JP6913599B2 - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
JP6913599B2
JP6913599B2 JP2017201403A JP2017201403A JP6913599B2 JP 6913599 B2 JP6913599 B2 JP 6913599B2 JP 2017201403 A JP2017201403 A JP 2017201403A JP 2017201403 A JP2017201403 A JP 2017201403A JP 6913599 B2 JP6913599 B2 JP 6913599B2
Authority
JP
Japan
Prior art keywords
value
magnetic flux
flux density
switching
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017201403A
Other languages
English (en)
Other versions
JP2019075913A (ja
Inventor
信太朗 田中
信太朗 田中
久保 謙二
謙二 久保
大内 貴之
貴之 大内
裕二 曽部
裕二 曽部
高橋 直也
直也 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Astemo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Astemo Ltd filed Critical Hitachi Astemo Ltd
Priority to JP2017201403A priority Critical patent/JP6913599B2/ja
Priority to US16/757,201 priority patent/US11101739B2/en
Priority to DE112018004544.7T priority patent/DE112018004544B4/de
Priority to PCT/JP2018/037158 priority patent/WO2019078013A1/ja
Priority to CN201880065828.1A priority patent/CN111201701B/zh
Publication of JP2019075913A publication Critical patent/JP2019075913A/ja
Application granted granted Critical
Publication of JP6913599B2 publication Critical patent/JP6913599B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/40Means for preventing magnetic saturation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/12Buck converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/525Temperature of converter or components thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Description

本発明は、電力変換装置の制御に用いられる制御装置に関する。
近年、化石燃料の枯渇や地球環境問題を背景として、ハイブリッド自動車や電気自動車のような、電気エネルギーを利用して走行する自動車への関心が高まっており、実用化されている。このような電気エネルギーを利用して走行する自動車には、車輪を駆動するためのモータに電力を供給する高圧バッテリが備えられている。さらに、高圧バッテリからの出力電力を降圧して、自動車に搭載された低圧の電気機器、例えばエアコンやオーディオ、各種ECU(Electronic Control Unit)等へ必要な電力を供給する電力変換装置が備えられることもある。こうした電力変換装置は、入力された直流電力を異なる電圧の直流電力に変換するものであり、DC−DCコンバータとも呼ばれる。
一般にDC−DCコンバータは、スイッチング動作可能なスイッチング回路を有しており、このスイッチング回路のオン/オフを制御することで、直流電力の電圧変換を行う。具体的には、入力された直流電力をスイッチング回路を用いて交流電力に一旦変換し、その交流電力をトランスを用いて変圧(昇圧または降圧)する。そして、整流回路などの出力回路を用いて、変圧後の交流電力を再び直流電力に変換する。これにより、入力電圧とは異なる電圧を持った直流出力を得ることができる。スイッチング回路は、例えばMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)やIGBT(Insulated
Gate Bipolar Transistor)などの半導体スイッチ素子を用いて構成される。
車載用の電力変換装置では、自然エネルギーの有効活用や二酸化炭素の削減を目的として、一般に高効率が求められる。そのため、電力変換時の損失をできるだけ低減することが重要となる。ここで、DC−DCコンバータにおいて発生する損失には、スイッチング動作により発生するスイッチング損失や、トランスや半導体スイッチ素子で発生する抵抗損失(銅損)等がある。スイッチング素子を低減する手段としては、例えば下記の特許文献1が知られている。特許文献1に開示された電力変換装置は、絶縁トランスに流れ込むトランス電流を監視して、トランス電流が磁気飽和を考慮して設定された電流基準値を超えた際に、スイッチングキャリア周波数を上昇させる制御を実施する。これにより、スイッチング周波数を低下させ、スイッチング損失を低減している。
特開2008−278723号公報
特許文献1に記載の技術では、トランス電流の監視結果を用いてスイッチングキャリア周波数の制御を行っているため、トランス電流の変化が急激である場合などに制御遅れが生じてしまい、その結果、スイッチング損失の低減が不十分になることがある。
本発明の第1の態様による制御装置は、入力された第1の直流電力を第2の直流電力に変換して出力する電力変換装置の制御を行うものであって、前記電力変換装置は、前記第1の直流電力を交流電力に変換するスイッチング回路と、前記交流電力の電圧変換を行うトランスと、前記トランスにより電圧変換された前記交流電力を前記第2の直流電力に変換する出力回路と、前記トランスの温度を検出する温度検出器と、を有し、前記制御装置は、前記出力回路の出力電圧を制御するためのデューティ指示値を算出する電圧制御部と、前記デューティ指示値および前記スイッチング回路の入力電圧に基づいて前記トランスの磁束密度値を算出し、算出した前記磁束密度値に基づいて前記スイッチング回路の駆動周波数に応じたスイッチングキャリア周波数を設定するスイッチングキャリア周波数設定部と、前記デューティ指示値および前記スイッチングキャリア周波数に基づいて前記スイッチング回路を駆動させるための出力信号を生成し、生成した前記出力信号を前記スイッチング回路に出力する信号生成部と、を備え、前記スイッチングキャリア周波数設定部は、前記磁束密度値が前記トランスの飽和磁束密度に基づく所定の磁束密度指令値よりも小さい場合は前記駆動周波数を低くし、前記磁束密度値が前記磁束密度指令値よりも大きい場合は前記駆動周波数を高くするように、前記スイッチングキャリア周波数を設定し、前記スイッチングキャリア周波数設定部は、前記温度検出器による前記トランスの温度検出値に基づいて前記磁束密度指令値を変更する
本発明の第2の態様による制御装置は、入力された第1の直流電力を第2の直流電力に変換して出力する電力変換装置の制御を行うものであって、前記電力変換装置は、前記第1の直流電力を交流電力に変換するスイッチング回路と、前記交流電力の電圧変換を行うトランスと、前記トランスにより電圧変換された前記交流電力を前記第2の直流電力に変換する出力回路と、前記出力回路からの出力電流を検出する電流検出器と、を有し、前記制御装置は、前記出力回路の出力電圧を制御するためのデューティ指示値を算出する電圧制御部と、前記デューティ指示値および前記スイッチング回路の入力電圧に基づいて前記トランスの磁束密度値を算出し、算出した前記磁束密度値に基づいて前記スイッチング回路の駆動周波数に応じたスイッチングキャリア周波数を設定するスイッチングキャリア周波数設定部と、前記デューティ指示値および前記スイッチングキャリア周波数に基づいて前記スイッチング回路を駆動させるための出力信号を生成し、生成した前記出力信号を前記スイッチング回路に出力する信号生成部と、を備え、前記スイッチングキャリア周波数設定部は、前記磁束密度値が前記トランスの飽和磁束密度に基づく所定の磁束密度指令値よりも小さい場合は前記駆動周波数を低くし、前記磁束密度値が前記磁束密度指令値よりも大きい場合は前記駆動周波数を高くするように、前記スイッチングキャリア周波数を設定し、前記スイッチングキャリア周波数設定部は、前記電流検出器による前記出力電流の検出値に基づいて前記磁束密度指令値を変更する。
本発明の第3の態様による制御装置は、入力された第1の直流電力を第2の直流電力に変換して出力する電力変換装置の制御を行うものであって、前記電力変換装置は、前記第1の直流電力を交流電力に変換するスイッチング回路と、前記交流電力の電圧変換を行うトランスと、前記トランスにより電圧変換された前記交流電力を前記第2の直流電力に変換する出力回路と、を有し、前記制御装置は、前記出力回路の出力電圧を制御するためのデューティ指示値を算出する電圧制御部と、前記デューティ指示値および前記スイッチング回路の入力電圧に基づいて前記トランスの磁束密度値を算出し、算出した前記磁束密度値に基づいて前記スイッチング回路の駆動周波数に応じたスイッチングキャリア周波数を設定するスイッチングキャリア周波数設定部と、前記デューティ指示値および前記スイッチングキャリア周波数に基づいて前記スイッチング回路を駆動させるための出力信号を生成し、生成した前記出力信号を前記スイッチング回路に出力する信号生成部と、を備え、前記スイッチングキャリア周波数設定部は、前記磁束密度値が前記トランスの飽和磁束密度に基づく所定の磁束密度指令値よりも小さい場合は前記駆動周波数を低くし、前記磁束密度値が前記磁束密度指令値よりも大きい場合は前記駆動周波数を高くするように、前記スイッチングキャリア周波数を設定し、前記スイッチングキャリア周波数設定部は、前記磁束密度値と前記磁束密度指令値との差分に基づく比例積分制御を所定の制御ゲインにより行うPI制御部を有し、前記スイッチングキャリア周波数および前記出力回路からの出力電流の少なくとも一つに基づいて前記制御ゲインを変更する。
本発明によれば、電力変換装置のスイッチング損失を十分に低減することができる。
本発明の一実施形態に係る車両電源の構成を示す図である。 本発明の第1の実施形態に係るDC−DCコンバータの基本回路構成を示す図である。 本発明の第1の実施形態に係る制御回路の構成を示す図である。 比較器の動作を説明する図である。 制御回路の制御フロー図である。 本発明の第2の実施形態に係るDC−DCコンバータの基本回路構成を示す図である。 トランス温度と磁束密度指令値との関係の一例を示す図である。 本発明の第3の実施形態に係るDC−DCコンバータの基本回路構成を示す図である。 出力電流と磁束密度指令値との関係の一例を示す図である。 本発明の第4の実施形態に係る制御回路の構成を示す図である。 ゲイン調整部によるPI制御ゲインの調整方法の一例を示す図である。 本発明の第5の実施形態に係る制御回路の構成を示す図である。
以下、図面を参照して、本発明に係る電力変換装置の実施の形態について説明する。なお、各図において同一要素については同一の符号を記し、重複する説明は省略する。ただし、本発明は以下の実施形態に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例をもその範囲に含むものである。
−第1の実施形態−
(車両電源構成)
図1は、本発明の一実施形態に係る車両電源の構成を示す図である。図1に示すように、本実施形態に係る車両電源は、車両1000に搭載されており、DC−DCコンバータ100を使用して高圧バッテリV1と低圧バッテリV2の間で相互に電力変換を行う電源系統である。なお、以下の説明では、DC−DCコンバータ100の低圧側、すなわち低圧バッテリV2に接続されている側を「L側」と称し、DC−DCコンバータ100の高圧側、すなわち高圧バッテリV1に接続されている側を「H側」と称する。
低圧バッテリV2の一端は、DC−DCコンバータ100のL側の一端に接続され、低圧バッテリV2の他端は、DC−DCコンバータ100のL側の他端に接続されている。エアコンなどの補機機器400の一端は、DC−DCコンバータ100のL側の一端および低圧バッテリV2の一端に接続され、補機機器400の他端は、DC−DCコンバータ100のL側の他端および低圧バッテリV2の他端に接続されている。HV系機器300の一端は、DC−DCコンバータ100のH側の一端および高圧バッテリV1の一端に接続され、HV系機器300の他端は、DC−DCコンバータ100のH側の他端および高圧バッテリV1の他端に接続されている。高圧バッテリV1の一端は、DC−DCコンバータ100のH側の一端に接続され、高圧バッテリV1の他端は、DC−DCコンバータ100のH側の他端に接続されている。
DC−DCコンバータ100、HV系機器300および補機機器400は、車両電源制御部200と接続されている。車両電源制御部200は、これらの各機器の動作や、これらの各機器と高圧バッテリV1および低圧バッテリV2との間でやり取りされる電力の送電方向、電力量等を制御する。
(DC−DCコンバータ100の基本構成)
図2は、本発明の第1の実施形態に係るDC−DCコンバータ100の基本回路構成を示す図である。図2に示すように、本実施形態のDC−DCコンバータ100は、スイッチング回路10、トランス20および出力回路30を有しており、ゲートドライバ90を介して制御回路50と接続されている。
スイッチング回路10は、正極入力端子1および負極入力端子2を介して高圧バッテリV1と接続されている。スイッチング回路10は、ブリッジ接続されたスイッチ素子11a〜14aを有しており、これらのスイッチ素子11a〜14aをスイッチング動作させることで、高圧バッテリV1から入力された直流電力を高周波の交流電力に変換し、トランス20の一次側に出力する。
トランス20は、一次側と二次側の間を絶縁すると共に、一次側と二次側の間で交流電力の電圧変換を行い、スイッチング回路10で生成された交流電力から降圧(または昇圧)された交流電力を出力回路30に出力する。
出力回路30は、正極出力端子3および負極出力端子4を介して低圧バッテリV2と接続されている。出力回路30は、ダイオード31、32を有しており、これらのダイオード31、32を用いて、トランス20により電圧変換された交流電力を整流して直流電力に変換し、低圧バッテリV2に出力する。
制御回路50は、例えば図1の車両電源制御部200内に設けられており、スイッチング回路10におけるスイッチ素子11a〜14aのスイッチング動作をそれぞれ制御するための出力信号51〜54を生成して出力する。
ゲートドライバ90は、制御回路50から出力された出力信号51〜54を、スイッチ素子11a〜14aを駆動するための駆動信号91〜94にそれぞれ変換し、スイッチング回路10に出力する。ゲートドライバ90は、絶縁トランス90aを搭載しており、スイッチング回路10と制御回路50の間を絶縁する。
以下では、DC−DCコンバータ100が有するスイッチング回路10、トランス20および出力回路30の各構成および制御回路50の詳細について説明する。
(スイッチング回路10)
スイッチング回路10は、高圧バッテリV1から正極入力端子1および負極入力端子2を介して入力される直流電力を、制御回路50の制御に応じて高周波の交流電力に変換し、トランス20の一次巻線N1に供給する役割を有する。正極入力端子1と負極入力端子2の間には、高圧バッテリV1と並列に電圧検出器41および平滑コンデンサC1が接続されている。電圧検出器41は、スイッチング回路10に入力される直流電力の電圧を検出し、その検出値を入力電圧Vinとして制御回路50に出力する。
スイッチング回路10は、4つのスイッチ素子11a〜14aがフルブリッジ接続された構成を有する。すなわち、正極入力端子1と負極入力端子2の間に、2つのスイッチ素子11aおよびスイッチ素子12aの直列回路(以下、「第1レッグ」と称する)と、2つのスイッチ素子13aおよびスイッチ素子14aの直列回路(以下、「第2レッグ」と称する)とが、それぞれ接続されている。第1レッグにおけるスイッチ素子11aとスイッチ素子12aの間の接続点Aは、トランス20の一次巻線N1の一端側に接続されており、第2レッグにおけるスイッチ素子13aとスイッチ素子14aの間の接続点Bは、トランス20の一次巻線N1の他端側に接続されている。なお、スイッチ素子11a〜14aは、スイッチング動作が可能な任意の素子を用いて構成することができ、例えばFET(電界効果トランジスタ)等が好適である。
スイッチ素子11a〜14aには、フライホイール用のダイオード11b〜14bおよびコンデンサ11c〜14cがそれぞれ並列接続されている。これらのダイオード11b〜14bおよびコンデンサ11c〜14cは、スイッチ素子11a〜14aとは別素子で構成しても良いし、あるいはスイッチ素子11a〜14aの寄生成分であっても良い。また、これらを併用しても良い。
本実施形態のDC−DCコンバータ100では、スイッチング回路10の制御方式として、スイッチング損失を低減可能な駆動方式である位相シフト制御方式が用いられる。位相シフト制御方式においては、フルブリッジ型のスイッチング回路10を構成する4つのスイッチ素子11a〜14aのうち、第1レッグの上側にあるスイッチ素子11aと第2レッグの下側にあるスイッチ素子14aとのオン/オフの位相差が、DC−DCコンバータ100の出力電圧に応じて制御される。同様に、第1レッグの下側にあるスイッチ素子12aと第2レッグの上側にあるスイッチ素子13aとのオン/オフの位相差も、DC−DCコンバータ100の出力電圧に応じて制御される。これにより、スイッチ素子11aとスイッチ素子14aが同時にオン状態となる期間、並びに、スイッチ素子12aとスイッチ素子13aが同時にオン状態となる期間が、出力電圧に応じて調整される。ここで、スイッチング回路10(トランス20の一次側)から出力回路30(トランス20の二次側)に伝送される電力は、スイッチ素子11aとスイッチ素子14aが同時にオン状態となる期間、並びに、スイッチ素子12aとスイッチ素子13aが同時にオン状態となる期間によって決まる。したがって、上記のように位相差を制御することで、DC−DCコンバータ100の出力電圧を所望の値に安定させることが可能となる。なお、以下の説明では、スイッチ素子11aとスイッチ素子14aが同時にオン状態となる期間と、スイッチ素子12aとスイッチ素子13aが同時にオン状態となる期間とが、同じ長さであるものとする。また、一周期におけるこれらの期間の長さの比率を、デューティ比と呼ぶこともある。
(トランス20)
トランス20は、スイッチング回路10により生成された交流電力に対して電圧変換を行い、電圧変換後の交流電力を出力回路30に出力する役割を有する。トランス20は、スイッチング回路10に接続されている一次巻線N1と、出力回路30に接続されている二次巻線N2とを備える。なお、トランス20は、出力回路30と組み合わせて全波整流回路を実現するためにセンタータップ構成を有しており、二次巻線N2が中間で2つの二次巻線N2a、N2bに分割されている。一次巻線N1と二次巻線N2a、N2bとの巻数比(N1/N2aまたはN1/N2b)は、正極入力端子1と負極入力端子2の間に印加される入力電圧Vinの電圧範囲、および正極出力端子3と負極出力端子4の間に供給すべき出力電圧Voutの電圧範囲に応じて設定される。
トランス20は、一次巻線N1と直列に共振用インダクタンスL1を有する。この共振用インダクタンスL1と、スイッチング回路10においてスイッチ素子11a〜14aにそれぞれ並列接続されているコンデンサ11c〜14cの容量成分とにより、スイッチング回路10において発生するスイッチング損失を低減する共振回路が形成される。なお、トランス20における共振用インダクタンスL1の値が小さい場合、共振用インダクタンスL1と直列に別素子のインダクタを接続することで、共振回路のインダクタンスの値を大きくしても良い。
一次巻線N1の一端は、スイッチング回路10における第1レッグの中点である接続点Aに共振用インダクタンスL1を介して接続されている。また、一次巻線N1の他端は、スイッチング回路10における第2レッグの中点である接続点Bに接続されている。二次巻線N2aと二次巻線N2bとの接続点である中性点Tは、二次巻線N2の両端と共に出力回路30に接続されている。
(出力回路30)
出力回路30は、トランス20の一次巻線N1に流れる交流電力に応じて二次巻線N2aおよびN2bに現れる交流電力を平滑および整流することで直流電力に変換し、正極出力端子3および負極出力端子4を介して低圧バッテリV2に出力する役割を有する。正極出力端子3と負極出力端子4の間には、低圧バッテリV2と並列に電圧検出器42が接続されている。電圧検出器42は、出力回路30から出力される直流電力の電圧を検出し、その検出値を出力電圧Voutとして制御回路50に出力する。
出力回路30は、整流接続点Sでアノード同士が接続されている2つのダイオード31、32と、平滑コイルL2およびコンデンサC2とを有する。ダイオード31は、トランス20の二次巻線N2aの一端と整流接続点Sの間に接続されており、ダイオード32は、トランス20の二次巻線N2bの一端と整流接続点Sの間に接続されている。平滑コイルL2は、トランス20の二次巻線N2a、N2bの他端である中性点Tと正極出力端子3の間に接続されており、コンデンサC2は、正極出力端子3と負極出力端子4の間に接続されている。
上記のような回路構成の出力回路30において、ダイオード31、32は、トランス20の二次巻線N2a、N2bから出力される交流電力を整流して直流電力に変換する整流回路を構成する。また、平滑コイルL2とコンデンサC2は、中性点Tに発生する整流出力を平滑する平滑回路を構成する。なお、ダイオード31、32をFETなどのスイッチ素子に置き換えることで、公知技術である同期整流動作を行うようにして、さらに導通損失を低減させても良い。
(制御回路50)
制御回路50は、DC−DCコンバータ100の出力電圧Voutが予め定められた電圧目標値となるように、スイッチング回路10のスイッチ素子11a〜14aの動作を制御する回路である。図2に示すように、制御回路50は、電圧制御部60、スイッチングキャリア周波数設定部70、信号生成部80およびクロック部65を備える。
電圧制御部60は、スイッチング回路10においてスイッチ素子11a〜14aをスイッチング動作させる際のデューティ比を算出する。DC−DCコンバータ100では、このデューティ比の値に応じて、出力回路30から出力される直流電力の出力電圧Voutが制御される。
スイッチングキャリア周波数設定部70は、スイッチング回路10においてスイッチ素子11a〜14aをスイッチング動作させる際の駆動周波数に応じたスイッチングキャリア周波数を設定する。DC−DCコンバータ100では、このスイッチングキャリア周波数に応じた駆動周波数でスイッチ素子11a〜14aが駆動される。
信号生成部80は、電圧制御部60が算出したデューティ比と、スイッチングキャリア周波数設定部70が設定したスイッチングキャリア周波数とに基づいて、出力信号51〜54を生成する。信号生成部80が生成した出力信号51〜54は、制御回路50からゲートドライバ90に出力され、ゲートドライバ90において駆動信号91〜94にそれぞれ変換される。駆動信号91〜94は、スイッチング回路10においてスイッチ素子11a〜14aがそれぞれ有する各ゲート端子に入力され、出力信号51〜54を生成した際のデューティ比およびスイッチングキャリア周波数に応じた動作タイミングで、スイッチ素子11a〜14aをそれぞれ駆動させる。これにより、スイッチング回路10の動作が制御回路50によって制御される。
クロック部65は、一定クロックごとにカウントアップされる2つのカウンタを内部に有しており、これらのカウンタのカウント値に基づいて、電圧制御部60およびスイッチングキャリア周波数設定部70の実行タイミングを制御する。
図3は、本発明の第1の実施形態に係る制御回路50の構成を示す図である。以下では図3を参照して、本実施形態における制御回路50の電圧制御部60、スイッチングキャリア周波数設定部70、信号生成部80およびクロック部65の詳細を説明する。
(電圧制御部60)
電圧制御部60は、減算部61、PI制御部62およびデューティ制限部63を有する。減算部61は、予め設定された出力電圧の目標値である電圧指令値Vrefと、電圧検出器42で検出された出力電圧Voutとの差分を演算し、PI制御部62に出力する。PI制御部62は、減算部61で求められた差分に対してPI演算を実施することで、その差分が0に近づくようにPI制御(比例積分制御)を行い、スイッチング回路10のスイッチ素子11a〜14aに対するデューティ比の値であるデューティ値Dを求める。
デューティ制限部63は、PI制御部62で求められたデューティ値Dに対して所定の下限値および上限値を設定し、当該下限値から上限値までの範囲内に制限されたデューティ指示値D*を求める。デューティ制限部63で求められたデューティ指示値D*は、電圧制御部60からスイッチングキャリア周波数設定部70、信号生成部80およびクロック部65にそれぞれ出力される。
なお、電圧制御部60から出力されるデューティ指示値D*は、デューティ制限部63において設定される上限値と下限値をそれぞれ最大デューティ値Dmax、最小デューティ値Dminとすると、以下の式(1)の関係を満たす。
Dmin ≦ D* ≦ Dmax (1)
(スイッチングキャリア周波数設定部70)
スイッチングキャリア周波数設定部70は、乗算部71、比例部72、減算部73、磁束密度指令値設定部74、PI制御部75および周波数制限部76を有する。乗算部71は、電圧制御部60のデューティ制限部63から出力されたデューティ指示値D*と、電圧検出器41で検出された入力電圧Vinとの乗算値を演算し、比例部72に出力する。比例部72は、乗算部71で求められた乗算値に対して所定の比例定数を乗算することで、乗算値をトランス20の磁束密度値Bへと変換する。減算部73は、磁束密度指令値設定部74においてトランス20の飽和磁束密度に基づいて予め設定された磁束密度の目標値である磁束密度指令値Brefと、比例部72で求められた磁束密度値Bとの差分を演算し、PI制御部75に出力する。PI制御部75は、減算部73で求められた差分に対してPI演算を実施することで、その差分が0に近づくようにPI制御(比例積分制御)を行い、スイッチング回路10の駆動周波数に応じたスイッチングキャリア周波数fを求める。
周波数制限部76は、PI制御部75で求められたスイッチングキャリア周波数fに対して所定の下限値および上限値を設定し、当該下限値から上限値までの範囲内に制限されたスイッチングキャリア周波数設定値f*を求める。周波数制限部76で求められたスイッチングキャリア周波数設定値f*は、スイッチングキャリア周波数設定部70から信号生成部80およびクロック部65にそれぞれ出力される。
なお、スイッチングキャリア周波数設定部70から出力されるスイッチングキャリア周波数設定値f*は、周波数制限部76において設定される上限値と下限値をそれぞれ最大スイッチングキャリア周波数fmax、最小スイッチングキャリア周波数fminとすると、以下の式(2)の関係を満たす。
fmin ≦ f* ≦ fmax (2)
スイッチングキャリア周波数設定部70は、上記のようにして求められたスイッチングキャリア周波数設定値f*を信号生成部80に出力する。これにより、トランス20の磁束密度値Bが磁束密度指令値Brefよりも小さい場合はスイッチング回路10の駆動周波数を低くし、反対にトランス20の磁束密度値Bが磁束密度指令値Brefよりも大きい場合はスイッチング回路10の駆動周波数を高くするように、信号生成部80が出力信号51〜54を生成する際のスイッチングキャリア周波数を設定することができる。
(クロック部65)
クロック部65は、内部にAカウンタおよびBカウンタを有する。Aカウンタは、電圧制御部60の実行タイミングを制御するために用いられるカウンタであり、一定クロックごとにカウントアップされる。Bカウンタは、スイッチングキャリア周波数設定部70の実行タイミングを制御するために用いられるカウンタであり、Aカウンタと同様に一定クロックごとにカウントアップされる。
電圧制御部60からクロック部65に入力されたデューティ指示値D*は、クロック部65において前回デューティ指示値Da*として記憶される。Aカウンタの値が所定の閾値未満であれば、クロック部65は記憶している前回デューティ指示値Da*を信号生成部80に出力する。Aカウンタの値が所定の閾値以上になると、クロック部65は電圧制御部60に対して実行指令を出力し、電圧制御部60にデューティ指示値D*の演算を実行させる。これにより、新たなデューティ指示値D*が電圧制御部60により演算されて信号生成部80に入力されると共に、クロック部65に記憶されている前回デューティ指示値Da*が更新される。
また、スイッチングキャリア周波数設定部70からクロック部65に入力されたスイッチングキャリア周波数設定値f*は、クロック部65において前回スイッチングキャリア周波数設定値fa*として記憶される。Bカウンタの値が所定の閾値未満であれば、クロック部65は記憶している前回スイッチングキャリア周波数設定値fa*を信号生成部80に出力する。Bカウンタの値が所定の閾値以上になると、クロック部65はスイッチングキャリア周波数設定部70に対して実行指令を出力し、スイッチングキャリア周波数設定部70にスイッチングキャリア周波数設定値f*の演算を実行させる。これにより、新たなスイッチングキャリア周波数設定値f*がスイッチングキャリア周波数設定部70により演算されて信号生成部80に入力されると共に、クロック部65に記憶されている前回スイッチングキャリア周波数設定値fa*が更新される。
クロック部65は、上記のようにして、Aカウンタの値に応じて前回デューティ指示値Da*または電圧制御部60への実行指令を出力すると共に、Bカウンタの値に応じて前回スイッチングキャリア周波数設定値fa*またはスイッチングキャリア周波数設定部70への実行指令を出力する。これにより、電圧制御部60およびスイッチングキャリア周波数設定部70の実行タイミングを制御することができる。なお、Aカウンタの閾値とBカウンタの閾値には同じ値を設定してもよいし、異なる値を設定してもよい。
(信号生成部80)
信号生成部80は、演算判定部81、デッドタイム設定部82、閾値設定部83、演算判定部84、キャリア信号生成部85および比較器86を有する。演算判定部81は、電圧制御部60においてデューティ指示値D*の演算が行われた場合は、入力されたデューティ指示値D*を閾値設定部83に出力し、電圧制御部60においてデューティ指示値D*の演算が行われずにクロック部65から前回デューティ指示値Da*が入力された場合は、入力された前回デューティ指示値Da*を閾値設定部83に出力する。
デッドタイム設定部82は、スイッチ素子11a〜14aをスイッチング動作させる際のデッドタイム設定値Ddを閾値設定部83に出力する。閾値設定部83は、演算判定部81から入力されたデューティ指示値D*または前回デューティ指示値Da*と、デッドタイム設定部82から入力されたデッドタイム設定値Ddとに基づいて、スイッチ素子11a〜14aのオン/オフのタイミングをそれぞれ決定するためのオンタイミング閾値51a〜54aおよびオフタイミング閾値51b〜54bを設定し、比較器86に出力する。例えば、第1レッグに対するデッドタイム設定値DdをDd_12、第2レッグに対するデッドタイム設定値DdをDd_34とすると、オンタイミング閾値51a〜54aおよびオフタイミング閾値51b〜54bは、それぞれ下記のように設定される。なお、下記において「Cmax」は、キャリア信号生成部85が生成するキャリア信号の最大値を表している。
オンタイミング閾値 オフタイミング閾値
51a:Cmax 51b:0.5Cmax - Dd_12
52a:0.5Cmax 52b:Cmax - Dd_12
53a:D* + Dd_34 53b:D* + 0.5Cmax
54a:D* + 0.5Cmax + Dd_34 54b:D*
なお、上記では閾値設定部83にデューティ指示値D*が入力された場合の例を示しているが、前回デューティ指示値Da*が入力された場合は、D*をDa*に置き換えることで、同様にしてオンタイミング閾値51a〜54aおよびオフタイミング閾値51b〜54bを設定することが可能である。
演算判定部84は、スイッチングキャリア周波数設定部70においてスイッチングキャリア周波数設定値f*の演算が行われた場合は、入力されたスイッチングキャリア周波数設定値f*をキャリア信号生成部85に出力し、スイッチングキャリア周波数設定部70においてスイッチングキャリア周波数設定値f*の演算が行われずにクロック部65から前回スイッチングキャリア周波数設定値fa*が入力された場合は、入力された前回スイッチングキャリア周波数設定値fa*をキャリア信号生成部85に出力する。キャリア信号生成部85は、演算判定部84から入力されたスイッチングキャリア周波数設定値f*または前回スイッチングキャリア周波数設定値fa*に基づいて、これらの設定値に応じた周波数のキャリア信号55を生成し、比較器86に出力する。なお、キャリア信号生成部85が生成するキャリア信号55は、0から所定の最大値Cmaxまで連続的に変化する三角波等の周期信号であり、スイッチングキャリア周波数設定値f*または前回スイッチングキャリア周波数設定値fa*に応じた周期で繰り返し変化する。
比較器86は、キャリア信号生成部85から入力されたキャリア信号55を、閾値設定部83から入力されたオンタイミング閾値51a〜54aおよびオフタイミング閾値51b〜54bとそれぞれ比較することで、デューティ指示値D*または前回デューティ指示値Da*に応じたパルス変調を行い、出力信号51〜54を生成する。比較器86で生成された出力信号51〜54をゲートドライバ90に出力することで、制御回路50はスイッチング回路10のスイッチ素子11a〜14aのオン/オフを制御する。
図4は、比較器86の動作を説明する図である。図4(a)は、キャリア信号55の周波数が高い場合(周期が短い場合)の例であり、キャリア信号55の波形を符号55aで示している。図4(b)は、キャリア信号55の周波数が低い場合(周期が長い場合)の例であり、キャリア信号55の波形を符号55bで示している。なお、図4(a)、図4(b)に示すように、キャリア信号55の傾きは、演算判定部84から出力されるスイッチングキャリア周波数設定値f*または前回スイッチングキャリア周波数設定値fa*に応じて変化する。
比較器86は、キャリア信号55とオンタイミング閾値51a〜54aおよびオフタイミング閾値51b〜54bとを比較する。その結果、図4(a)、図4(b)に示すように、キャリア信号55の値がオンタイミング閾値51a〜54aを超えたときに、出力信号51〜54をそれぞれオフ(Lレベル)からオン(Hレベル)に切り替える。また、キャリア信号55の値がオフタイミング閾値51b〜54bを超えたときに、出力信号51〜54をそれぞれオン(Hレベル)からオフ(Lレベル)に切り替える。具体的には、例えばオンタイミング閾値51a〜54aおよびオフタイミング閾値51b〜54bがそれぞれ前述のような値で設定されているときに、出力信号51〜54のオン/オフを以下のように順次切り替える。
(1)キャリア信号55の値がオフタイミング閾値信号54bに達したタイミングで、出力信号54をオフにする。
(2)キャリア信号55の値がオンタイミング閾値信号53aに達したタイミングで、出力信号53をオンにする。
(3)キャリア信号55の値がオンタイミング閾値信号51bに達したタイミングで、出力信号51をオフにする。
(4)キャリア信号55の値がオンタイミング閾値信号52aに達したタイミングで、出力信号52をオンにする。
(5)キャリア信号55の値がオフタイミング閾値信号53bに達したタイミングで、出力信号53をオフにする。
(6)キャリア信号55の値がオンタイミング閾値信号54aに達したタイミングで、出力信号54をオンにする。
(7)キャリア信号55の値がオンタイミング閾値信号52bに達したタイミングで、出力信号52をオフにする。
(8)キャリア信号55の値がオンタイミング閾値信号51aに達したタイミングで、出力信号51をオンにする。
信号生成部80では、上記のようにして、スイッチ素子11a〜14aのオン/オフのタイミングをそれぞれ設定するための出力信号51〜54が生成される。
(制御フロー)
図5は、制御回路50の制御フロー図である。以下では図5の制御フロー図を用いて、以上で説明した制御回路50の動作を説明する。
ステップS10において、制御回路50は、クロック部65のAカウンタの値が所定の閾値Ta以上であるか否かを判定する。Aカウンタの値が閾値Ta以上であれば処理をステップS20に進め、閾値Ta未満であれば処理をステップS40に進める。
ステップS20において、制御回路50は、電圧制御部60により、電圧検出器42で検出された出力電圧Voutと電圧指令値Vrefとの差分を減算部61で求め、その差分によるPI制御をPI制御部62で実施する。その後、ステップS30において、ステップS20のPI制御により求められたデューティ値Dに対して下限値および上限値の設定をデューティ制限部63で行い、デューティ指示値D*を決定する。ステップS30を実施したら、制御回路50は、決定したデューティ指示値D*をスイッチングキャリア周波数設定部70、信号生成部80およびクロック部65にそれぞれ出力し、処理をステップS50に進める。
ステップS40において、制御回路50は、クロック部65に記憶されている前回デューティ指示値Da*を信号生成部80に出力し、処理をステップS50に進める。なお、制御回路50の起動直後における初期状態など、クロック部65に前回デューティ指示値Da*が記憶されていない場合は、予め定められた初期値(例えば0)を前回デューティ指示値Da*として出力すればよい。
ステップS50において、制御回路50は、クロック部65のBカウンタの値が所定の閾値Tb以上であるか否かを判定する。Bカウンタの値が閾値Tb以上であれば処理をステップS60に進め、閾値Tb未満であれば処理をステップS100に進める。
ステップS60において、制御回路50は、スイッチングキャリア周波数設定部70により、電圧制御部60から入力されたデューティ指示値D*と電圧検出器41で検出された入力電圧Vinとを乗算部71で乗算し、その乗算値を比例部72でトランス20の磁束密度値Bに変換する。その後、ステップS70〜S90において、ステップS60で算出した磁束密度値Bと磁束密度指令値Brefとの差分が0に近づくようにPI制御を行う。具体的には、磁束密度値Bと磁束密度指令値Brefとの差分を減算部73で求め、その差分によるPI制御をPI制御部75で実施することにより、スイッチングキャリア周波数fを求める。そして、求められたスイッチングキャリア周波数fに対して下限値および上限値の設定を周波数制限部76で行い、スイッチングキャリア周波数設定値f*を決定する。これにより、B<Brefの場合(S70:Yes)はスイッチングキャリア周波数設定値f*を減少させ(S80)、B≧Brefの場合(S70:No)はスイッチングキャリア周波数設定値f*を増加させる(S90)ようにする。ステップS80またはS90を実施したら、制御回路50は、決定したスイッチングキャリア周波数設定値f*を信号生成部80およびクロック部65にそれぞれ出力し、処理をステップS110に進める。
ステップS100において、制御回路50は、クロック部65に記憶されている前回スイッチングキャリア周波数設定値fa*を信号生成部80に出力し、処理をステップS110に進める。なお、制御回路50の起動直後における初期状態など、クロック部65に前回スイッチングキャリア周波数設定値fa*が記憶されていない場合は、予め定められた初期値(例えば最大スイッチングキャリア周波数fmax)を前回スイッチングキャリア周波数設定値fa*として出力すればよい。
ステップS110において、制御回路50は、信号生成部80により、ステップS30またはS40で得られたデューティ指示値D*または前回デューティ指示値Da*と、ステップS80、S90またはS100で得られたスイッチングキャリア周波数設定値f*または前回スイッチングキャリア周波数設定値fa*とに基づき、出力信号51〜54を生成する。具体的には、信号生成部80は、デューティ指示値D*または前回デューティ指示値Da*を演算判定部81から閾値設定部83に出力し、閾値設定部83でデッドタイム設定値Ddに応じたオンタイミング閾値51a〜54aおよびオフタイミング閾値51b〜54bを設定する。また、スイッチングキャリア周波数設定値f*または前回スイッチングキャリア周波数設定値fa*を演算判定部84からキャリア信号生成部85に出力し、キャリア信号生成部85でキャリア信号55を生成する。そして、比較器86でキャリア信号55をオンタイミング閾値51a〜54aおよびオフタイミング閾値51b〜54bと比較して、出力信号51〜54を生成する。ステップS110を実施したら、制御回路50は、生成した出力信号51〜54をゲートドライバ90に出力し、処理をステップS120に進める。
ステップS120において、制御回路50は、DC−DCコンバータ100を停止するか否かを判定する。例えば、外部からDC−DCコンバータ100の制御停止命令が入力されるなどの所定の停止条件を満たす場合、制御回路50はDC−DCコンバータ100を停止すると判定し、図5の制御フローを終了して動作を停止する。一方、こうした停止条件を満たさない場合、制御回路50はDC−DCコンバータ100を停止しないと判定し、ステップS10に戻って上記処理を繰り返す。
以上説明した本発明の第1の実施形態によれば、以下の作用効果を奏する。
(1)電力変換装置であるDC−DCコンバータ100は、入力された第1の直流電力を交流電力に変換するスイッチング回路10と、交流電力の電圧変換を行うトランス20と、トランス20により電圧変換された交流電力を第2の直流電力に変換する出力回路30とを有する。このDC−DCコンバータ100の制御を行う制御回路50は、トランス20の磁束密度値Bを算出し、算出した磁束密度値Bに基づいてスイッチング回路10の駆動周波数を制御する。このようにしたので、DC−DCコンバータ100のスイッチング損失を十分に低減することができる。
(2)制御回路50は、出力回路30の出力電圧Voutを制御するためのデューティ指示値D*を算出する電圧制御部60と、デューティ指示値D*およびスイッチング回路10の入力電圧Vinに基づいて磁束密度値Bを算出し、算出した磁束密度値Bに基づいてスイッチング回路10の駆動周波数に応じたスイッチングキャリア周波数を設定するスイッチングキャリア周波数設定部70と、デューティ指示値D*およびスイッチングキャリア周波数に基づいてスイッチング回路10を駆動させるための出力信号51〜54を生成し、生成した出力信号51〜54をゲートドライバ90を介してスイッチング回路10に出力する信号生成部80と、を備える。このようにしたので、トランス20の電流を検出することなく、トランス20の磁気飽和を確実に防ぎつつDC−DCコンバータ100を適切な駆動周波数で動作させ、スイッチング損失の低減を図ることができる。
(3)スイッチングキャリア周波数設定部70は、磁束密度値Bがトランス20の飽和磁束密度に基づく所定の磁束密度指令値Brefよりも小さい場合はスイッチング回路10の駆動周波数を低くし、磁束密度値Bが磁束密度指令値Brefよりも大きい場合はスイッチング回路10の駆動周波数を高くするように、スイッチングキャリア周波数を設定する。このようにしたので、磁束密度値Bが磁束密度指令値Brefに近づくように、DC−DCコンバータ100を適切な駆動周波数で動作させることができる。
(4)制御回路50は、電圧制御部60およびスイッチングキャリア周波数設定部70の実行タイミングを制御するクロック部65をさらに備える。このようにしたので、電圧制御部60およびスイッチングキャリア周波数設定部70をそれぞれ適切なタイミングで動作させることができる。
−第2の実施形態−
次に本発明の第2の実施形態について説明する。本実施形態では、スイッチングキャリア周波数設定部70の磁束密度指令値設定部74において、トランス20の温度に応じて磁束密度指令値Brefを変化させる例を説明する。
図6は、本発明の第2の実施形態に係るDC−DCコンバータ100の基本回路構成を示す図である。図6に示すように、本実施形態のDC−DCコンバータ100は、トランス20の温度を検出する温度検出器43がトランス20の近傍に設けられている以外は、第1の実施形態で説明したのと同様の構成を有している。
本実施形態において、温度検出器43は、トランス20の温度を検出し、その検出値を制御回路50に出力する。温度検出器43から出力されたトランス温度の検出値は、制御回路50において、スイッチングキャリア周波数設定部70の磁束密度指令値設定部74に入力される。磁束密度指令値設定部74は、入力されたトランス温度の検出値に基づいて、減算部73に出力する磁束密度指令値Brefを変更する。
図7は、トランス温度と磁束密度指令値Brefとの関係の一例を示す図である。図7(a)は、トランス温度の上昇に応じて磁束密度指令値Brefを一定の割合で増加させ、トランス温度の下降に応じて磁束密度指令値Brefを一定の割合で減少させる例を示している。図7(b)は、トランス温度が所定値未満の領域では温度依存性を考慮して磁束密度指令値Brefを連続的に変化させ、トランス温度が所定値以上の領域では磁束密度指令値Brefを変化させずに一定とする例を示している。なお、図7(a)や図7(b)に例示した以外の関係を用いて、トランス温度に応じて磁束密度指令値Brefを変化させてもよい。例えば、トランス温度の上昇に応じて磁束密度指令値Brefを減少させ、トランス温度の下降に応じて磁束密度指令値Brefを増加させてもよい。また、トランス温度と磁束密度指令値Brefとは比例関係でなくてもよいし、連続的な関数で定められた関係でなくてもよい。
以上説明した本発明の第2の実施形態によれば、電力変換装置であるDC−DCコンバータ100は、トランス20の温度を検出する温度検出器43をさらに有する。制御回路50において、スイッチングキャリア周波数設定部70は、温度検出器43によるトランス20の温度検出値に基づいて磁束密度指令値Brefを変更する。このようにしたので、第1の実施形態で説明した効果に加えて、さらに、DC−DCコンバータ100の制御をより一層正確に行うことができるという効果を奏する。
−第3の実施形態−
次に本発明の第3の実施形態について説明する。本実施形態では、スイッチングキャリア周波数設定部70の磁束密度指令値設定部74において、DC−DCコンバータ100からの出力電流に応じて磁束密度指令値Brefを変化させる例を説明する。
図8は、本発明の第3の実施形態に係るDC−DCコンバータ100の基本回路構成を示す図である。図8に示すように、本実施形態のDC−DCコンバータ100は、出力回路30から低圧バッテリV2に出力されるDC−DCコンバータ100の出力電流を検出する電流検出器44が出力回路30と低圧バッテリV2の間に設けられている以外は、第1の実施形態で説明したのと同様の構成を有している。
本実施形態において、電流検出器44は、出力回路30からの出力電流を検出し、その検出値を制御回路50に出力する。なお、図8では電流検出器44が負極出力端子4側に接続されているが、正極出力端子3側に接続されていてもよい。電流検出器44から出力された出力電流の検出値は、制御回路50において、スイッチングキャリア周波数設定部70の磁束密度指令値設定部74に入力される。磁束密度指令値設定部74は、入力された出力電流の検出値に基づいて、減算部73に出力する磁束密度指令値Brefを変更する。
図9は、出力電流と磁束密度指令値Brefとの関係の一例を示す図である。図9(a)は、出力電流の上昇に応じて磁束密度指令値Brefを一定の割合で増加させ、出力電流の下降に応じて磁束密度指令値Brefを一定の割合で減少させる例を示している。図9(b)は、出力電流が所定値未満の領域では出力電流依存性を考慮して磁束密度指令値Brefを連続的に変化させ、出力電流が所定値以上の領域では磁束密度指令値Brefを変化させずに一定とする例を示している。なお、図9(a)や図9(b)に例示した以外の関係を用いて、出力電流に応じて磁束密度指令値Brefを変化させてもよい。例えば、出力電流の上昇に応じて磁束密度指令値Brefを減少させ、出力電流の下降に応じて磁束密度指令値Brefを増加させてもよい。また、出力電流と磁束密度指令値Brefとは比例関係でなくてもよいし、連続的な関数で定められた関係でなくてもよい。
以上説明した本発明の第3の実施形態によれば、電力変換装置であるDC−DCコンバータ100は、出力回路30からの出力電流を検出する電流検出器44をさらに有する。制御回路50において、スイッチングキャリア周波数設定部70は、電流検出器44による出力電流の検出値に基づいて磁束密度指令値Brefを変更する。このようにしたので、第2の実施形態と同様に、第1の実施形態で説明した効果に加えて、さらに、DC−DCコンバータ100の制御をより一層正確に行うことができるという効果を奏する。
−第4の実施形態−
次に本発明の第4の実施形態について説明する。本実施形態では、スイッチングキャリア周波数設定部70のPI制御部75において実施するPI制御に対して、ゲイン調整を行う例を説明する。
図10は、本発明の第4の実施形態に係る制御回路50の構成を示す図である。図10に示すように、本実施形態の制御回路50は、スイッチングキャリア周波数設定部70において、PI制御部75に接続されるゲイン調整部75aがさらに設けられている以外は、第1の実施形態で説明したのと同様の構成を有している。以下では、追加したゲイン調整部75aについて説明する。
(ゲイン調整部75a)
PI制御部75では、所定のPI制御ゲインを用いたPI演算により、磁束密度指令値Brefと磁束密度値Bとの差分に応じたPI制御を行っている。このPI制御ゲインが高くなると、磁束密度値Bが磁束密度指令値Brefに近づく際のスイッチングキャリア周波数の変化が早くなり、スイッチング回路10の応答性が向上する。反対に、PI制御ゲインが低くなると、磁束密度値Bが磁束密度指令値Brefに近づく際のスイッチングキャリア周波数の変化が遅くなり、スイッチング回路10の応答性が低下する。そこで、本実施形態の制御回路50では、PI制御部75で用いられるPI制御ゲインをゲイン調整部75aにおいて適切に調整することで、スイッチング回路10の応答性を調整するようにしている。
図11は、ゲイン調整部75aによるPI制御ゲインの調整方法の一例を示す図である。図11(a)は、スイッチングキャリア周波数に応じてPI制御ゲインを調整する例を示しており、図11(b)は、出力回路30からの出力電流に応じてPI制御ゲインを調整する例を示している。ゲイン調整部75aは、例えば図11(a)や図11(b)に例示したように、スイッチングキャリア周波数や出力電流に基づいてPI制御ゲインを変更することができる。なお、スイッチングキャリア周波数と出力電流の両方を用いてPI制御ゲインを調整したり、これら以外の情報を用いてPI制御ゲインを調整したりすることも可能である。
以上説明した本発明の第4の実施形態によれば、スイッチングキャリア周波数設定部70は、磁束密度値Bと磁束密度指令値Brefとの差分に基づくPI制御を所定のPI制御ゲインにより行うPI制御部75を有しており、ゲイン調整部75aにおいて、スイッチングキャリア周波数および出力回路30からの出力電流の少なくとも一つに基づいてPI制御ゲインを変更する。このようにしたので、第1の実施形態で説明した効果に加えて、さらに、トランス20の磁気飽和を確実に防ぎつつスイッチング回路10の応答性を適切に調整できるという効果を奏する。
−第5の実施形態−
次に本発明の第5の実施形態について説明する。本実施形態では、スイッチングキャリア周波数設定部70の周波数制限部76において設定するスイッチングキャリア周波数設定値f*の上限値と下限値の決定方法を説明する。
図12は、本発明の第5の実施形態に係る制御回路50の構成を示す図である。図12に示すように、本実施形態の制御回路50は、スイッチングキャリア周波数設定部70において、周波数制限部76に接続される制限値設定部76aがさらに設けられている以外は、第1の実施形態で説明したのと同様の構成を有している。以下では、追加した制限値設定部76aについて説明する。
(制限値設定部76a)
制限値設定部76aは、周波数制限部76から出力されるスイッチングキャリア周波数設定値f*の上限値および下限値、すなわち前述の式(2)における最大スイッチングキャリア周波数fmaxおよび最小スイッチングキャリア周波数fminを決定し、決定したこれらの値を周波数制限部76に出力する。制限値設定部76aは、例えば、トランス20の飽和磁束密度に基づく磁束密度の目標値、すなわち磁束密度指令値Brefと、トランス20のコアの断面積および一次巻線N1の巻数とに応じて、最大スイッチングキャリア周波数fmaxを決定する。
一方、制限値設定部76aは、例えば、ゲートドライバ90における絶縁トランス90aの飽和磁束密度に基づいて予め設定された磁束密度の上限値に応じて、最小スイッチングキャリア周波数fminを決定する。具体的には、スイッチングキャリア周波数を低くした際においても絶縁トランス90aの磁束密度が飽和磁束密度を超えないように、以下の式(3)を用いて最小スイッチングキャリア周波数fminを決定する。なお式(3)において、Vddは絶縁トランス90aを介してゲートドライバ90に入力される電圧値、Asは絶縁トランス90aのコア断面積、Bmaxは絶縁トランス90aの磁束密度の上限値、N1は絶縁トランス90aのトランス巻数である。
Figure 0006913599
また、制限値設定部76aは、例えば、出力回路30において平滑コイルL2に流れる電流リップルが所定のリップル電流値以下となるように、最小スイッチングキャリア周波数fminを決定しても良い。具体的には、スイッチングキャリア周波数を低くした際においても、平滑コイルL2に流れる出力回路30からの出力電流における電流リップルが所定のリップル電流値を超えないように、以下の式(4)を用いて最小スイッチングキャリア周波数fminを決定する。なお式(4)において、Vinは電圧検出器41で検出されたDC−DCコンバータ100の入力電圧値、Voutは電圧検出器42で検出されたDC−DCコンバータ100の出力電圧、D*は電圧制御部60で求められたデューティ指示値、L2は平滑コイルL2のインダクタンス値、ΔILmaxはピーク最大リップル電流値とピーク最大リップル電流値の差分、Ntはトランス20の巻数比である。
Figure 0006913599
ただし、制限値設定部76aは、上記の式(3)や式(4)以外を用いて最小スイッチングキャリア周波数fminを決定してもよい。絶縁トランス90aの磁束密度が飽和磁束密度を超えたり、出力回路30からの出力電流における電流リップルが所定のリップル電流値を超えたりしない限りは、任意の方法で最小スイッチングキャリア周波数fminを決定することが可能である。なお、絶縁トランス90aの飽和磁束密度と出力電流における電流リップルの両方に基づいて最小スイッチングキャリア周波数fminを決定したり、これら以外の情報に基づいて最小スイッチングキャリア周波数fminを決定したりすることも可能である。
以上説明した本発明の第5の実施形態によれば、スイッチング回路10は、絶縁トランス90aを搭載した絶縁ゲートドライバであるゲートドライバ90を介して制御回路50と接続されている。また、スイッチングキャリア周波数設定部70は、スイッチングキャリア周波数を所定の最小スイッチングキャリア周波数fmin以上に制限する周波数制限部76を有しており、制限値設定部76aにおいて、絶縁トランス90aの飽和磁束密度および出力回路30からの出力電流における電流リップルの少なくとも一つに基づいて最小スイッチングキャリア周波数fminを決定する。このようにしたので、第1の実施形態で説明した効果に加えて、さらに、トランス20の磁気飽和だけでなく、ゲートドライバ90における絶縁トランス90aの磁気飽和や、DC−DCコンバータ100の出力電流における電流リップルについても、増大を防ぐことが可能となる。
なお、以上説明した本発明の各実施形態では、4つのスイッチ素子11a〜14aにより構成された電圧形フルブリッジ回路であるスイッチング回路10と、電流形センタータップ回路であるトランス20とを組み合わせて構成されたDC−DCコンバータ100を、位相シフト制御方式により制御する制御回路50の例を用いて本発明を説明したが、本発明はこれに限定されない。入力された第1の直流電力を交流電力に変換するスイッチング回路と、交流電力の電圧変換を行うトランスと、トランスにより電圧変換された交流電力を第2の直流電力に変換して出力する出力回路とを有する電力変換装置の制御を行う制御装置であれば、本発明を適用可能であり、各実施形態で説明したのと同様の作用効果を奏することができる。また、以上説明した各実施形態は、それぞれ単独で適用してもよく、任意に組み合わせてもよい。
以上説明した各実施形態や各種変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。また、上記では種々の実施形態や変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
1…正極入力端子、2…負極入力端子、3…正極出力端子、4…負極出力端子、10…スイッチング回路、11a〜14a…スイッチ素子、11b〜14b…ダイオード、11c〜14c…コンデンサ、20…トランス、30…出力回路、31,32…ダイオード、41,42…電圧検出器、43…温度検出器、44…電流検出器、50…制御回路、51〜54…出力信号、60…電圧制御部、61…減算部、62…PI制御部、63…デューティ制限部、65…クロック部、70…スイッチングキャリア周波数設定部、71…乗算部、72…比例部、73…減算部、74…磁束密度指令値設定部、75…PI制御部、75a…ゲイン調整部、76…周波数制限部、76a…制限値設定部、80…信号生成部、81…演算判定部、82…デッドタイム設定部、83…閾値設定部、84…演算判定部、85…キャリア信号生成部、86…比較器、90…ゲートドライバ、90a…絶縁トランス、91〜94…駆動信号、100…DC−DCコンバータ、200…車両電源制御部、300…HV系機器、400…補機機器、1000…車両、N1…一次巻線、N2a,N2b…二次巻線、S…整流接続点、T…中性点、V1…高圧バッテリ、V2…低圧バッテリ

Claims (5)

  1. 入力された第1の直流電力を第2の直流電力に変換して出力する電力変換装置の制御を行う制御装置であって、
    前記電力変換装置は、前記第1の直流電力を交流電力に変換するスイッチング回路と、前記交流電力の電圧変換を行うトランスと、前記トランスにより電圧変換された前記交流電力を前記第2の直流電力に変換する出力回路と、前記トランスの温度を検出する温度検出器と、を有し、
    前記制御装置は、
    前記出力回路の出力電圧を制御するためのデューティ指示値を算出する電圧制御部と、
    前記デューティ指示値および前記スイッチング回路の入力電圧に基づいて前記トランスの磁束密度値を算出し、算出した前記磁束密度値に基づいて前記スイッチング回路の駆動周波数に応じたスイッチングキャリア周波数を設定するスイッチングキャリア周波数設定部と、
    前記デューティ指示値および前記スイッチングキャリア周波数に基づいて前記スイッチング回路を駆動させるための出力信号を生成し、生成した前記出力信号を前記スイッチング回路に出力する信号生成部と、を備え、
    前記スイッチングキャリア周波数設定部は、前記磁束密度値が前記トランスの飽和磁束密度に基づく所定の磁束密度指令値よりも小さい場合は前記駆動周波数を低くし、前記磁束密度値が前記磁束密度指令値よりも大きい場合は前記駆動周波数を高くするように、前記スイッチングキャリア周波数を設定し、
    前記スイッチングキャリア周波数設定部は、前記温度検出器による前記トランスの温度検出値に基づいて前記磁束密度指令値を変更する制御装置。
  2. 入力された第1の直流電力を第2の直流電力に変換して出力する電力変換装置の制御を行う制御装置であって、
    前記電力変換装置は、前記第1の直流電力を交流電力に変換するスイッチング回路と、前記交流電力の電圧変換を行うトランスと、前記トランスにより電圧変換された前記交流電力を前記第2の直流電力に変換する出力回路と、前記出力回路からの出力電流を検出する電流検出器と、を有し、
    前記制御装置は、
    前記出力回路の出力電圧を制御するためのデューティ指示値を算出する電圧制御部と、
    前記デューティ指示値および前記スイッチング回路の入力電圧に基づいて前記トランスの磁束密度値を算出し、算出した前記磁束密度値に基づいて前記スイッチング回路の駆動周波数に応じたスイッチングキャリア周波数を設定するスイッチングキャリア周波数設定部と、
    前記デューティ指示値および前記スイッチングキャリア周波数に基づいて前記スイッチング回路を駆動させるための出力信号を生成し、生成した前記出力信号を前記スイッチング回路に出力する信号生成部と、を備え、
    前記スイッチングキャリア周波数設定部は、前記磁束密度値が前記トランスの飽和磁束密度に基づく所定の磁束密度指令値よりも小さい場合は前記駆動周波数を低くし、前記磁束密度値が前記磁束密度指令値よりも大きい場合は前記駆動周波数を高くするように、前記スイッチングキャリア周波数を設定し、
    前記スイッチングキャリア周波数設定部は、前記電流検出器による前記出力電流の検出値に基づいて前記磁束密度指令値を変更する制御装置。
  3. 入力された第1の直流電力を第2の直流電力に変換して出力する電力変換装置の制御を行う制御装置であって、
    前記電力変換装置は、前記第1の直流電力を交流電力に変換するスイッチング回路と、前記交流電力の電圧変換を行うトランスと、前記トランスにより電圧変換された前記交流電力を前記第2の直流電力に変換する出力回路と、を有し、
    前記制御装置は、
    前記出力回路の出力電圧を制御するためのデューティ指示値を算出する電圧制御部と、
    前記デューティ指示値および前記スイッチング回路の入力電圧に基づいて前記トランスの磁束密度値を算出し、算出した前記磁束密度値に基づいて前記スイッチング回路の駆動周波数に応じたスイッチングキャリア周波数を設定するスイッチングキャリア周波数設定部と、
    前記デューティ指示値および前記スイッチングキャリア周波数に基づいて前記スイッチング回路を駆動させるための出力信号を生成し、生成した前記出力信号を前記スイッチング回路に出力する信号生成部と、を備え、
    前記スイッチングキャリア周波数設定部は、前記磁束密度値が前記トランスの飽和磁束密度に基づく所定の磁束密度指令値よりも小さい場合は前記駆動周波数を低くし、前記磁束密度値が前記磁束密度指令値よりも大きい場合は前記駆動周波数を高くするように、前記スイッチングキャリア周波数を設定し、
    前記スイッチングキャリア周波数設定部は、前記磁束密度値と前記磁束密度指令値との差分に基づく比例積分制御を所定の制御ゲインにより行うPI制御部を有し、前記スイッチングキャリア周波数および前記出力回路からの出力電流の少なくとも一つに基づいて前記制御ゲインを変更する制御装置。
  4. 請求項1から請求項3までのいずれか一項に記載の制御装置において、
    前記電圧制御部および前記スイッチングキャリア周波数設定部の実行タイミングを制御するクロック部をさらに備える制御装置。
  5. 請求項から請求項までのいずれか一項に記載の制御装置において、
    前記スイッチング回路は、絶縁トランスを搭載した絶縁ゲートドライバを介して前記制御装置と接続されており、
    前記スイッチングキャリア周波数設定部は、前記スイッチングキャリア周波数を所定の最小周波数以上に制限する周波数制限部を有し、
    前記絶縁トランスの飽和磁束密度および前記出力回路からの出力電流における電流リップルの少なくとも一つに基づいて前記最小周波数を決定する制御装置。
JP2017201403A 2017-10-17 2017-10-17 制御装置 Active JP6913599B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017201403A JP6913599B2 (ja) 2017-10-17 2017-10-17 制御装置
US16/757,201 US11101739B2 (en) 2017-10-17 2018-10-04 Control device with magnetic flux density calculation
DE112018004544.7T DE112018004544B4 (de) 2017-10-17 2018-10-04 Steuereinrichtung
PCT/JP2018/037158 WO2019078013A1 (ja) 2017-10-17 2018-10-04 制御装置
CN201880065828.1A CN111201701B (zh) 2017-10-17 2018-10-04 控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017201403A JP6913599B2 (ja) 2017-10-17 2017-10-17 制御装置

Publications (2)

Publication Number Publication Date
JP2019075913A JP2019075913A (ja) 2019-05-16
JP6913599B2 true JP6913599B2 (ja) 2021-08-04

Family

ID=66173620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017201403A Active JP6913599B2 (ja) 2017-10-17 2017-10-17 制御装置

Country Status (5)

Country Link
US (1) US11101739B2 (ja)
JP (1) JP6913599B2 (ja)
CN (1) CN111201701B (ja)
DE (1) DE112018004544B4 (ja)
WO (1) WO2019078013A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7298496B2 (ja) 2020-01-31 2023-06-27 トヨタ自動車株式会社 車両
JP7384136B2 (ja) 2020-09-18 2023-11-21 株式会社明電舎 双方向絶縁型dc/dcコンバータおよびその制御方法
US20230336069A1 (en) * 2020-12-18 2023-10-19 Mitsubishi Electric Corporation Power conversion device
CN112688574B (zh) * 2021-03-18 2021-07-20 深圳市正浩创新科技股份有限公司 谐振变换器及其变极限频率控制方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454226A (en) * 1977-10-06 1979-04-28 Sony Corp Protective system for switching regulator system power source
JPS6399767A (ja) * 1986-10-13 1988-05-02 Fujitsu Denso Ltd フライバツクコンバ−タ
JPH08317646A (ja) * 1995-05-22 1996-11-29 Nemic Lambda Kk スイッチング電源装置
JP2003259640A (ja) * 2002-02-28 2003-09-12 Tdk Corp スイッチング電源装置
JP3959077B2 (ja) * 2004-06-30 2007-08-15 Tdk株式会社 並列駆動電源装置
US7639518B2 (en) * 2006-04-26 2009-12-29 Nissan Motor Co., Ltd. Device and method for controlling power converting device
JP2008092709A (ja) * 2006-10-03 2008-04-17 Toyota Industries Corp 系統連系インバータ装置
JP5060827B2 (ja) 2007-05-07 2012-10-31 河村電器産業株式会社 燃料電池の系統連系インバータ
JP5055083B2 (ja) * 2007-10-19 2012-10-24 日立コンピュータ機器株式会社 デジタル制御電源装置
WO2009081984A1 (ja) 2007-12-25 2009-07-02 Hitachi Metals, Ltd. 積層インダクタ及びこれを用いた電力変換装置
US8363439B2 (en) * 2008-04-22 2013-01-29 Flextronics Ap, Llc Efficiency improvement in power factor correction
KR101155698B1 (ko) * 2009-02-06 2012-06-12 신덴겐코교 가부시키가이샤 전류 검출 회로 및 변압기 전류 측정 시스템
JP5575235B2 (ja) * 2010-05-31 2014-08-20 三菱電機株式会社 電力変換装置
JP5622228B2 (ja) * 2010-06-25 2014-11-12 株式会社ダイヘン インバータ電源装置
JP2012095442A (ja) * 2010-10-27 2012-05-17 Daihen Corp 溶接電源装置
US8934267B2 (en) 2010-11-09 2015-01-13 Tdk-Lambda Corporation Loosely regulated feedback control for high efficiency isolated DC-DC converters
JP5355655B2 (ja) * 2011-10-20 2013-11-27 三菱電機株式会社 Dcdcコンバータおよびdcdcコンバータの制御方法
EP2812987B1 (en) 2012-02-09 2017-11-15 Telefonaktiebolaget LM Ericsson (publ) Control of transformer flux density in an isolated switched mode power supply
KR101991129B1 (ko) * 2012-07-25 2019-06-19 현대모비스 주식회사 동기형 저전압 직류직류 컨버터
JP5938008B2 (ja) * 2013-05-27 2016-06-22 株式会社デンソー 電力変換装置
JP6143566B2 (ja) * 2013-06-05 2017-06-07 三菱電機株式会社 電力変換装置及びこれを用いた空気調和装置
JP6114660B2 (ja) * 2013-08-23 2017-04-12 日立オートモティブシステムズ株式会社 電力変換装置
JP6554323B2 (ja) * 2015-05-25 2019-07-31 日立オートモティブシステムズ株式会社 電源装置
JP2017189011A (ja) * 2016-04-05 2017-10-12 株式会社デンソー 電力変換装置
US10554138B2 (en) * 2016-10-25 2020-02-04 Infineon Technologies Austria Ag Flux limited fast transient response in isolated DC-DC converters
CN110235346B (zh) * 2017-02-07 2020-11-24 三菱电机株式会社 电力变换装置
EP3609062A4 (en) * 2017-04-03 2020-04-08 Mitsubishi Electric Corporation POWER CONVERSION DEVICE
WO2018221031A1 (ja) * 2017-05-31 2018-12-06 日立オートモティブシステムズ株式会社 スイッチング電源装置
CN110710092B (zh) * 2017-06-07 2021-10-15 日立安斯泰莫株式会社 电力转换装置
JP6993905B2 (ja) * 2018-03-06 2022-01-14 株式会社Soken Dc・dcコンバータの制御装置
JP6369737B1 (ja) * 2018-04-06 2018-08-08 富士電機株式会社 絶縁型dc/dcコンバータ及びその制御装置、並びにdc/ac変換装置

Also Published As

Publication number Publication date
WO2019078013A1 (ja) 2019-04-25
CN111201701B (zh) 2023-11-10
JP2019075913A (ja) 2019-05-16
CN111201701A (zh) 2020-05-26
US20210135578A1 (en) 2021-05-06
DE112018004544B4 (de) 2023-03-16
US11101739B2 (en) 2021-08-24
DE112018004544T5 (de) 2020-05-28

Similar Documents

Publication Publication Date Title
US9667153B2 (en) Switching power supply apparatus for generating control signal for lowering switching frequency of switching devices
JP6913599B2 (ja) 制御装置
US9287790B2 (en) Electric power converter
JP6132887B2 (ja) 電力変換装置
JP6397757B2 (ja) 電源装置
US20120091970A1 (en) Charging equipment of variable frequency control for power factor
US20080037290A1 (en) Ac-dc converter and method for driving for ac-dc converter
JP6012822B1 (ja) 電力変換装置
JP6526546B2 (ja) 共振形電源装置
JP2006129548A (ja) 電力変換装置
JP2015181329A (ja) 電力変換装置
US10651751B2 (en) Switching power supply device
JP2013090432A (ja) フォワード形直流−直流変換装置
US11689112B2 (en) DC-DC converter and vehicle
WO2018235438A1 (ja) Dc-dcコンバータ、これを用いた電源システム及び当該電源システムを用いた自動車
Cetin High efficiency design procedure of a second stage phase shifted full bridge converter for battery charge applications based on wide output voltage and load ranges
JP6132882B2 (ja) 電力変換装置
JP2014027750A (ja) 双方向dc−dcコンバータおよび双方向dc−dcコンバータの制御方法
WO2019208008A1 (ja) 電力変換装置
JP2018064385A (ja) Dc−dcコンバータ、及び自動車
JP2021083185A (ja) 絶縁型dcdcコンバータ
JP2022138710A (ja) Dc-dcコンバータおよび車両
CN116317463A (zh) 有源钳位电路的参数计算方法、装置、控制器、dc/dc转换器、新能源汽车及存储介质
CN113394977A (zh) 开关电源装置
JP2013192436A (ja) 電力伝送装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210712

R150 Certificate of patent or registration of utility model

Ref document number: 6913599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150