JP6959023B2 - リニアアクチュエータ - Google Patents

リニアアクチュエータ Download PDF

Info

Publication number
JP6959023B2
JP6959023B2 JP2017050557A JP2017050557A JP6959023B2 JP 6959023 B2 JP6959023 B2 JP 6959023B2 JP 2017050557 A JP2017050557 A JP 2017050557A JP 2017050557 A JP2017050557 A JP 2017050557A JP 6959023 B2 JP6959023 B2 JP 6959023B2
Authority
JP
Japan
Prior art keywords
mover
stopper
magnetic pole
linear actuator
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017050557A
Other languages
English (en)
Other versions
JP2018157635A (ja
Inventor
正志 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THK Co Ltd
Original Assignee
THK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THK Co Ltd filed Critical THK Co Ltd
Priority to JP2017050557A priority Critical patent/JP6959023B2/ja
Publication of JP2018157635A publication Critical patent/JP2018157635A/ja
Application granted granted Critical
Publication of JP6959023B2 publication Critical patent/JP6959023B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Linear Motors (AREA)

Description

本発明は、リニアアクチュエータに関するものである。
リニアアクチュエータに設けられたリニアモータは、可動子又は固定子のいずれか一方に設けられた複数のコイルと、可動子又は固定子の他方に設けられた駆動用磁石との相対的な位置関係(磁極位置)に応じた通電をしないと、リニアモータの推力定数に応じた推力を発生させることができない。
そこで、リニアモータの駆動を開始する際には、固定子に対する可動子の磁極位置を検知する磁極検知を行う必要がある。例えば、リニアモータの駆動を開始する際に、予め定められた磁極位置に対応する電流を一定時間、リニアモータに印加することで当該磁極位置に可動子を引き込むこと(直流励磁)が行われている(特許文献1参照)。
特開平5−015179号公報
ところで、このようなリニアアクチュエータには、通常、可動子のストロークエンドにストッパーが設けられているが、可動子がストロークエンドに位置している状態で上記磁極検知を行った場合、可動子を引き込む方向がストッパーに向かう方向になってしまうと、可動子が移動することができず、磁極検知を行えないという問題がある。このため、従来では、磁極検知を行う前に、可動子をストロークの中央付近まで手動で動かす等、煩わしい作業が必要となっていた。一方で、ABS(アブソリュート型)エンコーダや磁極センサを搭載し、ドライバに特殊な機能を持たせれば、磁極検知動作自体が不要になるが、コストが増えてしまうという問題がある。
本発明は、上記課題に鑑みてなされたものであり、可動子がストロークエンドに位置する場合であっても磁極検知動作を行うことができるリニアアクチュエータの提供を目的とする。
上記の課題を解決するために、本発明は、固定子及び可動子を有するリニアモータと、前記固定子に対する前記可動子の移動を一定の範囲に規制するストッパーと、前記固定子に対して前記可動子を移動させ、前記固定子に対する前記可動子の磁極位置を検知する磁極検知手段と、を有し、前記ストッパーは、前記磁極検知手段による磁極検知に要する前記可動子の移動距離以上の変形可能領域を有しており、前記磁極検知手段は、前記磁極検知に要するモニタリング時間を、前記可動子を引き込む方向が前記ストッパーに向かう方向である場合に、前記可動子を引き込む方向がストッパーに向かう方向と反対方向である場合よりも長くする、リニアアクチュエータを採用する。
本発明によれば、可動子がストロークエンドに位置する場合であっても磁極検知動作を行うことができる。
本発明の実施形態におけるリニアアクチュエータを示す外観斜視図である。 本発明の実施形態におけるリニアアクチュエータを示す全体構成図である。 本発明の実施形態におけるストッパーを示す平断面図である。 本発明の実施形態におけるリニアアクチュエータにおいてサーボオン入力で磁極検知を行うときのフロー図である。 本発明の実施形態におけるストッパーの変形例を示す平断面図である。
以下、本発明の実施形態について図面を参照して説明する。以下に示す実施形態は、発明の趣旨をより良く理解させるために、例を挙げて説明するものであり、特に指定のない限り、本発明を限定するものではない。また、以下の説明に用いる図面は、本発明の特徴を分かりやすくするために、便宜上、要部となる部分を拡大している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。また、本発明の特徴を分かりやすくするために、便宜上、省略した部分がある。
図1は、本発明の実施形態におけるリニアアクチュエータ1を示す外観斜視図である。図2は、本発明の実施形態におけるリニアアクチュエータ1を示す全体構成図である。
リニアアクチュエータ1は、リニアモータで駆動する直動装置2と、直動装置2(リニアモータ)の動作を制御する制御装置3と、を有する。なお、制御装置3は、後述する磁極検知手段を構成する。
直動装置2は、図1に示すように、リニアモータを構成する固定子10及び可動子11と、可動子11のストロークエンドに設けられ、固定子10に対する可動子11の移動を一定の範囲に規制するストッパー12と、図2に示すように、可動子11に設けられたリニアエンコーダ13と、リニアエンコーダ13と対向して設けられたリニアスケール14と、を有する。このリニアエンコーダ13は、インクリメンタル型であって、可動子11の移動量に応じてパルスを出力するものであり、アブソリュート型と違い、サーボオフしたときに原点位置(初期磁極位置)を記憶していない。
固定子10は、図1に示すように、断面視U字状の長尺部材であるベース部材20と、ベース部材20の長手方向両端部に取り付けられた取付板21と、を有する。ベース部材20は、長手方向に延びる底面部20aと、底面部20aに対して垂直に立設する側壁部20bと、を有する。側壁部20bは、底面部20aの長手方向と直交する幅方向(短手方向)において間隔をあけて配置され、底面部20aの両縁部に沿って一対で延在している。
図2に示すように、一対の側壁部20bの互いの対向面には、永久磁石22が取り付けられている。永久磁石22は、ベース部材20の長手方向に沿って所定のピッチで配置され、且つ、相手側の側壁部20bに対向する側の磁極がN極、S極と交互になるように配置されている。永久磁石22の磁石ピッチは、特に限定されないが、本実施形態のリニアアクチュエータ1では、例えば、10mm程度に設定されている。
また、図1に示すように、一対の側壁部20bの頂面には、軌道レール23が取り付けられている。一対の側壁部20bに取り付けられた軌道レール23は、ベース部材20の長手方向に沿って互いに平行に延在している。この軌道レール23には、図2に示すように、複数のスライダブロック30がその長手方向に沿って相対移動可能に組み付けられている。
スライダブロック30は、図示しない転動体(ボール等)を介して軌道レール23に組み付けられており、転動体を循環させる図示しない無限循環路を形成する。なお、本実施形態のように、スライダブロック30のストロークが限られる場合、無限循環路が形成されない有限ストローク型を採用してもよい。有限ストローク型とは、スライダブロック30と軌道レール23との間にケージ(転動体保持部材)が配置され、当該ケージに設けられたボールホルダで転動体を回転自在に保持するものである。
一対の軌道レール23に組み付けられた複数のスライダブロック30には、テーブル31が取り付けられている。すなわち、複数のスライダブロック30は、テーブル31に固定され、テーブル31と一体になって移動する。テーブル31の幅方向中央部には、コイル支持部32が垂設されている。一対の側壁部20b(永久磁石22)と対向するコイル支持部32の両側面には、複数のコイル33が取り付けられている。
コイル33は、長手方向に沿って所定ピッチで配置され、且つ、U、V、W相の3つのコイルを一組として複数組設けられている。制御装置3は、U、V、W相のコイルに三相電機子電流を流すことによって直線的に移動する移動界磁を発生させ、リニアモータの可動子11を固定子10に対して直線的に移動させる。
また、制御装置3は、可動子11(テーブル31)に取り付けられたリニアエンコーダ13から、可動子11の移動量を取得し、後述する磁極検知により取得した初期磁極位置とリニアエンコーダ13から出力される移動量とに基づいて、現在の可動子11の磁極位置(具体的には、d軸の位置、電気角)を算出し、当該磁極位置に基づき、可動子11を移動させる。なお、このような制御の詳細は、例えば、特許第5820446号の特許公報に記載されている。
可動子11の移動方向におけるコイル支持部32の両端面には、ストッパー12と接触可能な接触板34(接触対象)が設けられている。ストッパー12は、可動子11の移動方向において可動子11を挟んだ位置に一対で設けられている。一対のストッパー12は、図1に示すように、固定子10のベース部材20の底面部20aに対して垂直に立設しており、可動子11の接触板34に対しその移動方向両側において接触可能な位置に配置されている。
図3は、本発明の実施形態におけるストッパー12を示す平断面図である。図3(a)は、ストロークエンドに位置する可動子11がストッパー12に接触している状態を示す図である。また、図3(b)は、ストロークエンドにおいて磁極検知を行ったときの可動子11の移動及びそのときのストッパー12の変形の様子を示す図である。
ストッパー12は、図3に示すように、弾性部材40と、剛性部材41とから構成されている。
弾性部材40は、図3(b)に示すように、磁極検知に要する可動子11の移動距離B1以上の変形可能領域B2を有する。磁極検知に要する可動子11の移動距離B1とは、例えば、後述するように、サーボオン入力で直流励磁を行う場合には、最大で永久磁石22の磁石ピッチ分となる。なお、この移動距離B1は、図2に示すように、可動子11がストッパー12に接触した位置から、例えば、ストッパー12側の最端部に配置された永久磁石22への引き込み量で規定できるため、最端部の永久磁石22の配置によって、例えば1〜2mm程度に調整できる。
剛性部材41は、弾性部材40の変形可能領域B2を超えた変形を規制するものである。この剛性部材41は、例えば、弾性部材40がウレタン等の材料から形成された場合、その材料よりも剛性の高い材料から形成されている。本実施形態の剛性部材41は、円柱状に形成された鉄心であり、その下端部に、固定子10(ベース部材20)に螺着可能な図示しないネジが形成されている。
弾性部材40は、剛性部材41の周面に所定の厚みで巻かれた円筒状のものである。これにより、ストッパー12は、全体で円柱状に形成され、その周面が中心部に対して弾性変形し易くなっている。また、ストッパー12(弾性部材40)の周面は曲面であるのに対し、可動子11(接触板34)の接触面34aは平面であるため、図3(a)に示すように、可動子11がストロークエンドに位置するとき、可動子11とストッパー12は、線接触する。
また、図3(b)に示すように、磁極検知によって可動子11がストッパー12側に移動すると、ストッパー12の変形可能領域B2は、その変形量が大きくなるに従って、可動子11に対する接触面積が漸次大きくなる(接触面積A1→A2)。すなわち、可動子11とストッパー12の接触状態が、線接触から面接触に変わるため、磁極検知の初動時には、可動子11がストッパー12に接触する力が集中し、小さな力であってもストッパー12を変形させることができる。
図4は、本発明の実施形態におけるリニアアクチュエータ1においてサーボオン入力で磁極検知を行うときのフロー図である。
電源が投入され、サーボオンされると(ステップS1)、制御装置3は、磁極検知を開始する(ステップS2)。本実施形態では、磁極検知として、予め定められた磁極位置に対応する電流を一定時間、コイル33に印加することで、当該磁極位置に可動子11を引き込む直流励磁を行う。
制御装置3は、リニアエンコーダ13の出力を取得しつつ(ステップS3)、所定時間モニタリングする(ステップS4)。このモニタリング時間は、例えば、1〜5秒程度に設定されている。ステップS2の直流励磁から所定時間が経過したら、制御装置3は、リニアエンコーダ13の出力結果から可動子11が移動したか否かを判断する(ステップS5)。
例えば、リニアエンコーダ13の分解能(1パルス)が1μmであって、その1000パルス分である1mm以上、可動子11が動かなかった場合、何らかの不具合が発生したとしてエラーを出す。一方、可動子11が1mm以上動いた場合、直流励磁によって可動子11を引き込んだ磁極位置を初期磁極位置として設定する。
以上により、リニアアクチュエータ1における磁極検知が終了する。
本実施形態のリニアアクチュエータ1によれば、図2に示すように、可動子11がストロークエンドに位置する場合であっても、上述した磁極検知動作を行うことができる。すなわち、固定子10に設けられ、可動子11に接触可能なストッパー12は、図3(b)に示すように、磁極検知に要する可動子11の移動距離B1以上の変形可能領域B2を有するため、図3(a)に示すように、可動子11がストッパー12に接触した状態であって、且つ、図3(b)に示すように、可動子11を直流励磁により引き込む方向がストッパー12に向かう方向になったとしても、ストッパー12の変形可能領域B2で磁極検知を完了させることが可能である。
また、本実施形態においては、変形可能領域B2は、その変形量が大きくなるに従って、可動子11に対する接触面積が漸次大きくなる円柱形状を有する。この構成によれば、磁極検知の初動時には、可動子11とストッパー12とがほぼ線接触となって接触面積が小さいため、可動子11がストッパー12に接触する力が集中し、小さな力であっても磁極検知に十分な距離だけストッパー12を変形させることができる。一方で、ストッパー12の変形量が過大に大きくなると、ストッパー12の損傷等に繋がるため、可動子11とストッパー12との接触面積が漸次大きくなる(面接触となる)形状を採用し、可動子11がストッパー12に接触する力を徐々に分散させることで、ストッパー12の過剰な変形を防止することができる。
また、本実施形態においては、ストッパー12は、変形可能領域B2を有する弾性部材40と、弾性部材40の変形可能領域B2を超えた変形を規制する剛性部材41と、を有する。このように、ストッパー12の中心に剛性部材41を挿入することで、弾性部材40の過剰な変形を抑え耐久性を上げることができる。したがって、変形可能領域B2を形成するために変形し易い弾性部材40を巻き付けた場合であっても、ストッパー12の剛性や耐久性を確保することができ、ストッパー12としての役割を果たすことができる。
また、本実施形態においては、ストッパー12は、可動子11の移動方向において可動子11を挟んだ位置に一対で設けられている。この構成によれば、可動子11がその移動方向のいずれのストロークエンドに位置する場合であっても、上述した磁極検知動作を行うことができる。例えば、リニアアクチュエータ1が多軸のロボットアーム等に取り付けられ、可動子11の移動方向の両端が、いずれも鉛直下方(重力方向)に向く可能性がある場合、本実施形態によれば、リニアアクチュエータ1の向きによらず磁極検知を行えるため、特にメリットがある。
このように、上述の本実施形態によれば、固定子10及び可動子11を有するリニアモータからなる直動装置2と、固定子10に対する可動子11の移動を一定の範囲に規制するストッパー12と、固定子10に対して可動子11を移動させ、固定子10に対する可動子11の磁極位置を検知する磁極検知手段である制御装置3と、を有し、ストッパー12は、磁極検知に要する可動子11の移動距離B1以上の変形可能領域B2を有する、という構成を採用することによって、可動子11がストロークエンドに位置する場合であっても磁極検知動作を行うことができるリニアアクチュエータ1が得られる。
以上、図面を参照しながら本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
例えば、図5に示すような変形例を採用し得る。なお、以下の説明において、上述の実施形態と同一又は同等の構成については同一の符号を付し、その説明を簡略若しくは省略する。
図5(a)に示すリニアアクチュエータ1Aのストッパー12Aは、平面視楕円形状の弾性部材40Aを有する。この構成によっても、可動子11に対する弾性部材40Aの接触面積を徐々に大きくすることができる。
また、図5(b)に示すリニアアクチュエータ1Bのストッパー12Bは、平面視菱形形状の弾性部材40Bを有する。この構成によっても、可動子11に対する弾性部材40Bの接触面積を徐々に大きくすることができる。
また、図5(c)に示すリニアアクチュエータ1Cのストッパー12Cは、平面視四角形状の弾性部材40Cを有するが、弾性部材40Cに当接する可動子11の接触板34Cが曲面形状の接触面34cを有する。この構成によっても、可動子11に対する弾性部材40Cの接触面積を徐々に大きくすることができる。
また、例えば、剛性部材41の形状は、円柱形状に限定されず、角柱形状であっても、板形状等であってもよい。
また、弾性部材40単体で、ストッパー12の耐久性、剛性が確保できる場合、剛性部材41は必ずしも設ける必要はない。
また、本実施形態では、ストッパー12の弾性力により、変形可能領域B2を確保したが、例えば、ストッパー12をダンパー等から構成して、機構的に変形可能領域B2を確保する構成であってもよい。
また、本実施形態では、磁極検知として直流励磁を行ったが、例えば、サーボオン入力で力率検知をし、当該力率検知によって約十秒間、可動子11を数mm程度揺動させて磁極位置を検知する、所謂自動磁極検知を行ってもよい。
また、例えば、本実施形態では、固定子10にストッパー12を設けたが、可動子11にストッパー12を設けて固定子10に接触させる構成であってもよい。
さらに、ストッパー12は、固定子10及び可動子11のいずれか一方に設けるのではなく、例えば、リニアアクチュエータ1が組み込まれた装置(例えば、実装機)に設ける構成であってもよい。
また、例えば、上述した磁極検知のステップS4における所定時間に補正時間を加算してもよい。例えば、可動子11を引き込む方向がストッパー12に向かう方向である場合に、可動子11を引き込む方向がストッパー12に向かう方向と反対方向(空間に向かう方向)である場合よりも長くするといった制御を行ってもよい。すなわち、可動子11を引き込む方向がストッパー12に向かう方向である場合、ストッパー12の弾性変形による移動抵抗があるため、可動子11の移動速度が落ちる場合があるためである。なお、可動子11の移動速度は、リニアエンコーダ13が出力するパルスの単位時間当たりの出力回数に基づき判断することができる。
また、例えば、上述した磁極検知では、あえて、可動子11を引き込む方向がストッパー12に向かう方向となるように制御してもよい。例えば、上述したリニアアクチュエータ1が複数台ある場合であって、それぞれが重力方向に沿って直動可能に配置された場合、それぞれのリニアアクチュエータ1の可動子11は、同じ重力方向のストロークエンドに位置する。この場合に、可動子11を引き込む方向がストッパー12に向かう方向となるように制御し、初期磁極位置を取得すれば、その後、ストッパー12の復元力により、それぞれの可動子11の機械的な初動位置を揃えることができるため、複数台のリニアアクチュエータ1の動作の同期を取る場合にメリットがある。
1…リニアアクチュエータ、1A…リニアアクチュエータ、1B…リニアアクチュエータ、1C…リニアアクチュエータ、2…直動装置(リニアモータ)、3…制御装置(磁極検知手段)、10…固定子、11…可動子、12…ストッパー、12A…ストッパー、12B…ストッパー、12C…ストッパー、34…接触板(接触対象)、40…弾性部材、40A…弾性部材、40B…弾性部材、40C…弾性部材、41…剛性部材、B1…移動距離、B2…変形可能領域

Claims (6)

  1. 固定子及び可動子を有するリニアモータと、
    前記固定子に対する前記可動子の移動を一定の範囲に規制するストッパーと、
    前記固定子に対して前記可動子を移動させ、前記固定子に対する前記可動子の磁極位置を検知する磁極検知手段と、を有し、
    前記ストッパーは、前記磁極検知手段による磁極検知に要する前記可動子の移動距離以上の変形可能領域を有しており、
    前記磁極検知手段は、前記磁極検知に要するモニタリング時間を、前記可動子を引き込む方向が前記ストッパーに向かう方向である場合に、前記可動子を引き込む方向がストッパーに向かう方向と反対方向である場合よりも長くする、ことを特徴とするリニアアクチュエータ。
  2. 前記ストッパーは、前記固定子及び前記可動子のいずれか一方に設けられ、他方に接触する、ことを特徴とする請求項1に記載のリニアアクチュエータ。
  3. 前記変形可能領域は、変形量が大きくなるに従って、接触対象に対する接触面積が漸次大きくなる形状を有する、ことを特徴とする請求項1または2に記載のリニアアクチュエータ。
  4. 前記ストッパーは、円柱状である、ことを特徴とする請求項1〜3のいずれか一項に記載のリニアアクチュエータ。
  5. 前記ストッパーは、
    前記変形可能領域を有する弾性部材と、
    前記弾性部材の前記変形可能領域を超える変形を規制する剛性部材と、を有する、ことを特徴とする請求項1〜4のいずれか一項に記載のリニアアクチュエータ。
  6. 前記ストッパーは、前記可動子の移動方向において前記可動子を挟んだ位置に一対で設けられている、ことを特徴とする請求項1〜5のいずれか一項に記載のリニアアクチュエータ。
JP2017050557A 2017-03-15 2017-03-15 リニアアクチュエータ Active JP6959023B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017050557A JP6959023B2 (ja) 2017-03-15 2017-03-15 リニアアクチュエータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017050557A JP6959023B2 (ja) 2017-03-15 2017-03-15 リニアアクチュエータ

Publications (2)

Publication Number Publication Date
JP2018157635A JP2018157635A (ja) 2018-10-04
JP6959023B2 true JP6959023B2 (ja) 2021-11-02

Family

ID=63718396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017050557A Active JP6959023B2 (ja) 2017-03-15 2017-03-15 リニアアクチュエータ

Country Status (1)

Country Link
JP (1) JP6959023B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002064968A (ja) * 2000-08-21 2002-02-28 Nippon Thompson Co Ltd 可動コイル型リニアモータを内蔵したスライド装置
JP4745369B2 (ja) * 2008-05-20 2011-08-10 ヤマハ発動機株式会社 リニアモータ
JP6046919B2 (ja) * 2012-05-28 2016-12-21 日本トムソン株式会社 スライド装置

Also Published As

Publication number Publication date
JP2018157635A (ja) 2018-10-04

Similar Documents

Publication Publication Date Title
JP4702629B2 (ja) ムービングマグネット形リニアスライダおよびそれを用いた工作機械
US8511235B2 (en) Linear transport device
JP2002064968A (ja) 可動コイル型リニアモータを内蔵したスライド装置
JP5194472B2 (ja) リニアモータおよびそれを備えた工具移動装置
US20090302693A1 (en) Linear Motor
JP4717466B2 (ja) 移送装置{transferapparatus}
EP1905050A1 (en) Actuator assembly, method of driving an actuator assembly and apparatus for driving an actuator assembly
JP5185640B2 (ja) 慣性駆動アクチュエータ
JP4441792B2 (ja) リニアモータ用ブレーキ装置及びリニアモータの可動部の位置決め方法
JP6959023B2 (ja) リニアアクチュエータ
JP3125230B2 (ja) リニア直流モ−タ内へのリニア磁気エンコ−ダの組込み形成方法
US20090026847A1 (en) Linear motor
JP2006345652A (ja) リニアアクチュエータの位置決め制御方法及び装置
US20090302711A1 (en) Inertial drive actuator
JP5722145B2 (ja) 慣性駆動アクチュエータ
JP5784461B2 (ja) 慣性駆動アクチュエータ
JP2021160014A (ja) 昇降装置
JPH1052022A (ja) 無ブラシ線型駆動制御システム
JP7277868B2 (ja) リニアアクチュエータおよびxyテーブル
JP6535172B2 (ja) 可動コイル型リニアモータを内蔵した立軸用スライド装置
JP2006034016A (ja) 工作機械用リニアモータ
JP4522674B2 (ja) 小型スライド装置
JP2015097456A (ja) 可動コイル型リニアモータを内蔵した立軸用スライド装置
US20210063682A1 (en) Optical-component supporting apparatus, optical-component driving apparatus, camera apparatus, and electronic device
JP2009017693A (ja) リニアアクチュエータ

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211007

R150 Certificate of patent or registration of utility model

Ref document number: 6959023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150