の形成方法は、特に制限されず、公知の油溶性あるいは水溶性の重合開始剤を使用して単量体を重合する方法が挙げられる。必要に応じてたとえば、n−オクチルメルカプタンなどの公知の連鎖移動剤を使用してもよい。
本発明に使用されるスチレンアクリル樹脂を形成する場合、スチレン単量体およびアクリル酸エステル単量体の含有量は特に限定されるものではなく、結着樹脂の軟化温度やガラス転移温度を制御する観点から適宜調整することが可能である。具体的には、スチレン単量体の含有量は、単量体全体に対し40〜95質量%が好ましく、50〜80質量%がより好ましい。また、アクリル酸エステル単量体の含有量は、単量体全体に対し5〜60質量%が好ましく、10〜50質量%がより好ましい。
スチレンアクリル樹脂の形成方法は、特に制限されず、公知の油溶性あるいは水溶性の重合開始剤を使用して単量体を重合する方法が挙げられる。油溶性の重合開始剤としては、具体的には、以下に示すアゾ系またはジアゾ系重合開始剤や過酸化物系重合開始剤がある。
アゾ系またはジアゾ系重合開始剤としては、2,2’−アゾビス−(2,4−ジメチルバレロニトリル)、2,2’−アゾビスイソブチロニトリル、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)、2,2’−アゾビス−4−メトキシ−2,4−ジメチルバレロニトリル、アゾビスイソブチロニトリルなどが挙げられる。
過酸化物系重合開始剤としては、ベンゾイルパーオキサイド、メチルエチルケトンパーオキサイド、ジイソプロピルパーオキシカーボネート、クメンヒドロパーオキサイド、t−ブチルヒドロパーオキサイド、ジ−t−ブチルパーオキサイド、ジクミルパーオキサイド、2,4−ジクロロベンゾイルパーオキサイド、ラウロイルパーオキサイド、2,2−ビス−(4,4−t−ブチルパーオキシシクロヘキシル)プロパン、トリス−(t−ブチルパーオキシ)トリアジンなどが挙げられる。
また、乳化重合法でスチレンアクリル樹脂粒子を形成する場合は水溶性ラジカル重合開始剤が使用可能である。水溶性ラジカル重合開始剤としては、過硫酸カリウム、過硫酸アンモニウムなどの過硫酸塩、アゾビスアミノジプロパン酢酸塩、アゾビスシアノ吉草酸およびその塩、過酸化水素などが挙げられる。
重合温度は、用いる単量体や重合開始剤の種類によっても異なるが、50〜100℃であることが好ましく、55〜90℃であることがより好ましい。また、重合時間は、用いる単量体や重合開始剤の種類によっても異なるが、たとえば2〜12時間であることが好ましい。
乳化重合法により形成されるスチレンアクリル樹脂粒子は、組成の異なる樹脂よりなる2層以上の構成とすることもできる。この場合の製造方法としては、常法に従った乳化重合処理(第1段重合)により調製した樹脂粒子の分散液に、重合開始剤と重合性単量体とを添加し、この系を重合処理(第2段重合)する多段重合法を採用することができる。
(ポリエステル樹脂)
ポリエステル樹脂は、2価以上のカルボン酸(多価カルボン酸成分)と、2価以上のアルコール(多価アルコール成分)との重縮合反応によって得られる公知のポリエステル樹脂である。なお、ポリエステル樹脂は、非晶性であってもよいし結晶性であってもよい。
多価カルボン酸成分および多価アルコール成分の価数としては、好ましくはそれぞれ2〜3であり、特に好ましくはそれぞれ2であるため、特に好ましい形態として価数がそれぞれ2である場合(すなわち、ジカルボン酸成分、ジオール成分)について説明する。
ジカルボン酸成分としては、たとえば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、1,9−ノナンジカルボン酸、1,10−デカンジカルボン酸(ドデカン二酸)、1,11−ウンデカンジカルボン酸、1,12−ドデカンジカルボン酸、1,13−トリデカンジカルボン酸、1,14−テトラデカンジカルボン酸、1,16−ヘキサデカンジカルボン酸、1,18−オクタデカンジカルボン酸などの飽和脂肪族ジカルボン酸;メチレンコハク酸、フマル酸、マレイン酸、3−ヘキセンジオイック酸、3−オクテンジオイック酸、ドデセニルコハク酸などの不飽和脂肪族ジカルボン酸;フタル酸、テレフタル酸、イソフタル酸、t−ブチルイソフタル酸、テトラクロロフタル酸、クロロフタル酸、ニトロフタル酸、p−フェニレン二酢酸、2,6−ナフタレンジカルボン酸、4,4’−ビフェニルジカルボン酸、アントラセンジカルボン酸などの不飽和芳香族ジカルボン酸;などが挙げられ、また、これらの低級アルキルエステルや酸無水物を用いることもできる。ジカルボン酸成分は、単独でもまたは2種以上混合して用いてもよい。
その他、トリメリット酸、ピロメリット酸などの3価以上の多価カルボン酸、および上記のカルボン酸化合物の無水物、あるいは炭素数1〜3のアルキルエステルなども用いることができる。
ジオール成分としては、たとえば、エチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール、1,11−ウンデカンジオール、1,12−ドデカンジオール、1,13−トリデカンジオール、1,14−テトラデカンジオール、1,18−オクタデカンジオール、1,20−エイコサンジオール、ネオペンチルグリコールなどの飽和脂肪族ジオール;2−ブテン−1,4−ジオール、3−ブテン−1,4−ジオール、2−ブチン−1,4−ジオール、3−ブチン−1,4−ジオール、9−オクタデセン−7,12−ジオールなどの不飽和脂肪族ジオール;ビスフェノールA、ビスフェノールFなどのビスフェノール類、およびこれらのエチレンオキサイド付加物、プロピレンオキサイド付加物などのビスフェノール類のアルキレンオキサイド付加物などの芳香族ジオールが挙げられ、また、これらの誘導体を用いることもできる。ジオール成分は、単独でもまたは2種以上混合して用いてもよい。
ポリエステル樹脂の製造方法は特に制限されず、公知のエステル化触媒を利用して、上記多価カルボン酸成分および多価アルコール成分を重縮合する(エステル化する)ことによりを製造することができる。
ポリエステル樹脂の製造の際に使用可能な触媒としては、ナトリウム、リチウムなどのアルカリ金属化合物;マグネシウム、カルシウムなどの第2族元素を含む化合物;アルミニウム、亜鉛、マンガン、アンチモン、チタン、スズ、ジルコニウム、ゲルマニウムなどの金属の化合物;亜リン酸化合物;リン酸化合物;およびアミン化合物などが挙げられる。具体的には、スズ化合物としては、酸化ジブチルスズ(ジブチル錫オキサイド)、オクチル酸スズ、ジオクチル酸スズ、これらの塩などを挙げることができる。チタン化合物としては、テトラノルマルブチルチタネート(Ti(O−n−Bu))、テトライソプロピルチタネート、テトラメチルチタネート、テトラステアリルチタネートなどのチタンアルコキシド;ポリヒドロキシチタンステアレートなどのチタンアシレート;チタンテトラアセチルアセトナート、チタンラクテート、チタントリエタノールアミネートなどのチタンキレートなどを挙げることができる。ゲルマニウム化合物としては、二酸化ゲルマニウムなどを挙げることができる。さらにアルミニウム化合物としては、ポリ水酸化アルミニウム、アルミニウムアルコキシド、トリブチルアルミネートなどを挙げることができる。これらは1種単独でまたは2種以上を組み合わせて用いてもよい。
重合温度は特に限定されるものではないが、70〜250℃であることが好ましい。また、重合時間も特に限定されるものではないが、0.5〜10時間であることが好ましい。重合中には、必要に応じて反応系内を減圧にしてもよい。
本発明のトナーが結着樹脂を含む場合の含有割合は、複合樹脂:結着樹脂=5:95〜80:20(質量比)の範囲が好ましい。この範囲であれば、複合樹脂の光相転移が生じやすく、トナーの光照射による軟化速度が十分なものとなる。
なお、本発明の複合樹脂および結着樹脂を含むトナーは、単層構造であってもよいしコアシェル構造であってもよい。コアシェル構造のコア粒子およびシェル部に用いられる結着樹脂の種類は、特に制限されない。
<着色剤>
本発明に係るトナーは着色剤を含有してもよい。着色剤としては、一般に知られている染料および顔料を用いることができる。
黒色のトナーを得るための着色剤としては、カーボンブラック、磁性体、鉄・チタン複合酸化物ブラックなどが挙げられ、カーボンブラックとしてはチャンネルブラック、ファーネスブラック、アセチレンブラック、サーマルブラック、ランプブラックなどが挙げられる。また、磁性体としてはフェライト、マグネタイトなどが挙げられる。
イエローのトナーを得るための着色剤としては、C.I.ソルベントイエロー19、同44、同77、同79、同81、同82、同93、同98、同103、同104、同112、同162などの染料;C.I.ピグメントイエロー14、同17、同74、同93、同94、同138、同155、同180、同185などの顔料が挙げられる。
マゼンタのトナーを得るための着色剤としては、C.I.ソルベントレッド1、同49、同52、同58、同63、同111、同122などの染料;C.I.ピグメントレッド5、同48:1、同53:1、同57:1、同122、同139、同144、同149、同166、同177、同178、同222などの顔料が挙げられる。
シアンのトナーを得るための着色剤としては、C.I.ソルベントブルー25、同36、同60、同70、同93、同95などの染料;C.I.ピグメントブルー1、同7、同15、同60、同62、同66、同76などの顔料が挙げられる。
各色のトナーを得るための着色剤は、各色について、1種または2種以上を組み合わせて使用することができる。
着色剤の含有割合は、トナー中0.5〜20質量%であることが好ましく、2〜10質量%であることがより好ましい。
<離型剤>
本発明に係るトナーは、離型剤を含有してもよい。使用される離型剤は、特に限定されるものではなく、公知の種々のワックスを用いることができる。ワックスとしては、低分子量ポリプロピレン、ポリエチレン、または酸化型の低分子量ポリプロピレン、ポリエチレンなどのポリオレフィン、パラフィン、合成エステルワックスなどが挙げられ、特に、低融点および低粘度であることから、合成エステルワックスを用いることが好ましく、合成エステルワックスとしてベヘン酸ベヘニル、グリセリントリベヘネート、ペンタエリスリトールテトラベヘネートなどを用いることが特に好ましい。
離型剤の含有割合は、トナー中1〜30質量%の範囲内であることが好ましく、3〜15質量%の範囲内であることがより好ましい。
<荷電制御剤>
本発明に係るトナーは、荷電制御剤を含有してもよい。使用される荷電制御剤は、摩擦帯電により正または負の帯電を与えることのできる物質であり、かつ無色のものであれば特に限定されず、公知の種々の正帯電性の荷電制御剤および負帯電性の荷電制御剤を用いることができる。
荷電制御剤の含有割合は、トナー中0.01〜30質量%の範囲内であることが好ましく、0.1〜10質量%の範囲内であることがより好ましい。
<外添剤>
トナーの流動性、帯電性、クリーニング性等を改良するために、トナー粒子に、いわゆる後処理剤である流動化剤、クリーニング助剤等の外添剤を添加して本発明に係るトナーを構成してもよい。
外添剤としては、たとえば、シリカ粒子、アルミナ粒子、酸化チタン粒子などの無機酸化物粒子、ステアリン酸アルミニウム粒子、ステアリン酸亜鉛粒子などの無機ステアリン酸化合物粒子、チタン酸ストロンチウム粒子、チタン酸亜鉛粒子などの無機チタン酸化合物粒子などの無機粒子が挙げられる。これらは単独でもまたは2種以上を組み合わせても用いることができる。
これら無機粒子は、シランカップリング剤やチタンカップリング剤、高級脂肪酸、シリコーンオイルなどによって、耐熱保管性や環境安定性の向上のために、表面処理が行われていてもよい。
これら外添剤の添加量は、トナー中0.05〜5質量%であることが好ましく、0.1〜3質量%であることがより好ましい。
<トナーの平均粒径>
トナーの平均粒径は、体積基準のメジアン径(D50)で4〜10μmであることが好ましく、6〜9μmであることがより好ましい。体積基準のメジアン径(D50)が上記の範囲にあることにより、転写効率が高くなりハーフトーンの画質が向上し、細線やドット等の画質が向上する。
本発明において、トナーの体積基準のメジアン径(D50)は、「コールターカウンター3」(ベックマン・コールター株式会社製)に、データ処理用ソフト「Software V3.51」を搭載したコンピューターシステム(ベックマン・コールター株式会社製)を接続した測定装置を用いて測定・算出されるものである。
具体的には、測定試料(トナー)0.02gを、界面活性剤溶液20mL(トナー粒子の分散を目的として、たとえば界面活性剤成分を含む中性洗剤を純水で10倍希釈した界面活性剤溶液)に添加して馴染ませた後、超音波分散を1分間行い、トナー分散液を調製し、このトナー分散液を、サンプルスタンド内の「ISOTONII」(ベックマン・コールター株式会社製)の入ったビーカーに、測定装置の表示濃度が8%になるまでピペットにて注入する。
ここで、この濃度範囲にすることにより、再現性のある測定値を得ることができる。そして、測定装置において、測定粒子カウント数を25000個、アパーチャー径を50μmにし、測定範囲である1〜30μmの範囲を256分割しての頻度値を算出し、体積積算分率の大きい方から50%の粒径が体積基準のメジアン径(D50)とされる。
[トナーの製造方法]
本発明に係るトナーの製造方法は特に制限されない。たとえば、複合樹脂のみでトナーとする場合は、上記の製造方法により得られた複合樹脂を、ハンマーミル、フェザーミル、カウンタージェットミルなどの装置を用いて粉砕した後、スピンエアーシーブ、クラッシール、マイクロンクラッシファイアーなどの乾式分級機を用いて所望の粒径になるように分級することを含む製造方法が好ましい。
複合樹脂および着色剤を含み結着樹脂を含まないトナーを製造する場合は、複合樹脂および着色剤がともに溶解する溶媒を用いて、複合樹脂および着色剤を溶解させ溶液とした後、脱溶媒し、その後上記した方法と同様の方法で、粉砕・分級することを含む製造方法が好ましい。
複合樹脂、着色剤、および結着樹脂を含むトナーを製造する場合は、粒径および形状の制御が容易な乳化凝集法を利用した製造方法であることが好ましい。
かような製造方法は、
(1A)結着樹脂粒子の分散液を調製する結着樹脂粒子分散液調製工程
(1B)着色剤粒子の分散液を調製する着色剤粒子分散液調製工程
(1C)複合樹脂粒子の分散液を調製する複合樹脂粒子分散液調製工程
(2)結着樹脂粒子、着色剤粒子および複合樹脂粒子が存在している水系媒体中に、凝集剤を添加し、塩析を進行させると同時に凝集・融着を行い、会合粒子を形成する会合工程
(3)会合粒子の形状制御をすることによりトナー粒子を形成する熟成工程
(4)水系媒体からトナー粒子を濾別し、当該トナー粒子から界面活性剤等を除去する濾過、洗浄工程
(5)洗浄処理されたトナー粒子を乾燥する乾燥工程
(6)乾燥処理されたトナー粒子に外添剤を添加する外添剤添加工程
の各工程を含むことが好ましい。以下、(1A)〜(1C)の工程について説明する。
(1A)結着樹脂粒子分散液調製工程
本工程では、従来公知の乳化重合などにより樹脂粒子を形成し、この樹脂粒子を凝集、融着させて結着樹脂粒子を形成する。一例として、結着樹脂を構成する重合性単量体を水系媒体中へ投入、分散させ、重合開始剤によりこれら重合性単量体を重合させることにより、結着樹脂粒子の分散液を作製する。
また、結着樹脂粒子分散液を得る方法として、上記の水系媒体中で重合開始剤により重合性単量体を重合させる方法の他に、たとえば、溶媒を用いることなく、水性媒体中において分散処理を行う方法、あるいは結晶性樹脂を酢酸エチルなどの溶媒に溶解させて溶液とし、分散機を用いて当該溶液を水性媒体中に乳化分散させた後、脱溶媒処理を行う方法などが挙げられる。
この際、必要に応じ、結着樹脂には離型剤を予め含有させておいてもよい。また、分散のために、適宜公知の界面活性剤(たとえば、ポリオキシエチレン(2)ドデシルエーテル硫酸ナトリウム、ドデシル硫酸ナトリウム、ドデシルベンゼンスルホン酸などのアニオン系界面活性剤)の存在下で重合させることも好ましい。
分散液中の結着樹脂粒子の体積基準のメジアン径は、50〜300nmが好ましい。分散液中の結着樹脂粒子の体積基準のメジアン径は、「マイクロトラックUPA−150」(日機装株式会社製)を用いて動的光散乱法によって測定することができる。
(1B)着色剤粒子分散液調製工程
この着色剤粒子分散液調製工程は、着色剤を水系媒体中に微粒子状に分散させて着色剤粒子の分散液を調製する工程である。
着色剤の分散は、機械的エネルギーを利用して行うことができる。分散液中の着色剤粒子の個数基準のメジアン径は、10〜300nmであることが好ましく、50〜200nmであることがより好ましい。着色剤粒子の個数基準のメジアン径は、電気泳動光散乱光度計「ELS−800」(大塚電子株式会社製)を用いて測定することができる。
(1C)複合樹脂粒子分散液調製工程
この複合樹脂粒子分散液調製工程は、複合樹脂を水系媒体中に微粒子状に分散させて複合樹脂粒子の分散液を調製する工程である。複合樹脂粒子分散液を調製するにあたり、まず、複合樹脂乳化液を調製する。複合樹脂乳化液の調製方法としては、たとえば、有機溶媒に複合樹脂を溶解させた複合樹脂液を得た後、該複合樹脂液を水系媒体中で乳化させる方法が挙げられる。
複合樹脂を有機溶媒に溶解する方法は、特に制限されず、たとえば、複合樹脂を有機溶媒に添加して、複合樹脂が溶解するように撹拌混合する方法がある。複合樹脂の添加割合は、有機溶媒100質量部に対して、好ましくは5質量部以上100質量部以下、より好ましくは10質量部以上50質量部以下である。
次に、複合樹脂液と水系媒体とを混合し、ホモジナイザーなどの公知の分散機を用いて撹拌する。これにより、複合樹脂が液滴となって、水系媒体中に乳化され、複合樹脂乳化液が調製される。
複合樹脂液の添加割合は、水系媒体100質量部に対して、好ましくは10質量部以上90質量部以下、より好ましくは30質量部以上70質量部以下である。
また、複合樹脂液と水系媒体との混合時における、複合樹脂液および水系媒体のそれぞれの温度は、有機溶媒の沸点未満となる温度範囲であって、好ましくは20℃以上80℃以下、より好ましくは30℃以上75℃以下である。複合樹脂液と水系媒体との混合時における、複合樹脂液の温度と水系媒体の温度とは、互いに同一であっても異なっていてもよく、好ましくは互いに同一である。
分散機の撹拌条件は、たとえば、容量が1〜3Lの場合、その回転数が7000rpm以上20000rpm以下であることが好ましく、また、その撹拌時間が10分以上30分以下であることが好ましい。
複合樹脂粒子分散液は、複合樹脂乳化液から有機溶媒を除去することにより調製される。複合樹脂乳化液から有機溶媒を除去する方法としては、たとえば、送風、加熱、減圧、またはこれらの併用など、公知の方法が挙げられる。
一例として、複合樹脂乳化液は、たとえば、窒素などの不活性ガス雰囲気下において、好ましくは25℃以上90℃以下、より好ましくは30℃以上80℃以下で、初期の有機溶媒量の80質量%以上95質量%以下程度が除去されるまで加熱されることにより、有機溶媒が除去される。これにより、水系媒体から有機溶媒が除去されて、複合樹脂粒子が水系媒体中に分散された複合樹脂粒子分散液が調製される。
複合樹脂粒子分散液中の複合樹脂粒子の質量平均粒径は、90nm以上1200nm以下が好ましい。複合樹脂粒子の質量平均粒径は、複合樹脂粒子を有機溶媒に配合したときの粘度、複合樹脂液と水との配合割合、複合樹脂乳化液を調製するときの分散機の撹拌速度などを適宜調節することにより、上記範囲内に設定することができる。複合樹脂粒子分散液中の複合樹脂粒子の質量平均粒径は、電気泳動光散乱光度計「ELS−800」(大塚電子株式会社製)を用いて測定することができる。
<有機溶媒>
本工程で用いられる有機溶媒は、本発明の複合樹脂を溶解させることができれば特に制限されず使用することができる。具体的には、酢酸エチル、酢酸ブチルなどのエステル類、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフランなどのエーテル類、アセトン、メチルエチルケトンなどのケトン類、ヘキサン、ヘプタンなどの飽和炭化水素類、ジクロロメタン、ジクロロエタン、四塩化炭素などのハロゲン化炭化水素類が挙げられる。
このような有機溶媒は、単独でもまたは2種以上混合しても用いることができる。これら有機溶媒の中でも、ケトン類、ハロゲン化炭化水素類が好ましく、メチルエチルケトン、ジクロロメタンがより好ましい。
<水系媒体>
本工程で用いられる水系媒体は、水、または水を主成分として、アルコール類、グリコール類などの水溶性溶媒や、界面活性剤、分散剤などの任意成分が配合されている水系媒体などが挙げられる。水系媒体は、好ましくは水と界面活性剤とを混合したものが用いられる。
界面活性剤としては、たとえば、カチオン性界面活性剤、アニオン性界面活性剤、ノニオン性界面活性剤などが挙げられる。カチオン性界面活性剤としては、たとえば、ドデシルアンモニウムクロライド、ドデシルアンモニウムブロマイド、ドデシルトリメチルアンモニウムブロマイド、ドデシルピリジニウムクロライド、ドデシルピリジニウムブロマイド、ヘキサデシルトリメチルアンモニウムブロマイドなどが挙げられる。アニオン性界面活性剤としては、たとえば、ステアリン酸ナトリウム、ドデカン酸ナトリウムなどの脂肪酸石けん、ドデシルベンゼンスルホン酸ナトリウム、ドデシル硫酸ナトリウムなどが挙げられる。また、ノニオン性界面活性剤としては、たとえば、ポリオキシエチレンドデシルエーテル、ポリオキシエチレンヘキサデシルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンソルビタンモノオレアートエーテル、モノデカノイルショ糖などが挙げられる。
このような界面活性剤は、単独でもまたは2種以上組み合わせても用いることができる。界面活性剤の中では、好ましくはアニオン性界面活性剤、より好ましくはドデシルベンゼンスルホン酸ナトリウムが使用される。
界面活性剤の添加量は、水系媒体100質量部に対して、好ましくは0.01質量部以上10質量部以下、より好ましくは0.04質量部以上1質量部以下である。
(2)会合工程から(6)外添剤添加工程までの工程については、従来公知の種々の方法に従って行うことができる。
なお、(2)会合工程において使用される凝集剤は、特に限定されるものではないが、金属塩から選択されるものが好適に使用される。金属塩としては、たとえばナトリウム、カリウム、リチウムなどのアルカリ金属の塩等の一価の金属塩;カルシウム、マグネシウム、マンガン、銅などの二価の金属塩;鉄、アルミニウムなどの三価の金属塩などが挙げられる。具体的な金属塩としては、塩化ナトリウム、塩化カリウム、塩化リチウム、塩化カルシウム、塩化マグネシウム、塩化亜鉛、硫酸銅、硫酸マグネシウム、硫酸マンガンなどを挙げることができ、これらの中で、より少量で凝集を進めることができることから、二価の金属塩を用いることが特に好ましい。これらは単独でもまたは2種以上組み合わせても用いることができる。
[現像剤]
本発明に係るトナーは、たとえば磁性体を含有させて一成分磁性トナーとして使用する場合、いわゆるキャリアと混合して二成分現像剤として使用する場合、非磁性トナーを単独で使用する場合などが考えられ、いずれも好適に使用することができる。
上記磁性体としては、たとえばマグネタイト、γ−ヘマタイト、または各種フェライトなどを使用することができる。
二成分現像剤を構成するキャリアとしては、鉄、鋼、ニッケル、コバルト、フェライト、マグネタイトなどの金属、それらの金属とアルミニウム、鉛などの金属との合金などの従来公知の材料からなる磁性粒子を用いることができる。
キャリアとしては、磁性粒子の表面を樹脂等の被覆剤で被覆したコートキャリアや、バインダー樹脂中に磁性体粉末を分散してなるいわゆる樹脂分散型キャリアを用いることが好ましい。被覆用の樹脂としては、特に限定はないが、たとえば、オレフィン樹脂、スチレン樹脂、スチレンアクリル樹脂、シリコーン樹脂、ポリエステル樹脂またはフッ素樹脂などが用いられる。また、樹脂分散型キャリアを構成するための樹脂としては、特に限定されず公知のものを使用することができ、たとえば、アクリル樹脂、スチレンアクリル樹脂、ポリエステル樹脂、フッ素樹脂、フェノール樹脂など使用することができる。
キャリアの体積基準のメジアン径は、20〜100μmであることが好ましく、25〜80μmであることがより好ましい。キャリアの体積基準のメジアン径は、代表的には湿式分散機を備えたレーザー回折式粒度分布測定装置「ヘロス(HELOS)」(シンパテック(SYMPATEC)社製)により測定することができる。
トナーのキャリアに対する混合量は、トナーとキャリアとの合計質量を100質量%として、2〜10質量%であることが好ましい。
[画像形成方法]
本発明に係るトナーは、電子写真方式の公知の種々の画像形成方法において用いることができる。たとえば、モノクロの画像形成方法やフルカラーの画像形成方法に用いることができる。フルカラーの画像形成方法では、イエロー、マゼンタ、シアン、およびブラックの各々に係る4種類のカラー現像装置と、1つの感光体とにより構成される4サイクル方式の画像形成方法や、各色に係るカラー現像装置および感光体を有する画像形成ユニットを、それぞれ色別に搭載するタンデム方式の画像形成方法など、いずれの画像形成方法にも適用することができる。
図2は、本発明の一実施形態による画像形成方法で用いられる画像形成装置100を示す概略構成図である。ただし、本発明に用いられる画像形成装置としては、下記の形態および図示例に限定されるものではない。図2には、モノクロの画像形成装置100の例を示すが、カラーの画像形成装置にも本発明を適用することができる。
画像形成装置100は、記録媒体としての記録用紙Sに画像を形成する装置であって、画像読取装置71および自動原稿送り装置72を備え、用紙搬送系7により搬送される記録用紙Sに対し画像形成部10、第1照射部40a、圧着部9、および第2照射部40bにより画像形成を行う。以下、第1照射部40aおよび第2照射部40bをまとめて称するときには、照射部40と呼ぶ。
また、記録媒体として、画像形成装置100では記録用紙Sを用いているが、画像形成を行う対象とされる媒体は、用紙以外でもよい。
自動原稿送り装置72の原稿台上に載置された原稿dは、画像読取装置71の走査露光装置の光学系により走査露光されてイメージセンサーCCDに読み込まれる。イメージセンサーCCDにより光電変換されたアナログ信号は、画像処理部20において、アナログ処理、A/D変換、シェーディング補正、画像圧縮処理等が行われた後、画像形成部10の露光器3に入力される。
用紙搬送系7は、複数のトレイ16、複数の給紙部11、搬送ローラー12、搬送ベルト13等を備えている。トレイ16は、決められたサイズの記録用紙Sをそれぞれ収容しており、制御部90からの指示に応じて定められたトレイ16の給紙部11を作動させ、記録用紙Sを供給する。搬送ローラー12は、給紙部11によってトレイ16から送り出された記録用紙Sまたは手差し給紙部15から搬入された記録用紙Sを画像形成部10へ搬送する。
画像形成部10は、感光体1の周りに、感光体1の回転方向に沿って、帯電器2、露光器3、現像部4、転写部5、除電部6およびクリーニング部8がこの順番に配置されて構成されている。
像担持体である感光体1は、表面に光導電層の形成された像担持体であり、図示しない駆動装置により図2中の矢印方向に回転可能に構成されている。感光体1の近傍には、画像形成装置100内の温度や湿度を検知する温湿度計17が設けられている。
帯電器2は、感光体1の表面に均一に電荷を与え、感光体1の表面を一様に帯電させる。露光器3は、レーザーダイオード等のビーム発光源を備え、帯電された感光体1の表面にビーム光を照射することで照射部分の電荷を消失させ、感光体1上に画像データに応じた静電潜像を形成する。現像部4は、内部に収容されるトナーを感光体1に供給して、感光体1表面上に静電潜像に基づくトナー像を作像する。
転写部5は、記録用紙Sを介して感光体1と対向し、トナー像を記録用紙Sに転写する。除電部6は、トナー像を転写した後の感光体1上の除電を行う。クリーニング部8は、ブレード85を備える。ブレード85により、感光体1表面をクリーニングして感光体1の表面に残留した現像剤を除去する。
トナー像が転写された記録用紙Sは、搬送ベルト13により圧着部9へ搬送される。圧着部9は、任意に設置されるものであり、トナー像が転写された記録用紙Sに対し、加圧部材91および92によって圧力のみまたは熱および圧力を加えて定着処理を施し、これにより記録用紙S上に画像を定着させる。画像が定着された記録用紙Sは、搬送ローラーによって排紙部14に搬送され、排紙部14から機外へ排出される。
また、画像形成装置100は用紙反転部24を備えており、加熱定着処理がなされた記録用紙Sを排紙部14の手前で用紙反転部24に搬送し、表裏を反転して排出するか、または表裏を反転した記録用紙Sを再度画像形成部10に搬送し記録用紙Sの両面に画像形成を行うことを可能としている。
<照射部>
図3は、画像形成装置100における照射部40の概略構成図である。
本発明の一実施形態による画像形成装置100は、第1照射部40aおよび第2照射部40bを含む照射部40を備える。照射部40を構成する装置の例としては、発光ダイオード(LED)、レーザー光源などが挙げられる。
第1照射部40aは、現像剤に含まれる光吸収により相転移する物質(本発明の複合樹脂)を溶融させるものであって、好ましくは300nm以上400nm未満の範囲内、より好ましくは330nm以上390nm未満の範囲内の波長を有する紫外光を照射する。第1照射部40aにおける紫外光の照射量は、好ましくは0.1〜200J/cmの範囲内、より好ましくは0.5〜100J/cmの範囲内、さらに好ましくは、1.0〜70J/cmの範囲内である。
第2照射部40bは、複合樹脂を硬化させるものであって、好ましくは400nm以上800nm以下の範囲内、より好ましくは450nm以上650nm以下の範囲内の波長を有する可視光を照射する。第2照射部40bにおける可視光の照射量は、好ましくは0.1〜200J/cm、より好ましくは0.5〜100J/cm、さらに好ましくは、1.0〜70J/cmである。
すなわち、本発明の一実施形態による画像形成方法は、記録媒体上に本発明の電子写真用トナーからなるトナー像を形成する工程と、前記トナー像に対して、300nm以上400nm未満の波長を有する光を照射して前記トナー像を軟化させる工程と、軟化した前記トナー像に対して、400nm以上800nm以下の波長を有する光を照射して前記トナー像を固化させ記録媒体に定着させる工程と、を含む。
第1照射部40aおよび第2照射部40bはトナー像を保持する記録用紙Sにおける感光体側の第1面に向かって光を照射するものであり、感光体1と転写ローラー50とにニップされた記録用紙S面に対して感光体側に配置されている。また、記録用紙Sの搬送方向(用紙搬送方向)に沿って、第1照射部40a、第2照射部40bの順に配置されている。
第1照射部40aは、感光体1と転写ローラー40とのニップ位置に対して、用紙搬送方向下流側、かつ圧着部9に対して用紙搬送方向上流側に配置されている。
第2照射部40bは、第1照射部40aに対して用紙搬送方向下流側、かつ排紙部14に対して用紙搬送方向上流側に設置される。第2照射部40bは、用紙搬送方向において、圧着部9と排紙部14との間に設置することができる。
本発明の一実施形態による画像形成方法によれば、帯電器2により感光体1に一様な電位を付与して帯電させた後、原画像データに基づいて露光器3により照射した光束で感光体1上を走査し、静電潜像を形成する。次に現像部4により光吸収により相転移する物質を含む現像剤を感光体1上に供給する。
感光体1の表面に担持されたトナー像が、感光体1の回転によって転写ローラー50の位置に至るタイミングに合わせて、トレイ16から記録用紙Sを画像形成部10に搬送すると、転写ローラー50に印加される転写バイアスにより、感光体1上のトナー像が、転写ローラー50と感光体1とにニップされた記録用紙S上に転写される。
また、転写ローラー50は、加圧部材を兼ねており、感光体1から記録用紙Sにトナー像を転写させながら、トナー像に含まれる複合樹脂を確実に記録用紙Sに密着させることができる。
トナー像が記録用紙Sに転写された後に、クリーニング部8のブレード85は、感光体1表面に残留する現像剤を除去する。
トナー像が転写された記録用紙Sが搬送ベルト13により圧着部9に搬送される過程において、第1照射部40aは、記録用紙S上に転写されたトナー像に対して、300nm以上400nm未満の波長を有する紫外光を照射する。第1照射部40aにより記録用紙Sの第1面上のトナー像に向かって紫外光を照射することにより、トナー像をより確実に溶融させることができ、トナー像の記録用紙Sに対する定着性を向上させることができる。
トナー像が保持された記録用紙Sが、搬送ベルト13により圧着部9に至ると、加圧部材91および92が、トナー像を記録用紙Sの第1面に圧着する。圧着部9により定着処理が施される前に、トナー像が第1照射部40aによる紫外光照射により軟化するため、記録用紙Sに対する画像圧着の省エネルギー化を図ることができる。すなわち、本発明の画像形成方法は、400nm以上800nm以下の波長を有する可視光を照射して、トナー像を固化(硬化)させ記録媒体に定着させる工程の前に、軟化したトナー像を加圧部材により加圧する工程をさらに含むことが好ましい。
また、加圧部材91は、記録用紙Sが加圧部材91および92の間を通過する際に、記録用紙S上のトナー像を加熱することができる。光照射によって軟化したトナー像は、この加熱によりさらに軟化され、その結果、トナー像の記録用紙Sへの定着性がより向上する。加熱する場合の加圧部材91の温度は、30℃以上100℃以下が好ましく、40℃以上100℃以下がより好ましい。
加圧部材91および92の間を通過した記録用紙Sが、排紙部14に至るまでに、記録用紙S上のトナー像に対して400nm以上800nm以下の波長を有する可視光を照射するように第2照射部40bを設ける。この第2照射部40bから可視光を照射することで、記録用紙S上のトナー像をより確実に硬化させることができ、トナー像の記録用紙Sに対する定着性をより向上させることができる。
記録用紙Sの両面に画像を形成する場合、圧着処理がなされた記録用紙Sを排紙部14の手前で用紙反転部24に搬送し、表裏を反転して排出するか、または表裏を反転した記録用紙Sを再度画像形成部10に搬送する。
本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。
なお、窒素含有基を有する高分子の重量平均分子量の測定には、装置「HLC−8120GPC」(東ソー株式会社製)を使用した。この時、カラム、キャリア溶媒(溶離液)、サンプルを調整するための溶媒、標準物質は高分子の種類に応じて適当なものを選択して用いた。
(実施例1)
<窒素含有基を有する高分子の準備>
重量平均分子量が35,000であるポリ(2−ビニルピリジン)(アルドリッチ社製)を準備した。
<液晶性化合物1の合成>
Figure 0006988179
4,4’−ジヒドロキシアゾベンゼン、および4,4’−ジヒドロキシアゾベンゼンに対して2.5当量の7−ブロモヘプタン酸エチルをDMF中で混合し、さらに4,4’−ジヒドロキシアゾベンゼンに対して3当量の炭酸カリウムを加え、室温(25℃)で15時間撹拌した。その後、溶液をセライト濾過し、ロータリーエバポレーターで溶液を濃縮乾固し、酢酸エチルおよび水を用いて分液精製した。得られた有機層を濃縮乾固した後、酢酸エチル:ヘプタン=1:3(体積比)の混合溶媒を展開液とするシリカゲルカラムクロマトグラフィーにて精製し、60%の収率で化合物Aを得た。
1Nの水酸化ナトリウム水溶液に化合物Aを加え室温で2時間撹拌後、1Nの塩酸を加えpH2とした。その後、クロロホルムにて分液精製し、液晶性化合物1(上記化合物1)を85%の収率で得た。液晶性化合物1の構造は、H−NMRにて確認した。
<複合樹脂の合成>
ポリ(2−ビニルピリジン) 500mg、および液晶性化合物1 30mg(高分子に対して6質量%)を、クロロホルム2mlに溶解し、得られた溶液をガラス基板にスピンコート法で塗布した後風乾し(乾燥時間2時間)、フィルム状の複合樹脂1(厚さ20μm)を得た。
(実施例2)
ポリ(2−ビニルピリジン)の代わりに、重量平均分子量が約20,000であるスチレン−4−ビニルピリジン共重合体(アルドリッチ社製)を用いたこと以外は、実施例1と同様の方法で、フィルム状の複合樹脂2(厚さ20μm)を得た。
参考例3)
ポリ(2−ビニルピリジン)の代わりに、重量平均分子量が1,000以上である熱可塑性ポリウレタンエラストマーを用いたこと以外は、実施例1と同様の方法で、フィルム状の複合樹脂3(厚さ20μm)を得た。
参考例4)
ポリ(2−ビニルピリジン)の代わりに、重量平均分子量が約30,000であるナイロン66(アルドリッチ社製)を用いたこと以外は、実施例1と同様の方法で、フィルム状の複合樹脂4(厚さ20μm)を得た。
(実施例5)
液晶性化合物1の代わりに、下記の方法で合成した液晶性化合物2を用いたこと以外は、実施例2と同様の方法で、フィルム状の複合樹脂5(厚さ20μm)を得た。
<液晶性化合物2の合成>
Figure 0006988179
4,4’−ジヒドロキシアゾベンゼン、および4,4’−ジヒドロキシアゾベンゼンに対して2.5当量の4−ブロモ酪酸エチルをDMF中で混合し、さらに4,4’−ジヒドロキシアゾベンゼンに対して3当量の炭酸カリウムを加え、室温(25℃)で15時間撹拌した。その後、溶液をセライト濾過し、ロータリーエバポレーターで溶液を濃縮乾固した後、酢酸エチルおよび水を用いて分液精製した。得られた有機層を濃縮乾固した後、酢酸エチル:ヘプタン=1:3(体積比)の混合溶媒を展開液とするシリカゲルカラムクロマトグラフィーにて精製し、70%の収率で化合物Bを得た。
1Nの水酸化ナトリウム水溶液に化合物Bを加え室温で2時間撹拌後、1Nの塩酸を加えpH2とした。その後、クロロホルムにて分液精製し、液晶性化合物2(上記化合物2)を83%の収率で得た。液晶性化合物2の構造は、H−NMRにて確認した。
(実施例6)
液晶性化合物1の代わりに、下記の方法で合成した液晶性化合物3を用いたこと以外は、実施例2と同様の方法で、フィルム状の複合樹脂6(厚さ20μm)を得た。
<液晶性化合物3の合成>
Figure 0006988179
化合物C(J. Med. Chem., 1990, 33 (4), pp 1177-1186)のTHF溶液に10当量の二酸化マンガンを加え、加熱還流下42時間撹拌した。その後、溶液をセライト濾過し、ロータリーエバポレーターで溶液を濃縮乾固し、酢酸エチルおよび水を用いて分液精製した。得られた有機層を濃縮乾固した後、酢酸エチル:ヘプタン=1:3(体積比)の混合溶媒を展開液とするシリカゲルカラムクロマトグラフィーにて精製し、35%の収率で化合物Dを得た。
1Nの水酸化ナトリウム水溶液に化合物Dを加え室温で2時間撹拌後、1Nの塩酸を加えpH2とした。その後、クロロホルムにて分液精製し、液晶性化合物3(上記化合物3)を85%の収率で得た。液晶性化合物3の構造は、H−NMRにて確認した。
(実施例7)
液晶性化合物1の代わりに、下記の方法で合成した液晶性化合物4を用いたこと以外は、実施例2と同様の方法で、フィルム状の複合樹脂7(厚さ20μm)を得た。
<液晶性化合物4の合成>
Figure 0006988179
4,4’−ジヒドロキシアゾベンゼン、および4,4’−ジヒドロキシアゾベンゼンに対して1.1当量の7−ブロモヘプタン酸エチルをDMF中で混合し、さらに4,4’−ジヒドロキシアゾベンゼンに対して1.5当量の炭酸カリウムを加え、室温(25℃)で15時間撹拌した。その後、溶液をセライト濾過し、ロータリーエバポレーターで溶液を濃縮乾固し、酢酸エチルおよび水を用いて分液精製した。得られた有機層を濃縮乾固した後、酢酸エチル:ヘプタン=1:1(体積比)の混合溶媒を展開液とするシリカゲルカラムクロマトグラフィーにて精製し、25%の収率で化合物Eを得た。
化合物E、および化合物Eに対して2当量の6−ブロモヘキサン酸エチルをDMF中で混合し、さらに化合物Eに対して1.5当量の炭酸カリウムを加え、室温(25℃)で15時間撹拌した。その後、溶液をセライト濾過し、ロータリーエバポレーターで溶液を濃縮乾固し、酢酸エチルおよび水を用いて分液精製した。得られた有機層を濃縮乾固した後、酢酸エチル:ヘプタン=1:3(体積比)の混合溶媒を展開液とするシリカゲルカラムクロマトグラフィーにて精製し、72%の収率で化合物Fを得た。
1Nの水酸化ナトリウム水溶液に化合物Fを加え室温で2時間撹拌後、1Nの塩酸を加えpH2とした。その後、クロロホルムにて分液精製し、液晶性化合物4(上記化合物4)を83%の収率で得た。液晶性化合物4の構造は、H−NMRにて確認した。
(実施例8)
液晶性化合物1の代わりに、下記の方法で合成した液晶性化合物5を用いたこと以外は、実施例2と同様の方法で、フィルム状の複合樹脂8(厚さ21μm)を得た。
<液晶性化合物5の合成>
Figure 0006988179
4,4’−ジヒドロキシスチルベン、および4,4’−ジヒドロキシスチルベンに対して2.5当量の7−ブロモヘプタン酸エチルをDMF中で混合し、さらに4,4’−ジヒドロキシアゾベンゼンに対して3当量の炭酸カリウムを加え、室温(25℃)で15時間攪拌した。その後、溶液をセライト濾過し、ロータリーエバポレーターで溶液を濃縮乾固し、酢酸エチルおよび水を用いて分液精製した。得られた有機層を濃縮乾固した後、酢酸エチル:ヘプタン=1:3(体積比)の混合溶媒を展開液とするシリカゲルカラムクロマトグラフィーにて精製し、75%の収率で化合物Gを得た。
1Nの水酸化ナトリウム水溶液に化合物Gを加え室温で2時間撹拌後、1Nの塩酸を加えpH2とした後、クロロホルムにて分液精製し、液晶性化合物5(上記化合物5)を83%の収率で得た。液晶性化合物5の構造は、H−NMRにて確認した。
(実施例9)
実施例2において、用いた液晶性化合物1の添加量を5mg(高分子に対して1質量%)に変更したこと以外は、実施例2と同様の方法で、フィルム状の複合樹脂9(厚さ19μm)を得た。
(実施例10)
実施例2において、用いた液晶性化合物1の添加量を100mg(高分子に対して20質量%)に変更したこと以外は、実施例2と同様の方法で、フィルム状の複合樹脂10(厚さ22μm)を得た。
(比較例1)
液晶性化合物1を添加しなかったこと以外は、実施例2と同様の方法で、フィルム状の比較樹脂1(厚さ18μm)を得た。
(比較例2)
ポリ(2−ビニルピリジン)の代わりに、重量平均分子量が50,000であるポリスチレン(和光純薬工業株式会社製)を用いたこと以外は、実施例1と同様の方法で、比較複合樹脂2(厚さ18μm)を得た。
(比較例3)
液晶性化合物1の代わりに、下記の方法で合成した液晶性化合物101を用いたこと以外は、実施例2と同様の方法で、フィルム状の比較複合樹脂3(厚さ20μm)を得た。
Figure 0006988179
4,4’−ジヒドロキシアゾベンゼン、および4,4’−ジヒドロキシアゾベンゼンに対して2.5当量の1−ブロモ−6−エトキシヘキサンをDMF中で混合し、さらに4,4’−ジヒドロキシアゾベンゼンに対して5当量の炭酸カリウムを加え、室温(25℃)で15時間撹拌した。その後、溶液をセライト濾過し、ロータリーエバポレーターで溶液を濃縮乾固し、酢酸エチルおよび水を用いて分液精製した。得られた有機層を濃縮乾固した後、酢酸エチル:ヘプタン=1:5(体積比)の混合溶媒を展開液とするシリカゲルカラムクロマトグラフィーにて精製し、75%の収率で液晶性化合物101(上記化合物101)を得た。液晶性化合物101の構造は、H−NMRにて確認した。
[評価]
<ガラス転移温度(Tg)>
上記実施例、参考例および比較例で作製したフィルム状の複合樹脂または樹脂のガラス転移温度を、示差走査熱量計を用いて、以下のように測定した。測定機器としては、「ダイヤモンドDSC」(株式会社パーキンエルマージャパン製)を用いた。大気圧、常温(25℃)での紫外光照射前のTg(常態Tg)の測定は、紫外光照射前の各フィルムを2mm角に切りだし測定用パンに封入して、リファレンスは空のアルミニウム製パンを使用した。測定条件としては、測定温度0℃〜150℃、昇温速度10℃/分、降温速度10℃/分で、Heat−cool−Heatの温度制御で行い、その2nd.Heatにおけるデータをもとに解析を行い、第1の吸熱ピークの立ち上がり前のベースラインの延長線と、第1のピークの立ち上がり部分からピーク頂点までの間で最大傾斜を示す接線とを引き、その交点をガラス転移温度(Tg)とした。
紫外光照射後のTg(紫外光照射後Tg)の測定は、各フィルムを2mm角に切りだし、紫外光(波長369nm、ランプの照度100mW/cm)を10分間照射したフィルムを測定用パンに封入し、上記と同様の測定条件で行った。
可視光照射後のTgの測定は、各フィルムを2mm角に切りだし、紫外光(波長369nm、ランプの照度100mW/cm)を10分間照射した後、さらに可視光(波長499nm、ランプの照度100mW/cm)を10分間照射したフィルムを測定用パンに封入し、上記と同様の測定条件で行った。
ガラス転移温度の測定結果を下記表1に示す。なお、下記表1中の「Tg低下度」とは、常態Tgから紫外光照射後Tgを引いたガラス転移温度の低下幅であり、この低下幅が大きいほどより低い温度での加工が可能である、すなわち低温加工性に優れた樹脂であることを示す。欄中、◎は低下幅が10℃以上、○は低下幅が6℃以上10℃未満、△は低下幅が3℃以上6℃未満、×は低下幅が3℃未満であることをそれぞれ示しており、◎〜△であれば実用可能であることを示す。
<加圧転写評価>
紫外光および可視光照射後に、各樹脂フィルムを1cm角に切りだし上質紙A(コニカミノルタ株式会社製、Jペーパー)上に設置した。このサンプルを、上記で測定した常態Tgより10℃高い温度で加熱しつつ、紫外光(波長369nm、ランプの照度100mW/cm)を10分間照射した後、室温(25℃)で可視光(波長499nm、ランプの照度100mW/cm)を10分間照射し、さらに上質紙B(コニカミノルタ株式会社製、Jペーパー)を重ね、樹脂フィルムの部分を0.5MPaで加圧し、添加した化合物(液晶性化合物)の上質紙Bへの移動の有無を顕微鏡にて目視で確認した。下記表1中、○は化合物(液晶性化合物)の上質紙Bへの移動が無かったことを、×は化合物(液晶性化合物)の上質紙Bへの移動があったことをそれぞれ表し、○であれば、トナーとしての耐久性に優れていると言える。
Figure 0006988179

上記表1から明らかなように、実施例の複合樹脂は、紫外光を照射した後、より低い温度での加工が可能となり、加工後の耐久性にも優れていることが示唆された。ここで、実施例2と実施例8との比較より、スチルベン型の液晶性化合物よりも、アゾベンゼン型の液晶性化合物の方が、紫外線照射後のTgを低下させやすい傾向があることが分かった。なお、比較例3では、液晶性化合物101の水素結合性が低く、当該液晶性化合物101のTgが低いことに起因して、複合樹脂全体のTgが低下していると考えられる。
また、本発明の複合樹脂は、可視光照射後に加圧しても液晶性化合物の染み出しが見られず、トナーとして用いた場合の耐久性に優れていることが示唆された。
1 感光体、
2 帯電器、
3 露光器、
4 現像部、
5 転写部、
6 除電部
7 用紙搬送系、
8 クリーニング部、
9 圧着部、
10 画像形成部、
11 給紙部、
12 搬送ローラー、
13 搬送ベルト、
14 排紙部、
15 手差し給紙部、
16 トレイ、
17 温湿度計、
20 画像処理部、
24 用紙反転部、
40 照射部、
40a 第1照射部、
40b 第2照射部、
50 転写ローラー、
71 画像読取装置、
72 自動原稿送り装置、
85 ブレード、
90 制御部、
91、92 加圧部材、
100 画像形成装置、
d 原稿、
S 記録用紙。

Claims (5)

  1. 窒素含有基を有する高分子と;前記窒素含有基と水素結合を形成する官能基を有し、光照射により異性化する液晶性化合物と;が水素結合を形成してなる複合樹脂であって、前記水素結合は光照射により切断されうる結合であり、
    前記高分子は、ポリピロール、ポリビニルピロール、ポリビニルイミダゾール、スチレン−ビニルイミダゾール共重合体、ポリビニルピリジン、スチレン−ビニルピリジン共重合体、スチレン−ブタジエン−ビニルピリジン共重合体、ポリベンゾイミダゾ−ルおよびメラミン樹脂からなる群から選択される少なくとも一種を含み、
    前記液晶性化合物は、下記化学式(1)で表される化合物である、複合樹脂
    Figure 0006988179
    上記化学式(1)中、
    Xは、CHまたは窒素原子であり、
    およびY は、それぞれ独立して、オキソ酸基であり、
    ArおよびAr’は、非置換のフェニレン基であり、
    〜R は、水素原子であり、
    nおよびmは、それぞれ独立して、3以上10以下の整数である。
  2. 前記液晶性化合物の分子量は、1000未満である、請求項1に記載の複合樹脂。
  3. 前記液晶性化合物の含有量が、前記高分子の総量に対して、3〜50質量%である、請求項1または2に記載の複合樹脂。
  4. 請求項1〜のいずれか1項に記載の複合樹脂を含む、電子写真用トナー。
  5. 記録媒体上に請求項に記載の電子写真用トナーからなるトナー像を形成する工程と、
    前記トナー像に対して、300nm以上400nm未満の波長を有する光を照射して前記トナー像を軟化させる工程と、
    軟化した前記トナー像に対して、400nm以上800nm以下の波長を有する光を照射して前記トナー像を固化させ記録媒体に定着させる工程と、
    を含む、画像形成方法。
JP2017117102A 2017-06-14 2017-06-14 複合樹脂 Active JP6988179B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017117102A JP6988179B2 (ja) 2017-06-14 2017-06-14 複合樹脂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017117102A JP6988179B2 (ja) 2017-06-14 2017-06-14 複合樹脂

Publications (2)

Publication Number Publication Date
JP2019003009A JP2019003009A (ja) 2019-01-10
JP6988179B2 true JP6988179B2 (ja) 2022-01-05

Family

ID=65004953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017117102A Active JP6988179B2 (ja) 2017-06-14 2017-06-14 複合樹脂

Country Status (1)

Country Link
JP (1) JP6988179B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11976230B2 (en) * 2020-04-24 2024-05-07 Konica Minolta, Inc. Photoresponsive material, adhesive, optical switching material, toner, and image forming method
CN111875765B (zh) * 2020-07-16 2022-07-12 复旦大学 一种含氢键的线型偶氮苯聚合物及其制备方法与应用

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3788055T2 (de) * 1986-07-18 1994-06-01 Idemitsu Kosan Co Flüssigkristallpolymer.
JP2643542B2 (ja) * 1990-06-14 1997-08-20 積水化学工業株式会社 熱可塑性ポリウレタンの製造方法
JPH05158010A (ja) * 1991-12-06 1993-06-25 Casio Comput Co Ltd 光応答性膜を備えた色変化ハイブリッドベシクル含有物とその色変化光制御方法
JPH07281473A (ja) * 1994-04-07 1995-10-27 Hitachi Ltd 現像方法及びその方法に用いる現像装置
JPH10151793A (ja) * 1996-11-21 1998-06-09 Brother Ind Ltd 画像形成方法及び画像形成装置
JP3999648B2 (ja) * 2002-12-11 2007-10-31 株式会社リコー 液晶表示素子及びその製造方法
US8785123B2 (en) * 2009-10-18 2014-07-22 The Regents Of The University Of California Direct hierarchical assembly of nanoparticles
JP2014191077A (ja) * 2013-03-26 2014-10-06 Brother Ind Ltd 画像形成装置
JP2014191078A (ja) * 2013-03-26 2014-10-06 Brother Ind Ltd 現像剤および定着方法
CN106661336B (zh) * 2014-06-30 2020-11-17 日产化学工业株式会社 液晶取向剂、液晶取向膜和液晶表示元件
JP6880660B2 (ja) * 2016-11-02 2021-06-02 コニカミノルタ株式会社 複合樹脂

Also Published As

Publication number Publication date
JP2019003009A (ja) 2019-01-10

Similar Documents

Publication Publication Date Title
JP7000684B2 (ja) トナーおよび画像形成方法
JP6841000B2 (ja) 画像形成装置および画像形成方法
JP2012027179A (ja) 静電荷像現像用トナー及びその製造方法
CN111562729B (zh) 光响应性低分子材料、粘接剂、调色剂和图像形成方法
JP6880660B2 (ja) 複合樹脂
JP6988179B2 (ja) 複合樹脂
US20220043366A1 (en) Photoresponsive polymer
JP2022171429A (ja) 光応答性重合体
JP7218619B2 (ja) トナーおよび画像形成方法
JP7251193B2 (ja) 光応答性高分子材料、接着剤、トナーおよび画像形成方法
JP2020180177A (ja) 光応答性高分子化合物
US11762276B2 (en) Photoresponsive compound
JP7147375B2 (ja) トナーおよび画像形成方法
JP2022171428A (ja) 光応答性化合物
JP2022061312A (ja) 樹脂組成物、静電荷像現像用トナー、画像形成方法、感光性接着剤及び光スイッチング材料
JP2021196498A (ja) 樹脂組成物、静電荷像現像用トナー、画像形成方法及び感光性接着剤
JP2018005049A (ja) トナーおよび画像形成方法
JP6819336B2 (ja) 電子写真用トナーおよび画像形成方法
JP7052406B2 (ja) トナーおよび画像形成方法
JP7243259B2 (ja) 光応答性低分子材料、接着剤、トナーおよび画像形成方法
JP5505388B2 (ja) 静電荷像現像用トナー
JP5834972B2 (ja) 静電荷像現像用トナー
EP3901704A1 (en) Photoresponsive material, adhesive, optical switching material, toner, and image forming method
JP7484131B2 (ja) 光応答性化合物、接着剤、トナーおよび画像形成方法
JP2021175783A (ja) 光応答性材料、接着剤、光スイッチング材料、トナーおよび画像形成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211115

R150 Certificate of patent or registration of utility model

Ref document number: 6988179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150