WO2015081756A1 - 光固化型3d打印设备及其成像系统 - Google Patents

光固化型3d打印设备及其成像系统 Download PDF

Info

Publication number
WO2015081756A1
WO2015081756A1 PCT/CN2014/088723 CN2014088723W WO2015081756A1 WO 2015081756 A1 WO2015081756 A1 WO 2015081756A1 CN 2014088723 W CN2014088723 W CN 2014088723W WO 2015081756 A1 WO2015081756 A1 WO 2015081756A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
light
crystal panel
image
photosensitive material
Prior art date
Application number
PCT/CN2014/088723
Other languages
English (en)
French (fr)
Inventor
侯锋
Original Assignee
上海普利生机电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海普利生机电科技有限公司 filed Critical 上海普利生机电科技有限公司
Priority to US15/101,853 priority Critical patent/US10416541B2/en
Priority to EP14867693.5A priority patent/EP3078482B1/en
Priority to JP2016557175A priority patent/JP6600315B2/ja
Priority to DK14867693.5T priority patent/DK3078482T3/da
Publication of WO2015081756A1 publication Critical patent/WO2015081756A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/142Adjusting of projection optics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/268Arrangements for irradiation using laser beams; using electron beams [EB]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/006Projectors using an electronic spatial light modulator but not peculiar thereto using LCD's
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B27/00Photographic printing apparatus
    • G03B27/32Projection printing apparatus, e.g. enlarger, copying camera
    • G03B27/52Details
    • G03B27/522Projection optics

Definitions

  • the present invention relates to a photocurable 3D printing device, and more particularly to an imaging system for a photocurable 3D printing device.
  • 3D printing technology is based on computer three-dimensional design model. Through software layered discrete and numerical control molding system, laser beam, hot melt nozzle, etc. are used to layer metal powder, ceramic powder, plastic, cell tissue and other special materials layer by layer. Bonding, and finally superimposed to create a physical product. Different from the traditional manufacturing industry, the raw materials are shaped and cut by the machining methods such as mold and milling to make the finished product different. 3D printing transforms the 3D solid into several 2D planes, which are processed by material processing and layer by layer. Reduced manufacturing complexity. This digital manufacturing model does not require complicated processes, does not require a large machine tool, does not require a lot of manpower, and can directly generate any shape parts from computer graphics data, so that manufacturing can be extended to a wider production crowd.
  • photocuring is a relatively mature method.
  • the photocuring method is based on the principle that the photosensitive resin is cured by ultraviolet laser irradiation, and the material is cumulatively formed, and has the characteristics of high molding precision, good surface smoothness, and high material utilization rate.
  • Fig. 1 shows the basic structure of a photocurable 3D printing apparatus.
  • This 3D printing apparatus 100 includes a material tank 110 for accommodating photosensitive resin, an image forming system 120 for curing the photosensitive resin, and a lifting table 130 for joining molded workpieces.
  • the imaging system 120 is positioned above the material tank 110 and can illuminate the beam image to cure a layer of photosensitive resin at the level of the material tank 110.
  • the lifting platform 130 will drive the layer of photosensitive resin to be slightly lowered, and the cured top surface of the workpiece is evenly spread by the squeegee 131, waiting for the next time. Irradiation. In this cycle, a three-dimensional workpiece that is incrementally formed by layer will be obtained.
  • the imaging system 120 generally uses a laser forming technique or a Digital Light Procession (DLP) projection technique.
  • DLP Digital Light Procession
  • Laser forming technology uses a laser scanning device for point-by-point scanning. But due to the speciality of photosensitive resin Sex, laser power can not be too large, otherwise it will damage the resin. Therefore, the laser moving speed is limited to several meters to ten meters/second, resulting in a molding speed that is too slow.
  • DLP projection imaging technology is implemented using a Digital Micromirror Device (DMD) to control the reflection of light.
  • the digital micromirror component can be viewed as a mirror. This mirror is made up of hundreds of thousands or even millions of micromirrors. Each micromirror represents a pixel, and the image is composed of these pixels. Each micromirror can be independently controlled to determine whether to reflect light to the projection lens. Eventually, the entire mirror reflects the desired beam image. Due to the limitation of the resolution of the DMD chip, the DLP projection imaging technology has the disadvantage of small molding size, and there is a bottleneck.
  • liquid crystal projection technology can theoretically project a beam image similar to DLP projection imaging technology, which can be used to construct an imaging system of a photocurable 3D printing device.
  • the liquid crystal panel includes a plurality of pixels, each of which can individually control the polarization direction of the polarized light, and the polarizing filter on both sides of the liquid crystal panel can control whether the light of a certain pixel passes, so the light beam passing through the liquid crystal panel system is an image.
  • Chemical liquid crystal panels have significant deficiencies in use in photocurable 3D printing devices.
  • the wavelength of the curing light source required for the photosensitive resin is usually below 430 nm, and the light in this wavelength range is harmful to the liquid crystal in the liquid crystal panel, which shortens the life of the liquid crystal. Moreover, the liquid crystal panel does not have a high light transmittance, which further shortens the life of the panel.
  • a liquid crystal panel has a black mask area with a certain area opaque around each pixel for covering the control circuit of the pixel (including thin film transistors, wiring, etc.). This portion of the mask area will reduce the light transmission capability of the LCD panel, thereby affecting the brightness and contrast of the imaging system.
  • the ratio of the light-transmitting region (i.e., the region not covered by the mask) to the total pixel area is referred to as the aperture ratio. It is assumed that the aperture ratio of the liquid crystal panel is 60%, meaning that up to 40% of the area cannot be transmitted, which is a great loss of brightness. At the same time, the light is absorbed by the liquid crystal panel, which will cause the liquid crystal to rise too high, causing the liquid crystal panel to deteriorate and be damaged.
  • One way to improve the above problem is to increase the aperture ratio as much as possible. This certainly helps to reduce light loss, but the increase in aperture ratio is technically limited, relying on more advanced liquid crystal panel manufacturing processes. Therefore, in the photocurable 3D printing apparatus, the way to compensate for the insufficient light transmittance is to use a light source of higher brightness. However, in the case where the light-curable 3D printing apparatus requires a strong projection brightness, the brightness of the light passing through the liquid crystal panel is increased, and the life of the liquid crystal is shortened.
  • Table 1 below shows the lifetime of liquid crystals after receiving sufficient light of various wavelengths in liquid crystal projection technology. Life comparison.
  • the invention provides an imaging system of a photocurable 3D printing device, comprising a light source, a liquid crystal panel, a first polarized light filter, a second polarized light filter, a focusing lens array, a projection lens, a deflecting lens, and a controller.
  • the light source emits a beam of light.
  • the liquid crystal panel is located on the light path of the light source, and the liquid crystal panel includes a plurality of pixels.
  • a first polarized light filter is disposed on a light incident side of the liquid crystal panel, and a second polarized light filter is disposed on a light exiting side of the liquid crystal panel, the first polarized light filter and the second polarized light filter
  • the liquid crystal panel is shielded from a portion of the light beam to form a beam image.
  • the focusing lens array is disposed on the light incident side of the liquid crystal panel, and each focusing lens of the focusing lens array corresponds to each pixel of the liquid crystal panel, and each focusing lens can condense and illuminate the light beam of the corresponding pixel, so that the light beam is as much as possible Passing through the light-transmitting region of the pixel and imaging on the light-emitting side of the liquid crystal panel, and the size of the image is smaller than the size of the light-transmitting region of the corresponding pixel.
  • a projection lens is disposed between the liquid crystal panel and the surface of the photosensitive material, and between the image and the surface of the photosensitive material, projecting the beam image onto the surface of the photosensitive material, so that the image formed by the light source through each focusing lens is A plurality of spots are formed on the surface of the photosensitive material.
  • Deflecting lens cloth Positioned on the light exiting side of the liquid crystal panel, the deflecting lens is deflectable about at least one axis of rotation perpendicular to the optical axis of the imaging system to fine tune the position at which the beam image is projected onto the surface of the photosensitive material.
  • the controller commands the light source to perform multiple exposures, commanding the deflection lens to deflect at each exposure to project each exposed beam image onto a different location on the surface of the photosensitive material.
  • the focusing lens array is overlaid on the liquid crystal panel.
  • each of the light beams formed by the respective exposed light beam images on the surface of the photosensitive material does not substantially overlap each other.
  • the spot formed by each of the exposed beam images is overlaid on the surface of the photosensitive material.
  • the size of the image is less than, equal to, or slightly larger than half the pixel size of the liquid crystal panel.
  • the beam images of the respective exposures contain the same image information.
  • each of the exposed beam images contains different image information.
  • the ratio of the size of the image to the pixel size of the liquid crystal panel is about 1:2, 1:3, or 1:4, and the number of exposures of the light source is 4, 9, or 16 times.
  • the distance between the light source and the focusing lens is L1
  • the distance from the focusing lens to the imaging surface is L2
  • the front focal length and the back focal length of the focusing lens are f and f', respectively.
  • the size of the image is A, and the size of the image is d, then the following conditions are met:
  • the wavelength of the beam is below 430 nm.
  • the invention also provides an imaging system of a photocuring type 3D printing device, comprising a light source, a liquid crystal panel, a first polarizing filter, a second polarizing filter, a focusing lens array, a projection lens, a micro displacement driving mechanism, and Controller.
  • the light source emits a beam of light.
  • the liquid crystal panel is located on the light path of the light source, and the liquid crystal panel includes a plurality of pixels.
  • the first polarizing filter is disposed on a light incident side of the liquid crystal panel.
  • the second polarizing filter is disposed on the light emitting side of the liquid crystal panel, and the first polarizing filter and the second polarizing filter cooperate with the liquid crystal panel to block a part of the light beam to form a beam image.
  • the focusing lens array is disposed on the light incident side of the liquid crystal panel.
  • Each focusing lens of the focusing lens array corresponds to each pixel of the liquid crystal panel, and each focusing lens can condense and illuminate the light beam of the corresponding pixel to make the light beam As much as possible through the light-transmissive area of the pixel, and imaged on the light-emitting side of the liquid crystal panel, and the size of the image is smaller than the size of the light-transmitting area of the corresponding pixel.
  • a projection lens is disposed between the liquid crystal panel and the surface of the photosensitive material, and between the image and the surface of the photosensitive material, projecting the beam image onto the surface of the photosensitive material, so that the image formed by the light source through each focusing lens is A plurality of spots are formed on the surface of the photosensitive material.
  • the micro-displacement driving mechanism is coupled to the liquid crystal panel, and is configured to drive the liquid crystal panel to move in a first direction and a second direction perpendicular to each other to finely adjust a position at which the beam image is projected onto the surface of the photosensitive material.
  • the controller commands the light source to perform multiple exposures, and the micro-displacement drive mechanism is commanded to act upon each exposure to project the respective exposed beam image to different locations on the surface of the photosensitive material.
  • the present invention also proposes a photocurable 3D printing apparatus comprising the imaging system as described above.
  • the light beams irradiated onto the liquid crystal panel are concentrated to be transmitted through the light-transmitting regions of the pixels of the liquid crystal panel as much as possible to reduce the opacity of the liquid crystal panel. Partial occlusion.
  • the convergence of the light beam the brightness of the spot irradiated onto the surface of the photosensitive material is remarkably improved.
  • the resin photosensitive threshold value can still be reached, and the relatively linear section of the photosensitive light is entered, and the curing speed is greatly increased.
  • Fig. 1 shows the basic structure of a photocurable 3D printing apparatus.
  • FIG. 2 shows an imaging system of a 3D printing apparatus according to an embodiment of the present invention.
  • FIG. 3 illustrates a cooperative relationship between a focus lens array and a liquid crystal display panel according to an embodiment of the present invention.
  • Figure 4 is a schematic illustration of the optical path of a single pixel of the imaging system of Figure 2.
  • Fig. 5 shows a black mask on a liquid crystal panel.
  • Figure 6 shows an image formed by the imaging system of an embodiment of the present invention on a surface of a photosensitive material in one exposure.
  • Figure 7 is a schematic illustration of light rays that are not deflected of an imaging system in accordance with an embodiment of the present invention.
  • Figure 8 is a schematic illustration of the deflected light of an imaging system in accordance with an embodiment of the present invention.
  • Fig. 9 shows an imaging system of a 3D printing apparatus of another embodiment of the present invention.
  • Figure 10 is a view showing an image formed by the exposure of the imaging system of the embodiment of the present invention on the surface of the photosensitive material.
  • Fig. 11 is a graph showing the relationship between the energy required for curing of the photosensitive resin and the light power.
  • Embodiments of the present invention describe a photocurable 3D printing device and an imaging system thereof that use a liquid crystal panel as a source of an area array image. To avoid significant shortening of the life of the liquid crystal panel, embodiments of the present invention can project a spot image that satisfies the brightness required for photocuring at an acceptable lower source power.
  • the imaging system 200 of the present embodiment includes a light source 201, a focus lens array 202, a deflection lens 203, a liquid crystal panel 204, a first polarized light filter 205, a second polarized light filter 206, and a projection lens. 207 and a controller (not shown). For the sake of brevity, devices not related to the present invention are not shown.
  • the light source 201 can emit a light beam.
  • the wavelength of the light emitted by the source 201 is a function of the photosensitive material that is cured.
  • the light beam may be violet to ultraviolet light having a wavelength of 430 nm or less, for example, 400 to 405 nm.
  • the liquid crystal panel 204 is located on the light path of the light source 201.
  • the liquid crystal panel 204 includes a plurality of pixels, the main function of which is to deflect the polarization direction of the light beam emitted by the light source 201, and the polarizing filter can block a part of the light emitted by the light source to form a beam image.
  • the first polarizing filter 205 and the second polarizing filter 206 are disposed on the light incident side and the light exiting side of the liquid crystal panel 204, respectively, to constitute a liquid crystal system.
  • the first polarized light filter 205 and the second polarized light filter 206 allow only light having the same polarization direction to pass therethrough, and the polarization directions of the two are perpendicular to each other.
  • the first polarized light filter 205 and the second polarized light filter 206 block all light that is attempting to penetrate. However, since the two polarizing filters are between the liquid crystal panels 204.
  • the liquid crystal panel 204 is partitioned into a plurality of liquid crystal cells filled with liquid crystals. Each liquid crystal cell corresponds to one pixel. After the light passes through the first polarizing filter 205, it passes through the liquid crystal panel 204, and is twisted by the liquid crystal molecules by a certain angle, and the twist angle is controlled by the voltage applied to the liquid crystal panel. These rays are only allowed to pass through the second polarizing filter 206 in the same direction as the polarization of the second polarizing filter 206. Therefore, by individually controlling the arrangement direction of the liquid crystal molecules of each liquid crystal cell, the brightness and image of the light transmitted through the liquid crystal system can be controlled.
  • the beam image formed by the liquid crystal panel 204 may contain only gray scale information. Therefore, the liquid crystal panel 204 does not require an optical element required for use as a display panel such as a color filter.
  • the first polarizing filter 205 may be a polarizing plate or a polarizing beam splitting prism.
  • the second polarized light filter 206 may also be a polarizing plate or a polarizing beam splitting prism.
  • the light source 201 For each pixel of the liquid crystal panel 204, since a thin film transistor, a wiring, and the like need to be disposed in the vicinity of the liquid crystal cell, the light beam cannot be completely passed. In view of various light energy losses including light transmittance, the light source 201 needs to reach a certain irradiation power to cure the photosensitive material, or to make the curing time to an acceptable level. As described above, light having a wavelength of 430 nm or less has a large damage to the liquid crystal after reaching a certain power. Therefore, how to reduce the irradiation power of the light source 201 as much as possible under the condition that the photosensitive material is cured becomes a key to the implementation of the liquid crystal panel-based imaging system.
  • This embodiment introduces the focus lens array 202 and cooperates with the control of the degree of focus to achieve the aforementioned object.
  • the focus lens array 202 is disposed on the light incident side of the liquid crystal panel 204. Focusing lens array 202 contains a number of tiny focusing lenses. Each focusing lens corresponds to each pixel of the liquid crystal panel 204.
  • FIG. 3 shows a mating relationship between a focus lens array and a liquid crystal panel according to an embodiment of the present invention. In this embodiment, the focus lens array 202 is overlaid on the liquid crystal panel 204.
  • a certain focus lens 402 corresponds to a certain pixel 404 of the liquid crystal panel 204.
  • This pixel 404 includes a black mask 404a that is opaque and a light transmissive region 404b.
  • the focus lens array 202 may be formed by pressing a resin material.
  • the focusing action of the focusing lens disposed on the light incident side of the liquid crystal panel By the focusing action of the focusing lens disposed on the light incident side of the liquid crystal panel, more light can be transmitted through the liquid crystal panel, and the brightness of the focus point on the light exiting side of the liquid crystal panel can be improved.
  • This design brings two advantageous effects: firstly, the illumination power of the light source 201 is not improved, so the liquid crystal panel is protected from ultraviolet light of higher light intensity; secondly, after focusing, the brightness of the focus point is doubled, the focus is The final image is imaged with a photosensitive material to make it easier to cure.
  • the brightness of the focus point depends on the degree of focus.
  • the shape, area, divergence angle, and distance to the liquid crystal panel 204 of the light source 201 need to be strictly designed to obtain a desired spot brightness, which will be described in detail later.
  • Figure 4 is a schematic illustration of the optical path of a single pixel of the imaging system of Figure 2.
  • the light source 201 emits a light beam, and the height and width of the light-emitting surface are both A.
  • the light source divergence angle can match the area that the liquid crystal panel 204 needs to illuminate, and the distance between the light source 201 and the focus lens array 402 is L1, and the light beam is irradiated.
  • the focusing lens array 202 a part of the light is irradiated to a certain focusing lens 402 corresponding to a certain pixel 404 of the liquid crystal panel 204.
  • the size of the pixel 404 is P.
  • the focusing lens 402 converges the light beam emitted by the light source 201 while being at the focusing lens 402.
  • the back end produces an image 401a of the light source 201.
  • a projection forms a spot on the surface of the photosensitive material (not shown).
  • the focus lens have a front focal length of f and a back focal length of f'(f' ⁇ f), the image height of the light source 201 is d, and the distance from the focus lens 402 to the imaging surface is L2.
  • the Gaussian formula we can obtain:
  • f 100 ⁇ m
  • P 20 ⁇ m
  • L1 200 mm
  • A 20 mm
  • the size of the imaging spot can be controlled by an appropriate design.
  • the smaller the spot the higher the degree of focus, and the higher the brightness of the spot after focusing.
  • the spot size is designed to be as large as possible, as long as it can pass through the black mask, so that the contrast is the highest and the picture quality is the best.
  • this design is not suitable for 3D printing.
  • the spot size may be slightly larger than the actual calculation, and the shape of the spot may also become a circle, which is different from the original shape of the light source 201, which requires The aforementioned parameters were adjusted in the actual test to determine the final data.
  • this convergence has a variety of potential technical effects.
  • the brightness of the light beam after convergence is higher at the focus point. For example, if the size is reduced to 1/2, the brightness will be increased by 4 times, which is advantageous for the photosensitive material, which will be described later.
  • the transmission of the light beam as much as possible reduces the heat generated by the absorption of the light beam by the liquid crystal panel, which helps to extend the life of the liquid crystal panel.
  • the spot size formed on the surface of the photosensitive material is small, which helps to improve the resolution of printing.
  • the projection lens 207 is disposed between the liquid crystal panel 204 and the photosensitive material surface 220 of the three-dimensional printing apparatus, and projects the beam image formed and emitted by the liquid crystal panel 204 and the polarizing filters 205, 206 onto the photosensitive material surface 220.
  • the light source 201 has an image 401a behind each pixel of the liquid crystal panel 204.
  • the position of the projection lens 207 is located between the image and the surface of the photosensitive material, such as As shown in Figure 4. Therefore, a plurality of images formed by the light source 201 after passing through the liquid crystal panel 204 will be clearly projected onto the photosensitive material surface 220.
  • the ratio of the size of the image 401a after convergence to the size of the liquid crystal pixel can be made 1:2, that is, the ratio of the area is 1:4, which makes the brightness corresponding to 4 times.
  • the size of the image 401a is enlarged after projection, this ratio remains unchanged when the image 401a is projected onto the surface of the photosensitive material.
  • the setting of the ratio will continue to be discussed below with reference to the spot on the surface of the photosensitive material.
  • Figure 6 shows an image formed by the imaging system of an embodiment of the present invention on a surface of a photosensitive material in one exposure. For comparison, if light is imaged directly through the black mask of the imaging system shown in Figure 5, an image similar to this black mask will be obtained. Comparing Fig. 5 with Fig. 6, it can be seen that after convergence by the focusing lens array 202, the size of the spot in the image is reduced, and the brightness of the spot is correspondingly increased. The degree of convergence is adjusted by a suitable optical design as described above to determine the size reduction of the spot.
  • the ratio of the spot size after convergence (such as the size of 401a projected on the surface of the photosensitive material) to the pixel size (the size of the liquid crystal pixel projected on the surface of the photosensitive material) can be 1:2, that is, the ratio of the area is 1: 4, the brightness is correspondingly 4 times. Therefore, the total energy reaching the surface of the photosensitive material is not reduced.
  • the ratio of the designed spot size to the pixel size is 1:2
  • the ratio of the actual spot size to the pixel size is slightly larger than 1:2.
  • the imaging system of the present embodiment allows for an appropriate error, i.e., the ratio of the aforementioned dimensions is about 1:2.
  • the ratio of the spot size to the pixel size after convergence can be made approximately 1:3 or 1:4.
  • the reason for taking an integral multiple here is to insert a new spot in the blank portion of each spot in consideration of the subsequent deflection.
  • a blank is left between the spots. To this end, these blanks are filled by multiple exposures so that the spot fills the entire surface of the photosensitive material.
  • a deflecting lens 203 is disposed on the light outgoing side of the liquid crystal panel 204, for example, between the liquid crystal panel 204 and the projection lens 207 (or after the projection lens 207).
  • the deflecting lens 203 is deflectable about at least one axis of rotation to fine tune the position at which the beam image is projected onto the surface of the photosensitive material 220.
  • the aforementioned rotating shafts are all perpendicular to the optical axis z of the imaging system.
  • the deflecting lens and the liquid crystal panel 204 are parallel (and perpendicular to the optical axis z), the light is vertically irradiated on the deflecting lens 203, and no refraction occurs, and the light a directly passes through the deflecting lens.
  • the deflecting lens 203 is inclined at an angle around a rotating shaft, light entering the deflecting lens 203 from the air will be refracted, and the light will be refracted again when the light enters the air from the deflecting lens 203, and the refractive angles of the two refractions are the same, the direction Conversely, the refracted light b will advance in the original direction, but a slight displacement occurs (see Figure 8).
  • the rotation axis of the deflection lens is Figure 7.
  • this rotation axis may be a rotation axis y (not shown) located in a plane containing the rotation axis x and perpendicular to the optical axis z and perpendicular to the rotation axis x.
  • the deflecting lens 203 can be deflected both about the axis of rotation x and about the axis of rotation y.
  • FIG. 10 is a view showing an image formed by the exposure of the imaging system of the embodiment of the present invention on the surface of the photosensitive material. Referring to FIG.
  • the projected image A is formed; at the second exposure, since the deflecting lens 203 is deflected about the x-axis, the beam image is slightly moved in the horizontal direction in the drawing, and projected to In the blank between the two rows of spots, a projected image B is formed; at the third exposure, the deflecting lens 203 is deflected about the y-axis, so that the beam image moves slightly in the vertical direction in the figure, and is projected between the two rows of spots.
  • the projected image C is formed; similarly, the projected image D is formed.
  • the projected image D has been filled with the photosensitive material surface 220.
  • the controller of imaging system 200 can be used to command light source 201 to perform multiple exposures while simultaneously commanding deflection lens 203 for deflection in both x and y directions at each exposure.
  • the liquid crystal panel 204 is connected with a micro-displacement driving mechanism 208 instead of the deflecting lens 203.
  • the micro-displacement drive mechanism 208 is capable of driving the liquid crystal panel to move in the x-direction and the y-direction to fine tune the position at which the beam image is projected onto the photosensitive material surface 220.
  • the x and y directions are in the same plane, and this plane is perpendicular to the optical axis z of the imaging system.
  • the beam image of the liquid crystal panel 204 is at the first position of the photosensitive material surface 220; when the micro-displacement driving mechanism 208 drives the liquid crystal panel 204 to be slightly displaced in one direction (x or y direction) At this time, the entire beam image of the liquid crystal panel 204 will be slightly displaced with the liquid crystal panel 204.
  • the micro-displacement drive mechanism 208 can be a piezoelectric ceramic.
  • the positions of the beam images of the respective exposures on the surface of the photosensitive material 220 may not substantially overlap each other. This is achieved by controlling the ratio of the pixel size to the size of the spot to be an integer, and the step size of the deflection is just the spot size. This arrangement, which is substantially non-overlapping, prevents the illumination received by the overlapping regions from being above average, resulting in uneven curing. It can be understood that considering the factors such as the light diffraction effect, a slight overlap helps to compensate for the absence of the non-rectangular edge portion of the spot. Therefore, it is not required that the spots do not overlap at all. This In addition, although the superposition of the beam image is full of the surface of the photosensitive material, it can be understood that not every position in the beam image is a bright spot, but may have a dark spot.
  • the beam images of the respective exposures may contain the same image information.
  • the four spots in the virtual frame contain the same image information.
  • the above example is to perform four exposures when the spot size is controlled to be 1/2 of the pixel size. It can be understood that when the control spot is 1/3 of the pixel size, 9 exposures are performed, and when the control spot is 1/4 of the pixel size, 16 exposures are performed, and so on.
  • the photosensitive material After receiving a certain amount of light, the photosensitive material will cure for a certain period of time. This time is called the curing time.
  • the power of light irradiation that is, the light energy received by the photosensitive material per unit time, significantly affects the curing time.
  • the energy required for the curing of a certain area of photosensitive material can be expressed as:
  • W P * t
  • P the optical power that is irradiated onto the resin
  • t the exposure time
  • the same energy can be achieved by increasing the optical power to reduce the exposure time or the light power to increase the exposure time to achieve the same curing effect, which is called "reciprocity law.”
  • reciprocal law is distorted in the photosensitive resin.
  • Fig. 11 is a graph showing the relationship between the energy required for curing of the photosensitive resin and the light power.
  • the x-axis represents the illumination power
  • the y-axis represents the energy W required for curing.
  • the curve contains linear segments (close to horizontal parts in the figure) and nonlinear segments (hatched parts in the figure). In the linear segment, as the illumination power increases, the required curing time is inversely proportional to the illumination power, and the energy required for curing is substantially unchanged. In the nonlinear segment, as the illumination power decreases, the required curing time increases nonlinearly. The energy required for curing increases non-linearly.
  • the photosensitive resin has the following characteristics:
  • the power of light irradiation must reach a certain lower limit P 0 , and curing may occur. Below this power, the exposure time is not extended anyway. This optical power is called threshold power.
  • the 3D printing device using the liquid crystal panel may have a lower light intensity, for example, set at a position slightly larger than P 0 to extend the life of the liquid crystal panel.
  • this also means that a large increase in exposure time is required to cure the photosensitive resin, which greatly reduces the speed of photosensitivity.
  • Embodiments of the present invention multiply the brightness of the spot by reducing the spot size, thereby freeing the imaging system from the nonlinear segment that requires a large increase in exposure time to cure the resin, entering a relatively linear segment, thereby greatly reducing the curing time of the photosensitive material. Increased speed of light. At the same time, the total energy W required for curing (which is also the light energy through the liquid crystal panel) is reduced, which extends the life of the liquid crystal panel.
  • the beam images of the respective exposures contain different image information.
  • the four spots in the virtual frame contain different image information. This means that the resolution of the image is correspondingly four times larger. Therefore, the accuracy of 3D printing is significantly improved.
  • the above embodiment of the present invention converges the light beam irradiated onto the liquid crystal panel by providing a focusing lens array, so that it can pass through the light-transmitting region of each pixel of the liquid crystal panel, and pass through the liquid crystal panel as much as possible to reduce the liquid crystal.
  • the opacity of the panel is blocked.
  • the area of the spot irradiated onto the surface of the photosensitive material is reduced, and the brightness is remarkably improved.
  • the photosensitive resin photosensitive threshold can be achieved and the photosensitive speed can be improved.
  • the surface of the photosensitive material can be filled with the exposure spot, and different imaging information can be used for each exposure, which can improve the resolution of the imaging, thereby improving the printing accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Liquid Crystal (AREA)

Abstract

本发明提出一种光固化型3D打印设备的成像系统,包括光源、液晶面板、第一偏振光滤光器、第二偏振光滤光器、聚焦透镜阵列、投影镜头以及控制器。该成像系统的特点是,聚焦透镜阵列设置于该液晶面板的入光侧,该聚焦透镜阵列的每一聚焦透镜对应该液晶面板的每一像素,每一聚焦透镜能够会聚照射到对应像素的光束,使该光束尽可能多的透过该像素的透光区域。偏转镜片布置在该液晶面板的出光侧,该偏转镜片能够围绕垂直于成像系统的光轴的至少一个转轴偏转,以微调该光束图像投影到该光敏材料表面的位置。控制器命令该光源进行多次曝光,在每次曝光时命令该偏转镜片进行偏转以将各次曝光的光束图像投影到该光敏材料表面的不同位置。

Description

光固化型3D打印设备及其成像系统 技术领域
本发明涉及光固化型3D打印设备,尤其是涉及光固化型3D打印设备的成像系统。
背景技术
3D打印技术,是以计算机三维设计模型为蓝本,通过软件分层离散和数控成型系统,利用激光束、热熔喷嘴等方式将金属粉末、陶瓷粉末、塑料、细胞组织等特殊材料进行逐层堆积黏结,最终叠加成型,制造出实体产品。与传统制造业通过模具、车铣等机械加工方式对原材料进行定型、切削以最终生产成品不同,3D打印将三维实体变为若干个二维平面,通过对材料处理并逐层叠加进行生产,大大降低了制造的复杂度。这种数字化制造模式不需要复杂的工艺、不需要庞大的机床、不需要众多的人力,直接从计算机图形数据中便可生成任何形状的零件,使生产制造得以向更广的生产人群范围延伸。
目前3D打印技术的成型方式仍在不断演变,所使用的材料也多种多样。在各种成型方式中,光固化法是较为成熟的方式。光固化法是利用光敏树脂被紫外激光照射后发生固化的原理,进行材料累加成型,具有成型精度高、表面光洁度好、材料利用率高等特点。
图1示出光固化型3D打印设备的基本结构。这一3D打印设备100包括用于容纳光敏树脂的物料槽110、用于使光敏树脂固化的成像系统120、以及用于连接成型工件的升降台130。成像系统120位于物料槽110上方,并可照射光束图像使物料槽110液面的一层光敏树脂被固化。每次成像系统120照射光束图像致使一层光敏树脂固化后,升降台130都会带动成型的那层光敏树脂略微下降,并通过刮板131使固化后的工件顶面均匀铺展光敏树脂,等待下一次照射。如此循环,将会得到逐层累加成型的三维工件。
成像系统120普通通常使用的是激光成型技术或者数字光处理(Digital Light Procession,DLP)投影技术。
激光成型技术是使用激光扫描设备进行逐点扫描。但是由于光敏树脂的特 性,激光功功率不能过大,否则会损伤树脂。因此,激光移动速度被限制在几米到十几米/秒,造成成型速度过慢。
DLP投影成像技术是使用数字微镜元件(Digital Micromirror Device,DMD)控制对光的反射来实现的。数字微镜元件可视为一镜面。这面镜子是由数十万乃至上百万个微镜所组成的。每一个微镜代表一个像素,图像就由这些像素所构成。每一个微镜可独立受控以决定是否反射光线到投影镜头。最终,整面镜子反射出所需的光束图像。由于DMD芯片分辨率的限制,造成DLP投影成像技术成型尺寸较小的缺点,存在瓶颈。
液晶投影技术作为一种面阵图象源,理论上可以投影与DLP投影成像技术相似的光束图像,从而可用来构造光固化型3D打印设备的成像系统。液晶面板中包含了许多像素,每个像素可以单独控制偏振光的偏振方向,配合液晶面板两侧的偏振光滤光器可控制某一像素的光线是否通过,因此经过液晶面板系统的光束是图像化的。然而液晶面板使用在光固化型3D打印设备中有明显的不足。原因在于光敏树脂需要的固化光源的波长通常在430nm以下,这一波长范围的光线对液晶面板中的液晶是有伤害的,会缩短液晶的寿命。而且液晶面板不高的透光率,会使面板寿命进一步缩短。
众所周知,液晶面板在每一个像素的周围有一定面积不透光的黑色掩模区域,用来覆盖像素的控制电路(包括薄膜晶体管、布线等)。这部分掩模区域将减少LCD面板透光能力,从而影响成像系统的亮度和对比度。透光区域(即未被掩模覆盖的区域)占全部像素面积的比率称为开口率(aperture ratio)。假设液晶面板的开口率为60%,意味着有高达40%的面积无法透光,这对光亮度的损失是很大的。同时,这些光线被液晶面板吸收后,将造成液晶过高的温升,造成液晶面板老化和损坏。
改善上述问题的一种方式是尽可能提高开口率。这固然有助于减少光损失,但是开口率的提高在技术上有极限的,依赖于更先进的液晶面板制造工艺。因此在光固化型3D打印设备中,弥补透光率不足的方式是使用更高亮度的光源。然而在光固化型3D打印设备本就需要较强的投影亮度的情况下,一味提高通过液晶面板的光线亮度,加剧了液晶寿命的缩短。
下表1示出在液晶投影技术中液晶接受到足够强各种波长的光照射后的寿 命比较。
Figure PCTCN2014088723-appb-000001
表1
从表1可以看出,以光波长在433nm的寿命为基准1,则当波长下降到410nm时,寿命显著下降到0.4。与之形成明显对比的是,波长在470nm时,寿命显著上升到4.2。
由于上述的寿命方面缺陷,目前尚未有应用液晶系统的光固化型3D打印设备出现。
发明内容
本发明的目的是提供一种光固化型3D打印设备及其成像系统,其基于液晶系统,且可以在可接受的较低光功率下投影出光固化所需的光束图像。
本发明提供一种光固化型3D打印设备的成像系统,包括光源、液晶面板、第一偏振光滤光器、第二偏振光滤光器、聚焦透镜阵列、投影镜头、偏转镜片以及控制器。光源出射一光束。液晶面板位于该光源的出光光路上,该液晶面板包含多个像素。第一偏振光滤光器设置于该液晶面板的入光侧,第二偏振光滤光器设置于该液晶面板的出光侧,该第一偏振光滤光器和该第二偏振光滤光器配合该液晶面板遮挡该光束的一部分,以形成一光束图像。聚焦透镜阵列设置于该液晶面板的入光侧,该聚焦透镜阵列的每一聚焦透镜对应该液晶面板的每一像素,每一聚焦透镜能够会聚照射到对应像素的光束,使该光束尽可能多的透过该像素的透光区域,并在该液晶面板的出光侧成像,且像的尺寸小于对应像素的透光区域的尺寸。投影镜头布置在该液晶面板与光敏材料表面之间,且位于该像与该光敏材料表面之间,将该光束图像投影到该光敏材料表面,使该光源通过各聚焦透镜所成的像在该光敏材料表面形成多个光斑。偏转镜片布 置在该液晶面板的出光侧,该偏转镜片能够围绕垂直于该成像系统的光轴的至少一转轴偏转,以微调该光束图像投影到该光敏材料表面的位置。控制器命令该光源进行多次曝光,在每次曝光时命令该偏转镜片进行偏转,以将各次曝光的光束图像投影到该光敏材料表面的不同位置。
在本发明的一实施例中,该聚焦透镜阵列覆盖在该液晶面板上。
在本发明的一实施例中,各次曝光的光束图像在该光敏材料表面所形成的各个光斑基本上互不重叠。
在本发明的一实施例中,各次曝光的光束图像所形成的光斑布满该光敏材料表面。
在本发明的一实施例中,其中该像的尺寸小于、等于或略大于该液晶面板的像素尺寸的一半。
在本发明的一实施例中,各次曝光的光束图像包含相同的图像信息。
在本发明的一实施例中,各次曝光的光束图像包含不同的图像信息。
在本发明的一实施例中,该像的尺寸与该液晶面板的像素尺寸之比大约为1:2、1:3或1:4,同时该光源的曝光次数为4、9或16次。
在本发明的一实施例中,设该光源与该聚焦透镜的距离为L1,该聚焦透镜到成像面的距离是L2,该聚焦透镜的前焦距和后焦距分别为f和f’,该光源的尺寸为A,该像的尺寸为d,则满足以下条件:
f’/L2+f/L1=1;
L1/L2=A/d。
在本发明的一实施例中,该光束的波长在430nm以下。
本发明还提出一种光固化型3D打印设备的成像系统,包括光源、液晶面板、第一偏振光滤光器、第二偏振光滤光器、聚焦透镜阵列、投影镜头、微位移驱动机构以及控制器。光源出射一光束。液晶面板位于该光源的出光光路上,该液晶面板包含多个像素。第一偏振光滤光器设置于该液晶面板的入光侧。第二偏振光滤光器设置于该液晶面板的出光侧,该第一偏振光滤光器和该第二偏振光滤光器配合该液晶面板遮挡该光束的一部分,以形成一光束图像。聚焦透镜阵列设置于该液晶面板的入光侧,该聚焦透镜阵列的每一聚焦透镜对应该液晶面板的每一像素,每一聚焦透镜能够会聚照射到对应像素的光束,使该光束 尽可能多的透过该像素的透光区域,并在该液晶面板的出光侧成像,且像的尺寸小于对应像素的透光区域的尺寸。投影镜头布置在该液晶面板与光敏材料表面之间,且位于该像与该光敏材料表面之间,将该光束图像投影到该光敏材料表面,使该光源通过各聚焦透镜所成的像在该光敏材料表面形成多个光斑。微位移驱动机构连接该液晶面板,能够驱动该液晶面板在相互垂直的第一方向和第二方向移动,以微调该光束图像投影到该光敏材料表面的位置。控制器命令该光源进行多次曝光,在每次曝光时命令该微位移驱动机构动作,以将各次曝光的光束图像投影到该光敏材料表面的不同位置。
本发明还提出一种光固化型3D打印设备,包括如上所述的成像系统。
本发明的上述技术方案通过设置聚焦透镜阵列,将照射到液晶面板上的光束会聚,使其尽可能多透过液晶面板的各像素的透光区域,以减小直至避免液晶面板的不透光部分的遮挡。而且通过光束会聚,使照射到光敏材料表面上的光斑亮度显著提高。在液晶面板总体光通量较小的情况下,仍能达到树脂感光阀值,并进入其感光的相对线性区段,大幅提高固化速度。
附图概述
本发明的特征、性能由以下的实施例及其附图进一步描述。
图1示出光固化型3D打印设备的基本结构。
图2示出本发明一实施例的3D打印设备的成像系统。
图3示出本发明一实施例的聚焦透镜阵列与液晶显示面板的配合关系。
图4示出图2所示成像系统单个像素的光路原理图。
图5示出液晶面板上的黑色掩模。
图6示出本发明实施例的成像系统一次曝光在光敏材料表面上所形成的图像。
图7示出本发明实施例的成像系统的未进行偏转的光线示意图。
图8示出本发明实施例的成像系统的已进行偏转的光线示意图。
图9示出本发明另一实施例的3D打印设备的成像系统。
图10示出本发明实施例的成像系统4次曝光在光敏材料表面上所形成的图像。
图11示出光敏树脂固化所需的能量与光照功率的关系曲线。
具体实施方式
本发明的实施例描述一种光固化型3D打印设备及其成像系统,该成像系统使用液晶面板作为面阵图像源。为避免液晶面板寿命的显著缩短,本发明的实施例可以在可接受的较低光源功率下投影出满足光固化所需亮度的光斑图像。
图2示出本发明一实施例的3D打印设备的成像系统。参照图2所示,本实施例的成像系统200包括光源201、聚焦透镜阵列202、偏转镜片203、液晶面板204、第一偏振光滤光器205、第二偏振光滤光器206、投影镜头207以及控制器(图未示出)。为简明起见,不示出与本发明无关的器件。
光源201可出射一光束。光源201所发出的光的波长随固化成型的光敏材料而定。例如,选择UV树脂作为光敏材料时,光束可为紫光至紫外光,其波长在430nm以下,例如400-405nm。
液晶面板204位于光源201的出光光路上。液晶面板204包含有多个像素,其主要作用是偏转光源201所发出的光束的偏振方向,配合偏振光滤光器可遮挡光源发出的一部分光,以形成光束图像。液晶面板204的入光侧和出光侧分别设置第一偏振光滤光器205和第二偏振光滤光器206,组成液晶系统。第一偏振光滤光器205和第二偏振光滤光器206只允许和其极化方向相同的光通过,而且二者极化方向相互垂直。在没有液晶面板204的情况下,第一偏振光滤光器205和第二偏振光滤光器206会阻断所有试图穿透的光线。但是,由于两个偏振光滤光器之间为液晶面板204。液晶面板204被分隔为许多充满液晶的液晶单元。每一液晶单元对应一个像素。光线穿出第一偏振光滤光器205后,经过液晶面板204,会被液晶分子扭转一定角度,扭转角度受加在液晶面板上的电压控制。这些光线只有和第二偏振光滤光器206极化方向相同的分量才能从第二偏振光滤光器206中穿出。因此,个别控制各液晶单元的液晶分子的排列方向,就可控制光线透过液晶系统的亮度和图像。
当用于3D打印时,液晶面板204所形成的光束图像可以只包含灰阶信息。因此,液晶面板204可不需要彩色滤色片等在用作显示面板时需要的光学元件。
在本发明的实施例中,第一偏振光滤光器205可以是偏振片或者偏振光分光棱镜。第二偏振光滤光器206也可以是偏振片或者偏振光分光棱镜。
对液晶面板204的每一像素而言,由于液晶单元附近需要布置薄膜晶体管和布线等,并无法让光束全部通过。考虑到包含透光率在内的各种光能量损失,光源201需要达到一定的照射功率才能使光敏材料固化,或者使固化的时间在可接受的程度。如前文所述,波长在430nm以下的光,达到一定功率后对液晶的损害较大。因此如何在满足使光敏材料固化的条件下,尽可能地降低光源201的照射功率成为基于液晶面板的成像系统可实施的关键。
本实施例引入聚焦透镜阵列202并配合对聚焦程度的控制来达成前述目的。
聚焦透镜阵列202设置于液晶面板204的入光侧。聚焦透镜阵列202包含了许多微小的聚焦透镜。每一聚焦透镜对应液晶面板204的每一像素。图3示出本发明一实施例的聚焦透镜阵列与液晶面板的配合关系。在此实施例中,聚焦透镜阵列202是覆盖在液晶面板204上。举例来说,某一聚焦透镜402对应液晶面板204的某一像素404。此像素404包含不透光的黑色掩模404a和透光区域404b。聚焦透镜阵列202可以是由树脂材料压制而成。通过布置在液晶面板的入光侧聚焦透镜的聚焦作用,可以使更多的光透过液晶面板,并且提高了液晶面板的出光侧的聚焦点亮度。这种设计带来两个有利的效果:首先,光源201的照射功率没有提高,因此液晶面板免于受到更高光强的紫外光照射;其次,经过聚焦后,聚焦点亮度得到成倍提升,该聚焦点最终成像与光敏材料,使其更容易固化。在此,聚焦点亮度取决于聚焦程度。
在本实施例中,光源201的形状、面积、发散角、到液晶面板204的距离需要被严格设计,以得到所期望的光斑亮度,后文将详细描述。
图4示出图2所示成像系统单个像素的光路原理图。参照图4所示,光源201发出光束,设其发光面的高和宽都为A,光源发散角能够配合液晶面板204需要照射的面积,光源201到聚焦透镜阵列402的距离为L1,光束照射到聚焦透镜阵列202,其中部分光线照射到某一聚焦透镜402,对应液晶面板204的某一像素404。像素404的尺寸为P。
聚焦透镜402会对光源201发出的光束进行汇聚,同时,在聚焦透镜402 后端会产生光源201的像401a。像401a经过投影镜头207后,投影在光敏材料(图中未示出)表面上形成光斑。
设聚焦透镜的前焦距为f,后焦距为f’(f’≈f),光源201的像高为d,聚焦透镜402到成像面的距离为L2,按照高斯公式我们可以得到:
f/L1+f’/L2=1;
L1/L2=A/d。
在一个示例中,f=100μm,P=20μm,L1=200mm,A=20mm代入上式则:
100μm/200mm+100μm/L2=1;L2=100.05μm;
200mm/100.05μm=20mm/d;d=10μm。
通过上述计算可知,可以通过适当的设计,控制成像光斑的大小。在此,光斑越小,意味着聚焦程度越高,则聚焦后的光斑亮度越高。
与之对照的是,如果液晶面板用于投影显示,通过设计使光斑尽量大些,只要能通过黑色掩模即可,这样对比度最高,画面质量最好。然而这种设计不适用于3D打印。
事实上由于聚焦透镜402可能的制造缺陷,特别是光的衍射效应的存在,光斑尺寸会略大于实际计算,而且光斑的形状也可能成为圆形,而和光源201原来的形状不一样,这需要在实际试验中对前述参数进行调整,以确定最终数据。
无论如何这种会聚作用具有多种潜在的技术效果。首先,经过会聚之后的光束在聚焦点的亮度更高,比如,如果尺寸减小为1/2则亮度将提高至原来的4倍,这对光敏材料的感光有利,后文将展开描述。其次,光束的尽可能透过减少了液晶面板吸收光束而产生的热量,有助于延长液晶面板寿命。再者,经过会聚之后的光束,在光敏材料表面上所形成的光斑尺寸较小,有助于提升打印的分辨率。
下面将描述如何发挥上述潜在的技术效果。
投影镜头207布置在液晶面板204与三维打印设备的光敏材料表面220之间,将液晶面板204及偏振光滤光器205、206所形成并出射的光束图像投影到光敏材料表面220。再参考图4所示,光源201在液晶面板204的每一像素后有一像401a。投影镜头207的位置,则是位于该像与光敏材料表面之间,如 图4所显示的那样。因此,光源201经液晶面板204后形成的多个像将清晰地投影到光敏材料表面220上。可使会聚后的像401a的尺寸与液晶像素尺寸之比为1:2,即面积之比为1:4,这会使亮度相应为原来的4倍。尽管经过投影,像401a的尺寸会扩大,但这一比例在像401a投影到光敏材料表面上时会保持不变。下面将参考光敏材料表面的光斑来继续讨论比例的设定。
图6示出本发明实施例的成像系统一次曝光在光敏材料表面上所形成的图像。作为比较,如果光线直接通过图5示出的成像系统的黑色掩模进行成像,则会得到类似于此黑色掩模的图像。比较图5和图6可知,经过聚焦透镜阵列202的会聚后,图像中光斑的尺寸缩小了,而光斑亮度则相应提高了。通过如前文所述的适当的光学设计来调整会聚的程度,以决定光斑的尺寸缩小比例。举例来说,可使会聚后的光斑尺寸(像401a投影在光敏材料表面的尺寸)与像素尺寸(液晶像素投影在光敏材料表面的尺寸)之比为1:2,即面积之比为1:4,亮度则相应为原来的4倍。因此,总的到达光敏材料表面的能量没有减少。
可以理解,考虑到前述聚焦透镜402制造的缺陷和光的衍射效应等因素,当所设计光斑尺寸与像素尺寸之比为1:2时,实际的光斑尺寸与像素尺寸之比会略大于1:2。本实施例的成像系统允许适当的误差,即前述尺寸之比约为1:2。
此外,可使会聚后的光斑尺寸与像素尺寸之比约为1:3或1:4。这里取整数倍的原因是考虑到后续偏转时,需要在各个光斑的空白部分插入新的光斑。
如图6所示,光敏材料表面上一次曝光的图像中,光斑之间留有空白。为此,通过多次曝光来填补这些空白,使光斑布满整个光敏材料表面。
在本实施例中,在液晶面板204的出光侧,例如液晶面板204与投影镜头207之间(或者投影镜头207之后)布置有偏转镜片203。偏转镜片203能够围绕至少一转轴偏转,以微调光束图像投影到光敏材料表面220的位置。前述的转轴均垂直于成像系统的光轴z,在偏转镜片和液晶面板204平行(和光轴z垂直)时,光线垂直照射在偏转镜片203,这时没有折射现象发生,光线a直接经过偏转镜片(如图7);如果偏转镜片203围绕一转轴倾斜一个角度,光线从空气进入偏转镜片203将会产生折射,光线从偏转镜片203进入空气时再次发生折射,两个折射的折射角度相同,方向相反,折射后的光线b将按原有方向前进,但是发生微小的位移(如图8)。举例来说,偏转透镜的这一转轴是图7 所示的转轴x。另外,这一转轴可以是位于包含转轴x且垂直于光轴z的平面内,且垂直于转轴x的转轴y(图未示出)。在本发明的实施例中,偏转镜片203可以既能够绕转轴x偏转,也能绕转轴y偏转。
上述的偏转可以结合多次曝光,使各次曝光的光束图像叠加,令光斑布满光敏材料表面220。具体地说,可以令光源201进行多次曝光,在每次曝光时,命令偏转镜片203进行偏转以将各次曝光的光束图像投影到该光敏材料表面的不同位置。图10示出本发明实施例的成像系统4次曝光在光敏材料表面上所形成的图像。参照图10所示,在第一次曝光时,形成了投影图像A;在第二次曝光时,由于偏转镜片203绕着x轴偏转,使光束图像略微沿图中的水平方向移动,投影到两列光斑之间的空白中,形成投影图像B;在第三次曝光时,偏转镜片203绕着y轴偏转,使光束图像略微沿图中的垂直方向移动,投影到两行光斑之间的空白中,形成投影图像C;同理,形成投影图像D。投影图像D已布满了光敏材料表面220。
在实际实施时,可以使用成像系统200的控制器,命令光源201进行多次曝光,同时在每次曝光时命令该偏转镜片203配合进行x、y两个方向的偏转。
在本发明的另一实施例中,如图9所示,液晶面板204连接有微位移驱动机构208以代替偏转镜片203。微位移驱动机构208能够驱动液晶面板在x方向和y方向移动,以微调光束图像投影到光敏材料表面220的位置。在此,x、y方向在同一平面,且这一平面垂直于成像系统的光轴z。在微位移驱动机构208没有驱动液晶面板位移时,液晶面板204的光束图像在光敏材料表面220的第一位置;当微位移驱动机构208驱动液晶面板204在一方向(x或y方向)微位移时,液晶面板204的整个光束图像将随着液晶面板204发生微小的位移。
微位移驱动机构208可以是压电陶瓷。
需要指出的是,各次曝光的光束图像的叠加虽然布满该光敏材料表面,但是各次曝光的光束图像在光敏材料表面220的位置可以基本上互不重叠。这是通过控制像素尺寸与光斑的尺寸之比为整数,且偏转的步距刚好为光斑尺寸来实现的。这种基本上互不重叠的设置可以避免重叠区域所接收的光照高于平均水平,造成固化的不均匀。可以理解,考虑光衍射效应等因素,略微的重叠有助于弥补光斑非矩形边缘部分的缺失。因此并不要求光斑之间完全不重叠。此 外,光束图像的叠加虽然布满该光敏材料表面,但是可以理解,光束图像中并非每个位置都是亮点,而是可能有暗点。
在本发明的一实施例中,各次曝光的光束图像可以包含相同的图像信息。以图10为例,投影图像D中,虚框内的四个光斑包含相同的图像信息。这一实施例的优势在于提高每次曝光时,到达光敏材料表面光斑的亮度。
上述的例子是在控制光斑尺寸为像素尺寸的1/2时,进行4次曝光。可以理解,控制光斑为像素尺寸的1/3时进行9次曝光,控制光斑为像素尺寸的1/4时进行16次曝光,以次类推。
接下来说明曝光亮度有利于光敏材料的感光的原理。光敏材料接受一定量的光照射后,在一定时间内会固化,这一时间称为固化时间。光照射的功率,即光敏材料在单位时间内接收到的光照能量,会显著影响固化时间。理论上一定面积的光敏材料的固化需要的能量可以表达为:
W=P*t,P为照射到树脂上的光功率,t为曝光时间。
即,可以通过提高光功率减少曝光时间或较小光功率增加曝光时间来达到同样的能量以达到同样的固化效果,这称为“互易律”。但是在光敏树脂中存在互易律失真的情形。
图11示出光敏树脂固化所需的能量与光照功率的关系曲线。如图11所示,x轴表示光照功率,y轴表示固化需要的能量W。曲线表示在不同光照功率下,一定面积的光敏材料的固化需要的能量。当光照功率在P0以下时,需要能量W为无穷大,由于t=W/P,即需要无穷大时间。曲线包含了线性段(图中接近水平的部分)和非线性段(图中斜线部分)。在线性段,随着光照功率加大,所需固化时间和光照功率成反比,固化需要的能量基本不变;在非线性段,随着光照功率减小,所需固化时间非线性快速增加,固化需要的能量非线性增大。
总结来说,光敏树脂具有以下特性:
1.光照射的功率必须达到一定的下限P0,才可能发生固化,低于这一功率无论如何延长曝光时间,也不能固化,这一光功率称为阀值功率。
2.只有在线性段,才能基本符合上述“互易律”。
3.但是在接近P0的区域,光照功率的微小减低都需要大量增加曝光时间才能使树脂固化到同样程度。
由于光敏树脂需要的光照的波长在430nm以下,这一波长的光线过强对液晶面板中的液晶是有伤害的。因此使用液晶面板的3D打印设备,其光照强度会选择较低,例如设定在略大于P0的位置,以延长液晶面板的寿命。然而这也意味着,需要大量增加曝光时间才能使光敏树脂固化,这大大降低了感光速度。
本发明的实施例通过缩小光斑,成倍增加光斑亮度,从而使成像系统摆脱需要大量增加曝光时间才能使树脂固化的非线性段,进入相对线性段,从而大大减小了光敏材料的固化时间,提高了感光速度。同时,减少了固化需要的总能量W(这也是通过液晶面板的光能),延长了液晶面板的寿命。
在本发明的另一实施例中,各次曝光的光束图像包含不同的图像信息。以图10为例,投影图像D中,虚框内的四个光斑包含互不相同的图像信息。这就意味着,图像的分辨率相应变为原来的4倍。因此3D打印的精度得到显著提高。
本发明的上述实施例通过设置聚焦透镜阵列,将照射到液晶面板上的光束会聚,使其能透过液晶面板的各像素的透光区域,尽可能穿过液晶面板,以减小直至避免液晶面板的不透光部分的遮挡。而且通过光束会聚,使照射到光敏材料表面上的光斑面积缩小,亮度显著提高,在液晶面板总体光通量较小的情况下,仍能达到光敏树脂感光阀值,提高感光速度。再者,通过多次曝光配合偏转镜片的微位移可将光敏材料表面填满曝光光斑,再针对各次曝光使用不同成像信息,可提高成像的分辨率,从而提高打印的精度。
虽然本发明已以较佳实施例揭示如上,然其并非用以限定本发明,任何本领域技术人员,在不脱离本发明的精神和范围内,当可作些许的修改和完善,因此本发明的保护范围当以权利要求书所界定的为准。

Claims (12)

  1. 一种光固化型3D打印设备的成像系统,包括:
    光源,出射一光束;
    液晶面板,位于该光源的出光光路上,该液晶面板包含多个像素;
    第一偏振光滤光器,设置于该液晶面板的入光侧;
    第二偏振光滤光器,设置于该液晶面板的出光侧,该第一偏振光滤光器和该第二偏振光滤光器配合该液晶面板遮挡该光束的一部分,以形成一光束图像;
    聚焦透镜阵列,设置于该液晶面板的入光侧,该聚焦透镜阵列的每一聚焦透镜对应该液晶面板的每一像素,每一聚焦透镜能够会聚照射到对应像素的光束,使该光束尽可能多的透过该像素的透光区域,并在该液晶面板的出光侧成像,且像的尺寸小于对应像素的透光区域的尺寸;
    投影镜头,布置在该液晶面板与光敏材料表面之间,且位于该像与该光敏材料表面之间,将该光束图像投影到该光敏材料表面,使该光源通过各聚焦透镜所成的像在该光敏材料表面形成多个光斑;
    偏转镜片,布置在该液晶面板与的出光侧,该偏转镜片能够围绕垂直于该成像系统的光轴的至少一转轴偏转,以微调该光束图像投影到该光敏材料表面的位置;以及
    控制器,命令该光源进行多次曝光,在每次曝光时命令该偏转镜片进行偏转,以将各次曝光的光束图像投影到该光敏材料表面的不同位置。
  2. 如权利要求1所述的光固化型3D打印设备的成像系统,其特征在于,该聚焦透镜阵列覆盖在该液晶面板上。
  3. 如权利要求1所述的光固化型3D打印设备的成像系统,其特征在于,各次曝光的光束图像在该光敏材料表面所形成的各个光斑基本上互不重叠。
  4. 如权利要求1所述的光固化型3D打印设备的成像系统,其特征在于,各次曝光的光束图像所形成的光斑布满该光敏材料表面。
  5. 如权利要求1所述的光固化型3D打印设备的成像系统,其特征在于,其中该像的尺寸小于、等于或略大于该液晶面板的像素尺寸的一半。
  6. 如权利要求1所述的光固化型3D打印设备的成像系统,其特征在于,各次曝光的光束图像包含相同的图像信息。
  7. 如权利要求1所述的光固化型3D打印设备的成像系统,其特征在于,各次曝光的光束图像包含不同的图像信息。
  8. 如权利要求1所述的光固化型3D打印设备的成像系统,其特征在于,该像的尺寸与该液晶面板的像素尺寸之比大约为1:2、1:3或1:4,同时该光源的曝光次数为4、9或16次。
  9. 如权利要求1、5或8所述的光固化型3D打印设备的成像系统,其特征在于,设该光源与该聚焦透镜的距离为L1,该聚焦透镜到成像面的距离是L2,该聚焦透镜的前焦距和后焦距分别为f和f’,该光源的尺寸为A,该像的尺寸为d,则满足以下条件:
    f’/L2+f/L1=1;
    L1/L2=A/d。
  10. 如权利要求1所述的光固化型3D打印设备的成像系统,其特征在于,该光束的波长在430nm以下。
  11. 一种光固化型3D打印设备的成像系统,包括:
    光源,出射一光束;
    液晶面板,位于该光源的出光光路上,该液晶面板包含多个像素;
    第一偏振光滤光器,设置于该液晶面板的入光侧;
    第二偏振光滤光器,设置于该液晶面板的出光侧,该第一偏振光滤光器和该第二偏振光滤光器配合该液晶面板遮挡该光束的一部分,以形成一光束图像;
    聚焦透镜阵列,设置于该液晶面板的入光侧,该聚焦透镜阵列的每一聚焦透镜对应该液晶面板的每一像素,每一聚焦透镜能够会聚照射到对应像素的光束,使该光束尽可能多的透过该像素的透光区域,并在该液晶面板的出光侧成像,且像的尺寸小于对应像素的透光区域的尺寸;
    投影镜头,布置在该液晶面板与光敏材料表面之间,且位于该像与该光敏材料表面之间,将该光束图像投影到该光敏材料表面,使该光源通过各聚焦透镜所成的像在该光敏材料表面形成多个光斑;
    微位移驱动机构,连接该液晶面板,能够驱动该液晶面板在相互垂直的第一方向和第二方向移动,以微调该光束图像投影到该光敏材料表面的位置;以及
    控制器,命令该光源进行多次曝光,在每次曝光时命令该微位移驱动机构动作,以将各次曝光的光束图像投影到该光敏材料表面的不同位置。
  12. 一种光固化型3D打印设备,包括如权利要求1-11任一项所述的成像系统。
PCT/CN2014/088723 2013-12-03 2014-10-16 光固化型3d打印设备及其成像系统 WO2015081756A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/101,853 US10416541B2 (en) 2013-12-03 2014-10-16 Photo-curing 3D printing device and imaging system thereof
EP14867693.5A EP3078482B1 (en) 2013-12-03 2014-10-16 Photo-curing 3d printing device and imaging system thereof
JP2016557175A JP6600315B2 (ja) 2013-12-03 2014-10-16 光硬化型3dプリント装置及びその結像システム
DK14867693.5T DK3078482T3 (da) 2013-12-03 2014-10-16 Lyshærdende 3D printerenhed og billedbehandlingssystem dertil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310642109.0 2013-12-03
CN201310642109 2013-12-03

Publications (1)

Publication Number Publication Date
WO2015081756A1 true WO2015081756A1 (zh) 2015-06-11

Family

ID=53272850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088723 WO2015081756A1 (zh) 2013-12-03 2014-10-16 光固化型3d打印设备及其成像系统

Country Status (6)

Country Link
US (1) US10416541B2 (zh)
EP (1) EP3078482B1 (zh)
JP (1) JP6600315B2 (zh)
CN (1) CN104669621B (zh)
DK (1) DK3078482T3 (zh)
WO (1) WO2015081756A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106228598A (zh) * 2016-07-25 2016-12-14 北京工业大学 一种面向面曝光3d打印的模型自适应光照均匀化方法
CN112026174A (zh) * 2020-08-28 2020-12-04 合肥众群光电科技有限公司 一种使用dmd动态曝光提高3d打印精度的装置及方法
CN114281274A (zh) * 2021-11-30 2022-04-05 深圳市纵维立方科技有限公司 光亮度均匀性的调节方法、打印方法、打印系统及设备

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104786508A (zh) * 2015-05-15 2015-07-22 京东方科技集团股份有限公司 3d打印设备及其成像系统
CN104802414A (zh) * 2015-05-20 2015-07-29 京东方科技集团股份有限公司 一种三维打印设备及三维打印方法
ITUB20154169A1 (it) 2015-10-02 2017-04-02 Thelyn S R L Metodo e apparato di foto-indurimento a substrato auto-lubrificante per la formazione di oggetti tridimensionali.
WO2017115077A1 (en) * 2015-12-30 2017-07-06 Daqri Holographics Ltd Dynamic holography focused depth printing device
DE102016124695A1 (de) * 2016-12-16 2018-06-21 Cl Schutzrechtsverwaltungs Gmbh Belichtungseinrichtung für eine Vorrichtung zur additiven Herstellung dreidimensionaler Objekte
WO2018125630A1 (en) * 2016-12-29 2018-07-05 3D Systems, Inc. Powder-based additive manufacturing temperature control by spatial light modulation
IL267976B (en) * 2017-01-25 2022-08-01 Nexa3D Inc Method and device using a light source for radiation curing of liquid polymers to create three-dimensional objects
CN108466427A (zh) * 2017-02-23 2018-08-31 上海冠显光电科技有限公司 一种光固化3d打印光学模块及光固化3d打印系统
CN108927994A (zh) * 2017-05-22 2018-12-04 三纬国际立体列印科技股份有限公司 立体打印装置
CN110770626B (zh) * 2017-06-21 2022-04-01 依视路国际公司 光学物品的制造方法和光学成形设备
CA3071694A1 (en) * 2017-08-02 2019-02-07 Trio Labs, Inc. Solid freeform fabrication utilizing in situ infusion and imaging
CN107498855B (zh) * 2017-08-29 2020-03-13 北京金达雷科技有限公司 一种光固化3d打印机以及3d打印方法
CN107584758A (zh) * 2017-11-01 2018-01-16 郑州迈客美客电子科技有限公司 光固化打印机用投影方法、投影装置及带该装置的打印机
WO2019133212A1 (en) * 2017-12-29 2019-07-04 Lawrence Livermore National Security, Llc System and method for submicron additive manufacturing
KR101835539B1 (ko) * 2018-01-17 2018-04-19 에이온 주식회사 인공 치아 성형 장치 및 그 방법
KR102585150B1 (ko) * 2018-03-06 2023-10-06 어플라이드 머티어리얼스, 인코포레이티드 3d 기능성 광학 물질 적층 구조를 구축하는 방법
CN109094023B (zh) * 2018-07-19 2020-09-25 天马微电子股份有限公司 3d打印机用打印模组、打印方法及3d打印机
US10780640B2 (en) 2018-07-30 2020-09-22 Intrepid Automation Multiple image projection system for additive manufacturing
US20220324163A1 (en) * 2019-06-04 2022-10-13 Zhejiang University Imaging principle-based integrated color light 3d bioprinting system
JP2021004395A (ja) * 2019-06-26 2021-01-14 古河電気工業株式会社 積層造形装置
CN110293675B (zh) * 2019-06-28 2021-04-02 京东方科技集团股份有限公司 一种光控制组件、3d打印装置及3d打印方法
CN110524874B (zh) * 2019-08-23 2022-03-08 源秩科技(上海)有限公司 光固化3d打印装置及其打印方法
CN112936848B (zh) * 2019-12-11 2023-05-12 上海普利生机电科技有限公司 三维打印方法、设备和计算机可读介质
CN113942229A (zh) * 2020-07-16 2022-01-18 上海普利生机电科技有限公司 校正亮度均匀性的三维打印方法及其设备
CN112297429A (zh) * 2020-10-10 2021-02-02 西南医科大学附属中医医院 一种生物3d打印机的成型室
CN113715337B (zh) * 2021-09-26 2023-10-27 上海联泰科技股份有限公司 控制装置、方法、3d打印方法及打印设备
CN114506079B (zh) * 2022-02-25 2024-05-24 深圳市纵维立方科技有限公司 一种光源组件及3d打印机
US12023865B2 (en) 2022-08-11 2024-07-02 NEXA3D Inc. Light engines for vat polymerization 3D printers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001252986A (ja) * 2000-03-09 2001-09-18 Japan Science & Technology Corp 光造形装置及び光造形方法
CN101332649A (zh) * 2008-07-14 2008-12-31 西安工程大学 基于反射型液晶光阀的光固化快速成型装置及成型方法
CN203697483U (zh) * 2013-12-03 2014-07-09 上海普利生机电科技有限公司 光固化型3d打印设备及其成像系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960013009A (ko) * 1994-09-15 1996-04-20 이헌조 슬라이드 겸용 프로젝터
US6190015B1 (en) * 1999-08-05 2001-02-20 Mustek Systems, Inc. Liquid crystal display projector with a lens shading device capable shading and positioning lens
JP3784279B2 (ja) * 2000-06-16 2006-06-07 シャープ株式会社 投影型画像表示装置
FR2859543B1 (fr) * 2003-09-08 2005-12-09 Pascal Joffre Systeme de fabrication d'un objet a trois dimensions dans un materiau photo polymerisable
DE102004022961B4 (de) * 2004-05-10 2008-11-20 Envisiontec Gmbh Verfahren zur Herstellung eines dreidimensionalen Objekts mit Auflösungsverbesserung mittels Pixel-Shift
EP1744871B1 (de) * 2004-05-10 2008-05-07 Envisiontec GmbH Verfahren zur herstellung eines dreidimensionalen objekts mit auflösungsverbesserung mittels pixel-shift
JP3931989B2 (ja) 2004-11-01 2007-06-20 シャープ株式会社 表示装置
JP2008209888A (ja) * 2007-01-31 2008-09-11 Sony Corp 光学装置および投射型表示装置
WO2010043274A1 (en) * 2008-10-17 2010-04-22 Huntsman Advanced Materials (Switzerland) Gmbh Improvements for rapid prototyping apparatus
JP2015094938A (ja) * 2013-11-14 2015-05-18 株式会社 オルタステクノロジー 表示装置
JP6277728B2 (ja) * 2014-01-15 2018-02-14 セイコーエプソン株式会社 投射型表示装置および照明装置
US10399270B2 (en) * 2015-04-28 2019-09-03 Gold Array Technology (Beijing) Llc Photo-curing 3D printer and 3D printing method
GB201508178D0 (en) * 2015-05-13 2015-06-24 Photocentric Ltd Method for making an object
CN104802414A (zh) * 2015-05-20 2015-07-29 京东方科技集团股份有限公司 一种三维打印设备及三维打印方法
ITUB20154169A1 (it) * 2015-10-02 2017-04-02 Thelyn S R L Metodo e apparato di foto-indurimento a substrato auto-lubrificante per la formazione di oggetti tridimensionali.
US11298874B2 (en) * 2017-03-22 2022-04-12 Alcon Inc. 3D printing of an intraocular lens having smooth, curved surfaces

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001252986A (ja) * 2000-03-09 2001-09-18 Japan Science & Technology Corp 光造形装置及び光造形方法
CN101332649A (zh) * 2008-07-14 2008-12-31 西安工程大学 基于反射型液晶光阀的光固化快速成型装置及成型方法
CN203697483U (zh) * 2013-12-03 2014-07-09 上海普利生机电科技有限公司 光固化型3d打印设备及其成像系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106228598A (zh) * 2016-07-25 2016-12-14 北京工业大学 一种面向面曝光3d打印的模型自适应光照均匀化方法
CN106228598B (zh) * 2016-07-25 2018-11-13 北京工业大学 一种面向面曝光3d打印的模型自适应光照均匀化方法
CN112026174A (zh) * 2020-08-28 2020-12-04 合肥众群光电科技有限公司 一种使用dmd动态曝光提高3d打印精度的装置及方法
CN112026174B (zh) * 2020-08-28 2023-04-28 合肥众群光电科技有限公司 一种使用dmd动态曝光提高3d打印精度的装置及方法
CN114281274A (zh) * 2021-11-30 2022-04-05 深圳市纵维立方科技有限公司 光亮度均匀性的调节方法、打印方法、打印系统及设备

Also Published As

Publication number Publication date
JP6600315B2 (ja) 2019-10-30
CN104669621A (zh) 2015-06-03
EP3078482A1 (en) 2016-10-12
US10416541B2 (en) 2019-09-17
EP3078482B1 (en) 2019-05-22
EP3078482A4 (en) 2017-09-06
DK3078482T3 (da) 2019-08-12
CN104669621B (zh) 2018-05-11
JP2017501911A (ja) 2017-01-19
US20160306266A1 (en) 2016-10-20

Similar Documents

Publication Publication Date Title
WO2015081756A1 (zh) 光固化型3d打印设备及其成像系统
WO2015113408A1 (zh) 光固化型3d打印设备及其图像曝光系统
US11897196B2 (en) Multiple image projection system and method for additive manufacturing
CN104669619B (zh) 光固化型3d打印设备及其成像系统
CN203697483U (zh) 光固化型3d打印设备及其成像系统
EP3573813B1 (en) Method and apparatus using light engines for photo-curing of liquid polymers to form three-dimensional objects
CN109968661B (zh) 光固化型三维打印方法和设备
TWI650613B (zh) 光源裝置及曝光裝置
US20120002155A1 (en) Method and system for repairing flat panel display
CN111923411A (zh) 一种动态成像3d打印系统及其打印方法
CN108062005B (zh) 一种直写式丝网制版系统的拼接改善方法
CN104669622B (zh) 光固化型3d打印设备及其成像系统
CN105690753B (zh) 提高分辨率的3d打印方法和设备
EP3470210B1 (en) Three-dimensional printing apparatus
CN118215572A (zh) 用于具有多图像投影的增材制造系统的校准系统和方法
JP2005345582A (ja) 投影光学系およびパターン描画装置
TWI437338B (zh) 平面顯示器之修補方法與系統
WO2020125570A1 (zh) 光固化型3d打印设备及其图像曝光系统
CN112026174B (zh) 一种使用dmd动态曝光提高3d打印精度的装置及方法
JPH08112862A (ja) 光造形装置
CN218749338U (zh) 一种基于dlp的3d打印机
CN117048049A (zh) 光固化型3d打印设备及其成像系统
EP4173805A1 (en) An imaging module for a uv lcd 3d printer
JP2009137230A (ja) 光造形装置
JP2005053024A (ja) 3次元積層造形装置及び3次元積層造形方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867693

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016557175

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15101853

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014867693

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014867693

Country of ref document: EP