JP6902666B1 - 圧粉磁芯の製造方法及び圧粉磁芯 - Google Patents

圧粉磁芯の製造方法及び圧粉磁芯 Download PDF

Info

Publication number
JP6902666B1
JP6902666B1 JP2020164976A JP2020164976A JP6902666B1 JP 6902666 B1 JP6902666 B1 JP 6902666B1 JP 2020164976 A JP2020164976 A JP 2020164976A JP 2020164976 A JP2020164976 A JP 2020164976A JP 6902666 B1 JP6902666 B1 JP 6902666B1
Authority
JP
Japan
Prior art keywords
dust core
mold
temperature
high temperature
magnetic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020164976A
Other languages
English (en)
Other versions
JP2022056962A (ja
Inventor
真 八巻
真 八巻
大西 直人
直人 大西
浦田 顕理
顕理 浦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2020164976A priority Critical patent/JP6902666B1/ja
Application granted granted Critical
Publication of JP6902666B1 publication Critical patent/JP6902666B1/ja
Priority to PCT/JP2021/035565 priority patent/WO2022071290A1/ja
Priority to CN202180066983.7A priority patent/CN116249598A/zh
Priority to US18/028,667 priority patent/US20240029951A1/en
Publication of JP2022056962A publication Critical patent/JP2022056962A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/02Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15358Making agglomerates therefrom, e.g. by pressing
    • H01F1/15366Making agglomerates therefrom, e.g. by pressing using a binder
    • H01F1/15375Making agglomerates therefrom, e.g. by pressing using a binder using polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/08Cores, Yokes, or armatures made from powder

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

【課題】割れや膨らみを生じることなく、所望の電磁気的特性が得られる圧粉磁芯の製造方法を提供する。【解決手段】圧粉磁芯は、少なくとも一部が被覆110された磁性体粉末100を金型300内で所定温度で加熱しながら加圧して製造される。金型300は、ダイス310と、上パンチ350と、下パンチ330とで構成されている。上パンチ350は、上下方向において下パンチ330の上方に位置している。金型300には、低温部400と、高温部500とが設けられている。低温部400の温度は、高温部500の温度よりも10℃以上低い。【選択図】図4

Description

本発明は、圧粉磁芯の製造方法及び圧粉磁芯に関する。
圧粉磁芯の製造方法としては、例えば特許文献1に開示されたものがある。特許文献1の圧粉磁芯の製造方法においては、表面に絶縁被覆を形成した磁性体粉末を金型内で加熱しながら加圧して圧粉磁芯を成形している。この製造方法によれば、磁性体粉末や磁性体粉末を結着するためのバインダーが熱で軟化するため、磁性体粉末を常温で加圧成形する方法と比べて磁性体粉末の高充填化が可能となっている。
特許第6651082号公報
しかしながら、特許文献1の製造方法においては、製造された圧粉磁芯に割れや膨らみが生じたり、所望の電磁気的特性が得られないといった問題があった。
そこで、本発明は、割れや膨らみを生じることなく、所望の電磁気的特性が得られる圧粉磁芯の製造方法を提供することを目的とする。また、本発明は、その製造方法により製造された圧粉磁芯を提供することを目的とする。
本出願人は、上記課題の原因について鋭意検討する中で、一般的なホットプレス機では、加熱室内に金型をセットして加圧を行っているため、金型全体が均一な温度となっていることに着目した。
具体的には、本出願人は、バインダーが熱硬化性樹脂である場合、金型全体の温度分布が均一であるため、金型と接触する圧粉磁芯の外側部分から全体的に硬化が進行する事象に気づいた。この事象を踏まえて、本出願人は、圧粉磁芯の外側部分の硬化した樹脂により、磁性体粉末間に残存する空気やバインダー等から発生するガスの圧粉磁芯の外部への放出が妨げられて、圧粉磁芯に割れや膨らみが生じることを見出した。
また、本出願人は、磁性体粉末が熱処理により結晶化するものである場合、金型全体の温度分布が均一であるため、金型と接触する圧粉磁芯の外側部分から全体的に結晶化が進行する事象にも気づいた。この事象を踏まえて、本出願人は、圧粉磁芯の外側部分の結晶化に伴って発生する熱が圧粉磁芯の内部に伝搬して圧粉磁芯の中心部を過熱させ、これにより圧粉磁芯の中心部に軟磁気特性を劣化させるFe−B化合物相が析出して、圧粉磁芯の電磁気的特性が劣化することを見出した。
即ち、本出願人は、上記課題の原因が金型全体の均一な温度分布にあることを見出した。この原因を踏まえて、本出願人は、金型の温度を部分的に不均一にすることを発案し、本発明を完成するに至った。
即ち、本発明は、第1の圧粉磁芯の製造方法として、
少なくとも一部が被覆された磁性体粉末を金型内で所定温度で加熱しながら加圧して圧粉磁芯を製造する方法であって、
前記金型は、ダイスと、上パンチと、下パンチとで構成されており、
前記上パンチは、上下方向において前記下パンチの上方に位置しており、
前記金型には、低温部と、高温部とが設けられており、
前記低温部の温度は、前記高温部の温度よりも10℃以上低い
圧粉磁芯の製造方法を提供する。
また、本発明は、第2の圧粉磁芯の製造方法として、第1の圧粉磁芯の製造方法であって、
前記高温部は、前記ダイスである
圧粉磁芯の製造方法を提供する。
また、本発明は、第3の圧粉磁芯の製造方法として、第1又は第2の圧粉磁芯の製造方法であって、
前記金型には、付加的高温部が更に設けられており、
前記付加的高温部は、前記下パンチであり、
前記付加的高温部の温度は、前記低温部の温度よりも10℃以上高い
圧粉磁芯の製造方法を提供する。
また、本発明は、第4の圧粉磁芯の製造方法として、第1から第3までのいずれかの圧粉磁芯の製造方法であって、
前記ダイスは、前記上下方向において下方に向かって先細りとなる内壁を有しており、
前記低温部は、前記上パンチである
圧粉磁芯の製造方法を提供する。
また、本発明は、第5の圧粉磁芯の製造方法として、第1から第3までのいずれかの圧粉磁芯の製造方法であって、
前記上パンチは、複数の部材を組み合わせて構成されており、
前記複数の部材は、低温用部材と、高温用部材とを含んでおり、
前記金型には、補助的高温部が更に設けられており、
前記低温部は、前記低温用部材であり、
前記補助的高温部は、前記高温用部材であり、
前記補助的高温部の温度は、前記低温部の温度よりも10℃以上高い
圧粉磁芯の製造方法を提供する。
また、本発明は、第6の圧粉磁芯の製造方法として、第1から第5までのいずれかの圧粉磁芯の製造方法であって、
前記加圧の際に前記圧粉磁芯の非晶質相中にナノ結晶が析出する
圧粉磁芯の製造方法を提供する。
また、本発明は、第7の圧粉磁芯の製造方法として、第6の圧粉磁芯の製造方法であって、
前記磁性体粉末の結晶化温度は、前記所定温度より低い
圧粉磁芯の製造方法を提供する。
また、本発明は、第8の圧粉磁芯の製造方法として、第1から第7までのいずれかの圧粉磁芯の製造方法であって、
前記磁性体粉末の一部は、被覆されていない
圧粉磁芯の製造方法を提供する。
また、本発明は、第1の圧粉磁芯として、
少なくとも一部が被覆された磁性体粉末を含有する圧粉磁芯であって、
前記磁性体粉末は、ナノ結晶を含有しており、
前記圧粉磁芯は、第1面と、第2面と、周面とを有しており、
前記第1面は、所定方向における第1方位に向いており、
前記第2面は、前記第1方位の逆方位である第2方位に向いており、
前記周面は、前記所定方向と直交する直交方向と交差しており、
前記第1面の結晶化度をC1、前記第2面の結晶化度をC2、前記周面の結晶化度をCとしたとき、max(C1,C2,C)−min(C1,C2,C)≧1を満たしている
圧粉磁芯を提供する。
また、本発明は、第2の圧粉磁芯として、第1の圧粉磁芯であって、
max(C1,C2,C)=Cである
圧粉磁芯を提供する。
また、本発明は、第3の圧粉磁芯として、
少なくとも一部が被覆された磁性体粉末を含有する圧粉磁芯であって、
前記磁性体粉末は、ガラス転移点を有する金属ガラスであり、
前記圧粉磁芯は、第1面と、第2面と、周面とを有しており、
前記第1面は、所定方向における第1方位に向いており、
前記第2面は、前記第1方位の逆方位である第2方位に向いており、
前記周面は、前記所定方向と直交する直交方向と交差しており、
前記第1面の表面抵抗値をR1、前記第2面の表面抵抗値をR2、前記周面の表面抵抗値をRとしたとき、min(R1,R2,R)/max(R1,R2,R)≦0.95を満たしている
圧粉磁芯を提供する。
また、本発明は、第4の圧粉磁芯として、第3の圧粉磁芯であって、
max(R1,R2,R)=Rである
圧粉磁芯を提供する。
本発明の圧粉磁芯の製造方法においては、金型には、低温部と、高温部とが設けられており、また、低温部の温度は、高温部の温度よりも10℃以上低くなっている。これにより、本発明の圧粉磁芯の製造方法によれば、金型の低温部と接する圧粉磁芯の外面は、金型の高温部と接する圧粉磁芯の外面と比べて、バインダーの硬化が遅れて進行する。これにより、磁性体粉末間に残存する空気やバインダー等から発生するガスは、低温部と接する圧粉磁芯の外面から放出されるため、圧粉磁芯に割れや膨らみは生じない。また、本発明の圧粉磁芯の製造方法によれば、磁性体粉末の結晶化に伴って発生する熱は、金型の低温部を介して外部に放熱されるため、結晶化反応の終盤においても圧粉磁芯の中心部が過熱されることがなく、軟磁気特性を劣化させるFe−B化合物相が圧粉磁芯中に析出しない。即ち、本発明の圧粉磁芯の製造方法では、割れや膨らみを生じることなく所望の電磁気的特性を有する圧粉磁芯が得られる。
また、本発明の圧粉磁芯においては、磁性体粉末はナノ結晶を含有しており、第1面の結晶化度をC1、第2面の結晶化度をC2、周面の結晶化度をCとしたとき、max(C1,C2,C)−min(C1,C2,C)≧1を満たしている。これにより、本発明の圧粉磁芯は、割れや膨らみを有さず、また、所望の電磁気的特性を有している。
更に、本発明の圧粉磁芯においては、磁性体粉末はガラス転移点を有する金属ガラスであり、第1面の表面抵抗値をR1、第2面の表面抵抗値をR2、周面の表面抵抗値をRとしたとき、min(R1,R2,R)/max(R1,R2,R)≦0.95を満たしている。これにより、本発明の圧粉磁芯は、割れや膨らみを有さず、また、所望の電磁気的特性を有している。
本発明の第1の実施の形態による圧粉磁芯を示す上面図である。 図1の圧粉磁芯を示す底面図である。 図1の圧粉磁芯の製造方法を説明するためのフロー図である。 図1の圧粉磁芯の製造方法を説明するための図である。図において、金型の上パンチ及び下パンチは初期状態にある。 図1の圧粉磁芯の製造方法を説明するための別の図である。図において、上パンチ及び下パンチは、磁性体粉末を加圧している途中の状態にある。 図1の圧粉磁芯の製造方法を説明するための更に別の図である。図において、上パンチ及び下パンチは、磁性体粉末に対する加圧が完了した状態にある。 本発明の第2の実施の形態の圧粉磁芯を示す上面図である。 図7の圧粉磁芯を示す底面図である。 図7の圧粉磁芯の製造方法を説明するための図である。図において、金型の上パンチ及び下パンチは初期状態にある。 図1及び図7の圧粉磁芯の製造方法の変形例を説明するための図である。図において、金型の上パンチ及び下パンチは初期状態にある。
(第1の実施形態)
図1に示されるように、本実施の形態の圧粉磁芯600は、被覆110された磁性体粉末100を含有している。なお、本発明はこれに限定されず、圧粉磁芯600は、少なくとも一部が被覆110された磁性体粉末100を含有していればよい。即ち、一部の磁性体粉末100は、被覆されていなくてもよい。
(磁性体粉末)
本実施の形態の磁性体粉末100は、非晶質相中にナノ結晶を含有している。即ち、磁性体粉末100は、熱処理により非晶質中にナノ結晶が析出するものであり、具体的には、Fe−B−Si−P−C−Cu系、Fe−B−Si−Nb−Cu系、Fe−(Nb,Zr)−B系などである。磁性体粉末100は、結晶化温度Tcを有している。
(被覆)
本実施の形態の被覆110は、磁性体粉末100の絶縁および機械強度向上を目的として施されている。被覆110は、樹脂等の有機物や、金属酸化物等の無機物で構成されている。ここで、被覆110を構成する樹脂としては、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、ポリアミド樹脂、ポリイミド樹脂など熱硬化性樹脂や、PPS樹脂、PEEK樹脂などの熱可塑性樹脂が挙げられる。また、被覆110を構成する無機物としては、アルミナ、シリカ、マグネシアなどの金属酸化物や、リン酸塩系、ホウ酸塩系、ケイ酸塩系などの低融点ガラス、ポリシラン、ポリシラザンなどの無機高分子が挙げられる。なお、被覆110は、有機物のみで構成されていてもよいし、無機物のみで構成されていてもよいし、有機物と無機物の複合材で構成されていてもよい。より詳しくは、被覆110を、磁性体粉末100の表面に接する内層であって無機物で形成されている内層と、この内層の外側に位置する外層であって有機物で形成されている外層との、2層構造で構成してもよい。なお、被覆110は、複数の材料を併用しても良く、異なる材料で2層またはそれ以上の多層構造を形成しても良い。
図1及び図2に示されるように、本実施の形態の圧粉磁芯600は、第1面620と、第2面640と、周面660とを有している。
図1に示されるように、本実施の形態の第1面620は、所定方向における第1方位に向いている。第1面620は、所定方向と直交する平面である。図2に示されるように、本実施の形態の第2面640は、第1方位の逆方位である第2方位に向いている。第2面640は、所定方向と直交する平面である。ここで、本実施の形態において、所定方向はZ方向である。また、所定方向は上下方向でもある。ここで、上方は+Z方向であり、下方はZ方向である。加えて、第1方位は+Z方向であり、第2方位は−Z方向である。即ち、第1方位は上方であり、第2方位は下方でもある。
図1に示されるように、本実施の形態の周面660は、所定方向と直交する直交方向と交差している。
本実施の形態の圧粉磁芯600において、第1面620の結晶化度をC1、第2面640の結晶化度をC2、周面660の結晶化度をCとすると、max(C1,C2,C)−min(C1,C2,C)≧1を満たしている。即ち、本実施の形態の圧粉磁芯600において、第1面620の結晶化度C1、第2面640の結晶化度C2、周面660の結晶化度Cのうち、最大値であるものをCmaxとし、第1面620の結晶化度C1、第2面640の結晶化度C2、周面660の結晶化度Cのうち、最小値であるものもCminとすると、Cmax−Cmin≧1を満たしている。これにより、本発明の圧粉磁芯600は、割れや膨らみを有さず、また、所望の電磁気的特性を有している。特に、本実施の形態においては、第1面620の結晶化度C1、第2面640の結晶化度C2、周面660の結晶化度Cのうち、周面660の結晶化度Cが最大値となっている。即ち、本実施の形態においては、max(C1,C2,C)=Cとなっている。ここで、第1面620、第2面640及び周面660の結晶化度C1,C2,Cは、X線回析(XRD:X‐ray diffraction)による測定結果をWPPD法(Whole-powder-pattern decomposition method)によって解析することにより算出される。
(圧粉磁芯の製造方法)
図1から図6までを参照して、本実施の形態の圧粉磁芯600は、以下のように製造される。
図3は、本実施の形態の圧粉磁芯600の製造方法を示すフロー図である。具体的には、圧粉磁芯600は、被覆工程と、予備成形工程と、充填工程と、加圧・加熱工程とを順次遂行することにより製造される。各工程の内容について以下詳述する。
(被覆工程)
被覆工程においては、圧粉磁芯600の原料として、表面に被覆110を施した磁性体粉末100を準備する。なお、本発明はこれに限定されず、被覆110を施した磁性体粉末100に被覆されていない磁性体粉末100を混合し、この混合物を原料として以降の工程に供してもよい。
磁性体粉末100の被覆の方法は、粉末混合法、浸漬法、噴霧法、流動層法、ゾルゲル法、CVD法、あるいはPVD法など、各種の方法から、被覆する材料の種類と経済性を鑑みて選択可能である。
(予備成形工程)
被覆工程の遂行後、磁性体粉末100を予備成型する。
(充填工程)
図4を参照して、予備成形工程の遂行後、予備成形された成形体を所定の金型300内に収容する。本実施の形態の圧粉磁芯600の製造に使用される金型300について、以下詳述する。
図4に示されるように、本実施の形態の圧粉磁芯600の製造に用いられる金型300は、ダイス310と、上パンチ350と、下パンチ330とで構成されている。
図4を参照して、本実施の形態のダイス310は、上下方向と直交する直交平面において、上パンチ350を包囲している。ダイス310は、直交平面において、下パンチ330を包囲している。ダイス310は、第1開口316と、第2開口318と、内壁312と、収容部314とを有している。第1開口316は、ダイス310の上下方向における上端に位置している。第2開口318は、ダイス310の上下方向における下端に位置している。第1開口316は、第2開口318よりも上下方向と直交する方向において大きな外周を有している。内壁312は、上下方向において下方に向かって先細りしている。即ち、ダイス310は、上下方向において下方に向かって先細りとなる内壁312を有している。収容部314は、ダイス310を上下方向に貫通する孔であり、第1開口316と第2開口318とを連通している。
図4に示されるように、本実施の形態の上パンチ350は、ダイス310の収容部314に部分的に収容されている。上パンチ350は、上下方向において下パンチ330の上方に位置している。
図4に示されるように、本実施の形態の下パンチ330は、ダイス310の収容部314に部分的に収容されている。下パンチ330は、上下方向において上パンチ350の下方に位置している。
図4を参照して、予備成型された成型体の金型300への収容、即ち、磁性体粉末100の金型300への充填は、金型300の第2開口318の下側から収容部314に下パンチ330を装入した状態で、磁性体粉末100を、金型300の収容部314内に第1開口316から投入し、磁性体粉末100の投入終了後、上パンチ350を第1開口316から収容部314内に部分的に挿入することにより行われる。
(加圧・加熱工程)
図4から図6までを参照して、充填工程の遂行後、磁性体粉末100を金型300内で加圧しながら加熱し、成形体としての圧粉磁芯600を得る。即ち、本実施の形態の圧粉磁芯600は、被覆110された磁性体粉末100を金型300内で所定温度Tで加熱しながら加圧して製造される。なお、本発明はこれに限定されず、圧粉磁芯600は、少なくとも一部が被覆110された磁性体粉末100を金型300内で所定温度Tで加熱しながら加圧して製造してもよい。換言すれば、圧粉磁芯600は、被覆110された磁性体粉末100と被覆されていない磁性体粉末100とを金型300内で所定温度Tで加熱しながら加圧して製造してもよい。なお、所定温度Tは、磁性体粉末100の結晶化温度Tcよりも高い。
具体的には、金型300に充填された磁性体粉末100に対して、成形圧力を印加しながら加熱を行う。この際、成形圧力が高いほど高密度化の効果は高いが、成形圧力を過度に高くしても高密度化の効果は飽和して金型破損のリスクが高まる。そのため、成形圧力は、100〜2000MPaの範囲とする。また充填された磁性体粉末100の加熱は、金型300に後述するような温度分布が生じるように温度設定して実施される。
図4に示されるように、本実施の形態の金型300には、低温部400と、高温部500とが設けられている。低温部400の温度Tlは、高温部500の温度Thよりも10℃以上低くなっている。より詳しくは、高温部500は、ダイス310であり、低温部400は、上パンチ350である。なお、本発明はこれに限定されず、低温部400は、下パンチ330であってもよい。なお、上述の磁性体粉末100の結晶化温度Tcは、高温部500の温度Thよりも低い。低温部400の温度Tlと高温部500の温度Thとの温度差は、650℃以下であることが好ましく、420℃以下がより好ましい。
図4に示されるように、本実施の形態の金型300には、付加的高温部520が更に設けられている。付加的高温部520の温度Tmは、低温部400の温度Tlと高温部500の温度Thとの間である。なお、付加的高温部520の温度Tmは、低温部400の温度Tlよりも10℃以上高くなっていることが好ましい。本実施の形態において、付加的高温部520は、下パンチ330である。なお、下パンチ330が低温部400である場合、上パンチ350が付加的高温部520となる。
図4から図6を参照して、磁性体粉末100への成形圧力の印加及び加熱は以下のように行われる。
まず、金型300に充填された磁性体粉末100に対して、上パンチ350及び下パンチ330に加圧力を印加する。次に、金型300の低温部400、高温部500及び付加的高温部520を、高温部500の温度Thが低温部400の温度Tlよりも10℃以上高くなるように、且つ、付加的高温部520の温度Tmが低温部400の温度Tlと高温部500の温度Thとの間となるように、ヒーター、高周波誘導加熱、バーナー加熱等で加熱する。その後、金型300を冷却し、得られた圧粉磁芯600を金型300から取り出し、成形体である圧粉磁芯600を得る。なお、この加圧・加熱工程の遂行により、本実施の形態の圧粉磁芯600の非晶質相中には、ナノ結晶が析出する。
図1、図2及び図4から理解されるように、製造された圧粉磁芯600の第1面620は、磁性体粉末100を金型300で加圧成型した際に金型300の上パンチ350と接していた部分である。即ち、第1面620は、磁性体粉末100を金型300で加圧成型した際に金型300の低温部400と接していた部分である。また、製造された圧粉磁芯600の第2面640は、磁性体粉末100を金型300で加圧成型した際に金型300の下パンチ330と接していた部分である。即ち、第2面640は、磁性体粉末100を金型300で加圧成型した際に金型300の付加的高温部520と接していた部分である。加えて、製造された圧粉磁芯600の周面660は、磁性体粉末100を金型300で加圧成型した際に金型300のダイス310の内壁312と接していた部分である。即ち、周面660は、磁性体粉末100を金型300で加圧成型した際に金型300の高温部500と接していた部分である。
上述のように、圧粉磁芯600の第1面620、第2面640及び周面660は、製造に用いた金型300の上パンチ350、下パンチ330及びダイス310が夫々接していた部分であることから、第1面620、第2面640及び周面660の物性は、金型300の接していた部分の温度設定が反映されたものとなっている。
上述の圧粉磁芯600の製造方法は、被覆工程と、予備成形工程と、充填工程と、加圧・加熱工程とを有していたが、本発明はこれに限定されず、予備成形工程を遂行せずに圧粉磁芯600を製造してもよい。即ち、圧粉磁芯600は、被覆工程と、充填工程と、加圧・加熱工程とを順次遂行することにより製造されてもよい。また、加圧・加熱工程を経て製造された圧粉磁芯600に対して、更に熱処理を施してもよい。
(第2の実施形態)
図7及び図8に示されるように、本実施の形態の圧粉磁芯600Aは、被覆110Aされた磁性体粉末100Aを含有している。なお、本発明はこれに限定されず、圧粉磁芯600Aは、少なくとも一部が被覆110Aされた磁性体粉末100Aを含有していればよい。即ち、磁性体粉末100Aの一部は、被覆されていなくてもよい。
(磁性体粉末)
本実施の形態の磁性体粉末100Aは、ガラス転移点を有する金属ガラスであり、具体的には、FePCBSiGa系や、FeSiBM(Mは遷移金属)系、FePBM(Mは遷移金属)系である。磁性体粉末100Aは、ガラス転移温度Tgを有している。
(被覆)
本実施の形態の被覆110Aは、磁性体粉末100Aの絶縁および機械強度向上を目的として施されている。被覆110Aは、樹脂等の有機物や、金属酸化物等の無機物で構成されている。ここで、被覆110Aを構成する樹脂としては、第1の実施の形態の被覆110と同様のものが利用可能である。
図7及び図8に示されるように、本実施の形態の圧粉磁芯600Aは、第1面620Aと、第2面640Aと、周面660Aとを有している。
図7に示されるように、本実施の形態の第1面620Aは、所定方向における第1方位に向いている。第1面620Aは、所定方向と直交する平面である。図8に示されるように、本実施の形態の第2面640Aは、第1方位の逆方位である第2方位に向いている。第2面640Aは、所定方向と直交する平面である。本実施の形態の周面660Aは、所定方向と直交する直交方向と交差している。
本実施の形態の圧粉磁芯600Aにおいて、第1面620Aの表面抵抗値をR1、第2面640Aの表面抵抗値をR2、周面660Aの表面抵抗値をRとしたとき、min(R1,R2,R)/max(R1,R2,R)≦0.95を満たしている。即ち、本実施の形態の圧粉磁芯600Aにおいて、第1面620Aの表面抵抗値R1、第2面640Aの表面抵抗値R2、周面660Aの表面抵抗値Rのうち、最大値であるものをRmaxとし、第1面620Aの表面抵抗値R1、第2面640Aの表面抵抗値R2、周面660Aの表面抵抗値Rのうち、最小値であるものをRminとすると、Rmin/Rmax≦0.95を満たしている。これにより、本発明の圧粉磁芯600Aは、割れや膨らみを有さず、また、所望の電磁気的特性を有している。ここで、第1面620A、第2面640A及び周面660Aの表面抵抗値R1,R2,Rは、テスターのプローブを、第1面620A、第2面640A及び周面660Aの表面に、プローブ間の距離が10.5mmとなるように接触させて測定した。
(圧粉磁芯の製造方法)
図3から図9までを参照して、本実施の形態の圧粉磁芯600Aは、以下のように製造される。
本実施の形態の圧粉磁芯600Aは、第1の実施の形態の圧粉磁芯600と同様に、被覆工程と、予備成形工程と、充填工程と、加圧・加熱工程とを順次遂行することにより製造される。ここで、各工程のうち、被覆工程及び予備成形工程については、第1の実施の形態と同様であり、詳細は省略する。
(充填工程)
図9を参照して、予備成形工程の遂行後、磁性体粉末100Aを所定の金型300内に充填する。本実施の形態の金型300は、上述の第1の実施の形態の金型300と同様な構造を有しているため、詳細な説明は省略する。
図9を参照して、磁性体粉末100Aの金型300への充填は、金型300の第2開口318の下側から収容部314に下パンチ330を装入した状態で、磁性体粉末100Aを、金型300の収容部314内に第1開口316から投入し、磁性体粉末100Aの投入終了後、上パンチ350を第1開口316から収容部314内に部分的に挿入することにより行われる。
(加圧・加熱工程)
図9及び図4から図6までを参照して、充填工程の遂行後、磁性体粉末100Aを金型300内で加圧しながら加熱し、成形体としての圧粉磁芯600Aを得る。即ち、本実施の形態の圧粉磁芯600Aは、被覆110Aされた磁性体粉末100Aを金型300内で所定温度TAで加熱しながら加圧して製造される。なお、本発明はこれに限定されず、圧粉磁芯600Aは、少なくとも一部が被覆110Aされた磁性体粉末100Aを金型300A内で所定温度TAで加熱しながら加圧して製造してもよい。換言すれば、圧粉磁芯600Aは、被覆110Aされた磁性体粉末100Aと被覆されていない磁性体粉末100Aとを金型300内で所定温度TAで加熱しながら加圧して製造してもよい。
具体的には、金型300に充填された磁性体粉末100Aに対して、成形圧力を印加しながら加熱を行う。この際、成形圧力が高いほど高密度化の効果は高いが、成形圧力を過度に高くしても高密度化の効果は飽和して金型破損のリスクが高まる。そのため、成形圧力は、100〜2000MPaの範囲とすることが好ましい。また充填された磁性体粉末100Aの加熱は、金型300に後述するような温度分布が生じるように温度設定して実施される。
図9に示されるように、本実施の形態の金型300には、低温部400と、高温部500とが設けられている。低温部400の温度Tlは、高温部500の温度Thよりも10℃以上低くなっている。より詳しくは、高温部500は、ダイス310であり、低温部400は、上パンチ350である。なお、本発明はこれに限定されず、低温部400は、下パンチ330であってもよい。低温部400の温度Tlと高温部500の温度Thとの温度差は、650℃以下であることが好ましく、420℃以下がより好ましい。
図9に示されるように、本実施の形態の金型300には、付加的高温部520が更に設けられている。付加的高温部520の温度Tmは、低温部400の温度Tlと高温部500の温度Thとの間である。なお、付加的高温部520の温度Tmは、低温部400の温度よりも10℃以上高くなっていることが好ましい。本実施の形態において、付加的高温部520は、下パンチ330である。なお、下パンチ330が低温部400である場合、上パンチ350が付加的高温部520となる。
図9及び図4から図6までを参照して、磁性体粉末100Aへの成形圧力の印加及び加熱は以下のように行われる。
まず、金型300に充填された磁性体粉末100Aに対して、上パンチ350及び下パンチ330に加圧力を印加する。次に、金型300の低温部400、高温部500及び付加的高温部520を、高温部500の温度Thが低温部400の温度Tlよりも10℃以上高くなるように、且つ、付加的高温部520の温度Tmが低温部400の温度Tlと高温部500の温度Thとの間となるように、ヒーター、高周波誘導加熱、バーナー加熱等で加熱する。その後、金型300を冷却し、得られた圧粉磁芯600Aを金型300から取り出し、成形体である圧粉磁芯600Aを得る。
図7から図9までから理解されるように、製造された圧粉磁芯600Aの第1面620Aは、磁性体粉末100Aを金型300で加圧成型した際に金型300の上パンチ350と接していた部分である。即ち、第1面620Aは、磁性体粉末100Aを金型300で加圧成型した際に金型300の低温部400と接していた部分である。また、製造された圧粉磁芯600Aの第2面640Aは、磁性体粉末100Aを金型300で加圧成型した際に金型300の下パンチ330と接していた部分である。即ち、第2面640Aは、磁性体粉末100Aを金型300で加圧成型した際に金型300の付加的高温部520と接していた部分である。加えて、製造された圧粉磁芯600Aの周面660Aは、磁性体粉末100Aを金型300で加圧成型した際に金型300のダイス310の内壁312と接していた部分である。即ち、周面660Aは、磁性体粉末100Aを金型300で加圧成型した際に金型300の高温部500と接していた部分である。
上述のように、圧粉磁芯600Aの第1面620A、第2面640A及び周面660Aは、製造に用いた金型300の上パンチ350、下パンチ330及びダイス310が夫々接していた部分であることから、第1面620A、第2面640A及び周面660Aの物性は、金型300の接していた部分の温度設定が反映されたものとなっている。
上述の圧粉磁芯600Aの製造方法は、被覆工程と、予備成形工程と、充填工程と、加圧・加熱工程とを有していたが、本発明はこれに限定されず、予備成形工程を遂行せずに圧粉磁芯600Aを製造してもよい。即ち、圧粉磁芯600Aは、被覆工程と、充填工程と、加圧・加熱工程とを順次遂行することにより製造されてもよい。
上述の実施の形態の圧粉磁芯600,600Aの製造方法に用いられる金型300は、以下のように変形可能である。
図10に示されるように、本変形例の金型300Bは、ダイス310と、上パンチ350Bと、下パンチ330とで構成されている。ここで、ダイス310及び下パンチ330については、上述の実施の形態の金型300のダイス310及び下パンチ330と同様であり、詳細な説明は省略する。
図10に示されるように、本変形例の上パンチ350Bは、上下方向において下パンチ330の上方に位置している。上パンチ350Bは、複数の部材を組み合わせて構成されている。上パンチ350Bを構成する複数の部材は、低温用部材352Bと、高温用部材356Bとを含んでいる。
図10に示されるように、本変形例の金型300Bには、低温部400Bと、高温部500と、付加的高温部520と、補助的高温部540とが設けられている。低温部400Bの温度Tlは、高温部500の温度Thよりも10℃以上低くなっている。付加的高温部520の温度Tmは、低温部400Bの温度Tlと高温部500の温度Thとの間であり、補助的高温部540の温度Tdは、低温部400Bの温度Tlと高温部500の温度Thとの間である。なお、低温部400Bの温度Tlと高温部500の温度Thとの温度差は、650℃以下であることが好ましく、420℃以下がより好ましい。加えて、付加的高温部520の温度Tmは、低温部400Bの温度Tlよりも10℃以上高くなっていることが好ましく、補助的高温部540の温度Tdは、低温部400Bの温度Tlよりも10℃以上高くなっていることが好ましい。また、補助的高温部540の温度Tdは、高温部500の温度Thと同じであってもよい。本変形例において、低温部400Bは、低温用部材352Bであり、高温部500は、ダイス310であり、付加的高温部520は、下パンチ330であり、補助的高温部540は、高温用部材356Bである。なお、図10に示されるように、低温部400Bは、Y方向において2つの補助的高温部540に挟まれるように配置されているが、本発明はこれに限定されず、低温部400Bと補助的高温部540との配置が逆となっていてもよい。即ち、補助的高温部540がY方向において2つの低温部400Bに挟まれるように配置されていてもよい。また、下パンチ330が低温用部材352Bと高温用部材356Bとを含んだ複数の部材を組み合わせて構成されていてもよい。
(圧縮成形)
図10を参照して、磁性体粉末100,100Aの金型300Bへの充填及び加圧成型は、上述の実施の形態と同様に実施される。
(圧粉磁芯)
変形例おいても、以上のように所定の条件で加圧・加熱を行うことにより、被覆110,100Aされた磁性体粉末100,100Aを含有する圧粉磁芯600,600Aが得られる。
以下、本発明の実施の形態について、実施例を参照しながら更に詳細に説明する。
(実施例1〜26及び比較例1〜9)
磁性体粉末100として、Fe80.9Si8.5CrCu0.6(at%)を使用し、P−ZnO−RO系のコーティング剤を全体に対して重量比1.0wt%となるように混合して磁性体粉末100に絶縁被覆を施したうえで、被覆110された磁性体粉末100とバインダーとしてのフェノール樹脂とを、バインダーが全体に対して重量比0.4wt%となるように混合して混合物を作製する。この混合物(重量:37g)を金型300に充填し、成形圧力8t/cm及び下表1の温度条件にて加圧成型し、長さ55.69mm、幅23mm、厚さ4.5mmの圧粉磁芯を作製した。なお、Fe80.9Si8.5CrCu0.6は、αFeの析出温度(結晶化温度Tc)は400℃であり、Fe−B化合物の析出温度は499℃であった。作製された圧粉磁芯の評価結果を表1に示す。
Figure 0006902666
表1に示されるように、低温部400である上パンチ350の温度Tlが高温部500であるダイス310の温度Thよりも10℃以上低い金型300を使用して作製された実施例1〜4,6〜9,11〜18,20〜26に係る圧粉磁芯600は、外観が良好となっており、化合物相も析出していないため良好な電磁気特性を有していることが分かった。同様に、低温部400である下パンチ330の温度Tlが高温部500であるダイス310の温度Thよりも10℃以上低い金型300を使用して作製された実施例5,10,19に係る圧粉磁芯600においても、外観が良好となっており、化合物相も析出していないため良好な電磁気特性を有していることが分かった。一方、ダイス310と上パンチ350及び下パンチ330の夫々との温度差が10℃未満の条件下で作製された比較例1〜8に係る圧粉磁芯は、外観に割れが生じ、また化合物相の析出が確認され、電磁気的特性においても劣ることが確認された。また、ダイス310と上パンチ350及び下パンチ330の夫々との温度差が10℃未満の条件下で作製された比較例9に係る圧粉磁芯は、結晶化温度Tcよりも低い温度で加熱を行ったため、結晶化が促進されず、電磁気的特性においても劣ることが確認された。
実施例1〜26の圧粉磁芯600における第1面620の結晶化度C1、第2面640の結晶化度C2及び周面660の結晶化度Cを測定した。また、同様に、比較例1〜9の圧粉磁芯における第1面の結晶化度、第2面の結晶化度及び周面の結晶化度を測定した。測定結果を表2に示す。
Figure 0006902666
表1及び表2から、第1面620の結晶化度C1と、第2面640の結晶化度C2と、周面660の結晶化度Cとは、加熱温度の上昇とともに結晶化度が上昇する傾向が確認された。また、周面660の結晶化度Cと第1面620の結晶化度C1との差は、周面660の加熱温度と第1面620の加熱温度との差が大きくなるほど、増大する傾向が確認された。同様に、周面660の結晶化度Cと第2面640の結晶化度C2との差は、周面660の加熱温度と第2面640との加熱温度との差が大きくなるほど、増大する傾向が確認された。周面660の加熱温度(520℃)と第1面620の加熱温度(510℃)との差が10℃である実施例1において、周面660の結晶化度C(51%)と第1面620の結晶化度C1(50%)との差は1%であった。また、周面660の加熱温度(500℃)と第2面640の加熱温度(490℃)との差が10℃である実施例10において、周面660の結晶化度C(50%)と第1面620の結晶化度C2(49%)との差は1%であった。これらの結果から、本実施の形態の製造方法によれば、第1面620の結晶化度C1、第2面640の結晶化度C2及び周面660の結晶化度Cのうちの最大値、即ち、max(C1,C2,C)と、第1面620の結晶化度C1、第2面640の結晶化度C2及び周面660の結晶化度Cのうちの最小値、即ち、min(C1,C2,C)との差が1%以上の圧粉磁芯600が製造可能であることが分かった。また、製造方法が未知の圧粉磁芯において、第1面620の結晶化度C1、第2面640の結晶化度C2及び周面660の結晶化度Cのうちの最大値(max(C1,C2,C))と、第1面620の結晶化度C1、第2面640の結晶化度C2及び周面660の結晶化度Cのうちの最小値(min(C1,C2,C))との差が1%以上あれば、本発明の製造方法により製造された圧粉磁芯600であると推定可能であることが確認された。なお、実施例1〜26については、第1面620の結晶化度C1、第2面640の結晶化度C2及び周面660の結晶化度Cのうちの最大値(max(C1,C2,C))は、周面660の結晶化度Cとなっている。即ち、実施例1〜26については、max(C1,C2,C)=Cとなっている。
(実施例27〜40及び比較例10〜15)
磁性体粉末100AとしてFe77.114.45.5CrNb(at%)の金属ガラス粉末を使用し、P−ZnO−RO系のコーティング剤を全体に対して重量比1.0wt%となるように混合して磁性体粉末100Aに絶縁被覆を施したうえで、被覆110された磁性体粉末100Aとバインダーとしてのフェノール樹脂とを、バインダーが全体に対して重量比0.4wt%となるように混合して混合物を作製する。この混合物(重量:37g)を金型300に充填し、成形圧力8t/cm及び下表3の温度条件にて加圧成型し、長さ55.69mm、幅23mm、厚さ4.5mmの圧粉磁芯を作製した。なお、金属ガラス粉末であるFe77.114.45.5CrNbは、ガラス転移温度Tgは484℃であり、結晶化温度は511℃であった。作製された圧粉磁芯の評価結果を表3に示す。
Figure 0006902666
表3から、低温部400である上パンチ350の温度Tlが高温部500であるダイス310の温度Thよりも10℃以上低い金型300を使用して作製された実施例27〜29,33〜35,39,40に係る圧粉磁芯600Aは、外観が良好となっており、化合物相も析出していないため良好な電磁気特性を有していることが分かった。同様に、低温部400である下パンチ330の温度Tlが高温部500であるダイス310の温度Thよりも10℃以上低い金型300を使用して作製された実施例30〜32,36〜38に係る圧粉磁芯600Aは、外観が良好となっており、化合物相も析出していないため良好な電磁気特性を有していることが分かった。一方、ダイス310と上パンチ350及び下パンチ330の夫々との温度差が10℃未満の条件下で作製された比較例10〜15に係る圧粉磁芯は、外観に割れが生じていることが確認された。
また、実施例27〜40の圧粉磁芯600Aにおける、第1面620Aの表面抵抗値R1、第2面640Aの表面抵抗値R2及び周面660Aの表面抵抗値Rを測定した。また、同様に、比較例10〜15の圧粉磁芯における、第1面の表面抵抗値、第2面の表面抵抗値及び周面の表面抵抗値を測定した。測定結果を表4に示す。
Figure 0006902666
表3及び表4から、第1面620Aの表面抵抗値R1と、第2面640Aの表面抵抗値R2と、周面660Aの表面抵抗値Rとは、加熱温度の上昇とともに表面抵抗値が上昇する傾向が確認された。また、周面660Aの表面抵抗値Rに対する第1面620Aの表面抵抗値R1の比は、周面660Aの加熱温度と第1面620Aの加熱温度との差が大きくなるほど、減少する傾向が確認された。同様に、周面660Aの表面抵抗値Rに対する第2面640Aの表面抵抗値R2の比は、周面660Aの加熱温度と第2面640Aとの加熱温度との差が大きくなるほど、減少する傾向が確認された。周面660Aの加熱温度(500℃)と第1面620Aの加熱温度(490℃)との差が10℃である実施例27において、周面660Aの表面抵抗値R(1.0*10Ω)に対する第1面620Aの表面抵抗値R1(9.5*10Ω)の比は0.95であった。また、周面660Aの加熱温度(500℃)と第2面640Aの加熱温度(490℃)との差が10℃である実施例30において、周面660Aの表面抵抗値R(1.0*10Ω)に対する第2面640Aの表面抵抗値R2(9.5*10Ω)の比は0.95であった。これらの結果から、本実施の形態の製造方法によれば、第1面620Aの表面抵抗値R1、第2面640Aの表面抵抗値R2及び周面660Aの表面抵抗値Rのうちの最大値、即ち、max(R1,R2,R)に対する、第1面620Aの表面抵抗値R1、第2面640Aの表面抵抗値R2及び周面660Aの表面抵抗値Rのうちの最小値、即ち、min(R1,R2,R)の比が0.95以下の圧粉磁芯600Aが製造可能であることが分かった。また、製造方法が未知の圧粉磁芯において、第1面620Aの表面抵抗値R1、第2面640Aの表面抵抗値R2及び周面660Aの表面抵抗値Rのうちの最大値(max(R1,R2,R))に対する、第1面620Aの表面抵抗値R1、第2面640Aの表面抵抗値R2及び周面660Aの表面抵抗値Rのうちの最小値(min(R1,R2,R))の比が0.95以下であれば、本発明の製造方法により製造された圧粉磁芯600Aであると推定可能であることが確認された。なお、実施例27,29〜34,36〜40については、第1面620Aの表面抵抗値R1、第2面640Aの表面抵抗値R2及び周面660Aの表面抵抗値Rのうちの最大値(max(R1,R2,R))は、周面660Aの表面抵抗値Rとなっている。即ち、実施例27,29〜34,36〜40については、max(R1,R2,R)=Rとなっている。
以上、本発明について実施の形態を掲げて具体的に説明してきたが、本発明はこれに限定されるものではなく、種々の変形、変更が可能である。
100,100A 磁性体粉末
110,110A 被覆
300,300B 金型
310 ダイス
312 内壁
314 収容部
316 第1開口
318 第2開口
330 下パンチ
350,350B 上パンチ
352B 低温用部材
356B 高温用部材
400,400B 低温部
500 高温部
520 付加的高温部
540 補助的高温部
600,600A 圧粉磁芯
620,620A 第1面
640,640A 第2面
660,660A 周面

Claims (9)

  1. 少なくとも一部が被覆された磁性体粉末を金型内で所定温度で加熱しながら加圧して圧粉磁芯を製造する方法であって、
    前記金型は、ダイスと、上パンチと、下パンチとで構成されており、
    前記上パンチは、上下方向において前記下パンチの上方に位置しており、
    前記金型には、低温部と、高温部とが設けられており、
    前記低温部の温度は、前記高温部の温度よりも10℃以上低く、
    前記高温部は、前記ダイスであり、
    前記低温部は、前記上パンチである
    圧粉磁芯の製造方法。
  2. 請求項1記載の圧粉磁芯の製造方法であって、
    前記ダイスは、前記上下方向において下方に向かって先細りとなる内壁を有している
    圧粉磁芯の製造方法。
  3. 少なくとも一部が被覆された磁性体粉末を金型内で所定温度で加熱しながら加圧して圧粉磁芯を製造する方法であって、
    前記金型は、ダイスと、上パンチと、下パンチとで構成されており、
    前記上パンチは、上下方向において前記下パンチの上方に位置しており、
    前記金型には、低温部と、高温部とが設けられており、
    前記低温部の温度は、前記高温部の温度よりも10℃以上低く、
    前記高温部は、前記ダイスであり、
    前記低温部は、前記下パンチである
    圧粉磁芯の製造方法。
  4. 請求項1又は請求項記載の圧粉磁芯の製造方法であって、
    前記金型には、付加的高温部が更に設けられており、
    前記付加的高温部は、前記下パンチであり、
    前記付加的高温部の温度は、前記低温部の温度よりも10℃以上高い
    圧粉磁芯の製造方法。
  5. 請求項1から請求項までのいずれかに記載の圧粉磁芯の製造方法であって、
    前記加圧の際に前記圧粉磁芯の非晶質相中にナノ結晶が析出する
    圧粉磁芯の製造方法。
  6. 請求項記載の圧粉磁芯の製造方法であって、
    前記磁性体粉末の結晶化温度は、前記高温部の温度より低い
    圧粉磁芯の製造方法。
  7. 請求項1から請求項までのいずれかに記載の圧粉磁芯の製造方法であって、
    前記磁性体粉末の一部は、被覆されていない
    圧粉磁芯の製造方法。
  8. 少なくとも一部が被覆された磁性体粉末を含有する圧粉磁芯であって、
    前記磁性体粉末は、ナノ結晶を含有しており、
    前記圧粉磁芯は、第1面と、第2面と、周面とを有しており、
    前記第1面は、所定方向における第1方位に向いており、
    前記第2面は、前記第1方位の逆方位である第2方位に向いており、
    前記周面は、前記所定方向と直交する直交方向と交差しており、
    前記第1面の結晶化度をC1、前記第2面の結晶化度をC2、前記周面の結晶化度をCとしたとき、max(C1,C2,C)−min(C1,C2,C)≧1%を満たしている
    圧粉磁芯。
  9. 請求項記載の圧粉磁芯であって、
    max(C1,C2,C)=Cである
    圧粉磁芯。
JP2020164976A 2020-09-30 2020-09-30 圧粉磁芯の製造方法及び圧粉磁芯 Active JP6902666B1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020164976A JP6902666B1 (ja) 2020-09-30 2020-09-30 圧粉磁芯の製造方法及び圧粉磁芯
PCT/JP2021/035565 WO2022071290A1 (ja) 2020-09-30 2021-09-28 圧粉磁芯の製造方法及び圧粉磁芯
CN202180066983.7A CN116249598A (zh) 2020-09-30 2021-09-28 压粉磁芯的制造方法和压粉磁芯
US18/028,667 US20240029951A1 (en) 2020-09-30 2021-09-28 A method of manufacturing a dust core and the dust core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020164976A JP6902666B1 (ja) 2020-09-30 2020-09-30 圧粉磁芯の製造方法及び圧粉磁芯

Publications (2)

Publication Number Publication Date
JP6902666B1 true JP6902666B1 (ja) 2021-07-14
JP2022056962A JP2022056962A (ja) 2022-04-11

Family

ID=76753145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020164976A Active JP6902666B1 (ja) 2020-09-30 2020-09-30 圧粉磁芯の製造方法及び圧粉磁芯

Country Status (4)

Country Link
US (1) US20240029951A1 (ja)
JP (1) JP6902666B1 (ja)
CN (1) CN116249598A (ja)
WO (1) WO2022071290A1 (ja)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188202A (ja) * 1989-12-14 1991-08-16 Mazda Motor Corp 通電焼結装置
JPH04162503A (ja) * 1990-10-25 1992-06-08 Hitachi Metals Ltd 磁気異方性磁石及びその製造方法
JP4496715B2 (ja) * 2003-05-14 2010-07-07 トヨタ自動車株式会社 温度勾配型ホットプレス装置および方法
JP5965190B2 (ja) * 2012-04-03 2016-08-03 住友電気工業株式会社 圧粉成形体の製造方法、及び圧粉成形体
JP2016162947A (ja) * 2015-03-04 2016-09-05 Necトーキン株式会社 軟磁性材料、軟磁性粉末、圧粉磁心、およびこれらの製造方法
JP6560091B2 (ja) * 2015-10-06 2019-08-14 Ntn株式会社 圧粉磁心材料、圧粉磁心、およびその製造方法
JP6807262B2 (ja) * 2016-03-31 2021-01-06 三菱マテリアル株式会社 圧粉磁心およびその製造方法と電磁気回路部品
JP6897619B2 (ja) * 2018-03-30 2021-06-30 株式会社村田製作所 表面実装インダクタおよびその製造方法

Also Published As

Publication number Publication date
JP2022056962A (ja) 2022-04-11
CN116249598A (zh) 2023-06-09
WO2022071290A1 (ja) 2022-04-07
US20240029951A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
CN107851507B (zh) 软磁性压粉磁芯的制造方法和软磁性压粉磁芯
JP5333859B2 (ja) 軟磁性材料、圧粉磁心、およびリアクトル
JPWO2006033295A1 (ja) 圧粉成形体の製造方法および圧粉成形体
JP2010183057A (ja) 軟磁性材料の製造方法、軟磁性材料、および圧粉磁心
WO2005043560A1 (ja) 磁気特性に優れ、高強度および低鉄損を有する複合軟磁性材の製造方法
JP6902666B1 (ja) 圧粉磁芯の製造方法及び圧粉磁芯
US6368423B1 (en) Process for producing amorphous magnetically soft body
KR20110089237A (ko) 연자성 재료의 제조 방법 및 압분자심의 제조 방법
CN111316385B (zh) 压粉磁芯、用于磁芯的粉末及其制造方法
JP6615850B2 (ja) 複合磁性材料及びコアの製造方法
CN108806921A (zh) 电感元件
CN110942882A (zh) 复合磁性材料、电抗器、以及金属复合芯及其制造方法
JP7157946B2 (ja) 磁性材料の製造方法、圧粉磁心の製造方法およびコイル部品の製造方法
JP6502173B2 (ja) リアクトル装置および電気・電子機器
JP2018168402A (ja) 磁心用粉末および圧粉磁心の製造方法
JPH11256202A (ja) 非晶質軟磁性合金粉末成形体の製造方法
JP2021040083A (ja) 樹脂磁性コア
CN113272086A (zh) 磁性材料的制造方法、压粉磁芯的制造方法、线圈部件的制造方法、压粉磁芯、线圈部件以及造粒粉
CN111223629A (zh) 磁粉、压缩粉末芯、两者的制备方法
CN111816405A (zh) 电感元件
JP2001196217A (ja) 圧粉磁心の製造方法
JP2011042811A (ja) 軟磁性材料の製造方法、軟磁性材料、および圧粉磁心
JP4905841B2 (ja) 複合軟磁性材料、及び圧粉磁心
KR102244550B1 (ko) 합금 분말을 이용한 비정질 연자성 코어 제조 방법 및 비정질 연자성 코어
CN114334386B (zh) 磁性成型体及电感器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201001

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201001

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210621

R150 Certificate of patent or registration of utility model

Ref document number: 6902666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150