WO2020172899A1 - 一种内部立体光投影固化成型3d打印设备及其成型方法 - Google Patents

一种内部立体光投影固化成型3d打印设备及其成型方法 Download PDF

Info

Publication number
WO2020172899A1
WO2020172899A1 PCT/CN2019/076998 CN2019076998W WO2020172899A1 WO 2020172899 A1 WO2020172899 A1 WO 2020172899A1 CN 2019076998 W CN2019076998 W CN 2019076998W WO 2020172899 A1 WO2020172899 A1 WO 2020172899A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser
module
projection
curing
Prior art date
Application number
PCT/CN2019/076998
Other languages
English (en)
French (fr)
Inventor
匡津永
Original Assignee
匡津永
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 匡津永 filed Critical 匡津永
Publication of WO2020172899A1 publication Critical patent/WO2020172899A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/255Enclosures for the building material, e.g. powder containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/268Arrangements for irradiation using laser beams; using electron beams [EB]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • the invention relates to the technical field of 3D printing, in particular to an internal stereo light projection curing molding 3D printing device and a molding method thereof.
  • the equipment workflow is: after printing, the molding platform descends to a position very close to the bottom surface of the resin tank. This distance is equal to the layer thickness of the first layer of the model.
  • the bottom surface of the resin tank is made of transparent material.
  • the laser scans the cross-sectional pattern of the first layer on the bottom surface to complete the curing of the first layer, the solid resin after curing will stick to the bottom surface of the molding platform and the resin tank.
  • the bottom surface of the resin tank is made of special release film.
  • the molding platform and the cured model move up a certain distance to make the bottom surface of the model separate from the release film on the bottom of the resin tank, and then the molding platform and model are lowered to a certain position away from the bottom surface of the resin tank, and the laser continues to scan the surface to form the next surface. In this way, the actual 3D object model is finally formed.
  • the slow molding speed is the biggest factor hindering its development at this stage.
  • the speed of the existing light-curing 3D printing technology is limited by the mechanical equipment itself, and the maximum performance of the photosensitive resin cannot be exerted, resulting in a very low molding speed of the equipment, which cannot meet the actual production and manufacturing requirements.
  • the traditional SLA and DLP (LCD) molding technology is formed on the bottom or surface. Due to the limitation of this structure, the molding platform and the molding object need to continuously move up and down, so the molding speed is greatly reduced. Generally, the fastest does not exceed 50mm. /h, and because the molded object is in continuous motion, it is not stable during the molding process, and the molded object is easy to fall off.
  • the present invention provides an internal stereo light projection curing molding 3D printing device and a molding method thereof, which is different from the existing light curing 3D printing technology, which cures the upper or lower surface of liquid resin.
  • Adopting curing and molding inside the liquid resin Use multiple beams of light with specific wavelengths to irradiate the photosensitive resin.
  • the unit light intensity of each individual light beam is lower than the unit light intensity of the light required for curing of the photosensitive resin, but the unit light intensity after several beams of light is higher than this photosensitive resin.
  • the unit light intensity required for curing is lower than the unit light intensity of the light required for curing of the photosensitive resin, but the unit light intensity after several beams of light is higher than this photosensitive resin. The unit light intensity required for curing.
  • the liquid photosensitive resin in the intersecting part will undergo polymerization reaction and solidify into a solid.
  • the liquid resin will be formed from bottom to top according to the cross section of the desired molded object. Continuous curing can obtain the actual object of this model.
  • an internal stereo light projection curing molding 3D printing equipment which mainly includes a laser projection module, an optical reference surface module, an optical reference surface module lifting system, a resin tank, a molding platform, and molding Platform lifting system, control system, power supply system and main frame.
  • the main frame is the base of the entire equipment, and other parts are installed on the main frame;
  • the laser projection module is fixed on the top of the main frame to provide molding for the entire equipment Project the light beam and project the light beam into the resin tank;
  • the optical reference plane module lifting system is installed inside the main frame, and an optical reference surface module mounting plate is arranged in the middle, and the optical reference surface module is installed on it.
  • a square through hole is opened in the middle of the module mounting plate, and the resin groove is installed on the bottom plate of the main frame through the hole; the molding platform lifting system is installed on the upper and lower ends of the main frame, and the molding platform is suspended in the resin tank through support rods;
  • the power supply system is a power supply with sufficient power and provides accurate voltage output for all modules; the control system is connected to each module to control the coordinated operation of each module.
  • the laser projection module is mainly composed of a light-emitting semiconductor capable of emitting laser light of a specific wavelength as a light source, which is refracted by the front lens and irradiated on the DMD chip, and the light refracted by the DMD chip is irradiated to the rear refractive lens.
  • a light-emitting semiconductor capable of emitting laser light of a specific wavelength as a light source, which is refracted by the front lens and irradiated on the DMD chip, and the light refracted by the DMD chip is irradiated to the rear refractive lens.
  • an auto-focusing system in the rear lens which can focus the image in real time according to the operation of the machine.
  • the refracted light is the shaped projection beam.
  • the shaped projection beam is reflected by the mirror and enters the resin tank vertically.
  • the DMD chip is Part of Texas Instruments DLP technology.
  • the optical reference plane module includes a laser light source, a laser refraction lens group, a laser filter plate, and a mounting plate.
  • the laser light source is four light-emitting semiconductor lasers capable of emitting light of a specific wavelength, which are placed in pairs, The lasers between the two groups are at 90 degrees, and the four lasers are on the same plane and fixed on the mounting plate; the laser refraction lens group is mounted on the front side of the laser light source and the rear side of the laser filter plate; the laser filter There is a laser filter on the board. After the laser light source emits light, it is first refracted by the laser refraction lens group lens and then irradiated on the zigzag refractive lens.
  • the incident light is refracted into a line-shaped light and irradiated through the laser filter. Filtering blocks out the excess light, and finally forms a thin line laser with a width of 0.5-0.1mm.
  • the four lasers are completely overlapped on the same plane, forming a laser-irradiated plane that is the light reference plane.
  • the optical reference surface module lifting system includes optical axis guide rails, linear bearings, ball screws, ball bearings, stepping motors, timing belts, synchronization wheels, and optical reference surface module mounting plates.
  • the linear bearings and ball bearings are respectively
  • the optical axis guide rail is fixed on the upper and lower ends of the main frame through the linear bearing, the ball screw passes through the ball bearing, and the lower end passes through the synchronous belt and the synchronous wheel.
  • the optical reference plane module is integrally installed on the optical reference plane module lifting system. The whole module is driven by a ball screw to move up and down through the rotation of the stepping motor.
  • the resin tank is made of highly transparent material and has a rectangular parallelepiped structure with an open top.
  • the bottom surface of the resin tank is square.
  • the size of the resin tank is determined by the actual molding size of the equipment.
  • the resin tank is a movable part. Can be removed from the bottom plate of the main frame for cleaning or replacement.
  • the molding platform is a resin-cured molding platform, a pure flat plate-like structure with a thickness of 3 mm made of metal aluminum, and circular holes with a diameter of 4.5 mm are evenly distributed on the top surface of the platform.
  • Flat, the edges of the holes on the lower surface and the edges of the platform have rounded corners to prevent bubbles from being generated during the lifting of the platform.
  • the lifting system of the forming platform includes an upper structure, an optical axis, a linear bearing I, a screw rod, a screw nut, a support rod, a stepping motor, a timing belt and a timing wheel, and the forming platform consists of four equal lengths.
  • the support rod is connected to the upper structural member, the upper structural member is a square ring structure, and the size of the square in the middle is slightly larger than the size of the bottom surface of the resin tank;
  • the linear bearing I and the screw nut are installed symmetrically on the four corners of the upper structural member, so
  • the optical axis passes through the linear bearing I and is fixed on the upper and lower ends of the main frame.
  • the screw passes through the screw nut, and the lower end is connected to the stepping motor through a timing belt and a timing wheel.
  • the entire lifting system is rotated by the stepping motor. Driven by the screw rod to move up and down.
  • control system includes a main control board, a stepper motor controller and various sensors.
  • the main control board is a hardware platform composed of a single-chip microcomputer system with a high-performance microprocessor, which can simultaneously process and output and control various parameters and various sensors.
  • the working condition of the components, and the main control board has a port for outputting high-resolution image signals for the signal output of the laser projection module, while real-time control of the automatic focusing device of the rear lens group of the laser projection module;
  • the motor controller controls each part of the stepper motor through the signal of the main control board, so that the entire device operates in coordination; various sensors are installed in each module, detect each module, and transmit the signal to the main control board.
  • a molding method for internal stereoscopic projection curing molding 3D printing equipment includes the following steps:
  • Model cross-cutting processing the model to be printed and formed uses special software to perform cross-cutting processing on the computer side, and then input the generated print file into the device control system, the total number of cross-cutting layers and the animation projected by the forming projection The total number of frames is the same;
  • the laser projection module emits four laser beams of the same wavelength as step 2), and the cross-cut pattern obtained in step 1) is perpendicular to the light reference plane and irradiated from top to bottom into the resin tank.
  • the inside of the resin is called the molding projection;
  • the two light sources work at the same time, the forming projection beam of step 2) will intersect the light reference plane of step 1).
  • This intersecting area is called the curing zone, and the cross section of this area is the part of the forming projection beam.
  • the height of a cross section of the projected figure is the height of the light reference plane.
  • Lp needs to be lower than 1/4L, that is, the unit light intensity of each point on the light reference surface is lower than L, and Lp is on the light reference surface As far as possible close to 1/4L on the premise that no curing reaction occurs at any point in the range, so at this time, there will be no curing reaction of photosensitive resin on the light reference surface;
  • Lt needs to be lower than L, that is, only under the irradiation of the shaped projection beam, no curing reaction will occur at any point in the liquid photosensitive resin, and Lt is within the irradiation range of the shaped projection beam As close as possible to L under the premise that no curing reaction occurs at any point inside;
  • the unit light intensity of the two light sources Lt and 4*Lp are both lower than L but very close to L, so the unit light intensity of the curing zone in the overlapping part will be higher than L, namely : Lt+4*Lp>L.
  • Fig. 1 is a schematic diagram of forming a light reference plane according to the present invention
  • Fig. 2 is a schematic diagram of forming a projection according to the present invention.
  • Figure 3 is a schematic diagram of the formation of a curing zone according to the present invention.
  • Figure 4 is a schematic diagram of the path of the printing model during work
  • FIG. 5 is a schematic diagram of the structure of the laser projection module of the present invention.
  • FIG. 6 is a schematic diagram of the structure of the optical reference plane module of the present invention.
  • FIG. 7 is a schematic structural diagram of the lifting system of the optical reference plane module of the present invention.
  • Figure 8 is a schematic diagram of the resin tank structure of the present invention.
  • FIG. 9 is a schematic diagram of the structure of the forming platform of the present invention.
  • Figure 10 is a schematic structural diagram of the lifting system of the forming platform of the present invention.
  • Figure 11 is a schematic structural view of the forming platform of the present invention installed on the forming platform lifting system
  • FIG. 12 is a schematic structural diagram of the optical reference surface module of the present invention installed on the optical reference surface module lifting system;
  • Figure 13 is a schematic structural diagram of the present invention.
  • Mirror 11 laser light source 21, laser filter plate 23, mounting plate 24, laser filter 231, optical reference plane module mounting plate 31, optical axis guide 32, linear bearing 33, ball screw 34, ball bearing 35 , Upper structure 61, optical axis 62, linear bearing I 63, screw 64, screw nut 65, support rod 66, bottom plate 71, model 0.
  • an internal stereo light projection curing molding 3D printing equipment mainly including laser projection module 1, optical reference surface module 2, optical reference surface module lifting system 3, resin tank 4, molding platform 5, molding The platform lifting system 6, the control system, the power supply system, and the main frame 7.
  • the main frame 7 is the base of the entire device, and other components are installed on the main frame 7;
  • the laser projection module 1 is fixed on the top of the main frame 7 , Provide a shaped projection beam for the entire device, and project the beam into the resin tank 4;
  • the optical reference plane module lifting system 3 is installed inside the main frame 7 with a light reference plane module mounting plate 31 in the middle.
  • the surface module 2 is installed on it, the optical reference surface module mounting plate 31 has a square through hole in the middle, and the resin groove 4 is installed on the bottom plate 71 of the main frame 7 through the hole; the molding platform lifting system 6 is installed on the main frame 7 On the upper and lower ends, the molding platform 5 is suspended in the resin tank 4 through support rods 66; the power supply system is a power supply with sufficient power, which provides accurate voltage output for all modules; the control system is connected to each module to control each The modules work together.
  • the laser projection module 1 is mainly composed of a light-emitting semiconductor capable of emitting laser light of a specific wavelength as a light source, which is refracted by the front lens and irradiated on the DMD chip, and the light refracted by the DMD chip is irradiated on the rear refractive lens.
  • a light-emitting semiconductor capable of emitting laser light of a specific wavelength as a light source, which is refracted by the front lens and irradiated on the DMD chip, and the light refracted by the DMD chip is irradiated on the rear refractive lens.
  • the refracted light is the shaped projection beam.
  • the shaped projection beam is reflected by the mirror 11 and enters the resin tank 4 vertically.
  • the DMD chip is Part of Texas Instruments DLP technology.
  • the optical reference plane module 2 includes a laser light source 21, a laser refraction lens group, a laser filter plate 23, and a mounting plate 24.
  • the laser light source 21 is four light-emitting semiconductor lasers capable of emitting light of a specific wavelength, two or two opposite to each other. Place, the lasers between the two groups are at 90 degrees, and the four lasers are on the same plane and fixed on the mounting board 24; the laser refraction lens group is mounted on the front side of the laser light source 21 and the rear side of the laser slit plate 23;
  • the laser filter plate 23 is provided with a laser filter 231.
  • the laser light source 21 After the laser light source 21 emits light, it is first refracted by the laser refraction lens group lens and then irradiated on the zigzag-shaped refractive lens to refract the incident light into a line-shaped light. It is irradiated and filtered by the laser filter slit 231 to block the excess light, and finally a thin line laser with a width of 0.5 ⁇ 0.1mm is formed. The four lasers are completely overlapped on the same plane to form a laser irradiation plane. For the light reference plane 8.
  • the optical reference plane module lifting system 3 includes an optical axis guide 32, a linear bearing 33, a ball screw 34, a ball bearing 35, a stepping motor, a timing belt, a synchronous wheel and an optical reference plane module mounting plate 31, the linear bearing 33
  • the optical axis guide rail 32 is fixed on the upper and lower ends of the main frame 7 through the linear bearing 33, and the ball screw 34 passes through Ball bearing 35, the lower end is connected with a stepping motor through a timing belt and a timing wheel.
  • the optical reference plane module 2 is integrally installed on the optical reference plane module lifting system 3, and the whole module is driven up and down by the ball screw 34 through the rotation of the stepping motor Direction of movement.
  • the resin tank 4 is made of highly transparent material and has a rectangular parallelepiped structure with an open top.
  • the bottom surface of the resin tank 4 is square.
  • the size of the resin tank is determined by the actual molding size of the equipment.
  • the resin tank is a movable part that can be Remove from the bottom plate 71 of the main frame 7 for cleaning or replacement.
  • the molding platform 5 is a resin-cured molding platform, a pure flat plate-like structure with a thickness of 3 mm made of metal aluminum, and circular holes with a diameter of 4.5 mm are evenly distributed on the top surface of the platform is completely flat. The edges of the holes on the lower surface and the edges of the platform are rounded to prevent bubbles from being generated during the lifting of the platform.
  • the forming platform lifting system 6 includes an upper structure 61, an optical shaft 62, a linear bearing I 63, a screw 64, a screw nut 65, a support rod 66, a stepping motor, a timing belt and a timing wheel, and the forming platform 5 is composed of Four equal-length support rods 66 are connected to the upper structural member 61, the upper structural member 61 is a square ring structure, the square in the middle is slightly larger than the bottom surface of the resin tank 4; the linear bearing I 63 and the screw nut 65 are symmetrical Mounted on the four corners of the upper structural member 61, the optical shaft 62 passes through the linear bearing I 63 and is fixed on the upper and lower ends of the main frame 7, the screw 64 passes through the screw nut 65, and the lower end passes through a timing belt, a timing wheel and The stepping motor is connected, and the whole lifting system is driven by the screw 64 to move up and down through the rotation of the stepping motor.
  • the control system includes a main control board, a stepping motor controller and various sensors.
  • the main control board is a hardware platform composed of a single-chip microcomputer system with a high-performance microprocessor, which can simultaneously process and output control various parameters and the work of each component Status, and the main control board has a port for outputting high-resolution image signals for the signal output of the laser projection module, and at the same time performs real-time control of the automatic focusing device of the subsequent lens group of the laser projection module; the stepper motor controller Through the signal of the main control board, each part of the stepper motor is controlled, so that the whole equipment works in coordination; various sensors are installed in each module, detect each module, and transmit the signal to the main control board.
  • Lp the unit light intensity of the four laser beams on the light reference plane
  • Lp needs to be lower than 1/4L, that is, only the unit light intensity of each point on the light reference surface 8 is lower than L (Lp is in It is as close as possible to 1/4L on the premise that no curing reaction occurs at any point within the range of the light reference surface 8), so at this time, there will be no curing reaction of the photosensitive resin on the light reference surface 8 only.
  • the photosensitive resin there is a laser light source 21 with the same wavelength as the four laser beams, and a pattern of light of this wavelength is irradiated into the resin tank 4 through the laser projection module 1 perpendicular to the horizontal light reference plane 8 from top to bottom.
  • the inside of the light-curing resin (as shown in Figure 2) is called the forming projection 9. If the unit light intensity of the forming projection 9 beam is Lt, then Lt needs to be lower than L, that is, only under the irradiation of the forming projection 9 beam, the liquid No curing reaction occurs at any point in the photosensitive resin (Lt is as close to L as possible under the premise that no curing reaction occurs at any point in the range irradiated by the molding projection beam).
  • the beam of the shaping projection 9 will intersect the light reference plane 8.
  • the intersection area is called the curing zone 10 (as shown in Figure 3), and the cross section of this area is the light beam of the shaping projection 9
  • the height of a cross section of the projected figure is the height of the light reference plane 8.
  • the shaping projection laser light source continues to project the dynamically changing pattern composed of the bottom-up cross-section of the desired shaping object, and the light reference plane moves from bottom to top at the same speed, the curing zone 10 will gradually become inside the liquid photosensitive resin. Move from bottom to top to cure the photosensitive resin, and finally form the actual object to be obtained.
  • the working principle of the present invention is:
  • a light reference surface 8 of light of a specific wavelength is formed inside the photosensitive resin by laser irradiation.
  • the unit light intensity of this light reference surface 8 is lower than the unit light intensity required for curing of the photosensitive resin, and the shaped projection emitted by the laser projection module 1
  • the unit light intensity of 9 beams is also lower than the unit light intensity required for curing the photosensitive resin.
  • the unit light intensity of the curing zone 10 of the intersecting part is higher than the unit light intensity required for curing the photosensitive resin. At this time, the photosensitive resin in this part will undergo polymerization reaction and be cured.
  • a molding method for internal stereoscopic projection curing molding 3D printing equipment includes the following steps:
  • the 9 beams of shaping projection will project the animation generated by the screenshot of model 0 into the photosensitive resin, and the laser projection module 1 will adjust the focus of the shaping projection 9 beams on the light reference surface in real time.
  • the part where the light beam of the projection 9 intersects the light reference plane 8 is the curing zone 10, which is a cross-section of the model 0 to be molded, and the unit light intensity of this curing zone is higher than the minimum unit light intensity required for curing the photosensitive resin.
  • the photosensitive resin in the curing zone 10 is cured, thereby forming a cross section of the molded model 0.
  • make the light reference surface and the laser projection module work at the same time, and the model 0 to be printed can be continuously generated from bottom to top (as shown in Figure 4).
  • the operating process of the device of the present invention is: at the position of each module before the device starts working (as shown in Figure 13), the model 0 to be printed and formed is sliced on the computer side using special software, and then the generated print file is input
  • the molding platform 5 is lowered to the bottom of the resin tank 4, and then the laser light source 21 of the optical reference surface module 2 is turned on to form a light reference surface 8 on the molding platform 5, and then the laser
  • the projection module 1 projects the beam of the shaped projection 9 onto the light reference surface 8 to form a curing zone 10.
  • the forming work starts, the light reference surface module 2 rises upward, and the laser projection module 1 continues the beam of the formed projection 9 generated by the animation in the print file.
  • the optical reference plane module laser light source 21 is turned off, the optical reference plane module 2 is lowered back to the initial position, and the laser projection module 1 is closed at the same time, and then the forming platform 5 rises, and the forming model 0 is taken out.
  • the invention exerts the performance of the existing 3D printing equipment to the limit, and the molding speed will not be limited by the equipment, but completely depends on the performance of the photosensitive resin consumable.
  • the curing reaction speed of the current photosensitive resin can reach within 0.6 seconds, that is, the potential of the photosensitive resin photocuring molding technology is very large.
  • the molding speed of the present invention depends entirely on the performance of the photosensitive resin. If the photosensitive resin is in the curing zone The molding speed reaches the fastest molding speed that the photosensitive resin can achieve, then the entire molding time will be greatly shortened, and the Z-axis molding speed will exceed 6000mm/h.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)

Abstract

一种内部立体光投影固化成型3D打印设备,主要包括激光投影模块(1)、光基准面模块(2)、光基准面模块升降系统(3)、树脂槽(4)、成型平台(5)、成型平台升降系统(6)、控制系统、供电系统和主体框架(7),采用在液态树脂的内部进行固化成型。使用多束特定波长的光对光敏树脂进行照射,单独每束光的单位光强度低于光敏树脂固化所需要的光的单位光强度,但是几束光重合后的单位光照强度高于此光敏树脂固化所需的单位光照强度。当光照强度达到所使用光敏树脂进行固化反应时所需的光强度时,此部分的液态光敏树脂就会发生聚合反应从而固化成固体,将液态树脂根据所需成型物体的横截面由下到上持续固化便可获得此模型的实际物体。

Description

一种内部立体光投影固化成型3D打印设备及其成型方法 技术领域
本发明涉及3D打印技术领域,尤其涉及一种内部立体光投影固化成型3D打印设备及其成型方法。
背景技术
近几年来,3D打印机技术的研究与应用越来越受到学术界和商业界的重视,它被称为第三次工业革命的重要标志之一。现在传统3D打印技术根据材料和成型方式的不同大体分为:塑料的熔融堆积成型(FDM)、金属粉末与塑料粉末的激光烧结或粘结成型、光敏树脂的光固化成型几类,熔融堆积技术的成本低,但是速度很慢并且精度不高;粉末的激光烧结或粘结精度高但是速度很慢且成本高昂;树脂的光固化精度较高,速度介于前两者之间。另一方面尽管3D打印技术以可以成型高精度的物体,但成型速度远低于传统制造生产成型技术,致使3D打印技术的大量推广使用受限。
传统树脂光固化3D打印技术成性原理基本相同,可根据光源主要分为激光扫描SLA、数字光投影DLP、液晶成像LCD几种;根据成型位置分为底部成型与顶部成型两种。以底部成型SLA技术为例,设备工作流程为:在打印后成型平台由上下降到离树脂槽底面很近的位置,此距离等于模型第一层的层厚,树脂槽底面为透明材质,此时由激光在底面扫描首层的截面图形完成首层的固化,固化完成后的固态树脂将会粘黏在成型平台和树脂槽的底面,树脂槽的底面材料由特殊的离型膜制成,可较容易脱离。此时成型平台和固化后的模型向上运动一定距 离,使模型底面脱离树脂槽底面离型膜,然后成型平台与模型重新下降到离树脂槽底面一定位置,激光继续扫面成型下一个面。以此往复来最终形成实际3D物体模型。
目前市面上所有光固化3D打印设备均为在树脂槽的上表面或者下表面进行分层成型,在打印过程中模型需要跟随成型平台做持续的运动,这个步骤即会浪费很多的时间,又会使打印的不稳定性增加。
由此可见,成型速度慢是现阶段阻碍其发展的最大因素。现有的光固化3D打印技术的速度均受限于机械设备本身,无法发挥光敏树脂的最大性能而使设备成型速度很低,无法满足实际生产制造需求。如:传统的SLA与DLP(LCD)成型技术因为在底面或表面成型,受此结构所限需要成型平台和成型物体持续做上下的往返运动,所以成型速度大打折扣,一般最快不会超过50mm/h,而且由于成型物体在做持续的运动,所以成型过程中并不稳定,成型物体容易脱落,另外,分层概念的存在也使得成型物体的精度和表面光滑度不足。从成型速度来看,该领域中成型速度最快的技术为美国3D Carbon公司的CLIP(连续可变液面成型)技术,其成型速率约为每分钟8.3毫米Z轴高度(500mm/h),但是相比传统技术有很大优势的CLIP一类技术虽然改进了在表面成型需要做往复运动的弊端,也取消了层的概念,使得成型物体表面光滑度很高,但是其成型面处的液态树脂需要持续的补充且液态树脂的流动性不佳,所以导致其无法快速的进行大面积实心物体的成型,并且速度虽然相比传统成型技术有很大的提升,达到了最快500mm/h的Z轴成型高度,但还远达不到实际工业生产中所需的大量高速的制造需求。
发明内容
针对现有技术的不足,本发明提供了一种内部立体光投影固化成型3D打印设备及其成型方法,区别于现有的光固化3D打印技术从液态树脂的上表面或者下表面固化的成型方式,采用在液态树脂的内部进行固化成型。使用多束特定波长的光对光敏树脂进行照射,单独每束光的单位光强度低于光敏树脂固化所需要的光的单位光强度,但是几束光重合后的单位光照强度高于此光敏树脂固化所需的单位光照强度。当光照强度达到所使用光敏树脂进行固化反应时所需的光强度时,相交部分的液态光敏树脂就会发生聚合反应从而固化成固体,将液态树脂根据所需成型物体的横截面由下到上持续固化便可获得此模型的实际物体。
为实现上述目的,本发明提供了如下技术方案:一种内部立体光投影固化成型3D打印设备,主要包括激光投影模块、光基准面模块、光基准面模块升降系统、树脂槽、成型平台、成型平台升降系统、控制系统、供电系统和主体框架,所述主体框架为整个设备的基座,其他部件都安装在主体框架上;所述激光投影模块固定在主体框架的顶部,为整个设备提供成型投影光束,并将光束投射到树脂槽内;所述光基准面模块升降系统安装在主体框架内部,中间设有光基准面模块安装板,所述光基准面模块安装在其上,光基准面模块安装板中间开方形通孔,树脂槽穿过孔安装在主体框架的底板上;所述成型平台升降系统安装在主体框架的上下两端面上,通过支撑杆将成型平台悬挂在树脂槽内;所述供电系统为足功率的电源,为所有模块提供准确的电压输出;所述控制系统与各个模块连接,控制各个模块协同运作。
进一步说,所述激光投影模块主要由能发出特定波长的激光的发光半导体作为光源,经过前级镜片折射后照射到DMD芯片上,通过DMD 芯片的处理折射后的光线照射到后级的折射镜片上,后级镜片内有自动对焦系统,可根据机器运行对图像进行实时的对焦,折射后的光线即为成型投影光束,成型投影光束经过反光镜反射垂直进入树脂槽中,所述DMD芯片为美国德州仪器DLP技术的一部分。
进一步说,所述光基准面模块包括激光光源、激光折射透镜组、激光滤缝板和安装板,所述激光光源是四个能发出特定波长的光的发光半导体激光器,两两对向放置,两组之间的激光器成90度,并且四个激光器在同一平面,固定在安装板上;所述激光折射透镜组安装在激光光源的前侧,激光滤缝板后侧;所述激光滤缝板上设有激光滤缝,激光光源发出光线之后先经过激光折射透镜组透镜的折射后照射到呈锯齿状的折射镜片上,将入射光线折射成一字状的光线照射出来,经过激光滤缝的过滤将多余的光线阻挡掉,最终形成一条宽度为0.5~0.1mm的一字细线激光,四束激光在同一平面上完全重合,形成一个激光照射的平面即为光基准面。
进一步说,所述光基准面模块升降系统包括光轴导轨、直线轴承、滚珠丝杆、滚珠轴承、步进电机、同步带、同步轮和光基准面模块安装板,所述直线轴承和滚珠轴承分别通过安装座固定在光基准面模块安装板的四周,所述光轴导轨穿过直线轴承固定在主体框架的上下两端面上,所述滚珠丝杆穿过滚珠轴承,下端通过同步带、同步轮与步进电机连接,光基准面模块整体安装在光基准面模块升降系统上,整个模块通过步进电机的旋转由滚珠丝杆带动做上下方向的运动。
进一步说,所述树脂槽是由高透明材质制成,为上方敞开的长方体结构,树脂槽的底面为正方形,树脂槽的尺寸由设备的实际成型尺 寸所决定,所述树脂槽为活动部件,可从主体框架的底板取下进行清洗或更换。
进一步说,所述成型平台是树脂固化成型的平台,由金属铝制成的厚度为3毫米的纯平的板状结构,上面均匀的分布着直径为4.5毫米的圆孔,平台上表面为全平,下表面的孔的边和平台的边均有圆角处理,防止平台升降过程中气泡的产生。
进一步说,所述成型平台升降系统包括上结构件、光轴、直线轴承Ⅰ、丝杆、丝杆螺母、支撑杆、步进电机、同步带和同步轮,所述成型平台由四根等长的支撑杆与上结构件连接,上结构件为正方形环状结构,中间的正方形尺寸比树脂槽底面尺寸稍大;所述直线轴承Ⅰ与丝杆螺母呈对称安装在上结构件的四角,所述光轴穿过直线轴承Ⅰ固定在主体框架的上下两端面上,所述丝杆穿过丝杆螺母,下端通过同步带、同步轮与步进电机连接,整个升降系统通过步进电机的旋转由丝杆带动做上下方向的运动。
进一步说,所述控制系统包括主控板、步进电机控制器和各种传感器,主控板由拥有高性能微处理器的单片机系统组成的硬件平台,能同时处理和输出控制各个参数与各部件的工作状况,并且主控板具有输出高分辨率图像信号的端口用于激光投影模块的信号输出,同时对激光投影模块的后级镜片组的自动调焦装置进行实时控制;所述步进电机控制器通过主控板的信号而控制各部分步进电机,从而使整个设备协同运作;各种传感器分别安装在各个模块当中,检测各模块,并将信号传输给主控板。
一种用于内部立体光投影固化成型3D打印设备的成型方法,包括 以下步骤:
(1)模型横切处理:所需打印成型的模型使用专用软件在计算机端进行横切处理,随后将生成的打印文件输入设备控制系统中,横切的总层数与成型投影所投射的动画的总帧数相同;
(2)形成光基准面:将光基准面模块的激光光源打开,形成的四束特定波长的一字激光束于方形透明树脂槽的四个立面平行于树脂槽底面射入液态树脂内部,同时四束一字激光完全重合于一个面,这样就会在液态树脂内部形成一个此特定波长激光束所照射的光的平面,称为光基准面;
(3)形成成型投影:通过激光投影模块发出与步骤2)四束激光束相同波长的光将步骤1)得到的横切图案垂直于光基准面由上向下照射进入树脂槽内的光固化树脂内部,称为成型投影;
(4)形成固化区:两个光源同时工作,步骤2)的成型投影光束会与步骤1)的光基准面相交,此相交的区域称为固化区,此区域的截面即为成型投影光束所投射出的图形的一个截面,高度为光基准面的高度,在固化区的光敏树脂因为单位光照强度达到了光敏树脂固化所需的单位光照强度,所以发生固化反应从而固化成为固体;
(5)打印:当激光投影模块激光光源持续投射出所需成型物体由下向上的截面所组成的动态变化的图形,且光基准面由相同速率从下向上移动时,固化区便会在液态光敏树脂的内部逐渐从下向上移动从而固化光敏树脂,最终形成所要得到的实际物体。
进一步说,设一种光敏树脂固化所需特定波长的光的单位光照强度为:L,
设此光基准面四束激光的单束单位光强度为Lp,则Lp需低于1/4L,即仅在光基准面上的每一点的单位光强度都低于L,Lp在光基准面范围内的任意一点都不会发生固化反应的前提下尽量接近1/4L,所以此时仅在光基准面上不会有光敏树脂发生固化反应;
设成型投影光束的单位光强度为Lt,则Lt需低于L,即仅在成型投影光束的照射下,液态光敏树脂内的任何一点都不会发生固化反应,Lt在成型投影光束所照射范围内任意一点都不会发生固化反应的前提下尽量接近L;
成型投影光束会与光基准面相交时,两组光源的单位光强度Lt与4*Lp均低于L但是非常接近于L,所以在重合部分固化区的单位光强度便会高于L,即:Lt+4*Lp>L。
与现有技术相比,本发明的有益效果是:
1)相比于传统光敏树脂成型技术而言,改变了其表面成型的固有方式,使模型在光敏树脂的内部成型,并且在成型过程中,成型模型与成型平台无需做任何的活动,保持完全静止,同时也不存在层的概念,所以无论是速度、稳定性还有成型物体的精度与表面光滑度都比传统技术有飞跃性的提升。
2)打破了现有3D打印增材制造技术的瓶颈,使3D打印技术的成型速率提升了一个级别,同时最大的减少了成型时的可变因素,突破了3D打印设备所能达到的极限,理论成型速率为每分钟100到150毫米Z轴高度(即:6000mm-9000mm/h),是CLIP技术成型速度的十倍以上。
3)由于成型速度快、成型物体浸泡于液态的光敏树脂中,由于浮力的关系,所以在成型过程中可以最大程度的减少甚至取消模型本身 的支撑部分,做到光敏树脂耗材最大的利用率。
附图说明
为了更清楚地说明本发明实施例或者现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对本领域技术人员来讲,在不独处创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明形成光基准面示意图;
图2为本发明形成成型投影示意图;
图3为本发明的形成固化区的示意图;
图4为本发工作时打印模型路径示意图
图5为本发明的激光投影模块结构示意图;
图6为本发明的光基准面模块结构示意图;
图7为本发明的光基准面模块升降系统结构示意图;
图8为本发明的树脂槽结构示意图;
图9为本发明的成型平台结构示意图;
图10为本发明的成型平台升降系统结构示意图;
图11为本发明的成型平台安装在成型平台升降系统上的结构示意图;
图12为本发明的光基准面模块安装在光基准面模块升降系统上的结构示意图;
图13为本发明的简要结构示意图;
其中,激光投影模块1、光基准面模块2、光基准面模块升降系统3、 树脂槽4、成型平台5、成型平台升降系统6、主体框架7、光基准面8、成型投影9、固化区10、反光镜11、激光光源21、激光滤缝板23、安装板24、激光滤缝231、光基准面模块安装板31、光轴导轨32、直线轴承33、滚珠丝杆34、滚珠轴承35、上结构件61、光轴62、直线轴承Ⅰ63、丝杆64、丝杆螺母65、支撑杆66、底板71、模型0。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
如图5~13所示:一种内部立体光投影固化成型3D打印设备,主要包括激光投影模块1、光基准面模块2、光基准面模块升降系统3、树脂槽4、成型平台5、成型平台升降系统6、控制系统、供电系统和主体框架7,所述主体框架7为整个设备的基座,其他部件都安装在主体框架7上;所述激光投影模块1固定在主体框架7的顶部,为整个设备提供成型投影光束,并将光束投射到树脂槽4内;所述光基准面模块升降系统3安装在主体框架7内部,中间设有光基准面模块安装板31,所述光基准面模块2安装在其上,光基准面模块安装板31中间开方形通孔,树脂槽4穿过孔安装在主体框架7的底板71上;所述成型平台升降系统6安装在主体框架7的上下两端面上,通过支撑杆66将成型平台5悬挂在树脂槽4内;所述供电系统为足功率的电源,为所有模块提供准确的电 压输出;所述控制系统与各个模块连接,控制各个模块协同运作。
所述激光投影模块1主要由能发出特定波长的激光的发光半导体作为光源,经过前级镜片折射后照射到DMD芯片上,通过DMD芯片的处理折射后的光线照射到后级的折射镜片上,后级镜片内有自动对焦系统,可根据设备运行对图像进行实时的对焦,折射后的光线即为成型投影光束,成型投影光束经过反光镜11反射垂直进入树脂槽4中,所述DMD芯片为美国德州仪器DLP技术的一部分。
所述光基准面模块2包括激光光源21、激光折射透镜组、激光滤缝板23和安装板24,所述激光光源21是四个能发出特定波长的光的发光半导体激光器,两两对向放置,两组之间的激光器成90度,并且四个激光器在同一平面,固定在安装板24上;所述激光折射透镜组安装在激光光源21的前侧,激光滤缝板23后侧;所述激光滤缝板23上设有激光滤缝231,激光光源21发出光线之后先经过激光折射透镜组透镜的折射后照射到呈锯齿状的折射镜片上,将入射光线折射成一字状的光线照射出来,经过激光滤缝231的过滤将多余的光线阻挡掉,最终形成一条宽度为0.5~0.1mm的一字细线激光,四束激光在同一平面上完全重合,形成一个激光照射的平面即为光基准面8。
所述光基准面模块升降系统3包括光轴导轨32、直线轴承33、滚珠丝杆34、滚珠轴承35、步进电机、同步带、同步轮和光基准面模块安装板31,所述直线轴承33和滚珠轴承35分别通过安装座固定在光基准面模块安装板31的四周,所述光轴导轨32穿过直线轴承33固定在主体框架7的上下两端面上,所述滚珠丝杆34穿过滚珠轴承35,下端通过同步带、同步轮与步进电机连接,光基准面模块2整体安装在光基准面模块升降系统3上,整个模块通过步进电机的旋转由滚珠丝杆34带动做上下方向的运动。
所述树脂槽4是由高透明材质制成,为上方敞开的长方体结构,树脂槽4的底面为正方形,树脂槽的尺寸由设备的实际成型尺寸所决定,所述树脂槽为活动部件,可从主体框架7的底板71取下进行清洗或更换。
所述成型平台5是树脂固化成型的平台,由金属铝制成的厚度为3毫米的纯平的板状结构,上面均匀的分布着直径为4.5毫米的圆孔,平台上表面为全平,下表面的孔的边和平台的边均有圆角处理,防止平台升降过程中气泡的产生。
所述成型平台升降系统6包括上结构件61、光轴62、直线轴承Ⅰ63、丝杆64、丝杆螺母65、支撑杆66、步进电机、同步带和同步轮,所述成型平台5由四根等长的支撑杆66与上结构件61连接,上结构件61为正方形环状结构,中间的正方形尺寸比树脂槽4底面尺寸稍大;所述直线轴承Ⅰ63与丝杆螺母65呈对称安装在上结构件61的四角,所述光轴62穿过直线轴承Ⅰ63固定在主体框架7的上下两端面上,所述丝杆64穿过丝杆螺母65,下端通过同步带、同步轮与步进电机连接,整个升降系统通过步进电机的旋转由丝杆64带动做上下方向的运动。
所述控制系统包括主控板、步进电机控制器和各种传感器,主控板由拥有高性能微处理器的单片机系统组成的硬件平台,能同时处理和输出控制各个参数与各部件的工作状况,并且主控板具有输出高分辨率图像信号的端口用于激光投影模块的信号输出,同时对激光投影模块的后级镜片组的自动调焦装置进行实时控制;所述步进电机控制器通过主控板的信号而控制各部分步进电机,从而使整个设备协同运作;各种传感器分别安装在各个模块当中,检测各模块,并将信号传输给主控板。
将四束特定波长的一字激光束于方形透明树脂槽4的四个立面平行于树脂槽4底面射入液态树脂内部,同时四束一字激光完全重合于一个面,这样就会 在液态树脂内部形成一个此特定波长激光束所照射的光的平面(如图1所示),称为光基准面8。同时,设此光基准面四束激光的单束单位光强度为Lp,则Lp需低于1/4L,即仅在光基准面8上的每一点的单位光强度都低于L(Lp在光基准面8范围内的任意一点都不会发生固化反应的前提下尽量接近1/4L),所以此时仅在光基准面8上不会有光敏树脂发生固化反应。另,在光敏树脂的上方有与四束激光束相同波长的激光光源21,将一个此波长的光的图案通过激光投影模块1垂直于水平光基准面8由上向下照射进入树脂槽4中的光固化树脂内部(如图2所示),称为成型投影9,设成型投影9光束的单位光强度为Lt,则Lt需低于L,即仅在成型投影9光束的照射下,液态光敏树脂内的任何一点都不会发生固化反应(Lt在成型投影光束所照射范围内任意一点都不会发生固化反应的前提下尽量接近L)。
在两个激光光源同时工作时,成型投影9光束会与光基准面8相交,此相交的区域称为:固化区10(如图3所示),此区域的截面即为成型投影9光束所投射出的图形的一个截面,高度为光基准面8的高度。此时因为两组光源的单位光强度Lt与4*Lp均低于L但是非常接近于L,所以在重合部分固化区10的单位光强度便会高于L(即:Lt+4*Lp>L)。在此部分的光敏树脂因为单位光照强度达到了光敏树脂固化所需的单位光照强度,所以便会发生固化反应从而固化成为固体。当成型投影激光光源持续投射出所需成型物体由下向上的截面所组成的动态变化的图形,且光基准面由相同速率从下向上移动时,固化区10便会在液态光敏树脂的内部逐渐从下向上移动从而固化光敏树脂,最终形成所要得到的实际物体。
本发明的工作原理为:
通过激光照射在光敏树脂内部形成一个特定波长的光的光基准面8,此光基 准面8的单位光照强度低于光敏树脂固化所需单位光照强度,且激光投影模块1所照射出的成型投影9光束的单位光照强度也低于光敏树脂固化所需单位光照强度。但当成型投影9光束与光基准面8相交时,相交的部分的固化区10的单位光照强度高于光敏树脂固化所需的单位光照强度。此时此部分的光敏树脂便会发生聚合反应从而固化。
一种用于内部立体光投影固化成型3D打印设备的成型方法,包括以下步骤:
将所需打印成型的模型0由下而上进行横切处理(横切的总层数与成型投影所投射的动画的总帧数相同),使光基准面8由光敏树脂槽底部从下往上匀速运动,同时成型投影9光束将模型0横切后的截图生成的动画投向光敏树脂内部,且激光投影模块1将会将成型投影9光束的焦点实时调节在光基准面上,此时成型投影9光束与光基准面8相交的部分为固化区10,此区域即为要成型模型0的一个横截面,而此固化区的单位光照强度高于光敏树脂固化所需的最低单位光照强度,则固化10区的光敏树脂固化,从而形成所成型模型0的一个截面。使光基准面与激光投影模块同时工作,便可由下而上的持续生成所需打印的模型0(如图4所示)。
本发明设备的运行流程为:在设备开始工作之前各模块的位置(如图13所示),将所需打印成型的模型0使用专用软件在计算机端进行切片处理,随后将生成的打印文件输入设备控制系统中,随后在控制系统的控制下,成型平台5下降到树脂槽4的底部,然后光基准面模块2的激光光源21打开,在成型平台5之上形成光基准面8,之后激光投影模块1将成型投影9光束投射到光基准面8上形成固化区10,成型工作开始,光基准面模块2向上上升,同时激光投影模块1将打印文件中的动画生成的成型投影9光束持续照射。在成型工作完成之后,光基准面模块激光光源21关闭,光基准面模块2下降回到初始位置,同 时激光投影模块1关闭,随后成型平台5上升,将成型模型0取出。
本发明将现有3D打印设备的性能发挥到了极限,成型速度将不受设备的限制,而完全取决于光敏树脂耗材的性能。目前的光敏树脂的固化反应速度可达到0.6秒之内,即光敏树脂光固化成型技术的潜力非常大,本发明可将成型的速度快慢完全取决于光敏树脂的性能,若在固化区的光敏树脂的成型速度达到光敏树脂所能到的最快成型速度,那么整个成型时间将会大大缩短,在Z轴成型速度上将能超过6000mm/h。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种内部立体光投影固化成型3D打印设备,其特征在于:主要包括激光投影模块、光基准面模块、光基准面模块升降系统、树脂槽、成型平台、成型平台升降系统、控制系统、供电系统和主体框架,
    所述主体框架为整个设备的基座,其他部件都安装在主体框架上;
    所述激光投影模块固定在主体框架的顶部,为整个设备提供成型投影光束,并将光束投射到树脂槽内;
    所述光基准面模块升降系统安装在主体框架内部,中间设有光基准面模块安装板,所述光基准面模块安装在其上,光基准面模块安装板中间开方形通孔,树脂槽穿过孔安装在主体框架的底板上;
    所述成型平台升降系统安装在主体框架的上下两端面上,通过支撑杆将成型平台悬挂在树脂槽内;
    所述供电系统为足功率的电源,为所有模块提供准确的电压输出;
    所述控制系统与各个模块连接,控制各个模块协同运作。
  2. 根据权利要求1所述的一种内部立体光投影固化成型3D打印设备,其特征在于:所述激光投影模块主要由能发出特定波长的激光的发光半导体作为光源,经过前级镜片折射后照射到DMD芯片上,通过DMD芯片的处理折射后的光线照射到后级的折射镜片上,后级镜片内有自动对焦系统,可根据机器运行对图像进行实时的对焦,折射后的光线即为成型投影光束,成型投影光束经过反光镜反射垂直进入树脂槽中,所述DMD芯片为美国德州仪器DLP技术的一部分。
  3. 根据权利要求1所述的一种内部立体光投影固化成型3D打印设备,其特征在于:所述光基准面模块包括激光光源、激光折射透镜组、激光滤缝板和安装板,
    所述激光光源是四个能发出特定波长的光的发光半导体激光器,两两对向放置,两组之间的激光器成90度,并且四个激光器在同一平面,固定在安装板上;
    所述激光折射透镜组安装在激光光源的前侧,激光滤缝板后侧;所述激光滤缝板上设有激光滤缝,激光光源发出光线之后先经过激光折射透镜组透镜的折射后照射到呈锯齿状的折射镜片上,将入射光线折射成一字状的光线照射出来,经过激光滤缝的过滤将多余的光线阻挡掉,最终形成一条宽度为0.5~0.1mm的一字细线激光,四束激光在同一平面上完全重合,形成一个激光照射的平面即为光基准面。
  4. 根据权利要求1所述的一种内部立体光投影固化成型3D打印设备,其特征在于:所述光基准面模块升降系统包括光轴导轨、直线轴承、滚珠丝杆、滚珠轴承、步进电机、同步带、同步轮和光基准面模块安装板,
    所述直线轴承和滚珠轴承分别通过安装座固定在光基准面模块安装板的四周,所述光轴导轨穿过直线轴承固定在主体框架的上下两端面上,所述滚珠丝杆穿过滚珠轴承,下端通过同步带、同步轮与步进电机连接,光基准面模块整体安装在光基准面模块升降系统上,整个模块通过步进电机的旋转由滚珠丝杆带动做上下方向的运动。
  5. 根据权利要求1所述的一种内部立体光投影固化成型3D打印设备,其特征在于:所述树脂槽是由高透明材质制成,为上方敞开的长方体结构,树脂槽的底面为正方形,树脂槽的尺寸由设备的实际成型尺寸所决定,所述树脂槽为活动部件,可从主体框架的底板取下进行清洗或更换。
  6. 根据权利要求1所述的一种内部立体光投影固化成型3D打印设备,其特征在于:所述成型平台是树脂固化成型的平台,由金属铝制成的厚度为3毫米的纯平的板状结构,上面均匀的分布着直径为4.5毫米的圆孔,平台上表面为全平,下表面的孔的边和平台的边均有圆角处理,防止平台升降过程中气泡的产生。
  7. 根据权利要求1所述的一种内部立体光投影固化成型3D打印设备,其特征在于:所述成型平台升降系统包括上结构件、光轴、直线轴承Ⅰ、丝杆、丝杆螺母、支撑杆、步进电机、同步带和同步轮,
    所述成型平台由四根等长的支撑杆与上结构件连接,上结构件为正方形环状结构,中间的正方形尺寸比树脂槽底面尺寸稍大;
    所述直线轴承Ⅰ与丝杆螺母呈对称安装在上结构件的四角,所述光轴穿过直线轴承Ⅰ固定在主体框架的上下两端面上,所述丝杆穿过丝杆螺母,下端通过同步带、同步轮与步进电机连接,整个升降系统通过步进电机的旋转由丝杆带动做上下方向的运动。
  8. 根据权利要求1所述的一种内部立体光投影固化成型3D打印设备,其特征在于:所述控制系统包括主控板、步进电机控制器和各种传感器,
    主控板由拥有高性能微处理器的单片机系统组成的硬件平台,能同时处理和输出控制各个参数与各部件的工作状况,并且主控板具有输出高分辨率图像信号的端口用于激光投影模块的信号输出,同时对激光投影模块的后级镜片组的自动调焦装置进行实时控制;
    所述步进电机控制器通过主控板的信号而控制各部分步进电机,从而使整个设备协同运作;
    各种传感器分别安装在各个模块当中,检测各模块,并将信号传输给主控板。
  9. 一种用于内部立体光投影固化成型3D打印设备的成型方法,其特征在于:包括以下步骤:
    (1)模型横切处理:所需打印成型的模型使用专用软件在计算机端进行横切处理,随后将生成的打印文件输入设备控制系统中,横切的总层数与成型投影所投射的动画的总帧数相同;
    (2)形成光基准面:将光基准面模块的激光光源打开,形成的四束特定波长的一字激光束于方形透明树脂槽的四个立面平行于树脂槽底面射入液态树脂内部,同时四束一字激光完全重合于一个面,这样就会在液态树脂内部形成一个此特定波长激光束所照射的光的平面,称为光基准面;
    (3)形成成型投影:通过激光投影模块发出与步骤2)四束激光束相同波长的光将步骤1)得到的横切图案垂直于光基准面由上向下照射进入树脂槽内的光固化树脂内部,称为成型投影;
    (4)形成固化区:两个光源同时工作,步骤2)的成型投影光束会与步骤1)的光基准面相交,此相交的区域称为固化区,此区域的截面即为成型投影光束所投射出的图形的一个截面,高度为光基准面的高度,在固化区的光敏树脂因为单位光照强度达到了光敏树脂固化所需的单位光照强度,所以发生固化反应从而固化成为固体;
    (5)打印:当激光投影模块激光光源持续投射出所需成型物体由下向上的截面所组成的动态变化的图形,且光基准面由相同速率从下向上移动时,固化区便会在液态光敏树脂的内部逐渐从下向上移动从 而固化光敏树脂,最终形成所要得到的实际物体。
  10. 根据权利要求9所述的一种用于内部立体光投影固化成型3D打印设备的成型方法,其特征在于:
    设一种光敏树脂固化所需特定波长的光的单位光照强度为:L,
    设此光基准面四束激光的单束单位光强度为Lp,则Lp需低于1/4L,即仅在光基准面上的每一点的单位光强度都低于L,Lp在光基准面范围内的任意一点都不会发生固化反应的前提下尽量接近1/4L,所以此时仅在光基准面上不会有光敏树脂发生固化反应;
    设成型投影光束的单位光强度为Lt,则Lt需低于L,即仅在成型投影光束的照射下,液态光敏树脂内的任何一点都不会发生固化反应,Lt在成型投影光束所照射范围内任意一点都不会发生固化反应的前提下尽量接近L;
    成型投影光束会与光基准面相交时,两组光源的单位光强度Lt与4*Lp均低于L但是非常接近于L,所以在重合部分固化区的单位光强度便会高于L,即:Lt+4*Lp>L。
PCT/CN2019/076998 2019-02-28 2019-03-05 一种内部立体光投影固化成型3d打印设备及其成型方法 WO2020172899A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910151298.9A CN110014647A (zh) 2019-02-28 2019-02-28 一种内部立体光投影固化成型3d打印设备及其成型方法
CN201910151298.9 2019-02-28

Publications (1)

Publication Number Publication Date
WO2020172899A1 true WO2020172899A1 (zh) 2020-09-03

Family

ID=67189180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076998 WO2020172899A1 (zh) 2019-02-28 2019-03-05 一种内部立体光投影固化成型3d打印设备及其成型方法

Country Status (2)

Country Link
CN (1) CN110014647A (zh)
WO (1) WO2020172899A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112976576A (zh) * 2021-03-26 2021-06-18 中科微电技术(深圳)有限公司 一种3d打印平台
CN114347468A (zh) * 2022-01-10 2022-04-15 深圳锐沣科技有限公司 一种光固化3d打印设备和工艺方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103921444A (zh) * 2014-05-04 2014-07-16 中山市东方博达电子科技有限公司 光固化3d打印机、光固化3d打印方法及装置
CN105635705A (zh) * 2015-12-30 2016-06-01 大族激光科技产业集团股份有限公司 增强的数字光处理面曝光快速成型的方法及装置
CN105922598A (zh) * 2016-07-10 2016-09-07 刘庆芳 一种高效3d打印机
CN107428084A (zh) * 2015-01-28 2017-12-01 速科特私人有限公司 具有释放机构的增材制造设备
US20170361530A1 (en) * 2016-06-16 2017-12-21 Xerox Corporation Line laser imager for thermoplastic selective laser sintering

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010036537A (ja) * 2008-08-07 2010-02-18 Roland Dg Corp 光造形装置
CN106113498A (zh) * 2016-06-23 2016-11-16 唐天 一种成型方法
CN105922595A (zh) * 2016-06-27 2016-09-07 珠海天威飞马打印耗材有限公司 光固化三维打印机及三维物体的成型方法
CN206230878U (zh) * 2016-12-08 2017-06-09 西安科技大学 一种基于dlp投影技术的快速面曝光成型装置
CN108312518B (zh) * 2018-03-05 2024-03-08 匡津永 一种内部立体直接光固化成型3d打印设备及其控制方法
CN210257279U (zh) * 2019-02-28 2020-04-07 匡津永 一种内部立体光投影固化成型3d打印设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103921444A (zh) * 2014-05-04 2014-07-16 中山市东方博达电子科技有限公司 光固化3d打印机、光固化3d打印方法及装置
CN107428084A (zh) * 2015-01-28 2017-12-01 速科特私人有限公司 具有释放机构的增材制造设备
CN105635705A (zh) * 2015-12-30 2016-06-01 大族激光科技产业集团股份有限公司 增强的数字光处理面曝光快速成型的方法及装置
US20170361530A1 (en) * 2016-06-16 2017-12-21 Xerox Corporation Line laser imager for thermoplastic selective laser sintering
CN105922598A (zh) * 2016-07-10 2016-09-07 刘庆芳 一种高效3d打印机

Also Published As

Publication number Publication date
CN110014647A (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
CN108312518B (zh) 一种内部立体直接光固化成型3d打印设备及其控制方法
US10086566B2 (en) Apparatus for production of three-dimensional objects by stereolithography
WO2015081756A1 (zh) 光固化型3d打印设备及其成像系统
WO2017219618A1 (zh) 一种成型方法
CN106799835A (zh) 一种基于点阵式显示屏的光固化3d打印机
CN206703524U (zh) Lcd光固化3d打印机
JP2008155480A (ja) 光造形装置及び光造形方法
CN105856573A (zh) 一种高精度高速度连续3d打印机及其打印方法
CN111421815B (zh) 一种dlp 3d生物打印机
WO2020172899A1 (zh) 一种内部立体光投影固化成型3d打印设备及其成型方法
JP2016511713A (ja) 3次元物体の作製
CN111923411A (zh) 一种动态成像3d打印系统及其打印方法
KR101826739B1 (ko) 선형 레이저 광원을 이용한 3차원 프린터
CN1769032A (zh) 采用投影技术的快速成型的方法
CN210257279U (zh) 一种内部立体光投影固化成型3d打印设备
CN111331841A (zh) 一种双光路光固化3d打印设备及其打印方法
CN207916057U (zh) 一种内部立体直接光固化成型3d打印设备
CN110303681A (zh) 一种真空紫外光固化3d打印系统
JP2617532B2 (ja) 三次元形状の形成方法および装置
CN111619108A (zh) 一种新型光固化3d打印设备
CN212097542U (zh) 一种多光路光固化3d打印设备
CN206011731U (zh) 一种高精度高速度连续3d打印机
CN109203468A (zh) 一种快速光固化3d打印装置
CN113276408A (zh) 一种液体内连续光固化成型增材制造装置及其制造方法
CN212194227U (zh) 一种基于光固化成型原理的高效3d打印设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917385

Country of ref document: EP

Kind code of ref document: A1