JP6966807B2 - 付加製造装置及び方法 - Google Patents

付加製造装置及び方法 Download PDF

Info

Publication number
JP6966807B2
JP6966807B2 JP2020078749A JP2020078749A JP6966807B2 JP 6966807 B2 JP6966807 B2 JP 6966807B2 JP 2020078749 A JP2020078749 A JP 2020078749A JP 2020078749 A JP2020078749 A JP 2020078749A JP 6966807 B2 JP6966807 B2 JP 6966807B2
Authority
JP
Japan
Prior art keywords
radiation
container
layer
radiation module
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020078749A
Other languages
English (en)
Other versions
JP2020121569A (ja
Inventor
エスブロエック、フベルトゥス テオドルス ペトルス ヴァン
パラニアッパン、シャンムガム ムルガ
シャルマ、デヴァンシュ
ホン ラム、シウ
ファイ チン、カー
チュアン ランダル シエ、ヨン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Structo Pte Ltd
Original Assignee
Structo Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Structo Pte Ltd filed Critical Structo Pte Ltd
Publication of JP2020121569A publication Critical patent/JP2020121569A/ja
Application granted granted Critical
Publication of JP6966807B2 publication Critical patent/JP6966807B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/241Driving means for rotary motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)

Description

この発明は、大型物体の高速印刷を微細な分解能で可能にする付加製造のステレオリソグラフィック方法に関し、また、この方法を行なうための装置に関する。
典型的なステレオリソグラフィック付加製造装置は、放射線源と、その放射線を特定のパターンにしたがって重合可能材料の層上へと方向付ける手段とを伴う。放射線は、この材料を重合させる、すなわち、少なくとも部分的に固化させる。一般的なタイプのステレオリソグラフィック付加製造装置は、紫外範囲又は近紫外範囲の電磁スペクトルの放射線の平行ビームを放射するレーザを利用する。そのような付加製造装置を用いて三次元部品を製造するプロセスは、以下のステップを備える場合がある。
1.所定のパターンにしたがってレーザビームを方向付けるために、ミラー、レンズ、又は、光学部品のアセンブリが使用される。このタイプの機械では、光学アセンブリがレーザビームの方向を変えることができるように移動するべく電子的に作動されてもよい少なくとも1つのミラー又はレンズが存在する。
2.レーザビームが重合可能材料の層と衝突するポイントは、重合を引き起こすべく重合が望まれる全ての領域がレーザビームにより十分に長い時間にわたって照射されるように走査経路に沿って移動する。
3.材料の所定の層内の所望の領域のそれぞれが重合されたとき、機械的及び/又は電気的な構成要素のアセンブリは、最後に重合された層上にそのような重合可能材料の新たな層を堆積させることができ、また、このサイクルが繰り返す。
各層が異なる所定のパターンを有してもよく、また、レーザビームは、そのようなパターンで各領域を重合させるために必要とされる経路に沿って移動でき、それにより、付加製造装置を使用して様々な断面の三次元物体を製造できる。
従来技術のステレオリソグラフィック付加製造方法の主要な欠点は、それが遅いことである。レーザビームは、重合が望まれる材料の層の全ての領域を照射するべく所定の経路に沿って移動しなければならない。所定の幅と一定の移動速度とを有するレーザビームにおいて、物体を印刷するために必要とされる時間は、前記物体の寸法と所定の層内の特徴の密度又は数とに伴って直線的に増大する。走査型レーザステレオリソグラフィック印刷装置は特定の最大走査速度を達成できる。すなわち、印刷可能領域が2倍であれば、走査レーザは、その領域の1つの層を硬化させるために2倍の長さを要する。
前述のステレオリソグラフィックプロセスの進化は、レーザビーム及び光学アセンブリが電子的にアドレス可能なリフレクタを使用してモノクロ画像をレンダリングできるデジタルマイクロミラーデバイス(DMD)投影装置に置き換えられる進化である。そのような付加製造装置は、「1ドットずつ」印刷とは対照的に「1層ずつ」印刷の可能性、すなわち、高速印刷の可能性を与える。典型的なシステムは、デジタルマイクロミラー装置(DMD)を有するオーバーヘッドプロジェクタと、少なくとも何らかの紫外光を放射する光源とを必須のものとして備える。プロジェクタは、画像(例えば、黒色背景上の白色であり、この場合、少なくとも部分的に紫外光である光によって白色領域が照らされる)を感光性樹脂層上に投影し、それにより、入射UV光の結果として画像の白色領域が硬化する。現在、最大1920×1080ピクセルの分解能を有するDMDチップを製造でき、したがって、非常に素早い1層ずつ印刷が可能である。すなわち、DMDに基づく投影システムからのパターン画像の単一露光は、重合可能材料の1920×1080(200万を超える)小領域内で重合を引き起こすことができ、一方、レーザに基づくシステムは、200万ドットのそれぞれを個別に照射する経路に沿って移動するためにそのレーザビームの端部で単一ドットを必要とする。
DMDチップに基づく印刷方法の主な欠点は、そのような装置を用いて印刷され得る最大の物体の寸法が制限されることである。すなわち、投影領域が拡大され(スケーリングされ)れば、以下の2つの欠点が存在する。
1.アドレス可能なピクセルの数が最大200万で固定されるため、大きな物体が印刷されるようになっている場合には、投影画像が伸張される。1メートル×2メートルのビルドサイズにおいて画像をスケーリングするために、各ピクセルが約1mm×1mmを占めるように伸張されることになるが、これは、3D印刷物体分解能において受け入れることができるよりもかなり粗い。
2.大きなビルドサイズに関して投影画像がスケーリングされるときに硬化時間(重合が起こるために必要とされる露光時間)がかなり増大する。同じ光源(例えば単一電球)から放射される光は、より大きな表面積にわたって分配されなければならない。すなわち、ビルドサイズがスケールアップされるときには常に、単位時間当たりに所定量の感光性樹脂に入射する光子の総数が減少される。
本発明は、前述の欠点のうちの1つ以上を克服しようとする、或いは、少なくとも役立つ代わりの手段を提供しようとする。
幾つかの実施形態は、
放射線暴露時に重合可能である材料を収容するための容器と、
ビルド表面を有するビルドプラットフォームであって、ビルドプラットフォームが容器に対して移動できるように装着され或いは装着可能である、ビルドプラットフォームと、
個別にアドレス可能な放射線放射素子又は放射線透過素子のアレイを備えるプログラマブル放射線モジュールであって、アレイは、該アレイの素子の選択的な駆動によって所定のパターンを有する放射線を生み出すように構成可能である、プログラマブル放射線モジュールと、
を備え、
プログラマブル放射線モジュールは、ビルド表面に隣接する或いはビルド表面上の既に硬化された構造体に隣接する未硬化材料に放射線を拡大を伴わずに所定のパターンで照射するように位置決めされ或いは位置決め可能である、
付加製造装置に関する。
他の実施形態は、
放射線暴露時に重合可能である材料で容器を少なくとも部分的に満たすステップと、
個別にアドレス可能な放射線放射素子又は放射線透過素子のアレイを備えるプログラマブル放射線モジュールを用意するステップと、
ビルド表面を有するビルドプラットフォームを用意するステップと、
重合可能材料の未硬化層がビルド表面とプログラマブル放射線モジュールとの間に形成されるようにビルドプラットフォームを容器に対して位置決めするステップと、
プログラマブル放射線モジュールのアレイの素子を選択的に駆動させることによって、所定のパターンを有する放射線を拡大を伴わずに重合可能材料の未硬化層に照射して、未硬化層を所定のパターンで重合させるステップと、
を備える付加製造方法に関する。
プログラマブル放射線モジュールにより生み出されるパターン化された放射線は、容器内の重合可能材料の硬化を1層ずつ可能にし、したがって、走査型レーザを使用する従来技術の装置よりも速く且つスケーラブルな三次元構造体の製造をもたらす。特に、達成できる印刷速度は層厚及び分解能に依存しない。多くの他の3D印刷技術に固有の問題は、所望の分解能と所望の印刷速度との間をうまく両立させる必要性である。すなわち、ユーザがより細かい垂直分解能、例えば2倍薄い層を求める場合、印刷ジョブは2倍の時間を要する。これは、走査レーザが移動できる速度によって印刷速度が制限されるからである。本発明の実施形態において、2倍薄い層を形成することは、半分未満の長さの光のパルスを用いて各層を硬化させることができる(硬化されるべき重合可能材料が体積で半分しか存在しない)ことを意味する。したがって、物体のための全体の印刷ジョブ持続時間は層厚に依存しない。同じ原理は、放射線モジュールのアドレス可能なアレイの分解能(例えば、ドット/インチの単位で測定される)によってのみ制御されるX−Y分解能に当てはまる。
走査型レーザシステムに対する更なる利点は、移動部分の減少である。走査レーザが存在しないため、ビルドテーブルが機械的に作動される唯一の構成要素であり、その結果、より低いコスト、及び、より大きな耐久性がもたらされる。
また、未硬化流体に放射線を拡大を伴わずに(すなわち、ほぼ1:1の倍率)照射することにより、DLP投影に基づくシステムの特定の欠点を回避できる。特に、より大きな印刷サイズまで拡大するために、DLPプロジェクタは投影面積を増大させる必要があり、それにより、単位表面積当たりの照明強度が低下し、したがって、硬化時間が増大する。
幾つかの実施形態において、プログラマブル放射線モジュールは、個別にアドレス可能な放射線透過素子のアレイを含む液晶ディスプレイ(LCD)を備え、この場合、放射線透過素子はLCDのピクセルである。LCDの使用は、LCDユニットがDLPプロジェクタよりも安価な程度の規模であるため、特に有利である。
好ましくは、LCDがモノクロLCDである。印刷用途においては、紫外(UV)範囲又は真紫(TV)範囲の光が最も有効である。これは、各光子が比較的大量のエネルギーを運ぶからである。これらの光子における波長は約300−450nmの範囲である。カラーLCDにおけるサブピクセルフィルタ(R、G、及び、B)の全ては、そのような波長の光の大部分がサブピクセルフィルタを通過することを防止する。すなわち、通常のLCDを通じて透過される有効光子の強度は最小である。このため、カラーフィルタを何ら有さないモノクロLCDの使用はかなり短い硬化時間を与える(適切な波長のより多くの光子が透過される)ことが分かってきた。
ここで、添付図面を参照して、単なる非限定的な例として本発明の実施形態について説明する。
本発明の幾つかの実施形態に係る付加製造装置の分解断面図を示す。 図1の装置の断面図を示し、装置のビルドプラットフォームを更に示す。 三次元物体の第1の層が重合されている、使用中の図1及び図2の装置を示す。 物体のその後の層が重合されている、使用中の図1及び図2の装置を示す。 図5A、図5B、及び、図5Cは、完成したモデルが剥離によってビルドプラットフォームから分離される、幾つかの実施形態に係る付加製造装置を示し、図5D及び図5Eは、完成したモデルが剥離によってビルドプラットフォームから分離される、他の実施形態に係る付加製造装置を示す。 図6A及び図6Bは、完成したモデルが剪断によってビルドプラットフォームから分離される、更なる実施形態に係る付加製造装置を示す。図6C及び図6Dは、完成したモデルが剪断によってビルドプラットフォームから分離される、更なる実施形態に係る付加製造装置を示す。 実施形態に係る付加製造装置のための例示的な制御システムのブロック図である。 図7の制御システムのソフトウェアコンポーネントのブロック図である。 幾つかの実施形態に係る付加製造プロセスのフロー図である。 他の実施形態に係る付加製造プロセスのフロー図である。
特定の実施形態では、付加製造装置が放射線源(例えば400〜700nmの波長を有する可視光を放射するストロボ光源など)を備え、該放射線源上に液晶ディスプレイ、例えば拡散アセンブリが装着され、拡散アセンブリは、拡散特性を有する1つ以上のシートと、それに続く互いに直角を成す2つの偏光パネルとを備え、偏光パネルは液晶の層を間に挟んでいる。液晶ディスプレイ(LCD)アセンブリは、ガラスパネル又は透明プラスチックパネルと、透明シリコーン或いは他の硬化抑制材料又は低摩擦材料の層とによって覆われてもよい。
前記構成は、層全体が単一パルスのストロボ光で露光されるため、走査型レーザシステムを超える印刷速度を達成できる。これに対し、走査型レーザは、硬化されるようになっている経路全体を走査しなければならない。ここに記載される実施形態において、層ごとの印刷速度は、各層で硬化されるべき特徴の数(又は表面積)と無関係である。走査型レーザとは異なり、ここに記載される実施形態では、完全固体層全体を硬化させるために等しく長いパルスの光を要する。これは、そのような光がその領域内で小さい形状を硬化するからである。現在では、LCDパネルを非常に大きいサイズまで(長さ寸法及び幅寸法がメートル程度まで)及び益々高い分解能(1600万ピクセルを超える)まで製造でき、したがって、少なくとも幾つかの実施形態の層ごとの印刷技術は、DMDベースのシステムよりもより良く拡張可能であるとともに、細かい分解能で更に大きな物体を印刷できる。
ここで、図1を参照すると、本発明の幾つかの実施形態に係る付加製造装置100の概略分解図が示される。付加製造装置100は、重合可能な材料40を収容するための容器1を備える。容器1は、容器1の透明な下壁11と、側壁102と、透明な下壁11と側壁102との間のシール2とを有する。シールは、容器をシールするためにその場で硬化されるエポキシなどの材料から形成されてもよいが、ゴム(例えば、ニトリル又はバイトン)Oリング、又は、ガスケットなどの固体シールであってもよい。好ましくは、容器1は、長方形又は正方形の内部領域を画定する4つの側壁を有するが、無論、単一の円筒状の側壁又は他の形態を有してもよい。
装置100は、構造的な強度を容器1に与える硬質透明部材3を更に備えてもよいが、これは、下壁11が十分に頑丈である場合には省かれてもよい。硬質透明部材3の下方では、液晶ディスプレイ(LCD)5が第1の偏光子パネル4と第2の偏光子パネル6との間に挟まれる。第1の偏光子パネル4の偏光方向は、第2の偏光子パネル6の偏光方向に対して垂直である。第2の偏光子パネル6の下方には、光源8からの光を拡散する、平行にする、反射する、又は、屈折させることができる様々な光学部品を備えてもよい光学アセンブリ7が設けられてもよい。一般に、光学アセンブリ7は拡散素子及び視準素子を含む。
LCD5、偏光子4,6、及び、光源8、並びに、光学アセンブリ7は、プログラマブル放射線モジュール10(図2)の一部を形成し、プログラマブル放射線モジュール10は、容器1の透明な下壁11に取り付けられるとともに、容器1内の樹脂の層を所望のパターンをもって硬化するためにパターン化された放射線ビームを生み出すように構成され得る。LCD5のピクセルは、LCD5に結合される装置100の(図7に示されるような)制御システムによってON又はOFFに切り換えられてもよい個別にアドレス可能な素子を構成する。ピクセルが駆動される(ONに切り換えられる)と、ピクセルは、該ピクセルを通じて光を透過させることができるようにし、一方、ピクセルが駆動していない(OFFに切り換えられる)ときには、ピクセルは光を遮断する。したがって、LCD5のピクセルは、放射線の所望のパターンを生み出すために制御システムによってプログラミングされ得る個別にアドレス可能な光透過器であり、この場合、駆動しないピクセルはマスキング素子として作用する。
LCD5はモノクロLCDであることが好ましい。カラーLCDでは、各ピクセルが3つ或いは4つの個別にアドレス可能なサブピクセルから形成され、各サブピクセルは、狭い波長帯域の光がサブピクセルを通過できるようにするカラーフィルタを有する。カラーLCDにおける全整色性の白色バックライトは400〜700nmの全ての波長を放射し、また、色は、この白色光が赤色、緑色、及び、青色(R,G,B)フィルタ処理されたサブピクセルを選択的に通過できるようにすることによって形成される。印刷用途においては、紫外(UV)範囲又は真紫(TV)範囲の光が最も有効である。これは、各光子が比較的大量のエネルギーを運ぶからである。これらの光子における波長は約300〜450nmの範囲である。カラーLCDにおけるサブピクセルフィルタ(R、G、及び、B)の全ては、そのような波長の光がサブピクセルフィルタを通過することを防止する。すなわち、通常のLCDを通じて透過される有効光子の強度は最小である。このため、カラーフィルタを何ら有さないモノクロLCDの使用はかなり短い硬化時間を与える(より多くの光子が透過される)ことが分かってきた。
幾つかの実施形態において、放射線モジュールは、LEDディスプレイ又はOLEDディスプレイなどの所定の配列を成す個別にアドレス可能な発光体のパネルを備えてもよい。LCD5と同様な態様で、パネルは、放射線の所望のパターンを生み出すべく、選択された発光体が任意の所定の時間に駆動しているようにコントローラによってプログラミングされてもよい。これらの実施形態において、放射線モジュール自体の個別にアドレス可能な素子は、別個の放射線源のためのマスクとして作用するのではなく、所望の硬化パターンの放射線を放射する。LED及び有機LEDは、原理的には、重合可能な流体の特定の硬化要件に適合するべく任意の特定の波長の光(可視光、UV、IR)を放射するように設計され得る。これらの実施形態では、付加製造装置を更にコンパクトにすることができる。これは、ディスプレイパネル自体が光源であるときには「バックライト」それ自体が必要とされず、また、別個の光源とLCDとの間の光学アセンブリの必要性も排除されるからである。
図1に示される形態では、放射線モジュール10が容器1の下壁11及び側壁102に取り付けられる。しかしながら、別の実施形態では、放射線モジュール10が容器1内に位置されてもよく或いは容器1と一体であってもよい。例えば、側壁102及び下壁11は、容器1を形成するべく互いに溶接されるアルミニウムプレートであってもよく(無論、この場合には、下壁11が透明ではない)、また、その後、放射線モジュール10が容器1の内側に配置されてもよい。例えば、放射線モジュール10内への重合可能材料の漏れを防止するために、透明なシール層が放射線モジュール10上にわたって配置されてもよい。
LCD5のピクセルのアレイは、透明な下壁11よりも上側の体積のほぼ全体が印刷可能な体積となるように、透明な下壁11の表面積のほぼ全体を覆うべく寸法付けられてもよい。別の実施形態において、ピクセルアレイは、透明な下壁11の表面積よりも小さい表面積を覆ってもよい。例えば、ピクセルアレイは、ビルドプラットフォーム9のビルド表面92の表面積に等しいか或いは該表面積よりも僅かに大きい表面積を有し、それにより、ビルド表面92の外周がピクセルアレイの外周の内側に嵌合するようになっていてもよい。
ここで、図2を参照すると、付加製造装置100が多層物体を形成できるようにする機械的なアセンブリが更に詳しく示される。図2に示されるように、装置100は、ビルド表面92を有するビルドプラットフォーム9を備える。ビルド表面92は容器1の下壁11の方を向く。ビルドプラットフォーム9は、下壁11及び放射線モジュール10よりも上側において容器1の内側で吊り下げられる。
ビルドプラットフォーム9は、機械的アセンブリ20を用いて、下壁11よりも上側で容器1に対して垂直に上下動できる或いは上下動させられ、機械的アセンブリ20は、ボールスクリュー、リードスクリュー、ベルト駆動機構、チェーン・スプロケット機構、又は、これらの組み合わせ、及び、精密ステッピングモータ21を備えてもよい。好ましい実施形態では、移動機構がねじ込みロッド・ステッピングモータ21を備え、このねじ込みロッド・ステッピングモータ21は、装置100の制御システム200のマイクロコントローラ270(図7)によって駆動されるとともに、ビルドプラットフォーム9の垂直位置で5μmの精度を与えることができる。組み合わされた機械的アセンブリ20及びステッピングモータ21は、側壁102に支持されるフレーム22に固定され或いは接続される。フレーム22は、剛体支持をもたらすとともに、ビルドプラットフォーム9の垂直位置のための基準点を与える。より高い精度(最大で約1μm)は、リードスクリュー又はベルトのピッチ及びステッピングモータの分解能(全回転当たりのステップ)の適切な選択によって達成されてもよい。
図3及び図4は、三次元物体42のための例示的なビルドプロセスを示す。図3において、容器1は、重合可能樹脂などの重合可能材料40で部分的に満たされる。次に、機械的アセンブリ20を作動させ、ビルドプラットフォームの下面92と容器1の透明な下壁11との間に重合可能材料の薄層30を形成するためにステッピングモータ21を使用してビルドプラットフォームが容器1内で上方へ移動される。層30は、z軸に沿う所望の分解能にしたがって選択される厚さを有する。未硬化材料の層30が形成された時点で、放射線モジュール10は、重合可能材料の薄層30の所望の領域を所定のパターンで選択的に重合させるために、(前述したように)容器1の透明な下壁11を通じて放射線を所定のパターンで層30に照射する。
透明な下壁11は、重合された材料が下壁に付着しないように、硬化抑制コーティング又は固着防止コーティングを有してもよい。特に、コーティングは、透明な下壁11と重合材料との間の摩擦及び/又は密着性がビルド表面92と重合材料との間の摩擦及び/又は密着性よりも低くなるように選択され得る。したがって、ステッピングモータ21が物体42の次の層の硬化のためにアセンブリ20を作動させてビルドプラットフォーム9を上方へ移動させるとき、重合された材料は、下壁11に対する密着性に起因して自由に引かれるのではなくビルドプラットフォーム9と共に移動する傾向がある。
幾つかの実施形態では、シリコーンシートが透明な下壁11上に設けられてもよい。印刷された物体42の硬化部はビルドプラットフォームに付着する傾向がある(ビルドプラットフォームは、好ましくは、アルミニウム、アクリル、ポリカーボネート、又は、硬化された材料が良好に付着する他のプラスチックから形成されるため)が、材料はシリコーンシートに付着しない。シリコーンシートは、それが透明であり且つ消耗しないため、好ましい。固着防止コーティングは可能な限り薄くされることが好ましい。これは、LCD(マスク)と硬化されるべき材料(樹脂/高分子/接着剤)との間のより薄い層により、LCDから透過される光が樹脂/高分子/接着剤に到達する前にその光の発散が殆ど無く、したがって、LCD(マスク)分解能により近い物理的印刷分解能がもたらされるからである。
他の実施形態では、ミシガン州のケムトレンドLPのCHEMLEASE(登録商標)などの離型剤を含む液体コーティング、或いは、ポリウレタン、ポリテトラフルオロエチレン(PTFE)、フッ素化エチレンプロピレン(FEP)、又は、ラテックスなどの固体シート又はコーティングを使用できる。ただし、材料が、硬化開始剤として使用されている光の波長を透過するとともに、液晶ディスプレイ分解能と物理的印刷分解能との間の実質的な分解能損失を防止するべく十分に薄くされ得る場合に限る。FEPは、それが大部分の硬化波長でPTFEよりも透明となる傾向があるため、特に好ましい。
コーティングが使用される場合には、放射線モジュール10のピクセルにより生み出されるビームの発散を最小限に抑えることが選択されるべきである。これは、ビームがコーティングを通じて屈折を受けるからである。特に、硬化されるようになっている重合可能材料の層にビームが到達するポイントで、ビームは、ピクセル表面積の4倍未満である面積を覆うはずである(例えば、50×50ミクロンのサイズのピクセルを有するLEDに関して、そのピクセルを通過する光は、それが層に到達するときに100×100ミクロンより大きくないはずである)。ビームが更に大きい場合、該ビームは、隣接するピクセルがもはや分解できないように、その隣接するピクセルにより生み出されるビームと25ミクロンを超えて、すなわち、隣接するピクセルへと半分を超えて入り込んで重なり合う。好ましくは、コーティングは、LCDピクセル表面積の1.2倍よりも大きくない表面積を有するピクセルビームを硬化層でもたらす。これは、コーティングを非常に薄くするとともに、LCDピクセルを通過して進むビームが殆ど発散しないように光がLCDを通過する前に光を平行にすることによって達成され得る。例えば、PTFE又はFEPシートがコーティングとして使用される場合、シートは約70μmの厚さを有してもよい。50μmを下回る厚さが使用されてもよい。一般に、ピクセル間距離(LCDの分解能)以下のコーティング厚が望ましい。
図3に関して前述したように層の重合が完了した後、ビルドプラットフォーム9がフレーム22上の基準点に対して僅かな量(所望の層厚に等しい)だけ上方へ引き上げられるように機械的アセンブリ20が精密ステッピングモータ21によって作動され、それにより、最後の重合層と容器の透明な下壁11の上面との間に空隙が形成される。空隙は、重力下で空隙に流れ込む周囲の重合可能材料によって急速に満たされ、それにより、そのような材料の新たな薄層が、最後の重合層の下面と容器1の透明な下壁11の上面との間に存在するようになる。図4に示されるように、重合可能材料のこの新たな層は、LCD5のアクティブ領域32(すなわち、その領域内のピクセルが駆動しているためにマスクされない領域)により規定される放射線のパターンを使用して所望の領域を選択的に重合させるために、放射線モジュール10によって下から照射される。樹脂40が消費されるので、新しい樹脂が容器1を補充するために加えられる。その後のそれぞれの層ごとにこのプロセスを繰り返して、所望の領域32が任意の形状又は数の形状を有することができるようにすることにより、この付加製造装置は、容器1の境界内及び機械的アセンブリ20により許容されるビルドプラットフォーム9の動作範囲内に任意の形状、寸法、又は、複雑さを有する三次元物体を生み出すことができる。
幾つかの実施形態において、装置100は、ビルド表面がビルドプラットフォーム9の下面ではなく上面にあるように構成されてもよい。これらの実施形態では、プログラマブル放射線モジュール10が容器1の上部に位置される。ビルドプロセス中、ビルドプラットフォーム9は、容器1内の流体レベルの上端にあるビルド表面から始まって、未硬化材料の薄層を形成するべく容器1内で降下し、未硬化材料は、その後、前述したように所望のパターンで放射線モジュール10により硬化される。ビルドプラットフォーム9は所望の層厚ずつ容器1内で漸進的に降下し、この場合、各層はそれぞれの所望の層パターンを伴って硬化される。これらの代わりの実施形態の装置は、使用時に容器1が少なくとも最終的な物体42の高さに至るまで重合可能材料で満たされる必要があることを除き、構成が図1〜図4に示される装置100に非常に類似している。これらの構成ではビルド表面が容器1の上端面及び放射線モジュール10から離間され得るため、固着防止コーティングが上端面に必要とされなくてもよい。
前述した図1〜図4の装置100では、層が硬化されるときに硬化された層を透明な下壁11から分離して次の層の硬化を可能にするべくビルドプラットフォーム9を簡単に上方に移動させることができように、透明な下壁11が硬化抑制コーティング又は固着防止コーティングを有してもよい。固着防止層が設けられない場合には、図5A〜図5E及び図6A〜図6Eに示されるように、ごく最近硬化された層を容器又は放射線モジュールから分離するための別の機構が使用されてもよい。
図5Aにおいて、付加製造装置500は、重合可能流体51を収容する盥50の形態を成す容器を備える。下側ビルド表面71を有するビルドプラットフォーム70が盥50の内側に浸漬される。ビルドプラットフォーム70は、機械的アセンブリ20及びステッピングモータ21が盥50とは別個の支持フレームに装着されてもよいこと除き、前述した機構に類似する機構によって盥50に対して垂直に移動できる。重合可能流体51の薄層が、流体51の重合(硬化)を開始するのに適した波長のパターン化された光を放射できるプログラマブル放射線モジュール60の接触面とビルド表面71との間に形成される。放射線モジュール60は、例えば前述の放射線モジュール10とほぼ同じであってもよい。
盥50は、ポイント53の周りで回動できる。印刷された物体52の一部を形成するために流体51の層が硬化された後、最近硬化された層を放射線モジュール60の面から「剥離する」ために、図5Bに示されるように、盥50がポイント53の周りで回動する。放射線モジュール60が盥50とは別個であって、盥50が(前述したような)透明な下壁を有する場合、盥50の回動動作は、最近硬化された層を盥の透明な内部底面から剥離するように作用する。幾つかの実施形態では、盥50が回動できるのではなく、ビルドプラットフォーム70がその支持部の周りで回動できてもよい。
図5Cに示されるように、装置500を使用して所定の物体52を印刷するために必要とされる重合可能流体51の量は比較的少ない。これは、放射線モジュール60が盥の下方に装着されて上方へ向けて照射するときに硬化プロセスが常に盥50の底部で行なわれるからである。重合可能流体51が印刷工程中に消費されるにつれて、更なる流体が、例えば該流体を容器50内へと送出することによって容器50に加えられてもよい。更なる流体が必要とされる装置500の制御システム200(図7)へフィードバック信号を供給するためにレベルセンサ(図示せず)が使用されてもよく、また、その後、所望の量の流体を容器50内へ送出するために、制御システム200がマイクロコントローラ270を介してポンプを作動させてもよい。
図5Dの構成において、別の付加製造装置は、重合可能流体51を収容する盥50を備え、重合可能流体51の薄層が最後に重合された層と放射線モジュール60の接触面との間に形成され、放射線モジュール60は、重合可能流体51中に部分的に浸漬されるとともに、薄い重合可能流体層に上側から放射線を照射する。流体の所定の層が重合された後、放射線モジュール60は、最後に重合された層を放射線モジュールの接触面から「剥離する」ためにポイント54の周りで回動してもよい。図5A〜図5Cの構成に関しては、盥50が回動できるのではなく、ビルドプラットフォーム70がその支持部の周りで回動できてもよい。
図5D及び図5Eの構成では、印刷された物体52の重量が放射線モジュール60の接触面からの最後に硬化された層の分離(剥離)を(妨げるのではなく)助けるように、印刷された物体がビルドプラットフォーム70のビルド表面71上に位置される。
ここで、図6A〜図6Cを参照すると、図5A〜図5Cの盥50と比べて幅が増大された盥50を有する付加製造装置600の更なる例が示される。盥50は第1の領域602を有し、この第1の領域の下方には、流体51の薄層を連続的に重合させて物体52を形成するために放射線アセンブリ60が位置される。また、盥50は、第1の領域602よりも大きい深さを有する第2の領域602も有する。
装置600は、垂直及び水平の両方で移動できるビルドプラットフォーム70を備える。第1の領域602で下からの照射により流体51の1つの層が重合された後、ビルドプラットフォーム70は、第1の領域602よりも大きい深さを有する盥50の領域604へと横方向で移動される。或いは、ビルドプラットフォーム70は、領域604がビルドプラットフォーム70の真下に位置されるまで盥50及び放射線モジュール60が(例えば、盥50と放射線モジュールとが結合される並進ステージ上で)横方向に移動する間にわたって静止したままであってもよい。この機構は、最近重合された層と放射線モジュール60の接触面との間の密着力が主に垂直方向の力である、すなわち、印刷された物体52を盥50の深い方の領域604へと横方向にスライドさせて接触面から離すことによって非常に僅かな摩擦しか受けないという事実を使用する。
プラットフォーム70及び印刷された物体52が深い方の端部604に到達した時点で、垂直方向の密着力はもはや存在せず、ビルドプラットフォーム70は所望の距離だけ上方へ移動できる。この後、プラットフォームは、盥の浅い方の領域602へ(横方向で)戻って、最後に重合された層と放射線モジュール60の接触面との間に重合可能流体の薄層を再び形成し、この新たな層を重合できるようにしてもよい。
図6Cに示されるように、所定の物体52を印刷するために必要とされる重合可能流体51の量は比較的少ない。これは、放射線モジュール60が盥の下方に装着されて上方へ向けて照射するときに硬化プロセスが常に盥50の底部で行なわれるからである。したがって、盥50の高さよりもかなり大きい高さの物体52を印刷できる。前述したように装置600の制御システム200のレベルセンサを使用するフィードバック制御下で、更なる流体51がポンプによって容器50内へ送出されてもよい。
ここで図6D及び図6Eを参照すると、付加製造装置650の更なる他の実施形態において、重合可能流体51を収容する盥50は、第1の領域652と、第1の領域652の隣に配置されて第1の領域652よりも浅い第2の領域654とを有する。装置650は、垂直移動できるビルドプラットフォーム70と、横方向(スライド)移動できる放射線モジュール60とを備える。放射線モジュール60は、ビルドプラットフォーム70の上側ビルド表面71上に物体52を1層ずつ形成するために第1の領域652で重合可能流体51に放射線を上から照射する。重合可能流体51の薄層が前回の重合された層と放射線モジュール60の接触面との間に形成される。この層がこれに対する上からの照射により硬化された後、放射線モジュール60は、浅い方の領域654へ横方向に移動してもよく(図6E)、その後、所望の層厚に対応する所望の距離だけビルドプラットフォーム70が盥50内へと下方に移動してもよい。放射線モジュール60がその当初の位置652へスライドして戻ると、重合されない流体の新たな層が放射線モジュールの底部接触面と最後に重合された層の上端との間に形成される。
放射線モジュール10又は放射線モジュール60の放射線源は、重合可能材料40又は51を硬化させるのに適した、例えば可視光、UV光、又は、赤外光、或いは、X線等の他の化学放射線などの任意の放射線源であってもよい。放射線源は、任意の適した寸法を成していてもよく、また、放射線を平行にするか、或いは例えば少なくともLCDパネル5の領域に方向付けるための任意の数の光学部品を有してもよい。放射線源は移動できてもよく或いは固定されてもよい。
特定の実施形態では、放射線源が可視光(400〜700nm)源であってもよい。幾つかの実施形態は、白色LEDストロボランプを放射線源として備える。これは、これらのランプが460nm及び550nmでピーク強度を有するからである。この理由は、白色光自体を形成できず、代わりに、LEDが青色光(460nm)を生成するとともに、リン内部コーティングがこれを部分的に吸収して緑(550nm)を放射し、それにより、組み合わされた放射が人の眼に白色光のように見えるためである。この光源は可視光重合可能材料に適している。他の実施形態では、放射線源が300〜450nmの範囲内で放射してもよい。
幾つかの実施形態では、UV光が放射線源として使用されてもよい。好適には、UV光子は可視光光子よりも高いエネルギーを伴い、また、UV光で硬化する多くの高分子が利用できる。UV光が放射線源として使用される場合には、LCD以外の動的マスクジェネレータを使用することが必要な場合がある。これは、液晶が紫外光に晒されるときに劣化する場合があるからである。代わりの動的マスクジェネレータは、電気湿潤式ディスプレイ、透過型電気泳動ディスプレイ、及び、物理的マスクを連続的に生成するためのプリンタ(例えば、連続(リボン)レーザ印刷又は透過性のインクジェット印刷)を備えてもよい。
前述の付加製造装置の制御システム200の一例が図7に示される。制御システム200は、全てがバス216によって相互に接続される、不揮発性記憶装置(ハードディスク又は固体ディスクなど)204、ランダムアクセスメモリ(RAM)206、少なくとも1つのプロセッサ208、及び、外部インタフェース210,212,214,218を含む標準的なコンピュータコンポーネントを備えるコンピュータシステム201を含んでもよい。外部インタフェースは、ユニバーサルシリアルバス(USB)インタフェース210と、システム201をインターネットなどの通信ネットワーク220に接続するネットワークインタフェースコネクタ(NIC)212とを含み、ユーザが装置100と情報をやりとりできるようにするべくユーザコンピュータシステム240が通信ネットワーク220を介して制御システム200と通信してもよい。ユーザコンピュータシステム240は、インテルIA−32に基づくコンピュータシステムなどの標準的なデスクトップ又はラップトップコンピュータシステム、又は、スマートフォン若しくはタブレットコンピュータなどのモバイルコンピュータ装置であってもよい。制御システム100は、NIC212を介して、又は、USBインタフェース210のうちの1つに接続される記憶装置から入力データを受けることができ、或いは、セキュアデジタル(SD)インタフェース(図示せず)などの別のインタフェースへ入力データを受けることができる。
幾つかの実施形態において、ユーザは、ディスプレイ、キーボード、及び、マウス、或いは、インタフェース210のうちの1つを介して接続される他の入力/出力装置、及び、更なるディスプレイアダプタ(図示せず)を用いてコンピュータシステム201と直接に情報をやりとりしてもよい。別の実施形態において、コンピュータシステムは、例えばディスプレイアダプタ(図示せず)によってバス216に接続されるタッチスクリーン入力/出力装置を備えてもよい。これらの実施形態では、ユーザコンピュータシステム240が不要な場合がある。3Dモデルファイルがネットワーク接続220によって或いは外部インタフェース210を介して接続されるSDカード又はUSB記憶装置によってコンピュータシステム201に取り込まれてもよく、また、このとき、ユーザは、コンピュータシステム201の例えばタッチスクリーンインタフェースを介して付加製造装置でスライスプロセスを直接に制御できる。
また、システム201は、LCD5と通信するために使用されるディスプレイアダプタ214も含む。ディスプレイアダプタ214は、例えば、高精細度マルチメディアインタフェース(HDMI)、ビデオグラフィックアレイ(VGA)、又は、デジタルビジュアルインタフェース(DVI)であってもよい。
記憶媒体204には、リナックス又はマイクロソフトウインドウズなどのオペレーティングシステム224を含むいくつかの標準的なソフトウェアモジュールと、少なくとも1つのプロセッサ208に様々な作業を行なわせるための命令を備える1つ以上のモジュール202とが記憶されてもよく、様々な作業としては、USBインタフェース210及び/又はネットワークインタフェース212を介して(形成されるべき物体を表わす)3Dモデルに関連する入力データを受けること、入力データを処理して一連の層パターンを生成すること、及び、ディスプレイアダプタ214を介して層パターンをLCD5へ連続的に(或いは、別のタイプの動的マスクジェネレータ又はLEDディスプレイ若しくはOLEDディスプレイへ交互に)送信するとともに、付加製造装置の機械部品、電気部品/光学部品を作動させるべくマイクロコントローラ270へ信号を送ることが挙げられる。幾つかの実施形態において、3Dモデルデータは、STL、STEP、又は、別の3Dベクトルファイルフォーマットの状態で与えられて、モジュール202による処理のために記憶媒体204に記憶されてもよい。他の実施形態において、入力3Dモデルデータは、通信ネットワーク220を介してユーザコンピュータシステム240又は他の場所から1層ずつ受けられて、モジュール202による処理のためにRAM206又は記憶媒体204に記憶されてもよい。
システム201により実行されるプロセスは、図7に示されるようにコンピュータシステム201と関連付けられる記憶媒体204に記憶される1つ以上のソフトウェアモジュール又はコンポーネント202のプログラミング命令の形態で実施される。しかしながら、もう一つの方法として、特定用途向け集積回路(ASIC)などの1つ以上の専用のハードウェアコンポーネントの形態で、及び/又は、例えばフィールドプログラマブルゲートアレイ(FPGA)などの構成可能ハードウェアコンポーネントのためのコンフィギュレーションデータの形態でプロセスを部分的に或いは全体的に実施できることは明らかである。
図8に示される1つの例において、ソフトウェアコンポーネント202は、制御システム200の制御下にある付加製造プロセスの全体の流れを調整するマスター制御コンポーネント280を備える。マスター制御コンポーネント280は、マイクロコントローラ270を介してポンプ及びモータなどの付加製造装置の機械部品を駆動させるための制御信号を生成する機械的作動コンポーネント286と通信する。また、マスター制御コンポーネント280は、(マイクロコントローラ270を介して)放射線アセンブリ10又は60の放射線源をON又はOFFするとともに照射の持続時間及び強度を制御するための制御信号を生成する光学的制御コンポーネント288とも通信する。
マスター制御コンポーネント280は、3Dモデルデータなどのユーザ入力データ、並びに、ビルド表面に対する物体の位置及び方向、同じバッチ印刷内の複数の物体の配置、及び、所望の印刷層厚(幾つのスライスを生成する必要があるのかを決定する等)などのビルドパラメータを受け入れてもよい。その後、入力データをモデル処理コンポーネント282へ送ることができ、モデル処理コンポーネント282は、例えば記憶媒体204に記憶され得る一連の二次元画像ファイルを生成するためにビルドパラメータにしたがって3Dモデルデータを「スライスする」。モデル処理コンポーネントは、GnexLab、EnvisionLabs Creation Workshop、Slic3r、又は、FreeSteelなどの任意の既知のスライスソフトウェアモジュールを備えてもよい。スライス作業がモデル処理コンポーネント282によって行われた時点で、出力スライスがマスター制御コンポーネント280によりディスプレイ制御コンポーネント284へ送られ、ディスプレイ制御コンポーネント284は、ディスプレイ制御コンポーネント284により送信される画像スライスに対応するパターンにしたがってピクセルアレイ256の個々のピクセルをON又はOFFするべく制御信号をLCD5へ送るように構成される。
印刷工程中、スライス(画像ファイル)は、ディスプレイ制御コンポーネント284によって(ディスプレイアダプタ214を介して)LCD5のスカラーボード252へ送信される。スカラーボードは、ディスプレイと接続する標準的な幅広く使用される方法である。一般に、スカラーボードは、市販のLCDモニタ又はテレビの内側にエレクトロニクスアセンブリの一部として埋め込まれる。スカラーボード252は、画像ファイル又はビデオファイルをデジタル信号(HDMI又はDVI)又はアナログ信号(VGA)からLCD5の内部制御基板254により解釈できる低電圧差分信号(LVDS)へと変換する。内部制御基板254は、ディスプレイ制御コンポーネント284から受けられる入力画像にしたがってピクセルアレイ256のピクセルをON又はOFFに切り換える。
印刷中、コンピュータシステム201は、USB又はシリアルインタフェース(例えばRS−232インタフェースなど)を介して、付加製造装置の全ての他のアクチュエータを駆動させることができるマイクロコントローラ270とも接続する。例えば、マイクロコントローラ270は、ステッピングモータ21、放射線モジュール10又は60の光源、更なる重合可能媒体40又は51を容器1又は50内へ送出するための1つ以上のポンプ(図示せず)、容器50及び/又はビルドプラットフォーム70及び/又は放射線モジュール60の駆動動作のための直線動作又は回転動作アクチュエータ等を駆動させてもよい。また、マイクロコントローラ270は、容器内の重合可能材料のためのレベルセンサ、ビルドプラットフォーム高さセンサ、容器50及び/又はビルドプラットフォーム70及び/又は放射線モジュール60のための横方向スライド移動エンドストップセンサ、垂直エンドストップセンサ、温度センサ、支持体22のためのハッチクローズドセンサなどの様々なセンサからの入力を読み取ってもよい。
各層(スライス画像ファイル)が、ディスプレイ制御コンポーネント284からスカラーボード252へ送られ、したがって、所要の硬化時間(ビルドパラメータのうちの1つとして与えられてもよく、及び/又は、光源の強度及び発光スペクトルと重合可能媒体の性質とにしたがって決定されてもよい)にわたってディスプレイ5上に投影された後、マスター制御コンポーネント280は、適切なタイミング及び順序付けをもって信号をマイクロコントローラ270へ送るように機械的作動コンポーネント286及び光学的制御コンポーネント288に指示してもよく、マイクロコントローラ270は、それらの信号を解釈して、様々なモータ、ポンプ、及び、光源を所望の順序で駆動させることができる。
図5A〜図5Cの付加製造装置500又は図5D及び図5Eの付加製造装置550を使用して実施できる例示的な付加製造方法が図9に描かれる。ステップ810において、機械的作動コンポーネント286は、ビルドプラットフォーム70をその開始位置へ移動させるために信号をマイクロコントローラ270へ送る。必要に応じて、ステップ820において、放射線アセンブリ60は、重合可能材料の薄層がビルドプラットフォーム70のビルド表面と放射線アセンブリ60との間に形成されるように(この場合も先と同様に機械的作動コンポーネント286を介して)開始位置へ移動される。
ステップ830では、光学的コンポーネント288によって放射線アセンブリ60の放射線源がONに切り換えられ、また、前述したようにディスプレイ制御コンポーネント284により、形成されるべき物体の第1の画像スライスに対応する所望のパターンにしたがってLCD5のピクセルアレイ256が制御される。放射線アセンブリ60がLEDピクセルアレイを備える実施形態では、ディスプレイ制御コンポーネント284が所望のパターンをLEDピクセルから直接に簡単に投影できるため、放射線源を別個にONに切り換える必要がない。パターン化された放射線の結果として、重合可能材料の薄層は、放射線に晒される領域で重合する(ステップ840)。
薄層が所望の態様で硬化された時点で、ディスプレイ制御コンポーネント284及び/又は光学的コンポーネント288によってピクセルアレイ256及び/又は放射線源がOFFに切り換えられる(ステップ850)。次に、ステップ860では、硬化された層を容器50の表面又は放射線アセンブリ60の表面における接触面から解放するために、放射線アセンブリ60及び/又は容器50がヒンジ53の周りでビルドプラットフォーム70に対して回動してもよい(或いは逆もまた同様)。
物体の次の層を重合するように装置500又は550を位置決めするため、ステップ870において、機械的作動コンポーネント286は、所望の層厚に等しい量だけビルドプラットフォーム70を放射線アセンブリ60に対して垂直に移動させるべく、マイクロコントローラ270を介して制御信号をビルドプラットフォーム70のアクチュエータ又は放射線アセンブリ60のアクチュエータへ送る。これにより、重合可能材料の新たな薄層は、既に硬化された層と放射線アセンブリ60との間に残された空隙を満たす。ステップ820〜880は、形成されるべき物体のそれぞれの層ごとに繰り返される。最後に、ステップ890において、機械的作動コンポーネント286は、ユーザが仕上がった物体をビルド表面から容易に取り外しできる位置へビルドプラットフォーム70を移動させるために、信号をビルドプラットフォーム70のアクチュエータへ送ってもよい。
例えば図6A〜図6Cの付加製造装置600又は図6D及び図6Eの付加製造装置650によって実施できる付加製造方法の別の実施形態が図10に示される。
方法900は、多くの点で方法800に類似している。ステップ910において、機械的作動コンポーネント286は、ビルドプラットフォーム70をその開始位置へ移動させるために信号をマイクロコントローラ270へ送る。必要に応じて、ステップ920において、放射線アセンブリ60は、重合可能材料の薄層がビルドプラットフォーム70のビルド表面と放射線アセンブリ60との間に形成されるように(この場合も先と同様に機械的作動コンポーネント286を介して)開始位置へ移動される。
ステップ930では、光学的コンポーネント288によって放射線アセンブリ60の放射線源がONに切り換えられ、また、前述したようにディスプレイ制御コンポーネント284により、形成されるべき物体の第1の画像スライスに対応する所望のパターンにしたがってLCD5のピクセルアレイ256が制御される。放射線アセンブリ60がLEDピクセルアレイを備える実施形態では、ディスプレイ制御コンポーネント284が所望のパターンをLEDピクセルから直接に簡単に投影できるため、放射線源を別個にONに切り換える必要がない。パターン化された放射線の結果として、重合可能材料の薄層は、放射線に晒される領域で重合する(ステップ940)。
薄層が所望の態様で硬化された時点で、ディスプレイ制御コンポーネント284及び/又は光学的コンポーネント288によってピクセルアレイ256及び/又は放射線源がOFFに切り換えられる(ステップ950)。
次に、ステップ960では、既に説明されたように硬化された層を剪断動作によって容器50の表面又は放射線アセンブリ60の表面における接触面から解放するために、機械的作動コンポーネント286は、放射線アセンブリ60及び/又は容器50をビルドプラットフォーム70に対して横方向に移動させる(或いは逆もまた同様)べく作動信号を送る。
物体の次の層を重合するように装置500又は550を位置決めするため、ステップ970において、機械的作動コンポーネント286は、所望の層厚に等しい量だけビルドプラットフォーム70を放射線アセンブリ60に対して垂直に移動させるべく、マイクロコントローラ270を介して制御信号をビルドプラットフォーム70のアクチュエータ又は放射線アセンブリ60のアクチュエータへ送る。これにより、重合可能材料の新たな薄層は、既に硬化された層と放射線アセンブリ60との間に残された空隙を満たす。ステップ920〜980は、形成されるべき物体のそれぞれの層ごとに繰り返される。最後に、ステップ990において、機械的作動コンポーネント286は、ユーザが仕上がった物体をビルド表面から容易に取り外しできる位置へビルドプラットフォーム70を移動させるために、信号をビルドプラットフォーム70のアクチュエータへ送ってもよい。
特定の実施形態を説明して例示してきたが、当業者であれば分かるように、添付の特許請求項に規定される発明の範囲から逸脱することなく、前述の実施形態の様々な変更及び特徴の組み合わせが可能である。

Claims (18)

  1. 放射線暴露時に重合可能である材料を収容するための容器と、
    透明な下壁を備える前記容器の底部と、
    ビルドプラットフォーム上に物体が形成されるように配置されたビルド表面を有し、前記容器に対して移動可能であるビルドプラットフォームと、
    前記透明な下壁の表面と接触しているプログラマブル放射線モジュールであって、個別にアドレス可能な素子のアレイを含み、前記アレイの素子の選択的な駆動によって所定のパターンを有する放射線を生み出すように構成可能である、前記放射線モジュールと、
    を備え、
    前記放射線モジュールは、前記ビルド表面と前記透明な下壁との間の材料を照射するように位置決めされ或いは位置決め可能であ
    前記放射線モジュールは、動的マスク構成要素と、前記動的マスク構成要素を通じて照射するための放射線源とを備え、
    前記放射線モジュールは前記容器の前記透明な下壁に取り付けられている、
    付加製造装置。
  2. 前記放射線モジュールは、前記透明な下壁を通って上方に照射するように、前記容器の前記透明な下壁の下に位置される請求項1に記載の付加製造装置。
  3. 前記動的マスク構成要素が液晶ディスプレイ(LCD)を備える請求項に記載の付加
    製造装置。
  4. 前記放射線源が、ストロボランプ、一つ以上の紫外線(UV)発光源、一つ以上の赤外線源、及び一つ以上のX線源のうちの一つを備える、請求項に記載の付加製造装置。
  5. 前記LCDがモノクロLCDである請求項に記載の付加製造装置。
  6. 前記個別にアドレス可能な素子のアレイは、発光ダイオード(LED)のアレイ、又は有機発光ダイオード(OLED)のアレイを備える、請求項1に記載の付加製造装置。
  7. 前記アレイは、前記LED又は前記OLEDの選択的な駆動によって、前記所定のパターンを有する放射を放出するように構成可能である、請求項に記載の付加製造装置。
  8. 記容器及び/又は前記放射線モジュールと前記ビルドプラットフォームとの間の相対回転を可能にするための回動機構をさらに備える請求項1に記載の付加製造装置。
  9. 前記放射線モジュールは、前記ビルド表面と前記透明な下壁との間の前記材料を照射するように位置決めされ又は位置決め可能であり、前記材料は重合されると、前記透明な下壁及び前記ビルド表面と接し、前記物体の層を形成する、請求項1に記載の付加製造装置。
  10. 放射線暴露時に重合可能である材料で、底部に透明な下壁を備える容器を少なくとも部分的に満たすステップと、
    前記透明な下壁の表面に接する、個別にアドレス可能な素子のアレイを備えるプログラマブル放射線モジュールを用意するステップと、
    物体が形成されるように配置されたビルド表面を有するビルドプラットフォームを用意するステップと、
    重合可能材料の未硬化層が前記ビルド表面と前記透明な下壁との間に形成されるように前記ビルドプラットフォームを前記容器に対して位置決めするステップと、
    前記放射線モジュールの前記アレイの前記素子を選択的に駆動させることによって、所定のパターンを有する放射線を拡大を伴わずに重合可能材料の前記未硬化層に照射して、前記未硬化層を前記所定のパターンで重合させるステップと、
    を備え
    前記放射線モジュールは、動的マスク構成要素と、前記動的マスク構成要素を通じて照射するための放射線源とを備え、
    前記放射線モジュールは前記容器の前記透明な下壁に取り付けられている、
    付加製造方法。
  11. 前記放射線モジュールは、前記透明な下壁を通って上方に照射するように、前記容器の前記透明な下壁の下に位置される、請求項1に記載の付加製造方法。
  12. 前記動的マスク構成要素が液晶ディスプレイ(LCD)を備える請求項1に記載の付加製造方法。
  13. 前記放射線源が、ストロボランプ、一つ以上の紫外線(UV)発光源、一つ以上の赤外線源、及び一つ以上のX線源のうちの一つを備える、請求項1に記載の付加製造方法。
  14. 前記LCDがモノクロLCDである請求項1に記載の付加製造方法。
  15. 前記個別にアドレス可能な素子のアレイは、発光ダイオード(LED)のアレイ、または有機発光ダイオード(OLED)のアレイを備える請求項1に記載の付加製造方法。
  16. 前記アレイは、前記LED又は前記OLEDの選択的な駆動によって、前記所定のパターンを有する放射を放出するように構成可能である、請求項15に記載の付加製造方法。
  17. 記容器及び/又は前記放射線モジュールと前記ビルドプラットフォームとの間の相対回転を可能にするための回動機構を用意することをさらに備える、請求項1に記載の付加製造方法。
  18. 前記ビルド表面と前記透明な下壁との間の未硬化層を、硬化時に前記層が前記透明な下壁及び前記ビルド表面に接するように照射して、前記物体の層を形成することをさらに備える、請求項1に記載の付加製造方法。
JP2020078749A 2013-11-14 2020-04-28 付加製造装置及び方法 Active JP6966807B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361904070P 2013-11-14 2013-11-14
US61/904.070 2013-11-14
JP2016554168A JP6698538B2 (ja) 2013-11-14 2014-11-12 付加製造装置及び方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016554168A Division JP6698538B2 (ja) 2013-11-14 2014-11-12 付加製造装置及び方法

Publications (2)

Publication Number Publication Date
JP2020121569A JP2020121569A (ja) 2020-08-13
JP6966807B2 true JP6966807B2 (ja) 2021-11-17

Family

ID=53057740

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016554168A Active JP6698538B2 (ja) 2013-11-14 2014-11-12 付加製造装置及び方法
JP2020078749A Active JP6966807B2 (ja) 2013-11-14 2020-04-28 付加製造装置及び方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016554168A Active JP6698538B2 (ja) 2013-11-14 2014-11-12 付加製造装置及び方法

Country Status (8)

Country Link
US (5) US10792859B2 (ja)
EP (1) EP3068610B1 (ja)
JP (2) JP6698538B2 (ja)
KR (2) KR102348270B1 (ja)
AU (1) AU2014349268B2 (ja)
SG (1) SG10201804040VA (ja)
TW (1) TWI662324B (ja)
WO (1) WO2015072921A1 (ja)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9952448B2 (en) * 2014-03-26 2018-04-24 Indizen Optical Technologies, S.L. Eyewear lens production by additive techniques
US9933632B2 (en) 2014-03-26 2018-04-03 Indizen Optical Technologies, S.L. Eyewear lens production by multi-layer additive techniques
US9895843B2 (en) 2014-07-17 2018-02-20 Formlabs, Inc. Systems and methods for an improved peel operation during additive fabrication
US10201963B2 (en) 2014-08-18 2019-02-12 Formlabs, Inc. Systems and methods for an improved peel operation during additive fabrication
US10213966B2 (en) 2014-08-20 2019-02-26 Formlabs, Inc. Techniques for applying a peel operation during additive fabrication and related systems and methods
CN105818370B (zh) * 2015-01-05 2019-04-23 三纬国际立体列印科技股份有限公司 立体打印装置
TWI628208B (zh) * 2015-01-12 2018-07-01 國立台灣科技大學 積層製造方法及光敏樹脂的光固化方法
CN104786508A (zh) * 2015-05-15 2015-07-22 京东方科技集团股份有限公司 3d打印设备及其成像系统
KR20170023432A (ko) * 2015-08-24 2017-03-06 주식회사 덴티스 3d 프린터용 이형 수조
US11220051B2 (en) * 2015-09-25 2022-01-11 Carbon, Inc. Build plate assemblies for continuous liquid interphase printing having lighting panels and related methods, systems and devices
ITUB20154169A1 (it) * 2015-10-02 2017-04-02 Thelyn S R L Metodo e apparato di foto-indurimento a substrato auto-lubrificante per la formazione di oggetti tridimensionali.
WO2017062630A1 (en) * 2015-10-07 2017-04-13 Autodesk, Inc. Sub-pixel grayscale three-dimensional printing
CN109874321B (zh) * 2015-10-30 2021-12-24 速尔特技术有限公司 增材制造系统和方法
US11141919B2 (en) 2015-12-09 2021-10-12 Holo, Inc. Multi-material stereolithographic three dimensional printing
ITUB20159181A1 (it) * 2015-12-24 2017-06-24 Solido3D S R L Apparecchiatura di stampa tridimensionale e relativo procedimento
JP6952038B2 (ja) * 2015-12-29 2021-10-20 スリーエム イノベイティブ プロパティズ カンパニー 接着剤の付加製造法及び接着物品
US10363710B2 (en) * 2016-01-22 2019-07-30 Indizen Optical Technologies of America, LLC Creating homogeneous optical elements by additive manufacturing
US9862139B2 (en) * 2016-03-15 2018-01-09 Xyzprinting, Inc. Three dimensional printing apparatus
US10005227B2 (en) 2016-05-12 2018-06-26 Xerox Corporation Electrostatic 3-D printer using addressable UV crosslinking
US10252468B2 (en) 2016-05-13 2019-04-09 Holo, Inc. Stereolithography printer
JP2018027618A (ja) * 2016-08-15 2018-02-22 富士ゼロックス株式会社 造形装置
DE102017213072A1 (de) * 2016-09-05 2018-03-08 Ford Global Technologies, Llc Additives Fertigungsverfahren
US10780641B2 (en) 2016-09-29 2020-09-22 Holo, Inc. Enhanced three dimensional printing of vertical edges
EP3532267B1 (en) 2016-10-27 2023-03-01 Bridgestone Americas Tire Operations, LLC Processes for producing cured polymeric products by additive manufacturing
US10933588B2 (en) * 2016-11-18 2021-03-02 Autodesk, Inc. Stereolithography printer
US10583530B2 (en) 2017-01-09 2020-03-10 General Electric Company System and methods for fabricating a component with laser array
JP7055424B2 (ja) * 2017-01-25 2022-04-18 ネクサ3ディー インコーポレイテッド 立体物を形成するために液体ポリマーの光硬化のための光エンジンを用いる方法および装置
US10773510B2 (en) 2017-02-06 2020-09-15 3D Systems, Inc. Scalable and fast three dimensional printing system
US10596763B2 (en) * 2017-04-21 2020-03-24 Applied Materials, Inc. Additive manufacturing with array of energy sources
US11161201B2 (en) 2017-05-31 2021-11-02 General Electric Company System and methods for fabricating a component with a laser device
EP3642663B1 (en) * 2017-06-21 2023-01-04 Essilor International Method of manufacturing optical article and optical shaping apparatus
USD854591S1 (en) * 2017-08-24 2019-07-23 Structo Pte Ltd Housing for a 3D printer
TW201918367A (zh) * 2017-11-14 2019-05-16 義大利商Dws有限責任公司 改良型光固化系統
JP2019098645A (ja) * 2017-12-04 2019-06-24 カンタツ株式会社 3次元造形装置、3次元造形装置の制御方法および3次元造形装置の制御プログラム
CN109866414A (zh) * 2017-12-04 2019-06-11 三纬国际立体列印科技股份有限公司 立体打印方法
GB201808708D0 (en) * 2018-05-29 2018-07-11 Photocentric Ltd Stereolithographic 3D printer
WO2020206053A1 (en) * 2019-04-04 2020-10-08 Calt Dynamics Ltd Methods, systems and devices for three-dimensional object generation and physical mask curing
US11235515B2 (en) 2018-07-28 2022-02-01 CALT Dynamics Limited Methods, systems, and devices for three-dimensional object generation and physical mask curing
US11633909B2 (en) * 2018-07-28 2023-04-25 CALT Dynamics Limited Methods, systems, and devices for three-dimensional object generation and physical mask curing
US10780640B2 (en) 2018-07-30 2020-09-22 Intrepid Automation Multiple image projection system for additive manufacturing
GB201812824D0 (en) * 2018-08-07 2018-09-19 Photocentric Ltd Method for improving resolution in LCD screen based 3D printers
CN110893683A (zh) * 2018-09-11 2020-03-20 三纬国际立体列印科技股份有限公司 从成型槽剥离实体模型的方法
GB201815653D0 (en) 2018-09-26 2018-11-07 Photocentric Ltd Method of automating the manufacture of 3D printed objects
CN109228343B (zh) * 2018-09-29 2020-07-24 先临三维科技股份有限公司 3d打印承载平台及基于该承载平台的全自动打印方法
WO2020091741A1 (en) * 2018-10-30 2020-05-07 Hewlett-Packard Development Company, L.P. Pin array sintering supports
GB201901811D0 (en) * 2019-02-11 2019-03-27 Photocentric Ltd Method of making 3D printed objects using two distinct light sources
CN111619108A (zh) * 2019-02-28 2020-09-04 宁波市石生科技有限公司 一种新型光固化3d打印设备
US11667521B2 (en) 2019-08-26 2023-06-06 City University Of Hong Kong Method of constructing a micromechanical device
CN114829113A (zh) * 2019-10-14 2022-07-29 速科特私人有限公司 用于增材制造的辐射系统和方法
WO2021108634A1 (en) * 2019-11-26 2021-06-03 Lubbe Steven Devices, systems, and methods for 3d printing
US11639027B2 (en) * 2020-02-21 2023-05-02 CALT Dynamics Limited Systems, apparatus, and methods for curing of a photopolymer via lateral vacuum release during an additive manufacturing process
WO2022003661A1 (en) * 2020-06-30 2022-01-06 Nanofabrica Ltd. A system and method for three-dimensional (3d) printing
CN111923403A (zh) * 2020-07-10 2020-11-13 杭州德迪智能科技有限公司 一种光固化成型装置及方法
WO2022049214A1 (en) 2020-09-03 2022-03-10 Tcm-Research Ltd. Additive chemical vapor deposition methods and systems
KR102467555B1 (ko) 2021-02-23 2022-11-17 주식회사 휴비츠 Msla 3d 프린터의 lcd 수명을 향상시키는 방법
WO2023014840A2 (en) * 2021-08-03 2023-02-09 University Of Southern California Vat photopolymerization 3d printing method and apparatus
US11813799B2 (en) * 2021-09-01 2023-11-14 General Electric Company Control systems and methods for additive manufacturing
IL288719A (en) * 2021-12-06 2023-07-01 Kenig Edan Method and device for 3D printing a contact lens in a sterile manner
GB2617595A (en) * 2022-04-13 2023-10-18 Thales Holdings Uk Plc Adaptive lifting of build platform for additive manufacturing

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4019807A (en) * 1976-03-08 1977-04-26 Hughes Aircraft Company Reflective liquid crystal light valve with hybrid field effect mode
US4575330A (en) * 1984-08-08 1986-03-11 Uvp, Inc. Apparatus for production of three-dimensional objects by stereolithography
US5042922A (en) * 1986-05-20 1991-08-27 Hughes Aircraft Company Method for improvidng the spatial resolution in an integrated adaptive optics apparatus
ATE113746T1 (de) * 1986-06-03 1994-11-15 Cubital Ltd Gerät zur entwicklung dreidimensionaler modelle.
JP2624239B2 (ja) * 1986-06-06 1997-06-25 松下電器産業株式会社 光学的造形方法
JPH0698684B2 (ja) * 1987-06-12 1994-12-07 松下電器産業株式会社 光学的造形装置
IL109511A (en) * 1987-12-23 1996-10-16 Cubital Ltd Three-dimensional modelling apparatus
US5171490A (en) * 1988-11-29 1992-12-15 Fudim Efrem V Method and apparatus for production of three-dimensional objects by irradiation of photopolymers
US5089184A (en) * 1989-01-18 1992-02-18 Mitsui Engineering And Shipbuilding Co., Ltd. Optical molding method
US5143663A (en) * 1989-06-12 1992-09-01 3D Systems, Inc. Stereolithography method and apparatus
JPH03227222A (ja) * 1990-01-31 1991-10-08 Sanyo Electric Co Ltd 3次元模型作製装置
JPH04156325A (ja) * 1990-10-19 1992-05-28 Fuji Photo Film Co Ltd 非発光形表示デバイスを用いる造形方法および造形装置
US5122441A (en) * 1990-10-29 1992-06-16 E. I. Du Pont De Nemours And Company Method for fabricating an integral three-dimensional object from layers of a photoformable composition
JPH04247931A (ja) * 1991-01-25 1992-09-03 Ishikawajima Harima Heavy Ind Co Ltd 立体樹脂モデルの製造方法及びその装置
US5545367A (en) * 1992-04-15 1996-08-13 Soane Technologies, Inc. Rapid prototype three dimensional stereolithography
JPH07509188A (ja) * 1992-04-15 1995-10-12 ソーン テクノロジーズ,インコーポレイテッド 高速プロトタイプ3次元立体リソグラフィー
JPH05329940A (ja) * 1992-05-29 1993-12-14 Japan Synthetic Rubber Co Ltd 立体モデル造形方法
WO1995015841A1 (fr) 1992-06-05 1995-06-15 Finab Limited Machine de fabrication d'objets par photopolymerisation selective de liquides ou poudres par couches
JPH06198747A (ja) * 1992-12-28 1994-07-19 Kawai Musical Instr Mfg Co Ltd 光造形技術による3次元物体形成装置
JP3440481B2 (ja) * 1993-02-03 2003-08-25 Jsr株式会社 光造形装置及び等高線データのラスターデータ変換方法
JPH08281810A (ja) * 1995-04-18 1996-10-29 New Kurieishiyon:Kk 光造形装置
JPH11314276A (ja) * 1999-03-19 1999-11-16 Three D Syst Inc 三次元物体を作成する装置および方法
JP2001005575A (ja) * 1999-06-24 2001-01-12 Nec Eng Ltd 電子装置
DE10015408A1 (de) * 2000-03-28 2001-10-11 Fraunhofer Ges Forschung Verfahren und Vorrichtung zur Herstellung von Bauteilen aus lichtaushärtbaren Werkstoffen
US6537482B1 (en) * 2000-08-08 2003-03-25 Micron Technology, Inc. Underfill and encapsulation of carrier substrate-mounted flip-chip components using stereolithography
US20020149137A1 (en) 2001-04-12 2002-10-17 Bor Zeng Jang Layer manufacturing method and apparatus using full-area curing
US7556490B2 (en) * 2004-07-30 2009-07-07 Board Of Regents, The University Of Texas System Multi-material stereolithography
JP4422576B2 (ja) * 2004-08-02 2010-02-24 ナブテスコ株式会社 光学的立体造形方法および装置
US20060161287A1 (en) * 2005-01-14 2006-07-20 Simonis Steven F Rapid prototyping and manufacturing of photocured objects using LCD panel as programmably variable photomask
US7614866B2 (en) * 2007-01-17 2009-11-10 3D Systems, Inc. Solid imaging apparatus and method
US8221671B2 (en) * 2007-01-17 2012-07-17 3D Systems, Inc. Imager and method for consistent repeatable alignment in a solid imaging apparatus
US8187221B2 (en) 2008-07-11 2012-05-29 Nexeon Medsystems, Inc. Nanotube-reinforced balloons for delivering therapeutic agents within or beyond the wall of blood vessels, and methods of making and using same
US8905739B2 (en) * 2008-12-22 2014-12-09 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method and apparatus for layerwise production of a 3D object
EP2218571A1 (en) * 2009-01-30 2010-08-18 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Illumination system for use in a stereolithography apparatus
EP2251185A1 (de) * 2009-05-11 2010-11-17 Ivoclar Vivadent AG Verfahren und Vorrichtung zur generativen Herstellung eines Formkörpers mit non-planaren Schichten
US8372330B2 (en) * 2009-10-19 2013-02-12 Global Filtration Systems Resin solidification substrate and assembly
US8093982B2 (en) * 2010-03-25 2012-01-10 Qualcomm Incorporated Three dimensional inductor and transformer design methodology of glass technology
IT1400015B1 (it) * 2010-05-17 2013-05-09 Dws Srl Macchina stereolitografica perfezionata
EP2670572B1 (en) * 2011-01-31 2022-09-21 Global Filtration Systems, A DBA of Gulf Filtration Systems Inc. Apparatus for making three-dimensional objects from multiple solidifiable materials
DK2726264T3 (en) 2011-06-28 2017-02-27 Global Filtration Systems Dba Gulf Filtration Systems Inc Apparatus for forming three-dimensional objects using an ultraviolet laser diode
US9120270B2 (en) * 2012-04-27 2015-09-01 University Of Southern California Digital mask-image-projection-based additive manufacturing that applies shearing force to detach each added layer
GB2514139A (en) * 2013-05-14 2014-11-19 Aghababaie Lin & Co Ltd Apparatus for fabrication of three dimensional objects
US9452567B2 (en) * 2013-08-27 2016-09-27 Kao-Chih Syao Stereolithography apparatus
JP6377364B2 (ja) * 2014-02-19 2018-08-22 ローランドディー.ジー.株式会社 3次元造形装置を用いて造形物を造形するためのコンピュータプログラムおよびそれを備えた3次元造形システム
US10011076B2 (en) * 2014-02-20 2018-07-03 Global Filtration Systems Apparatus and method for forming three-dimensional objects using a tilting solidification substrate
TWI609770B (zh) * 2014-06-09 2018-01-01 三緯國際立體列印科技股份有限公司 立體列印裝置的控制方法與立體列印系統
US10201963B2 (en) * 2014-08-18 2019-02-12 Formlabs, Inc. Systems and methods for an improved peel operation during additive fabrication
US11203156B2 (en) * 2018-08-20 2021-12-21 NEXA3D Inc. Methods and systems for photo-curing photo-sensitive material for printing and other applications

Also Published As

Publication number Publication date
TWI662324B (zh) 2019-06-11
US10792859B2 (en) 2020-10-06
EP3068610A4 (en) 2017-03-01
US20210023776A1 (en) 2021-01-28
US20230249398A1 (en) 2023-08-10
JP2020121569A (ja) 2020-08-13
KR102348270B1 (ko) 2022-01-10
KR20210057212A (ko) 2021-05-20
US20210023777A1 (en) 2021-01-28
EP3068610A1 (en) 2016-09-21
KR20160110938A (ko) 2016-09-23
WO2015072921A1 (en) 2015-05-21
SG10201804040VA (en) 2018-07-30
JP6698538B2 (ja) 2020-05-27
US20230330925A1 (en) 2023-10-19
AU2014349268B2 (en) 2019-01-31
AU2014349268A1 (en) 2016-07-07
TW201525572A (zh) 2015-07-01
US11628616B2 (en) 2023-04-18
JP2016540665A (ja) 2016-12-28
US11926090B2 (en) 2024-03-12
EP3068610B1 (en) 2021-01-27
US20150137426A1 (en) 2015-05-21
US11400645B2 (en) 2022-08-02

Similar Documents

Publication Publication Date Title
JP6966807B2 (ja) 付加製造装置及び方法
US20210122105A1 (en) Additive manufacturing device with release mechanism
US9656422B2 (en) Three dimensional (3D) printer with near instantaneous object printing using a photo-curing liquid
US20150290876A1 (en) Stereolithographic apparatus and method
CN109532012A (zh) 基于光固化的3d打印系统及方法
CN107932910B (zh) 基于双路入射光的投影式光固化成形装置
CN113119459B (zh) 3d打印设备的标定系统、方法及3d打印设备
WO2018145298A1 (zh) 一种基于点阵式显示屏的光固化3d打印机
US11370165B2 (en) Method for improving resolution in LCD screen based 3D printers
JP2024517720A (ja) 大面積マイクロステレオリソグラフィにおけるレイヤレベリングのためのシステム及び方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200520

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200520

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210324

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211015

R150 Certificate of patent or registration of utility model

Ref document number: 6966807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150