WO2018145298A1 - 一种基于点阵式显示屏的光固化3d打印机 - Google Patents

一种基于点阵式显示屏的光固化3d打印机 Download PDF

Info

Publication number
WO2018145298A1
WO2018145298A1 PCT/CN2017/073238 CN2017073238W WO2018145298A1 WO 2018145298 A1 WO2018145298 A1 WO 2018145298A1 CN 2017073238 W CN2017073238 W CN 2017073238W WO 2018145298 A1 WO2018145298 A1 WO 2018145298A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix display
assembly
dot matrix
dot
light
Prior art date
Application number
PCT/CN2017/073238
Other languages
English (en)
French (fr)
Inventor
李锐
贺晓宁
杨波
蔡冰耀
朱祺楼
Original Assignee
深圳摩方材科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳摩方材科技有限公司 filed Critical 深圳摩方材科技有限公司
Priority to PCT/CN2017/073238 priority Critical patent/WO2018145298A1/zh
Publication of WO2018145298A1 publication Critical patent/WO2018145298A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Definitions

  • the invention relates to an additive manufacturing technology, in particular to the technical field of 3D printing using a photo-curing method, and more particularly to a rapid prototyping 3D printer which directly uses a dot matrix display of an LED display screen for digital light processing.
  • 3D printing also known as additive manufacturing, is a rapid prototyping technology that uses a digital model to print out the entire three-dimensional object layer by layer using materials such as metal powder, ceramic powder, plastic or liquid photosensitive resin.
  • the process of 3D printing firstly designs the 3D model through computer 3D modeling software, then “slices” the 3D model into a layer-by-layer section, and then obtains the processing path according to the analysis of the section information, thereby guiding the 3D printer to print layer by layer, by layer by layer.
  • the overlay ultimately forms a three-dimensional object.
  • 3D printing technology can be divided into SLA (stereolithography), LOM (stacked solid molding), SLS (selective laser sintering), FDM (melt deposition molding), DLP (digital light processing molding) according to different working principles. Wait.
  • photocuring 3D printing which is widely used in model making, optical lens, dentistry, medical, jewelry and other industries.
  • the materials used in photocuring 3D printing are generally "photopolymer", which is usually in a liquid state, and is formulated with a certain photoinitiator to undergo polymerization under light irradiation to complete curing.
  • This photocuring 3D printing technology includes two technical directions: SLA (stereolithography) and DLP (digital light processing).
  • the principle of SLA is to slice the 3D model through layering software, inject liquid photosensitive resin into the liquid tank, and the laser beam is layered on the surface of the liquid photosensitive resin according to the layered slice data of the 3D model. Scan and diffuse into a face to cure the resin to form a layered data A thin layer. After the layer is cured, the workbench moves down a layer of thickness to make the next layer. The newly cured layer is firmly bonded to the previous layer, thus repeatedly forming a complete product.
  • SLA stereolithography
  • DLP Digital Light Procession
  • the principle of DLP is that the 3D model is layered and sliced by layering software.
  • the liquid tank is filled with liquid photosensitive resin, and each layer of slice image data passes through DMD (digital micro mirror, Digital Micromirror Device) performs digital processing, and then projects the light.
  • DMD digital micro mirror, Digital Micromirror Device
  • the DMD chip realizes the exposure energy and the exposure pattern control.
  • Each exposure cures a thin layer. After the layer is cured, the table moves a layer thickness. The next layer is made, and the newly cured layer is firmly bonded to the front layer, thus repeatedly forming a complete product.
  • the SLA (stereolithography) method generally uses a laser as a light source, and the equipment is expensive, because it is point forming, so production efficiency is low.
  • DLP Digital Light Processing
  • DLP series control chip and DMD digital micro mirror
  • the present invention provides a light-cured 3D printer based on a dot matrix display, comprising: a computer control component, a dot matrix display component, a liquid tank forming component, a Z-axis moving platform component, and a rack.
  • the dot matrix display assembly, the liquid channel forming assembly, and the Z-axis moving platform assembly are fixedly mounted on the frame assembly;
  • the computer control assembly includes a control device, and the control device includes an image slice a component and a print control component, the image slicing component is used Dividing a 3D model to be printed or to be produced into a series of layered slice images having a certain thickness;
  • the print control unit is configured to control lifting of the Z-axis moving platform assembly, and transmit the layered slice image data to
  • the dot matrix display module drives the dot matrix display panel to emit light according to the layered slice image data to generate a corresponding exposure pattern, so that the photocurable material contained in the liquid channel forming assembly is in accordance with The exposure pattern is cured.
  • the liquid tank forming assembly includes a liquid tank and a molding platform, wherein the liquid tank is for holding a liquid photocurable material, and the molding platform is fixed at a lower end of the Z-axis moving platform assembly, a Z-axis moving platform assembly controls a immersion depth of the molding platform in the liquid photocurable material, the molding platform for adhering and carrying an article solidified by the liquid photocurable material, moved by the molding platform The article is subjected to multilayer superposition molding in the liquid tank.
  • the rack assembly includes a bottom plate, a bracket, a dot matrix display fixing plate and a casing; wherein the bottom plate is a base of the frame assembly, the bracket and the dot matrix a display fixing plate fixedly mounted on the bottom plate, the dot matrix display fixing plate for fixing and mounting the dot matrix display assembly and the liquid tank forming assembly, wherein the bracket is used for supporting a fixed Z-axis Mobile platform components.
  • the dot matrix display component is an LED display component or a laser array or an active light emitting cell array; and the shape of the dot matrix display component is correspondingly set to a rectangle, a square, a parallelogram, and a hexagon. , a ring shape, a spheroid shape or a strip shape; the dot matrix display component emits a light source having a superposed combination of one or more of ultraviolet, blue, visible, and infrared.
  • the LED display screen assembly includes an LED display screen and an LED driver; wherein the LED display screen assembly is coupled to the computer control component and receives a 3D model cross-sectional graphic from the computer control component
  • the layered slice image data is processed by the LED driver to generate a driving signal for controlling the LED display screen to emit light according to a 3D model cross-sectional pattern, Light from the LED display illuminates the liquid photocurable material for curing.
  • the LED display screen selects an ultraviolet light source having a wavelength of 200 nm to 400 nm or a blue light source having a wavelength of 400 to 450 nm
  • the photocurable material is a liquid photocurable resin or a photosensitive resin.
  • the dot matrix display component is further provided with an imaging focusing optical film, which is an optical microlens, a microprism, a Fresnel mirror, a fiber optic panel or a pixel-level diffraction grating.
  • an imaging focusing optical film which is an optical microlens, a microprism, a Fresnel mirror, a fiber optic panel or a pixel-level diffraction grating.
  • the invention also provides a photocuring 3D printing method based on a dot matrix display screen, comprising the steps of: layering slices a 3D model through layering software; each layer slice image data is displayed through a dot matrix of the LED display screen Projecting light emitted by the LED display screen into a liquid tank containing a liquid photocurable material; controlling a pattern exposure energy of the LED light-display material to the liquid photo-curable material to cure the exposed liquid light The material is cured to form a thin layer; the cured thin layer is moved by a layer thickness, and the next thin layer is exposed and cured, and the newly exposed cured thin layer is firmly bonded to the previous thin layer, so that it is repeatedly formed. Complete product.
  • the parameters for controlling the LED display screen include one or more of brightness, exposure time, gray level, exposure compensation, and bad light rate.
  • the invention utilizes the dot matrix display of the LED display screen to directly realize the digital light processing, thereby removing the DLP series control chip and the DMD component, thereby greatly simplifying the complexity of the optical system and greatly reducing the cost of the 3D printer.
  • the LED display technology has been relatively mature, large-size LED displays can be seen everywhere in daily life, so that large-format LED display light-curing printing can be realized at relatively low cost.
  • FIG. 1 is a schematic structural diagram of a system of a 3D printer provided by the present invention.
  • the invention provides a light-curing 3D printer based on a dot matrix display screen.
  • the 3D printer comprises: a computer control component, a dot matrix display component, a liquid trough forming component, and a Z-axis mobile platform component. , rack components.
  • the frame assembly includes a bottom plate 11, a bracket 12, an LED fixing plate 14, and a casing (not shown) for constructing a structural frame for supporting and fixing the photo-curing 3D printer based on the dot matrix display.
  • the dot matrix display assembly, the tank forming assembly, and the Z-axis moving platform assembly are all fixedly mounted on the integral frame assembly.
  • the bottom plate 11 is a base of the frame assembly, and the bracket 12 and the LED fixing plate 14 are fixedly mounted on the bottom plate 11, wherein the LED fixing plate 14 is used for fixing and installing the dot matrix display assembly and the liquid tank forming assembly, and the bracket 12 is used for Supports a fixed Z-axis moving platform assembly.
  • the liquid tank forming assembly comprises a liquid tank 16 and a molding platform 17; wherein the liquid tank 16 is for holding a liquid photocurable material, preferably a photosensitive resin, and the bottom of the liquid tank 16 is made of a high light transmittance material, specifically: PDMS, acrylic , Teflon, ordinary glass, tempered glass and other materials.
  • the molding platform 17 is fixed at the lower end of the Z-axis moving platform assembly, and the Z-axis moving platform assembly controls the immersion depth of the molding platform 17 in the photosensitive resin, and the molding platform 17 is used for adhering and carrying the product 18 solidified by the photosensitive resin.
  • the forming platform 17 moves the article 18 into shape within the liquid bath 16.
  • the computer control component includes a control device and a liquid crystal display; the control device may have: an industrial computer, a PLC or a single chip microcomputer, and the liquid crystal display may be a liquid crystal screen with a touch input.
  • the computer control component can perform input and output operations through a liquid crystal display or the like, and the control flow is realized by the control device.
  • the control device includes an image slicing component for dividing the 3D model to be printed or to be produced into a series of layered slice images having a certain thickness, and a print control component for controlling the lifting of the Z-axis moving platform component.
  • the parallel control dot matrix display component transmits the layered slice image data to the LED driver in the dot matrix display component through the data line, and drives the LED display 15 in the LED display component to follow the layered slice
  • the image data is illuminated to generate a corresponding exposure pattern.
  • the photosensitive resin is solidified, and the photosensitive resin is maintained in a liquid state at a position where the exposure brightness is insufficient, so that the photosensitive resin at a suitable position is solidified to form a layered slice image.
  • the data conforms to the formed pattern, i.e., forms a 3D printed layer on the article 18; the lifting motion of the Z-axis moving platform assembly causes the 3D printed layer to be superimposed to form a 3D printed object corresponding to the 3D model that is desired to be printed.
  • control equipment also include: monitoring and controlling related equipment, production processes, data parameters, etc., internal storage procedures, performing logic operations, sequence control, timing, counting, and the like.
  • the control items of the LED display in the dot matrix display component include: brightness, exposure time, gray level of each LED lamp, exposure compensation of the LED display, and detection of bad light rate.
  • the brightness of each LED lamp relates to the light intensity emitted by the unit area of the LED display screen, which is the trigger for the exposure curing.
  • the key parameters; and other control parameters besides the brightness will also affect the quality of the exposure curing, the exposure time can assist the brightness setting, and the complementary phase achieves the quality of the exposure curing.
  • Gray level refers to the degree of light and dark level of the display screen under the same brightness level. The higher the gray level, the more delicate and delicate the printing effect is.
  • the real-time or regular LED is monitored by monitoring the actual information such as the brightness and gray level of the resin liquid.
  • the display screen performs parameter compensation to achieve stable molding quality.
  • the quality deterioration of the LED display can be monitored in time, and the accessories can be replaced in time to avoid molding waste.
  • a dot matrix display component for emitting exposure light of a desired pattern in a dot matrix manner, which may be an LED display panel component, or may be a laser array or other active light emitting cell array; the arrangement of the light emitting units/pixels may be a rectangle , square, parallelogram, hexagon, etc., can also be custom shapes such as ring, spheroid, strip, etc., so that the shape of the dot matrix display component can also be set to rectangular, square, parallelogram, hexagon, The shape of the ring, the spheroid, the strip, and the like are adapted to the cross-sectional shape of the article 18 to be solidified.
  • the dot matrix display assembly is preferably an LED display assembly including an LED display 15 and an LED driver.
  • the LED display assembly is connected to the computer control component, receives the cross-sectional pattern of the layered slice from the computer control component, and is processed by the LED driver to generate a driving signal for controlling the illumination of the LED display 15, and the light emitted by the LED display 15 is irradiated to the photosensitive resin.
  • the surface is cured in accordance with the shape of the cross-sectional pattern.
  • the light-emitting wavelength of the LED display panel 15 is selected from an ultraviolet light source of 200 nm to 400 nm or a blue light source having a wavelength of 400 to 450 nm, or may be a superimposed combination of solid light sources such as ultraviolet, visible light, and infrared.
  • the wavelength may be the wavelength of the LED backlight itself of the LED display 15, or may be formed by setting a filter of a corresponding passband wavelength in front of the LED backlight of the LED display 15.
  • the position of the LED display 15 near the photosensitive resin liquid can be reduced to reduce the degree of light divergence.
  • an imaging or focusing optical film can be disposed on the LED display screen 15 to converge the light of each LED lamp to realize a high-precision light curing function.
  • the imaging or focusing optical film can include optical microlenses, microprisms, Fresnel mirrors, fiber optic panels, and pixel scale diffraction gratings, and combinations thereof. The optical parameters of the optical microlens combination are determined according to the requirements of the pixel resolution and the refractive index of the photosensitive resin liquid.
  • the Z-axis moving platform assembly includes a Z-axis moving platform 13 fixed on the bracket 12 of the integral frame assembly, connected to the forming platform 17, and driving the forming platform 17 along the control of the control device of the computer control assembly.
  • the axis direction is displaced in a precise step.
  • the specific layer thickness is determined by the depth of cure required for the corresponding article 18, and the layer thickness must be set to be less than or equal to the depth of cure of the article 18.
  • the optimal exposure parameters of the LED display 15 under the corresponding layer thickness requirements are determined through experiments, including the brightness, exposure time, gray scale, and the like of each LED lamp. Specifically, the curing quality of the prototype is confirmed by a process experiment. If the exposure is insufficient, the exposure time can be increased. On the contrary, the exposure time cannot be excessively increased. Overexposure does not benefit the quality, but increases the production time. Finally, through experiments and experience accumulation, the exposure time of each layer is finally determined.
  • the LED fixing plate 14 has a hollow structure, so that the light source emitted from the LED display panel 15 can directly illuminate the bottom of the liquid tank 16 containing the photosensitive resin.
  • the specific principle of the LED display-based photocuring 3D printer provided by the invention is: the liquid photosensitive resin is filled in the liquid tank 16, and the 3D model is layered and sliced by layering software, and the image data of each layer is passed through the LED.
  • the dot matrix display of the display screen 15 directly performs digital light processing to realize light energy Volume and graphic exposure control, each layer is cured by a thin layer. After one layer is cured, the molding platform 17 is moved by a layer thickness to make the next layer. The newly cured layer is firmly bonded to the previous layer. On the other hand, the complete product is repeatedly formed.
  • the present invention utilizes the dot matrix display of the LED display screen and directly uses the digital light processing.
  • the DLP series control chip and the DMD component are removed, which greatly simplifies the optical system and greatly reduces the cost of the printer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

一种基于点阵式显示屏的光固化3D打印机,包括:计算机控制组件、点阵式显示屏组件、液槽成型组件、Z轴移动平台组件、机架组件,计算机控制组件将3D模型分割成一系列分层切片图像,并将分层切片图像数据传输给点阵式显示屏组件,驱动点阵式显示屏组件发光产生相应的曝光图案,从而使得液槽成型组件中所盛放的液态光固化材料按照曝光图案固化成型。该基于点阵式显示屏的光固化3D打印机利用LED点阵式显示屏的点阵显示,直接实现数字光处理,从而去除了DLP系列控制芯片及DMD组件,简化了光学系统的复杂度,使得3D打印机的成本大幅降低,可以相对低成本地实现大幅面的光固化打印。

Description

一种基于点阵式显示屏的光固化3D打印机 技术领域
本发明涉及增材制造技术,具体涉及使用光固化方式进行3D打印的技术领域,尤其涉及一种将LED显示屏的点阵显示直接用于数字光处理的快速成型3D打印机。
背景技术
3D打印又名增材制造,属于快速成型技术,它以数字模型为基础,利用金属粉末、陶瓷粉末、塑料或液体光敏树脂等材料,逐层地打印出整个三维物体。3D打印的过程首先是通过计算机3D建模软件设计3D模型,再将该三维模型“切片”成逐层的截面,再根据分析截面信息得到加工路径,从而指导3D打印机逐层打印,通过逐层叠加最终形成三维物件。3D打印技术按照工作原理的不同可分为SLA(立体光刻成型)、LOM(叠层实体成型)、SLS(选择性激光烧结成型)、FDM(熔融沉积成型)、DLP(数字光处理成型)等。
目前,3D打印技术应用最多的是光固化3D打印,广泛应用于模型制作、光学透镜、牙科、医疗、珠宝等行业。光固化3D打印使用的材料一般都是“光敏树脂”(Photopolymer),通常为液态,配比一定的光引发剂,在光照射下发生聚合反应,完成固化。这种光固化3D打印成型技术包括SLA(立体光刻成型)和DLP(数字光处理成型)2种技术方向。
SLA(立体光刻成型)的原理是,通过分层软件对3D模型进行分层切片,向液槽中注入液态光敏树脂,激光束按3D模型的分层切片数据在液态光敏树脂表面进行逐点扫描,并扩散成一个面,将树脂固化形成与分层切片数据像匹 配的一个薄层。一层固化完毕后,工作台下移一个层厚的距离,进行下一层的制作,新固化的一层牢固地粘结在前一层上,如此反复成型出完整产品。
DLP(数字光处理成型,Digital Light Procession)的原理是,通过分层软件对3D模型进行分层切片,液槽中盛满液态光敏树脂,每一层切片图像数据通过DMD(数字微反射镜,Digital Micromirror Device)进行数字处理,然后再把光投影出来,由DMD芯片实现曝光能量及曝光图形的控制,每次曝光固化一个薄层,一层固化完毕后,工作台移动一个层厚的距离,进行下一层的制作,新固化的一层牢固地粘结在前一层上,如此反复成型出完整产品。
但是这2种方式普遍存在如下问题及缺陷:
SLA(立体光刻成型)方式通常使用激光器做光源,设备成本高昂,因为是点成型,所以生产效率低下。
DLP(数字光处理成型)方式通常使用LED做光源,但需要配置DLP系列控制芯片及DMD(数字微反射镜)组件等器件,实现数字光处理,因此,光学系统复杂,成本较高,
Figure PCTCN2017073238-appb-000001
也难以实现大尺寸制品的打印。
由此,随着3D打印技术应用的日益扩展,产业界迫切需要一种能够以低成本方式快速成型大尺寸制品的3D打印技术。
发明内容
为了解决上述技术问题,本发明提供了一种基于点阵式显示屏的光固化3D打印机,包括:计算机控制组件、点阵式显示屏组件、液槽成型组件、Z轴移动平台组件、机架组件,其中:所述点阵式显示屏组件、液槽成型组件、Z轴移动平台组件均固定安装在所述机架组件上;所述计算机控制组件包括控制设备,所述控制设备包括图像切片部件及打印控制部件,所述图像切片部件用于 将待打印或待制作的3D模型分割成一系列具有一定厚度的分层切片图像;所述打印控制部件用于控制所述Z轴移动平台组件的升降,并将所述分层切片图像数据传输给所述点阵式显示屏组件,驱动所述点阵式显示屏组件按照该分层切片图像数据进行发光,产生相应的曝光图案,从而使得所述液槽成型组件所盛放的光固化材料按照所述曝光图案固化成型。
在上述技术方案中,所述液槽成型组件包括液槽和成型平台,其中所述液槽用于盛放液态光固化材料,所述成型平台固定在Z轴移动平台组件的下端,由所述Z轴移动平台组件控制所述成型平台在所述液态光固化材料中的浸没深度,所述成型平台用于粘附并承载由所述液态光固化材料固化成形的制品,由所述成型平台移动所述制品在所述液槽内实现多层叠加成型。
在上述技术方案中,所述机架组件包括底板、支架、点阵式显示屏固定板和外壳;其中,所述底板是所述机架组件的基座,所述支架和所述点阵式显示屏固定板固定安装在所述底板上,所述点阵式显示屏固定板用于固定安装所述点阵式显示屏组件和所述液槽成型组件,所述支架用于支撑固定Z轴移动平台组件。
在上述技术方案中,所述点阵式显示屏组件为LED显示屏组件或者激光阵列或者主动发光单元阵列;所述点阵式显示屏组件的外形相应设置为矩形、正方形、平行四边形、六角形、环形、球台形或者条带形;所述点阵式显示屏组件发出的光源波长为紫外、蓝光、可见光和红外中的一种或者多种的叠加组合。
在上述技术方案中,所述LED显示屏组件包括LED显示屏和LED驱动器;其中,所述LED显示屏组件与所述计算机控制组件相连,接收来自所述计算机控制组件的与3D模型截面图形相关的分层切片图像数据,经过所述LED驱动器处理,产生控制所述LED显示屏按3D模型截面图形发光的驱动信号,所述 LED显示屏发出的光照射所述液态光固化材料使其进行固化。
在上述技术方案中,所述LED显示屏选用波长为200nm~400nm的紫外线光源或波长为400~450nm的蓝光源,所述光固化材料为液态光固化树脂或光敏树脂。
在上述技术方案中,所述点阵式显示屏组件上进一步设置有成像聚焦光学薄膜,所述成像聚焦光学薄膜为光学微透镜、微棱镜、菲涅尔镜、光纤面板或像素级衍射光栅中的一种或多种的组合。
本发明还提供了一种基于点阵式显示屏的光固化3D打印方法,包括步骤:通过分层软件对3D模型进行分层切片;每一层切片图像数据通过LED显示屏的点阵进行显示;将所述LED显示屏发出的光投射到盛有液态光固化材料的液槽中;控制所述LED显示屏对所述液态光固化材料的图形曝光能量,使被曝光的所述液态光固化材料固化形成一个薄层;将固化完毕的薄层移动一个层厚的距离,进行下一个薄层的曝光固化,新曝光固化的薄层牢固地粘结在前一薄层上,如此反复成型出完整产品。
在上述技术方案中,对所述LED显示屏进行控制的参数包括亮度、曝光时间、灰度、曝光补偿、坏灯率中的一个或多个。
本发明利用LED显示屏的点阵显示,直接实现数字光处理,从而去除了DLP系列控制芯片及DMD组件,大大简化了光学系统的复杂度,使得3D打印机的成本大幅降低。同时,因为LED显示屏技术已经比较成熟,大尺寸的LED显示屏在日常生活中也随处可见,因此可以相对低成本地实现大幅面的LED显示屏光固化打印。
本发明取得了以下技术效果:
1.简化了现有光固化3D打印机的光学系统设计及结构的复杂度,降低了 系统制造和维护成本;
2.能够低成本快速成型大幅面的制品,即LED显示屏能做多大就能实现多大尺寸的制品;
3.因为不使用激光器作为光源,使设备成本大幅降低,
4.因为结构简单,所以更容易实现稳定的成型品质。
附图说明
图1为本发明提供的3D打印机的系统结构示意图。
图中标记:11-底板;12-支架;13-Z轴移动平台;14-固定板;15-LED显示屏;16-液槽;17-成型平台;18-制品。
具体实施方式
为了便于本领域普通技术人员理解和实施本发明,下面结合附图及具体实施方式对本发明作进一步的详细描述。
本发明提供了一种基于点阵式显示屏的光固化3D打印机,如图1所示,该3D打印机包括:计算机控制组件、点阵式显示屏组件、液槽成型组件、Z轴移动平台组件、机架组件。
机架组件包括底板11、支架12、LED固定板14、外壳(图中未示出),用于搭建该基于点阵式显示屏的光固化3D打印机的支撑及固定用的结构框架。点阵式显示屏组件、液槽成型组件、Z轴移动平台组件均固定安装在整体机架组件上。其中底板11是机架组件的基座,支架12和LED固定板14固定安装在底板11上,其中LED固定板14用于固定安装点阵式显示屏组件和液槽成型组件,支架12用于支撑固定Z轴移动平台组件。
液槽成型组件包括液槽16、成型平台17;其中液槽16用于盛放液态光固化材料,优选为光敏树脂,液槽16的底部采用高透光率材料,具体可采用:PDMS、亚克力、特氟龙、普通玻璃、钢化玻璃等材料。成型平台17固定在Z轴移动平台组件的下端,由Z轴移动平台组件控制成型平台17在光敏树脂中的浸没深度,成型平台17用于粘附并承载由光敏树脂固化成形的制品18,由成型平台17移动制品18在液槽16内实现成型。
计算机控制组件包括控制设备和液晶显示屏;控制设备可以有:工控机、PLC或单片机,液晶显示屏可以是带触控输入的液晶屏。计算机控制组件可通过液晶显示屏等进行输入输出操作,通过控制设备实现控制流程。控制设备包括图像切片部件及打印控制部件,图像切片部件用于将待打印或待制作的3D模型分割成一系列具有一定厚度的分层切片图像;打印控制部件用于控制Z轴移动平台组件的升降,并联动控制点阵式显示屏组件,通过数据线将分层切片图像数据传输给驱动点阵式显示屏组件中的LED驱动器,驱动LED显示屏组件中的LED显示屏15按照该分层切片图像数据进行发光,产生相应的曝光图案,在曝光亮度足够的位置,光敏树脂固化成型,在曝光亮度不足的位置,光敏树脂维持液态,从而使合适位置处的光敏树脂固化形成与分层切片图像数据相一致的成形图案,即在制品18上形成3D打印层;通过Z轴移动平台组件的升降运动使得3D打印层叠加形成所需打印的与3D模型相对应的3D打印物件。
控制设备的作用还包括:对相关机器设备、生产流程、数据参数等进行监测与控制,内部存储程序,执行逻辑运算、顺序控制、定时、计数等。
对点阵式显示屏组件中LED显示屏的控制项目包括:每个LED灯的亮度、曝光时间、灰度、以及LED显示屏的曝光补偿、坏灯率检测等。其中,每个LED灯的亮度涉及LED显示屏单位面积所发出的光强度,是触发曝光固化的关 键参数;而除亮度以外的其它控制参数也会影响曝光固化的品质,曝光时间可以辅助亮度设置,互补相成的实现曝光固化的品质。灰度指的是同一亮度等级下,显示屏的明暗层级程度,灰度越高,打印成型的效果也越细腻、精致;通过监测树脂液体的亮度及灰度等实际信息,实时或定期对LED显示屏进行参数补偿,实现稳定的成型质量;另外通过实时或定期的检测LED显示屏的坏灯率,可以及时监控LED显示屏的品质恶化程度,及时更换配件以避免成型废品。
点阵式显示屏组件,用于以点阵方式发出所需图案的曝光光线,可以是LED显示屏组件,或者也可是激光阵列或其他主动发光单元阵列;其发光单元/像素的排列可以是矩形、正方形、平行四边形、六角形等,也可以是环形、球台形、条带形等定制形状,由此点阵式显示屏组件的外形也可相应设置为矩形、正方形、平行四边形、六角形、环形、球台形、条带形等形状,以与需要固化成形的制品18的截面形状相适应。点阵式显示屏组件优选为LED显示屏组件,包括LED显示屏15、LED驱动器。LED显示屏组件与计算机控制组件相连,接收来自计算机控制组件的分层切片的截面图形,经过LED驱动器处理,产生控制LED显示屏15发光的驱动信号,LED显示屏15发出的光照射到光敏树脂表面使其按照截面图案的形状进行固化。LED显示屏15的发光波长,选用200nm~400nm的紫外线光源或波长400~450nm的蓝光源,或者也可以是可以是紫外、可见光和红外等固体光源的叠加组合。该波长可以是LED显示屏15的LED背光灯本身的波长,也可以通过在LED显示屏15的LED背光灯前设置相应通带波长的滤光片形成。
为了提高LED显示屏15所发出光线的指向性能,对于产品精度要求较低时,例如像素分辨率0.6~1.5mm时,可以将LED显示屏15在接近光敏树脂液体的位置,减弱光发散的程度,实现光固化功能;对于产品精度要求较高时, 例如像素分辨率低于0.6mm时,可以在LED显示屏15上设置成像或聚焦光学薄膜,以会聚每个LED灯的发光,实现高精度的光固化功能。成像或聚焦光学薄膜可以包括光学微透镜、微棱镜、菲涅尔镜、光纤面板、以及像素级衍射光栅及其组合。其中光学微透镜组合的光学参数根据像素分辨率的要求和光敏树脂液体的折射率来进行确定。
Z轴移动平台组件包括Z轴移动平台13,Z轴移动平台13固定在整体机架组件的支架12上,与成型平台17相连,在计算机控制组件的控制设备的控制下驱动成型平台17沿Z轴方向以精准步进的方式进行位移。伴随制品18的层叠成长,通过Z轴移动平台13的驱动实现制品18的成型面同LED显示屏15之间的距离保持相对稳定,每当一层光敏树脂固化成形完成后,Z轴移动平台13驱动成型平台17带动制品18沿Z轴上移一个层厚,以便进行下一层的光固化成形制作。
其中,具体的层厚由相应制品18所要求的固化深度来确定,层厚的设置必须小于或等于制品18的固化深度。在设置层厚后,通过实验来确定LED显示屏15在相应层厚要求下的最佳曝光参数,包括每个LED灯的亮度、曝光时间、灰度等。具体来说,通过工艺实验来确认试制品的固化品质,如果曝光不足,可以增加曝光时间,相反,也不能过度增加曝光时间,过曝光对品质没有益处,却会增加制作时间。最终通过实验及经验积累,最终确定每一层的曝光时间。
其中,LED固定板14为中空结构,以便LED显示屏15发出的光源能够直接照射到盛放光敏树脂的液槽16的底部。
本发明所提供的基于LED显示屏的光固化3D打印机的具体原理是:在液槽16中盛满液态光敏树脂,通过分层软件对3D模型进行分层切片,每一层切片图像数据通过LED显示屏15的点阵显示,直接进行数字光处理,实现光能 量及图形曝光控制,每次曝光固化一个薄层,一层固化完毕后,成型平台17移动一个层厚的距离,进行下一层的制作,新固化的一层牢固地粘结在前一层上,如此反复成型出完整产品。
综上所述,本发明利用LED显示屏的点阵显示,直接用于数字光处理,这样一来,就去除了DLP系列控制芯片及DMD组件,大大简化了光学系统,使打印机成本大幅降低。
以上的具体实施方式仅用于说明本发明的技术方案而非对其进行限制,尽管参照实施方案对本发明进行了详细说明,但对于本领域技术人员应当理解:可以对前述各实施例所记载的技术方案进行修改或替换,可在形式上和细节上对本发明做出各种变化,这均并未脱离本发明的技术与精神。

Claims (10)

  1. 一种基于点阵式显示屏的光固化3D打印机,其特征在于包括:计算机控制组件、点阵式显示屏组件、液槽成型组件、Z轴移动平台组件、机架组件,其中:
    所述点阵式显示屏组件、液槽成型组件、Z轴移动平台组件均固定安装在所述机架组件上;
    所述计算机控制组件包括控制设备,所述控制设备包括图像切片部件及打印控制部件,所述图像切片部件用于将待打印或待制作的3D模型分割成一系列具有一定厚度的分层切片图像;所述打印控制部件用于控制所述Z轴移动平台组件的升降,并将所述分层切片图像数据传输给所述点阵式显示屏组件,驱动所述点阵式显示屏组件按照该分层切片图像数据进行发光,产生相应的曝光图案,从而使得所述液槽成型组件所盛放的光固化材料按照所述曝光图案固化成型。
  2. 如权利要求1所述的基于点阵式显示屏的光固化3D打印机,其特征在于:所述液槽成型组件包括液槽和成型平台,其中所述液槽用于盛放液态光固化材料,所述成型平台固定在Z轴移动平台组件的下端,由所述Z轴移动平台组件控制所述成型平台在所述液态光固化材料中的浸没深度,所述成型平台用于粘附并承载由所述液态光固化材料固化成形的制品,由所述成型平台移动所述制品在所述液槽内实现多层叠加成型。
  3. 如权利要求1或2所述的基于点阵式显示屏的光固化3D打印机,其特征在于:所述机架组件包括底板、支架、点阵式显示屏固定板和外壳;其中,所述底板是所述机架组件的基座,所述支架和所述点阵式显示屏固定板固定安装在所述底板上,所述点阵式显示屏固定板用于固定安装所述点阵式显示屏组件和所述液槽成型组件,所述支架用于支撑固定Z轴移动平台组件。
  4. 如权利要求1-3中任一项所述的基于点阵式显示屏的光固化3D打印机,其特征在于:所述点阵式显示屏组件为LED显示屏组件或者激光阵列或者主动 发光单元阵列;所述点阵式显示屏组件的外形相应设置为矩形、正方形、平行四边形、六角形、环形、球台形或者条带形;所述点阵式显示屏组件发出的光源波长为紫外、蓝光、可见光和红外中的一种或者多种的叠加组合。
  5. 如权利要求4所述的基于点阵式显示屏的光固化3D打印机,其特征在于:所述LED显示屏组件包括LED显示屏和LED驱动器;其中,所述LED显示屏组件与所述计算机控制组件相连,接收来自所述计算机控制组件的与3D模型截面图形相关的分层切片图像数据,经过所述LED驱动器处理,产生控制所述LED显示屏按3D模型截面图形发光的驱动信号,所述LED显示屏发出的光照射所述液态光固化材料使其进行固化。
  6. 如权利要求5所述的基于点阵式显示屏的光固化3D打印机,其特征在于:所述LED显示屏选用波长为200nm~400nm的紫外线光源或波长为400~450nm的蓝光源,所述光固化材料为液态光固化树脂或光敏树脂。
  7. 如权利要求1-4中任一项所述的基于点阵式显示屏的光固化3D打印机,其特征在于:所述点阵式显示屏组件上进一步设置有成像聚焦光学薄膜,所述成像聚焦光学薄膜为光学微透镜、微棱镜、菲涅尔镜、光纤面板或像素级衍射光栅中的一种或多种的组合。
  8. 一种基于点阵式显示屏的光固化3D打印方法,其特征在于包括步骤:
    通过分层软件对3D模型进行分层切片;
    每一层切片图像数据通过LED显示屏的点阵进行显示;
    将所述LED显示屏发出的光投射到盛有液态光固化材料的液槽中;
    控制所述LED显示屏对所述液态光固化材料的图形曝光能量,使被曝光的所述液态光固化材料固化形成一个薄层;
    将固化完毕的薄层移动一个层厚的距离,进行下一个薄层的曝光固化,新曝光固化的薄层牢固地粘结在前一薄层上,如此反复成型出完整产品。
  9. 如权利要求8所述的基于点阵式显示屏的光固化3D打印方法,其特征 在于:对所述LED显示屏进行控制的参数包括亮度、曝光时间、灰度、曝光补偿、坏灯率中的一个或多个。
  10. 如权利要求8所述的基于点阵式显示屏的光固化3D打印方法,其特征在于:所述LED显示屏选用波长为200nm~400nm的紫外线光源或波长为400~450nm的蓝光源,所述光固化材料为液态光固化树脂或光敏树脂。
PCT/CN2017/073238 2017-02-10 2017-02-10 一种基于点阵式显示屏的光固化3d打印机 WO2018145298A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/073238 WO2018145298A1 (zh) 2017-02-10 2017-02-10 一种基于点阵式显示屏的光固化3d打印机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/073238 WO2018145298A1 (zh) 2017-02-10 2017-02-10 一种基于点阵式显示屏的光固化3d打印机

Publications (1)

Publication Number Publication Date
WO2018145298A1 true WO2018145298A1 (zh) 2018-08-16

Family

ID=63107798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/073238 WO2018145298A1 (zh) 2017-02-10 2017-02-10 一种基于点阵式显示屏的光固化3d打印机

Country Status (1)

Country Link
WO (1) WO2018145298A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110142958A (zh) * 2019-06-18 2019-08-20 天马微电子股份有限公司 一种3d打印装置
CN110308709A (zh) * 2019-07-26 2019-10-08 西安增材制造国家研究院有限公司 一种可见光面曝光工艺智能制造控制系统
CN111923411A (zh) * 2020-09-01 2020-11-13 卢振武 一种动态成像3d打印系统及其打印方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104108182A (zh) * 2014-07-14 2014-10-22 上海交通大学 采用led阵列微投影光源的光固化3d成型系统
CN204095143U (zh) * 2014-10-14 2015-01-14 优克多维(大连)科技有限公司 一种高精度光固化树脂成型的3d打印机
CN204451225U (zh) * 2015-02-10 2015-07-08 北京化工大学 Lcd屏幕选择性光固化3d打印机
CN106799835A (zh) * 2017-02-10 2017-06-06 深圳摩方新材科技有限公司 一种基于点阵式显示屏的光固化3d打印机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104108182A (zh) * 2014-07-14 2014-10-22 上海交通大学 采用led阵列微投影光源的光固化3d成型系统
CN204095143U (zh) * 2014-10-14 2015-01-14 优克多维(大连)科技有限公司 一种高精度光固化树脂成型的3d打印机
CN204451225U (zh) * 2015-02-10 2015-07-08 北京化工大学 Lcd屏幕选择性光固化3d打印机
CN106799835A (zh) * 2017-02-10 2017-06-06 深圳摩方新材科技有限公司 一种基于点阵式显示屏的光固化3d打印机

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110142958A (zh) * 2019-06-18 2019-08-20 天马微电子股份有限公司 一种3d打印装置
CN110308709A (zh) * 2019-07-26 2019-10-08 西安增材制造国家研究院有限公司 一种可见光面曝光工艺智能制造控制系统
CN111923411A (zh) * 2020-09-01 2020-11-13 卢振武 一种动态成像3d打印系统及其打印方法

Similar Documents

Publication Publication Date Title
US20230330925A1 (en) Additive manufacturing device and method
CN106799835A (zh) 一种基于点阵式显示屏的光固化3d打印机
US9656422B2 (en) Three dimensional (3D) printer with near instantaneous object printing using a photo-curing liquid
CN108312518B (zh) 一种内部立体直接光固化成型3d打印设备及其控制方法
WO2017219618A1 (zh) 一种成型方法
US20150290876A1 (en) Stereolithographic apparatus and method
WO2018145298A1 (zh) 一种基于点阵式显示屏的光固化3d打印机
US20150328833A1 (en) Stereolithography rapid prototyping apparatus and method
US20170210071A1 (en) Three-dimensional printing device and three-dimensional printing method
CN111421815B (zh) 一种dlp 3d生物打印机
CN104085106A (zh) 一种基于dlp原理的3d打印机
CN111002582A (zh) 3d打印设备及其控制方法
CN206913680U (zh) 一种基于点阵式显示屏的光固化3d打印机
JP4669843B2 (ja) 光造形装置及び光造形方法
KR100930788B1 (ko) 대, 소형 광조형 장치.
WO2020172899A1 (zh) 一种内部立体光投影固化成型3d打印设备及其成型方法
CN113119459A (zh) 3d打印设备的标定系统、方法及3d打印设备
CN111619108A (zh) 一种新型光固化3d打印设备
WO2023275615A1 (en) Additive manufacturing devices having curved print interfaces and corresponding methods
TWM591914U (zh) 高速光固化三維列印系統
CN212045991U (zh) 一种单晶格液晶屏uv光成像固化3d打印机
TWI779229B (zh) 高速光固化三維列印系統以及提高三維列印系統紫外光均勻度的方法
US20230382053A1 (en) Additive Fabrication Techniques with Temperature Compensation
Dinescu et al. Investigation of the sample properties by position and numbers for DLP 3D printing method
CN110076994A (zh) 一种dlp光固化3d打印系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17896218

Country of ref document: EP

Kind code of ref document: A1