JP6972633B2 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP6972633B2
JP6972633B2 JP2017081860A JP2017081860A JP6972633B2 JP 6972633 B2 JP6972633 B2 JP 6972633B2 JP 2017081860 A JP2017081860 A JP 2017081860A JP 2017081860 A JP2017081860 A JP 2017081860A JP 6972633 B2 JP6972633 B2 JP 6972633B2
Authority
JP
Japan
Prior art keywords
fuel cell
water
temperature
intercooler
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017081860A
Other languages
English (en)
Other versions
JP2018181688A (ja
Inventor
貴志 小山
珠城 鈴木
博道 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017081860A priority Critical patent/JP6972633B2/ja
Publication of JP2018181688A publication Critical patent/JP2018181688A/ja
Application granted granted Critical
Publication of JP6972633B2 publication Critical patent/JP6972633B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、水素と酸素(空気)との化学反応を利用して発電を行う燃料電池と、燃料電池を冷却する為の冷却装置とを有する燃料電池システムに関する。
従来、水素と酸素(空気)との化学反応を利用して発電を行う燃料電池を備えた燃料電池システムが種々開発されている。燃料電池では、発電時の化学反応により水分および熱が発生する。燃料電池は発電効率のため定温(80℃程度)に維持する必要があり、発電時に発生する熱のほとんどを、冷却水等の熱媒体を介して、ラジエータ(空冷式の冷却装置)により大気に放出している。
このような燃料電池システムに関する技術として、特許文献1に記載された発明が知られている。特許文献1に記載された燃料電池システムは、燃料電池の化学反応で発生する水を気液分離器で回収し、回収した水を冷却装置であるラジエータに散布するように構成されている。
従って、特許文献1の燃料電池システムは、散布した水の蒸発潜熱によってラジエータの冷却性能を向上させ、高負荷時における燃料電池の温度を一定範囲内に維持している。これにより、当該燃料電池システムは、燃料電池における安定発電に寄与している。
特開2001−313054号公報
ここで、燃料電池システムにおいては、燃料電池における安定発電のみならず、燃料電池の発電効率の向上も望まれている。燃料電池における発電効率の向上には、燃料電池における化学反応を促進する必要があり、その為には、水分を含んだ湿潤状態に当該燃料電池をすることが必要となる。
この為、特許文献1のように気液分離器で回収した水を、燃料電池を湿潤状態にする為に利用することが考えられる。この回収した水分を燃料電池に供給する際には、適切な態様で供給することが重要であり、供給態様によっては化学反応を阻害し、燃料電池の発電効率を低下させてしまう場合が想定される。
本発明は、これらの点に鑑みてなされており、化学反応で発生する水を適切に燃料電池に供給することで、燃料電池における発電効率の向上に貢献可能な燃料電池システムを提供することを目的とする。
前記目的を達成するため、請求項1に記載の燃料電池システムは、
水素と酸素とを化学反応させて電力を得る燃料電池(1)と、
化学反応で発生する水分を回収する水分回収部(10)と、
水分回収部で回収した水分を、燃料電池に散布する電池側散布部(15)と、
燃料電池に対して前記酸素を含む気体を供給する為の供給経路上であって、電池側散布部による散布位置よりも下流側に配置され、内部を流れる冷却用熱媒体との熱交換により気体を冷却するインタークーラ(17)と、
電池側散布部及びインタークーラの作動を制御する制御部(16)と、を有し、
制御部は、
燃料電池が予め定められた状態よりも乾いているか否かを判定する乾き判定部(S3、S13)を有し、
乾き判定部によって燃料電池が乾いていると判定された場合に、インタークーラの冷却性能を下げるように、インタークーラの作動を制御し、
インタークーラの作動を制御した後に、水分回収部で回収した水分について、飽和蒸気圧以下であって、冷却用熱媒体の温度、燃料電池の出力を用いて、燃料電池の発電効率が最も高くなるように定められた量を、燃料電池に対して散布するように、電池側散布部の作動を制御する。
当該燃料電池システムによれば、燃料電池にて水素と酸素とを化学反応させて電力を得ることができ、この化学反応で生成された水分を、水分回収部によって回収して利用することができる。ここで、燃料電池は、一般的に電解質膜を一対の電極で挟み込んだセルを多数組み合わせて構成されており、発電の際には、水素と酸素との化学反応の為に電解質膜を湿潤状態にしておく必要がある。
当該燃料電池システムは、乾き判定部によって燃料電池が乾いていると判定された場合には、電池側散布部の作動によって、水分回収部で回収した水分を燃料電池に対して散布する。これにより、当該燃料電池システムによれば、化学反応によって発生した水分を回収・利用することで、燃料電池の湿潤状態を維持することができる。即ち、燃料電池における化学反応に適した環境を整えることができ、燃料電池による発電効率の向上に貢献できる。
そして、当該燃料電池システムによれば、燃料電池に対して回収水を散布する際に、インタークーラの冷却性能を低下させる為、インタークーラ内における凝縮水の発生を抑制することができる。これにより、当該燃料電池システムによれば、液水状態の凝縮水が燃料電池に供給されることを防止でき、当該凝縮水によって、燃料電池における電気化学反応が阻害されることを防止できる。即ち、当該燃料電池システムは、化学反応により生じる水分を適切に用いて、確実に燃料電池1における発電効率を向上させることができる。
尚、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施態に記載の具体的手段との対応関係を示すものである。
第1実施形態に係る燃料電池システムの概略構成を示す模式図である。 第1実施形態に係る燃料電池システムの作動を示すフローチャートである。 第1実施形態における乾き判定用制御マップの一例を示す説明図である。 第2実施形態に係る燃料電池システムの作動を示すフローチャートである。
以下、実施形態について図に基づいて説明する。以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
(第1実施形態)
先ず、第1実施形態に係る燃料電池システム100の構成について、図1を参照しつつ説明する。第1実施形態に係る燃料電池システム100は、燃料電池1を電源として走行する電気自動車(燃料電池車両)に適用されており、走行用電動モータやバッテリ等の電気機器(図示せず)に対して、燃料電池1で発電された電力を供給するように構成されている。
図1に示すように、第1実施形態に係る燃料電池システム100は、水素と酸素との化学反応を利用して電力を発生する燃料電池(FCスタック)1を有している。当該燃料電池1は、固体高分子電解質型燃料電池(PEFC)であり、多数のセルを組み合わせて構成されている。各セルは、電解質膜を一対の電極で挟み込んで形成されている。
燃料電池1には、空気通路2を介して、酸素を含む空気が供給される。この空気通路2には、エアポンプ6が配置されており、エアポンプ6の作動によって空気を圧送して、燃料電池1に供給することができる。又、燃料電池1には、水素通路3を介して水素が供給される。
そして、燃料電池1では、以下の水素と酸素の電気化学反応が起こり、電気エネルギが発生する。従って、当該燃料電池1は、本発明における燃料電池として機能する。この電気化学反応に用いられなかった未反応の酸素及び水素は、排気ガス及び排気水素として燃料電池1から排出される。
(負極側)H→2H+2e
(正極側)2H+1/2O+2e→H
当該電気化学反応の為には、燃料電池1内の電解質膜は、水分を含んだ湿潤状態となっている必要がある。当該燃料電池システム100は、燃料電池1に供給される空気及び水素に加湿を行い、これらの加湿されたガスを燃料電池1に供給することで、燃料電池1内の電解質膜を加湿するように構成されている。
又、燃料電池1では、発電の際の電気化学反応により熱及び水分が発生する。当該燃料電池1の発電効率を考慮すると、燃料電池1は、燃料電池システム100が作動している間、一定温度(例えば80℃程度)に維持されている必要がある。又、燃料電池1内部の電解質膜は、所定の許容上限温度を超えると、高温により破壊されてしまう。この為、燃料電池1の温度が許容温度以下となるようにしておく必要がある。
図1に示すように、当該燃料電池システム100には、冷却水回路が配置されており、熱媒体としての冷却水を用いて、燃料電池1を冷却して当該燃料電池1の温度を制御している。この熱媒体である冷却水としては、低温時における凍結を防止する為に、例えば、エチレングリコールと水の混合溶液を用いることができる。
当該冷却水回路は、ラジエータ4と、ファン5と、冷却水流路7と、ウォータポンプ8とを有して構成されており、燃料電池1とラジエータ4の間で冷却水を循環させることで、燃料電池1で発生した熱を系外へ放出するように構成されている。
ラジエータ4は、燃料電池1で発生した熱を系外に放熱するように構成された熱交換器である。当該燃料電池システム100においては、冷却水回路の冷却水は、燃料電池1を流れる過程で、電気化学反応で発生した熱を吸熱して流出し、冷却水流路7を介して、ラジエータ4へ流入する。ラジエータ4では、冷却水と大気との熱交換が行われ、冷却水の熱が大気に放熱される。その後、冷却水は、ラジエータ4から燃料電池1へ向かって流れ、冷却水回路の冷却水流路7を循環する。
即ち、ラジエータ4は、熱媒体としての冷却水との熱交換によって、燃料電池1の電気化学反応で生じた熱を放熱して、燃料電池1を冷却している。従って、当該ラジエータ4は、本発明における冷却装置として機能する。
又、当該ラジエータ4は、ファン5を有している。ファン5は、ラジエータ4における熱交換対象である外気をラジエータ4に送風することで、ラジエータ4における冷却水の熱交換を補助している。
ウォータポンプ8は、燃料電池1とラジエータ4を含む循環径路としての冷却水流路7に配置されており、冷却水を圧送することで、冷却水流路7内において冷却水を循環させている。
当該燃料電池システム100では、冷却水回路における冷却水の温度制御は、ウォータポンプ8による流量制御、ファン5の送風量制御によって行われる。そして、冷却水流路7における燃料電池1の出口側には、水温センサ9が配置されている。当該水温センサ9は、燃料電池1の出口側から流出する冷却水温度を検出する。
当該燃料電池システム100において、燃料電池1による発電の際に発生した水分は、燃料電池1から空気通路2を介して、空気に含まれた状態で排出される。この為、空気通路2における燃料電池1の下流側には、気液分離器10が配置されている。
当該気液分離器10は、燃料電池1での発電の際に発生した水分を、空気通路2から排出された空気と共に回収し、水蒸気と水に分離する。そして、気液分離器10で分離された水蒸気は、燃料電池システム100の外部に排出される。一方、気液分離器10で分離された水は、凝縮により温度が下げられた状態で気液分離器10内に一旦貯留される。即ち、気液分離器10は、本発明における水分回収部として機能する。
当該燃料電池システム100において、気液分離器10内に貯留された回収水は、後述するように、燃料電池1における電解質膜の加湿と、ラジエータ4の冷却に用いられる。気液分離器10の下部には、当該気液分離器10内に貯留されている回収水を利用する為の回収水用流路11が接続されている。
図1に示すように、この回収水用流路11は、気液分離器10の下部と流量調整弁13とを接続しており、当該回収水用流路11には、散布用ポンプ12が配置されている。従って、当該燃料電池システム100においては、散布用ポンプ12を作動させることによって、気液分離器10内に貯留されている回収水を、流量調整弁13へ圧送することができる。
流量調整弁13には、ラジエータ側流路14と、加湿用流路15とが接続されている。ラジエータ側流路14は、散布用ポンプ12の作動によって、気液分離器10内部から流量調整弁13を介して圧送された回収水をラジエータ4に散布する為の流路である。従って、散布用ポンプ12、流量調整弁13、ラジエータ側流路14は、本発明における冷却装置側散布部として機能する。
当該燃料電池システム100において、当該流量調整弁13は、ラジエータ側流路14に対する弁開度と、加湿用流路15に対する弁開度を独立して調整可能に構成されており、ラジエータ側流路14における回収水の散布流量と、加湿用流路15における回収水の散布流量を調整する。
そして、加湿用流路15は、散布用ポンプ12の作動によって、気液分離器10内部から流量調整弁13を介して圧送された回収水を燃料電池1に散布する為の流路である。具体的には、当該加湿用流路15は、空気通路2におけるエアポンプ6の下流側に回収水を散布して、空気通路2の空気と共に燃料電池1に供給するように配置されている。即ち、散布用ポンプ12、流量調整弁13、加湿用流路15は、本発明における電池側散布部として機能する。尚、ラジエータ側流路14及び加湿用流路15の端部には、水を霧状に散布(噴射)する為の散水ノズルが配置されている。
更に、当該燃料電池システム100は、空気通路2上におけるエアポンプ6及び、加湿用流路15の散水ノズルよりも下流側に、インタークーラ17を有している。当該インタークーラ17は、エアポンプ6による断熱圧縮で高温となった空気通路2上の空気を冷却する為の熱交換器である。
そして、当該インタークーラ17には、インタークーラ用熱媒体配管18が接続されている。インタークーラ用熱媒体配管18は、高温となった空気通路2上の空気を冷却する為の冷却用熱媒体をインタークーラ17内部に供給する流路として機能する。インタークーラ17内部を流れた冷却用熱媒体は、インタークーラ用熱媒体配管18を介して、インタークーラ17外部に流出する。
当該燃料電池システム100においては、インタークーラ用熱媒体配管18は、ラジエータ4、冷却水流路7等を含む冷却水回路に接続されており、インタークーラ17は、当該冷却水回路において、燃料電池1に並列に接続されている。従って、当該インタークーラ17には、冷却用熱媒体として冷却水が供給される。
インタークーラ17の流入口側に接続されたインタークーラ用熱媒体配管18には、電磁弁19が配置されている。当該電磁弁19は、インタークーラ用熱媒体配管18内部の流路を全閉可能に構成されており、制御装置16によってその作動が制御される。即ち、当該燃料電池システム100によれば、電磁弁19の作動を制御することによって、インタークーラ17に対する冷却水の供給を停止することができる。
当該燃料電池システム100によれば、空気通路2上でエアポンプ6の断熱圧縮によって高温となった空気を、インタークーラ17で冷却した状態で燃料電池1に供給することができる為、高温の空気による燃料電池1の熱損を防止できる。
そして、図1に示すように、第1実施形態に係る燃料電池システム100は、制御装置16を有している。当該制御装置16は、燃料電池システム100を構成する各制御対象機器の作動を制御する制御部であり、本発明における制御部として機能する。当該制御装置16は、CPU、ROM及びRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。
制御装置16の入力側には、燃料電池1及び水温センサ9が接続されている。従って、制御装置16は、燃料電池1の出力や水温センサ9による冷却水温度を取得することができる。
又、制御装置16の出力側には、散布用ポンプ12、流量調整弁13や電磁弁19等の各制御対象機器が接続されている。従って、当該制御装置16のROMに記憶されている制御プログラムに基づいて、燃料電池システム100の作動を制御することができる。そして、制御装置16のROMには、後述する回収水の散布に関する制御プログラムや乾き判定に関する制御マップも記憶されている。この制御プログラム等の内容については後述する。
続いて、第1実施形態に係る燃料電池システム100において、気液分離器10による回収水を利用する場合の作動制御について、図面を参照しつつ説明する。燃料電池システム100の作動が開始されると、制御装置16は、図2に示す制御プログラムをROMから読み出して、CPUによって実行する。
ステップS1において、燃料電池システム100の作動が開始されると、先ず、燃料電池1が図示しない加熱手段によって発電可能温度まで加熱される。燃料電池1が発電可能温度になると、エアポンプ6の作動が開始され、空気通路2を介して、燃料電池1に酸素を含む空気の供給が開始される。同時に、水素通路3を介して。燃料電池1に対する水素の供給が開始される。これにより、燃料電池1における発電が開始される。
この発電時における電気化学反応によって燃料電池1では水分と熱が発生する。水分は空気通路2を介して空気に含まれた状態で燃料電池1から排出された後、気液分離器10で水蒸気と水に分離される。水蒸気は気液分離器10から燃料電池システム100の外部に排出され、回収された水は気液分離器10内部に貯留される。燃料電池1で発生した熱は、冷却水流路7内の冷却水を介して、ラジエータ4から大気中に放出される。
又、気液分離器10内部の回収水は、以下の制御により、発電効率の向上や高負荷時における安定発電の為に用いられる。この時、当該燃料電池システム100では、電磁弁19が所定の開度に調整されており、インタークーラ17に対する冷却水の供給が許容されている。
ステップS2においては、水温センサ9によって検出された冷却水温度と、燃料電池1の出力が制御装置16に入力される。
そして、ステップS3では、燃料電池1の乾き判定が行われる。この乾き判定は、燃料電池1の電解質膜が乾燥した乾き状態であるか湿潤状態であるかを判断する処理である。燃料電池1が乾き状態であると判断された場合には、ステップS4に進み、一方、燃料電池1が乾き状態でない(つまり、湿潤状態である)と判断された場合には、ステップS8に移行する。従って、ステップS3を実行する制御装置16は、本発明における乾き判定部として機能する。
具体的には、ステップS3における乾き判定は、ステップS2で取得した冷却水温度及び燃料電池1の出力と、ROMに記憶されている乾き判定用制御マップを参照して行われる。図3に示すように、この乾き判定用制御マップは、水温センサ9で検出される冷却水温度と、燃料電池1の出力とを対応付けて構成されている。
そして、ステップS3では、乾き判定用制御マップ上において、燃料電池1の出力値に対応付けられている判定基準値よりも水温センサ9の冷却水温度が高い場合に、燃料電池1が乾き状態であると判断される。この判定基準値は、燃料電池1の電解質膜における乾き状態と湿潤状態との境界を示しており、本発明における燃料電池の予め定められた状態に相当する。
ステップS4に移行すると、電磁弁19の作動を制御することで、インタークーラ17の冷却性能を低下させる。具体的に、第1実施形態においては、電磁弁19の作動を制御して、インタークーラ用熱媒体配管18内の流路を全閉にすることで、インタークーラ17に対する冷却水の供給を停止する。
次に、ステップS5においては、気液分離器10内の回収水が燃料電池1に対して散布される。具体的には、制御装置16が散布用ポンプ12、流量調整弁13を制御することによって、気液分離器10内の回収水が加湿用流路15から空気通路2におけるエアポンプ6の下流側に散布される。
ここで、加湿用流路15から回収水が散布された場合、インタークーラ17を通過する直前の空気は、エアポンプ6による断熱圧縮された高温空気に対して、加湿用流路15から回収水が散布されたものとなる。即ち、水蒸気を含む空気がインタークーラ17を通過して、燃料電池1に向かって流れることになる。
この時、インタークーラ17に冷却水が供給されていると、インタークーラ17を通過する際に、空気における水蒸気が凝縮して液水となり、この液水の状態で燃料電池1に供給されてしまう場合が生じる。この場合、当該液水が燃料電池1の電解質膜における触媒層表面を被覆して、電解質膜における電気化学反応を阻害してしまう虞がある。
当該燃料電池システム100においては、ステップS5の燃料電池1に対する回収水の散布に先んじて、ステップS4でインタークーラ17の冷却性能を低下させることで、インタークーラ17内における凝縮水の発生を抑制することができる。凝縮水の発生を抑制することで、燃料電池1における電気化学反応の阻害要因をなくすことになる為、燃料電池1における発電効率の低下を抑制することができる。
これにより、散布された回収水が、空気通路2を流れる空気と共に、燃料電池1の電解質膜に適切に供給される為、電気化学反応を阻害することなく、燃料電池1を湿潤状態にすることができ、燃料電池1の発電効率を向上させることができる。
又、空気通路2を流れる空気は、エアポンプ6における断熱圧縮によって高温となっている。回収水を空気通路2におけるエアポンプ6の下流側に散布すると、当該回収水の蒸発潜熱によって、空気通路2を流れる空気を冷却することができる。これにより、高温空気の流入による燃料電池1の熱損を抑制することができる。
尚、流量調整弁13における加湿用流路15側への回収水流量(即ち、燃料電池1に対して供給される回収水の散布量)は、飽和蒸気圧以下とし、燃料電池1の発電効率が最も高くなる任意の量に定められる。具体的には、水温センサ9の冷却水温度や燃料電池1の出力等に基づいて燃料電池1に対する必要流量が算出され、これに応じた散布用ポンプ12、流量調整弁13の制御が行われる。
この回収水流量は、回収水が液水のままで燃料電池1に流入すると、当該液水が燃料電池1における触媒層表面を覆ってしまい電気化学反応を阻害する場合があり、液水による電気化学反応の阻害を防止する為、上述した条件のもとで定められる。
ステップS6に移行すると、水温センサ9で取得された冷却水温度が予め定められた基準温度以上であるか否かが判断される。この基準温度は、燃料電池1における発電に伴って燃料電池1が高温状態となっている場合の冷却水温度を示しており、例えば、90℃である。冷却水温度が基準温度以上である場合はステップS7に進み、冷却水温度が基準温度以上でない場合はステップS8に移行する。
つまり、ステップS6では、水温センサ9からの冷却水温度を介して、燃料電池1の温度状態を判定している。従って、ステップS6を実行する制御装置16は、本発明における温度判定部として機能する。
ステップS7では、気液分離器10内の回収水がラジエータ4に対して散布される。具体的には、制御装置16が散布用ポンプ12、流量調整弁13を制御することによって、気液分離器10内の回収水がラジエータ側流路14からラジエータ4に散布される。この時、制御装置16は、水温センサ9で検出された冷却水温度等から、ラジエータ4に対する回収水の必要散布量を算出し、これに基づいて散布用ポンプ12及び流量調整弁13を作動させる。
これにより、当該燃料電池システム100では、気液分離器10の回収水がラジエータ4に散布(供給)される。そして、当該燃料電池システム100は、散布された回収水の蒸発潜熱(吸熱)によって、ラジエータ4の放熱能力を向上させて、効果的に冷却水流路7を循環する冷却水の温度を低下させることができる。この結果、当該燃料電池システム100は、高負荷時におけるラジエータ4の放熱能力を向上させることができるので、高負荷時における燃料電池1による発電を安定して行うことができる。
ここで、気液分離器10に貯留されている回収水は凝縮により低温状態で生成されている。低温の回収水をラジエータ4に散布することで、冷却水との温度差が広がり、効果的に冷却水の冷却を行うことができる。又、気液分離器10内に水を貯留しておくことで、冷却のため緊急に大量の水が必要な場合でも対応できる。
ステップS8においては、燃料電池システム100の作動を停止するか否かが判断される。この判断処理は、例えば、燃料電池システム100の作動停止に関する操作が行われたか否かに基づいて判断される。作動停止に関する操作には、例えば、電気自動車(燃料電池車両)に対するキーオフ操作が含まれる。燃料電池システム100の作動を停止させる場合には、この制御プログラムの実行を終了する。一方、燃料電池システム100の作動を停止させない場合には、ステップS2に戻り、上述した各ステップを実行する。
この制御プログラムに従って、燃料電池システム100の作動を制御することにより、電気化学反応で発生した水分を気液分離器10で回収した回収水を、燃料電池1の状態に対応する態様で利用することができる。
具体的には、燃料電池1の電解質膜が乾き状態である場合には、ステップS5で回収水を燃料電池1に散布することで、燃料電池1を加湿すると共に冷却することができる。これにより、当該燃料電池システム100は、燃料電池1を湿潤状態にすることができ、燃料電池1における発電効率を向上させることができる。
そして、ステップS5で燃料電池1に対して回収水を散布する前に、ステップS4においてインタークーラ17に対する冷却水の供給を停止して、インタークーラ17の冷却性能を低下させる。これにより、当該燃料電池システム100によれば、燃料電池1に対する回収水の散布に際して、インタークーラ17内における凝縮水の発生を抑制することができる。そして、インタークーラ17による凝縮水の発生を抑制することで、燃料電池1における電気化学反応の阻害要因をなくし、燃料電池1における発電効率を向上させることができる。
又、冷却水温度から燃料電池1が高温状態と判断される場合には、ステップS7で回収水をラジエータ4に対して散布することで、ラジエータ4を回収水の蒸発潜熱で冷却してラジエータ4の放熱能力を高めることができる。これにより、当該燃料電池システム100によれば、燃料電池1の発電に係る高負荷に対して、ラジエータ4の放熱能力の向上によって対応することができ、高負荷時の燃料電池1による発電の安定性を高めることができる。
そして、図2に示すように、ステップS3〜ステップS5による燃料電池1に対する回収水の散布に関する処理は、ステップS6、ステップS7によるラジエータ4に対する回収水の散布に関する処理に先んじて行われる。
燃料電池1に対する回収水の散布では、燃料電池1における電解質膜の加湿による発電効率の向上に加えて、散布した回収水の蒸発による冷却効果を期待することができる。そして、この冷却効果によって燃料電池1が冷却された場合には、ラジエータ4に対する回収水の散布水量を少なくしたり、なくしたりすることも可能となる。従って、このような優先順位で処理を行うように構成することで、気液分離器10内の回収水を有効に利用しつつ、燃料電池1による発電効率の向上と、高負荷時における燃料電池1の発電の安定性の向上を図ることができる。
以上説明したように、第1実施形態に係る燃料電池システム100によれば、燃料電池1が乾き状態である場合には、燃料電池1の電気化学反応で発生した水分が気液分離器10で回収され、気液分離器10内の回収水として燃料電池1に対して散布される。
これにより、燃料電池1における電解質膜を湿潤状態に保つことができるので、燃料電池1における発電効率を向上させることができる。同時に、燃料電池1に散布された回収水の蒸発潜熱によって冷却することもできる為、燃料電池1の温度を一定範囲内に維持することができ、燃料電池1における安定発電にも貢献できる。
そして、当該燃料電池システム100によれば、燃料電池1に対して気液分離器10で回収した回収水を散布する際に、インタークーラ17の冷却性能を低下させる為、インタークーラ17内における凝縮水の発生を抑制することができる。これにより、当該燃料電池システム100によれば、液水状態の凝縮水が燃料電池1に供給されることを防止でき、当該凝縮水によって、燃料電池1における電気化学反応が阻害されることを防止できる。即ち、当該燃料電池システム100は、化学反応により生じる水分を適切に用いて、確実に燃料電池1における発電効率を向上させることができる。
又、冷却水温度から燃料電池1が高負荷に伴う高温状態であると判定された場合、気液分離器10内の回収水がラジエータ4に対して散布される。これにより、当該燃料電池システム100は、高負荷時におけるラジエータ4の放熱能力を向上させることができ、高負荷時における燃料電池1の温度を一定範囲内に維持することができる。即ち、当該燃料電池システム100によれば、高負荷時における燃料電池1の発電を安定させることができる。
即ち、第1実施形態に係る燃料電池システム100によれば、電気化学反応で発生する水を燃料電池1の状態に応じた態様で利用することで、高負荷時の燃料電池1における安定発電と、燃料電池1における発電効率の向上に貢献することができる。
又、第1実施形態のステップS3において、燃料電池1の乾き状態に関する判定は、燃料電池1の出力と、ラジエータ4による燃料電池1の冷却に用いられる冷却水の冷却水温度とに基づいて行われる。
従って、当該燃料電池システム100によれば、燃料電池1の乾き状態に関する判定を精度よく行うことができ、もって、適切なタイミングで、燃料電池1に対する回収水の散布を行って、燃料電池1の発電効率を高めることができる。又、燃料電池1の出力や冷却水温度は、燃料電池システムで一般的に取得されているパラメータである為、特別な検出部を追加することなく、本発明を燃料電池システムに適用することができる。
(第2実施形態)
続いて、上述した第1実施形態とは異なる第2実施形態について、図面を参照しつつ説明する。第2実施形態に係る燃料電池システム100は、制御プログラムの処理内容を除いて、基本的に第1実施形態と同様の構成である。従って、以下の説明において、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
第2実施形態に係る燃料電池システム100において、気液分離器10による回収水を利用する場合の作動制御について、図4を参照しつつ説明する。燃料電池システム100の作動が開始されると、制御装置16は、図4に示す制御プログラムをROMから読み出して、CPUによって実行する。
先ず、ステップS11においては、燃料電池システム100の作動が開始されると、燃料電池システム100を構成する各制御機器の作動が開始される。このステップS11における処理内容は、第1実施形態におけるステップS1と同様である為、詳細な説明は省略する。
ステップS12では、水温センサ9によって検出された冷却水温度と、燃料電池1における電解質膜の膜抵抗であるインピーダンスが制御装置16に入力される。ここで、燃料電池1の電解質膜は、乾き状態が進行する程に、その膜抵抗(即ち、インピーダンス)が増加する傾向を示す。即ち、当該インピーダンスは、燃料電池1の乾き状態を判定する為のパラメータとして用いることができる。
尚、第2実施形態に係る燃料電池システム100においては、周知の交流インピーダンス法により、燃料電池1における電解質膜のインピーダンスが検出されている。この点、制御装置16が電解質膜のインピーダンスを取得することができればよく、その取得方法は適宜変更可能である。例えば、インピーダンスに相関を有する一又は複数の物理量を用いて、電解質膜のインピーダンスを算出する構成としても良い。
ステップS13においては、取得した電解質膜のインピーダンス(以下、取得インピーダンスという)が予め定められた基準インピーダンス以上であるか否かが判断される。基準インピーダンスは、燃料電池1の電解質膜における乾き状態と湿潤状態との境界を示しており、本発明における燃料電池の予め定められた状態に相当する。
即ち、ステップS13は、燃料電池1の電解質膜が乾き状態であるか湿潤状態であるかを判断する為の処理であり、ステップS13を実行する制御装置16は、本発明における乾き判定部として機能する。
取得インピーダンスが基準インピーダンス以上であると判断された場合には、燃料電池1が乾き状態である為、ステップS14に進む。一方、取得インピーダンスが基準インピーダンス以上でないと判断された場合には、燃料電池1が湿潤状態である為、ステップS18に移行する。
第2実施形態に係る燃料電池システム100によれば、燃料電池1の電解質膜の状態を電解質膜のインピーダンスから直接的に把握することができるので、燃料電池1の乾き状態を精度よく判断することができる。
ステップS14に移行すると、電磁弁19の作動を制御することで、インタークーラ17の冷却性能を低下させる。具体的に、第1実施形態のステップS4と同様に、電磁弁19の作動を制御して、インタークーラ用熱媒体配管18内の流路を全閉にすることで、インタークーラ17に対する冷却水の供給を停止する。
続くステップS15では、燃料電池1に対する回収水の散布が行われる。具体的には、制御装置16が散布用ポンプ12、流量調整弁13を制御することによって、気液分離器10内の回収水が空気通路2におけるエアポンプ6の下流側に散布される。このステップS15の処理内容は、第1実施形態に係るステップS5と同様である為、詳細な説明は省略する。
これにより、第2実施形態に係る燃料電池システム100においても、乾き状態の燃料電池1に対して、気液分離器10内の回収水を散布することができる。即ち、第2実施形態においても、燃料電池1における電解質膜を湿潤状態に保つことができるので、燃料電池1における発電効率を向上させることができる。同時に、燃料電池1に散布された回収水の蒸発潜熱によって冷却することもできる為、燃料電池1の温度を一定範囲内に維持することができ、燃料電池1における安定発電にも貢献できる。
又、ステップS15の燃料電池1に対する回収水の散布に先んじて、ステップS14でインタークーラ17の冷却性能を低下させることで、インタークーラ17内における凝縮水の発生を抑制することができる。凝縮水の発生を抑制することで、燃料電池1における電気化学反応の阻害要因をなくすことになる為、第2実施形態においても、燃料電池1における発電効率の低下を抑制することができる。
これにより、散布された回収水が、空気通路2を流れる空気と共に、燃料電池1の電解質膜に適切に供給される為、電気化学反応を阻害することなく、燃料電池1を湿潤状態にすることができ、燃料電池1の発電効率を向上させることができる。
ステップS16においては、水温センサ9で取得された冷却水温度が予め定められた基準温度以上であるか否かが判断される。このステップS16の判断処理は、第1実施形態におけるステップS6と同様の内容である為、詳細な説明は省略する。冷却水温度が基準温度以上である場合はステップS17に進み、冷却水温度が基準温度以上でない場合はステップS18に移行する。
そして、第2実施形態におけるステップS16は、水温センサ9からの冷却水温度を介して、燃料電池1の温度状態を判定している。従って、ステップS16を実行する制御装置16は、本発明における温度判定部として機能する。
ステップS17では、気液分離器10内の回収水がラジエータ4に対して散布される。具体的には、制御装置16が散布用ポンプ12、流量調整弁13を制御することによって、気液分離器10内の回収水がラジエータ側流路14からラジエータ4に散布される。当該ステップS17の処理内容は、第1実施形態におけるステップS7と同様である為、詳細な説明は省略する。
これにより、第2実施形態に係る燃料電池システム100は、高負荷時におけるラジエータ4の放熱能力を向上させることができ、高負荷時における燃料電池1の温度を一定範囲内に維持することができる。即ち、当該燃料電池システム100によれば、高負荷時における燃料電池1の発電を安定させることができる。
ステップS18では、燃料電池システム100の作動を停止するか否かが判断される。この判断処理は、第1実施形態におけるステップS8と同様の処理である為、その説明を省略する。
以上説明したように、第2実施形態に係る燃料電池システム100によれば、燃料電池1が乾き状態である場合には、燃料電池1の電気化学反応で発生した水分が気液分離器10で回収され、気液分離器10内の回収水として燃料電池1に対して散布される。
これにより、燃料電池1における電解質膜を湿潤状態に保つことができるので、燃料電池1における発電効率を向上させることができる。同時に、燃料電池1に散布された回収水の蒸発潜熱によって冷却することもできる為、燃料電池1の温度を一定範囲内に維持することができ、燃料電池1における安定発電にも貢献できる。
そして、第2実施形態に係る燃料電池システム100においても、燃料電池1に対して気液分離器10で回収した回収水を散布する際に、インタークーラ17の冷却性能を低下させる為、インタークーラ17内における凝縮水の発生を抑制することができる。これにより、当該燃料電池システム100によれば、液水状態の凝縮水が燃料電池1に供給されることを防止でき、当該凝縮水によって、燃料電池1における電気化学反応が阻害されることを防止できる。即ち、当該燃料電池システム100は、化学反応により生じる水分を適切に用いて、確実に燃料電池1における発電効率を向上させることができる。
又、冷却水温度から燃料電池1が高負荷に伴う高温状態であると判定された場合、気液分離器10内の回収水がラジエータ4に対して散布される。これにより、当該燃料電池システム100は、高負荷時におけるラジエータ4の放熱能力を向上させることで、燃料電池1の発電を安定させることができる。
即ち、第2実施形態に係る燃料電池システム100によれば、電気化学反応で発生する水を燃料電池1の状態に応じた態様で利用することで、高負荷時の燃料電池1における安定発電と、燃料電池1における発電効率の向上に貢献することができる。
又、第2実施形態のステップS13において、燃料電池1の乾き状態に関する判定は、燃料電池1における電解質膜のインピーダンスが予め定められた基準インピーダンス以上である場合に、燃料電池1が予め定められた状態よりも乾き状態であると判定される。
燃料電池1における電解質膜のインピーダンスは、乾き状態が進行する程に増加する傾向を示す。従って、第2実施形態に係る燃料電池システム100によれば、燃料電池1の乾き状態に関する判定を、燃料電池1のインピーダンスを用いて行うことで、より高い精度で判定することができ、もって、より適切なタイミングで、燃料電池1に対する回収水の散布を行って、燃料電池1の発電効率を高めることができる。
(他の実施形態)
以上、実施形態に基づき本発明を説明したが、本発明は上述した実施形態に何ら限定されるものではない。即ち、本発明の趣旨を逸脱しない範囲内で種々の改良変更が可能である。例えば、上述した各実施形態を適宜組み合わせても良いし、上述した実施形態を種々変形することも可能である。
(1)上述した実施形態においては、燃料電池1として、固体高分子電解質型燃料電池(PEFC)を用いていたが、この態様に限定されるものではない。本発明における燃料電池としては、リン酸形燃料電池(PAFC)、溶融炭酸塩形燃料電池(MCFC)等を用いることも可能である。
(2)又、上述した実施形態においては、ステップS6、ステップS16で、水温センサ9にて検出された冷却水温度を用いて、燃料電池1の温度状態を判定していたが、この態様に限定されるものではない。燃料電池1の温度に相関を有する他の物理量に基づいて、燃料電池1の温度状態を判定しても良いし、燃料電池1の温度を測定して判定しても良い。
(3)そして、上述した実施形態においては、燃料電池1に対して回収水を散布する際に、加湿用流路15の散水ノズルを介して、空気通路2におけるエアポンプ6の下流側に、回収水を散布していたが、この態様に限定されるものではない。燃料電池1の電解質膜を加湿することができれば、空気通路2を流れる空気を利用することなく、燃料電池1に対して直接的に回収水を散布しても良い。
(4)又、上述した実施形態では、ラジエータ4に対して回収水を散布する際に、ラジエータ側流路14の散水ノズルを介して、回収水を散布していたが、この態様に限定されるものではない。
回収水をラジエータ4に散布する際、回収水がラジエータ4にて蒸発する際の蒸発潜熱によりラジエータ4の放熱能力を向上させ、効果的に冷却水の温度を低下させることができれば、種々の方法を採用することができる。例えば、回収水を水滴状態でラジエータ4本体に散布しても良いし、回収水を霧状にしてラジエータ4本体に散布(噴霧)しても良い。
(5)又、上述した実施形態においては、インタークーラ17に供給される冷却用熱媒体として、冷却水流路7を流れる冷却水を利用するように構成していたが、この態様に限定されるものではない。空気通路2におけるエアポンプ6の下流側において、インタークーラ17を通過する空気と熱交換可能な熱媒体であれば、他の熱媒体を利用することも可能である。
(6)そして、ステップS4、ステップS14では、燃料電池1に対する回収水の散布に先んじて、インタークーラ17の冷却性能を低下させる為に、インタークーラ17に対する冷却水の供給を停止していたが、この態様に限定されるものではない。インタークーラ17による冷却性能を低下させることができれば、種々の作動制御を採用することができ、例えば、インタークーラ17に対する冷却水の供給量(即ち、インタークーラ17を通過する冷却水の流量)を減少させてもよい。
又、上述した実施形態においては、インタークーラ17の冷却性能を低下させる為に、インタークーラ用熱媒体配管18に配置された電磁弁19を全閉していたが、この態様に限定されるものではない。インタークーラ17に対する冷却用熱媒体の供給を停止する態様としては、種々の方式を採用することができる。
例えば、冷却用熱媒体を圧送するポンプ等の作動を停止しても良いし、冷却用熱媒体の流路を切り替えることで、インタークーラに対する冷却用熱媒体の供給を停止することも可能である。
1 燃料電池
2 空気通路
3 水素通路
4 ラジエータ
10 気液分離器
12 散布用ポンプ
13 流量調整弁
14 ラジエータ側流路
15 加湿用流路
16 制御装置

Claims (4)

  1. 水素と酸素とを化学反応させて電力を得る燃料電池(1)と、
    前記化学反応で発生する水分を回収する水分回収部(10)と、
    前記水分回収部で回収した水分を、前記燃料電池に散布する電池側散布部(15)と、
    前記燃料電池に対して前記酸素を含む気体を供給する為の供給経路上であって、前記電池側散布部による散布位置よりも下流側に配置され、内部を流れる冷却用熱媒体との熱交換により前記気体を冷却するインタークーラ(17)と、
    前記電池側散布部及び前記インタークーラの作動を制御する制御部(16)と、を有し、
    前記制御部は、
    前記燃料電池が予め定められた状態よりも乾いているか否かを判定する乾き判定部(S3、S13)を有し、
    前記乾き判定部によって前記燃料電池が乾いていると判定された場合に、前記インタークーラの冷却性能を下げるように、前記インタークーラの作動を制御し、
    前記インタークーラの作動を制御した後に、前記水分回収部で回収した水分について、飽和蒸気圧以下であって、前記冷却用熱媒体の温度、前記燃料電池の出力を用いて、前記燃料電池の発電効率が最も高くなるように定められた量を、前記燃料電池に対して散布するように、前記電池側散布部の作動を制御する燃料電池システム。
  2. 熱媒体を用いて熱交換することで前記燃料電池を冷却する冷却装置(4)と、
    前記水分回収部で回収した水分を、前記冷却装置に散布する冷却装置側散布部(14)と、を有し、
    前記制御部は、
    前記燃料電池の温度が予め定められた基準温度以上であるか否かを判定する温度判定部(S6、S16)と、を有し、
    前記温度判定部によって前記燃料電池の温度が予め定められた基準温度以上であると判定された場合に、前記冷却装置に対して前記水分回収部で回収した水分を散布するように、前記冷却装置側散布部の作動を制御する請求項1に記載の燃料電池システム。
  3. 前記乾き判定部は、前記燃料電池の出力と、前記冷却装置にて前記燃料電池の冷却に用いられる熱媒体の温度とに基づいて、前記燃料電池が予め定められた状態よりも乾いているか否かを判定する請求項2に記載の燃料電池システム。
  4. 前記乾き判定部は、前記燃料電池のインピーダンスが予め定められた基準値以上である場合に、前記燃料電池が予め定められた状態よりも乾いていると判定する請求項1又は2に記載の燃料電池システム。
JP2017081860A 2017-04-18 2017-04-18 燃料電池システム Active JP6972633B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017081860A JP6972633B2 (ja) 2017-04-18 2017-04-18 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017081860A JP6972633B2 (ja) 2017-04-18 2017-04-18 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2018181688A JP2018181688A (ja) 2018-11-15
JP6972633B2 true JP6972633B2 (ja) 2021-11-24

Family

ID=64275904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017081860A Active JP6972633B2 (ja) 2017-04-18 2017-04-18 燃料電池システム

Country Status (1)

Country Link
JP (1) JP6972633B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111231670A (zh) * 2020-02-24 2020-06-05 中国科学院理化技术研究所 一种真空管道列车的供电装置及真空管道列车
CN114759225B (zh) * 2022-04-29 2022-11-01 武汉众宇动力系统科技有限公司 燃料电池水气分离器测试系统和测试方法
CN115483412A (zh) * 2022-09-23 2022-12-16 中国第一汽车股份有限公司 一种燃料电池及其的电堆湿度控制装置和方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3923627B2 (ja) * 1997-11-25 2007-06-06 株式会社東芝 固体高分子電解質型燃料電池システム
JP2000188119A (ja) * 1998-12-21 2000-07-04 Aisin Seiki Co Ltd 燃料電池システムおよびその制御方法
JP4839514B2 (ja) * 2000-02-21 2011-12-21 株式会社デンソー 燃料電池システム
JP2002042843A (ja) * 2000-07-24 2002-02-08 Yamaha Motor Co Ltd 燃料電池システム及び自動二輪車
JP2005166309A (ja) * 2003-11-28 2005-06-23 Toyota Motor Corp 燃料電池システム
JP2009238669A (ja) * 2008-03-28 2009-10-15 Equos Research Co Ltd 燃料電池システム
JP5435970B2 (ja) * 2009-01-26 2014-03-05 本田技研工業株式会社 燃料電池システム
JP2010198743A (ja) * 2009-02-23 2010-09-09 Honda Motor Co Ltd 燃料電池システム
JP5044676B2 (ja) * 2010-03-31 2012-10-10 本田技研工業株式会社 水噴射手段を備えた燃料電池システム
JP5678021B2 (ja) * 2012-09-18 2015-02-25 本田技研工業株式会社 電力供給システム

Also Published As

Publication number Publication date
JP2018181688A (ja) 2018-11-15

Similar Documents

Publication Publication Date Title
KR100986525B1 (ko) 증발냉각식의 연료전지 시스템과 그 냉각방법
KR100534161B1 (ko) 연료 전지 시스템
JP3722019B2 (ja) 燃料電池システム
US20200044264A1 (en) Fuel cell system
JP6972633B2 (ja) 燃料電池システム
JP2001313054A (ja) 燃料電池システム
TW201607133A (zh) 燃料電池發電系統
US20050008910A1 (en) Fuel cell system
JP7029268B2 (ja) 燃料電池システム
JP2018181541A (ja) 燃料電池システム
JP2003068337A (ja) 燃料電池システム
JP4552236B2 (ja) 燃料電池装置
JP5529618B2 (ja) 燃料電池システム及びその制御方法
JP2015153563A (ja) 燃料電池システム
JP5417917B2 (ja) 燃料電池システム
JP3656596B2 (ja) 燃料電池システム
JP7137436B2 (ja) 燃料電池システム
JP2006331870A (ja) 燃料電池システム
JP2005116256A (ja) 燃料電池コージェネレーションシステム
JP2019091529A (ja) 燃料電池システム
JP2009238669A (ja) 燃料電池システム
JP2006318798A (ja) 燃料電池システム
JP2005050639A (ja) 燃料電池システム
JP2011522359A (ja) 作動効率の改善された燃料電池発電設備
JP2006236758A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210709

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210709

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210825

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211018

R151 Written notification of patent or utility model registration

Ref document number: 6972633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151