JP6900163B2 - 制御システム - Google Patents

制御システム Download PDF

Info

Publication number
JP6900163B2
JP6900163B2 JP2016187140A JP2016187140A JP6900163B2 JP 6900163 B2 JP6900163 B2 JP 6900163B2 JP 2016187140 A JP2016187140 A JP 2016187140A JP 2016187140 A JP2016187140 A JP 2016187140A JP 6900163 B2 JP6900163 B2 JP 6900163B2
Authority
JP
Japan
Prior art keywords
unit
operating environment
scene
logical blocks
blocks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016187140A
Other languages
English (en)
Other versions
JP2018052162A (ja
Inventor
敏彦 武田
敏彦 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016187140A priority Critical patent/JP6900163B2/ja
Priority to DE102017214671.0A priority patent/DE102017214671A1/de
Publication of JP2018052162A publication Critical patent/JP2018052162A/ja
Application granted granted Critical
Publication of JP6900163B2 publication Critical patent/JP6900163B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、車両に搭載された車載装置を制御する制御システムに関する。
例えば、特許文献1には、車両において用いられる電子制御装置について開示されている。この特許文献1の電子制御装置は、複雑な大規模システム開発を行う際の開発期間の短縮や、様々な車種に対応できるようなバリエーション対応のための開発期間の短縮を図ることを目的としている。そのため、特許文献1の電子制御装置では、その内部構成として、階層化された分散制御プラットフォーム構成を採用している。具体的には、制御内容が示された制御ロジックが差し込まれることで、この制御ロジックに示された制御内容を実現する機能構成フレームワークを含むアプリケーション層と、システム開発全体で共有すべきリソースをルールに基づいて一元管理するシステムインフラ層と、ECU、センサ、アクチュエータの電気特性などに加え、ネットワークまで含んだハードウェアシステム全体を抽象化するハードウェア抽象化層とによって分散制御プラットフォームを構成する。このようにして、制御ロジック以外の部分に関して、各電子制御装置で共通化することにより、目的の達成を図っている。
特開2006−142994号公報
上述した特許文献1の電子制御装置を含め、従来の電子制御装置では、制御ロジックに加えて、電源、通信、安全などの電子制御装置の動作環境についても、個々の電子制御装置毎に個別に設計していた。例えば、異常発生時に車両が退避走行を行う場合の電源の冗長性が確保されているか、通信異常に対する備えがなされているか、あるいは、種々の条件で安全性が担保されているかなど、様々な状況を想定して、個別に動作環境に関する設計を行っていた。
このため、複数の電子制御装置からなる大規模システムを開発したり、そのバリエーションを設計したりする場合に、上述した動作環境に関する設計負荷が大きくなる虞があった。
本発明は、上述した点に鑑みてなされたものであり、大規模なシステムの開発や、そのバリエーション設計を行う際の、動作環境に関する設計負荷の増大を抑制するとともに、制御状況に的確に対応した動作環境を提供することが可能な制御システムを提供することを目的とする。
上述した目的を達成するために、本発明による制御システムは、車両に搭載された車載装置(20〜25)を制御するものであって、
制御システムは、制御機能に応じて予め複数の論理ブロック(2〜12)に区分けされ、それら複数の論理ブロックが、それぞれの制御機能を発揮することで車載装置を制御するものであり、
少なくともセンサからの信号に基づいて、現在の車両の状況に関する情報を取得し、その状況に対応するシーンを特定するシーン特定部(31、41、61、71、81)と、
各種のシーンと、それら各種のシーンにおける複数の論理ブロックの動作環境との基本的な関係を予め記憶した記憶部(32、42、62、72、82)と、
前記動作環境は、前記複数の論理ブロックの各々に提供される動作電源、前記複数の論理ブロックの内の少なくとも一つの論理ブロックが複数の演算コア(47、48、50、51)を有するECU(46、49)に実装された場合の、前記少なくとも一つの論理ブロックの演算処理のために使用される演算コア、前記複数の論理ブロックの内の少なくとも一対の論理ブロック(2、3)間は複数本の通信線を用いて通信を行うことが可能に構成された場合の、前記少なくとも一対の論理ブロック間における通信のために使用される通信線、前記複数の論理ブロックの内の少なくとも一対の論理ブロック間の同一データの通信回数、および前記複数の論理ブロックの内の少なくとも一つの論理ブロックが実装されるECU(76、78)が演算速度を少なくとも高低の2段階に切替可能である場合の、前記少なくとも一つの論理ブロックの演算処理のための演算速度、の少なくとも1つを規定するものであり、
記憶部に記憶された関係に基づき、シーン特定部によって特定されたシーンに対応する複数の論理ブロックのそれぞれの動作環境を抽出する抽出部(33、43、63、73、83)と、
複数の論理ブロックの少なくとも1つから当該論理ブロックの動作状態に関する情報として、車両が走行するエリア、道路種別、車両の前後方向の加減速度、車両の左右方向の加減速度、車両の走行速度の少なくとも1つを取得し、その動作状態に関する情報に基づき、必要に応じて抽出部が抽出した動作環境に修正を加える修正部(34、44、64、74、84)と、
抽出部によって抽出された又は修正部によって修正が加えられた動作環境を複数の論理ブロックの各々に提供する動作環境提供部(35、45、65、75、85)と、を備える。
このように、本発明による制御システムでは、制御システムを構成する複数の論理ブロックに関して、それぞれ独自に動作環境について定めるのではなく、複数の論理ブロックの動作環境を一元的に管理するように構成した。具体的には、記憶部に、各種のシーンと、それら各種のシーンにおける複数の論理ブロックの動作環境との基本的な関係を予め記憶しておく。そして、シーン特定部によって、現在の車両の状況に対応するシーンを特定する。抽出部は、記憶部に記憶されたシーンと動作環境との関係を参照し、特定されたシーンに対応する動作環境を抽出する。従って、論理ブロック毎に個別に動作環境を設計する場合に比較して、設計負荷を軽減することができる。また、バリエーション設計のため、論理ブロックの廃止、追加、統合などが行われる場合でも、その対応が容易になる。
さらに、本発明による制御システムは、少なくとも1つの論理ブロックの動作状態に基づき、必要に応じて抽出部が抽出した動作環境に修正を加える修正部を備えている。このため、記憶部に記憶された基本的な関係に従って動作環境を設定する場合に比較して、各論理ブロックによる制御状況に的確に対応した動作環境を提供することが可能になる。
上記括弧内の参照番号は、本発明の理解を容易にすべく、後述する実施形態における具体的な構成との対応関係の一例を示すものにすぎず、なんら本発明の範囲を制限することを意図したものではない。
また、上述した特徴以外の、特許請求の範囲の各請求項に記載した技術的特徴に関しては、後述する実施形態の説明及び添付図面から明らかになる。
自動運転機能を備えた車両における各車載装置を制御するために、制御システムが有する各種機能の一例を示した機能ブロック図である。 各論理ブロックが、それぞれ、電源インターフェース、安全インターフェース、通信インターフェースなどの、動作環境提供インターフェースを備えることを示す図である。 電源インターフェースについて説明するための構成図である。 各種のシーンと、メインバッテリ37とサブバッテリ38の使用状態との関係の一例を示す図である。 動作環境提供インターフェースが、複数の論理ブロックの各々に対して、特定されたシーンに応じた動作環境を提供するための制御処理を示すフローチャートである。 抽出された動作環境を、論理ブロックの動作状態に応じて修正する修正処理の一例を示すフローチャートである。 抽出部によって抽出された又は修正部によって修正が加えられた必要動作環境を提供できない場合の処理を、電源インターフェースを例として示したフローチャートである。 安全インターフェースについて説明するための構成図である。 通信インターフェースについて説明するための構成図である。 安全インターフェースの他の例について説明するための構成図である。 通信インターフェースの他の例について説明するための構成図である。
以下、本発明に係る制御システムの実施形態を、図面を参照しつつ説明する。以下に説明する実施形態では、通常の手動運転機能に加えて自動運転機能を備え、さらに車両の走行駆動源として、エンジンと電動モータとを有するハイブリッド車両に搭載される各種の車載装置からなる車載システムに対して、本発明による制御システムを適用した例について説明する。しかしながら、本発明による制御システムは、自動運転機能を有する車両や、ハイブリッド車両における車載システムの制御に適用されるばかりでなく、手動運転機能のみを備える車両、エンジンのみを有する通常の車両、電動モータのみを有する電動車両の車載システムの制御に適用されても良い。
図1は、上述した車両における各車載装置20〜25を制御するために、制御システム1が有する各種機能の一例を機能ブロック図として表したものである。ただし、図1に示す例では、制御システム1が制御対象とすることが可能な車載装置、及びそれらの車載装置を制御するための制御システム1が有する機能の全てが示されている訳ではない。これは、説明の便宜のため、図1には、本実施形態に係る制御システム1の特徴を説明するために必要な構成の一例しか示していないためである。
図1の例に示すように、制御システム1は、制御機能に応じて予め複数の論理ブロック(機能ブロック)2〜12に区分けされ、それら複数の論理ブロック2〜12間の連結関係を規定することによって構成されている。すなわち、制御システム1における各種の車載装置20〜25を制御するための論理構造が、論理ブロック2〜12と、論理ブロック2〜12間の連結関係によって規定されている。そして、制御システム1は、複数の論理ブロック2〜12が、規定された連結関係に従って連携して動作することにより、各種の車載装置20〜25を制御する。
なお、図1には示していないが、各論理ブロック2〜12は、少なくとも1つ、通常は多数の制御ブロックを有している。各論理ブロック2〜12は、それら多数の制御ブロックにおける演算処理を適宜組み合わせることにより、それぞれの機能(役割)を発揮する。
例えば、論理ブロックとしてのEMS制御部5は、エンジン20の運転状態を検出すべく、各種のセンサからのセンサ信号を入力して、EMS制御部5内で取り扱うことができる信号に変換する制御ブロックを有する。また、センサ信号から把握されるエンジンの運転状態から現状の発生トルクを算出するとともに、上位の論理ブロック(前後挙動制御部4)から指示された指令トルクと差異がある場合に、その差異をなくすための目標とするエンジン運転状態を算出する制御ブロックを有する。さらに、目標エンジン運転状態を達成するための燃料噴射量と燃料噴射時期、及び点火時期を算出する制御ブロックを有する。その他にも、例えば、エンジンの発熱温度に応じて、エンジンの温度調節を実行する制御ブロックなども有する。ただし、これらは単なる例示であって、エンジン制御部5は、その機能を発揮するために必要な、その他の演算処理を行う制御ブロックを有する場合もあり得る。また、例示された制御ブロックを含め、エンジン制御部5内の制御ブロックは、適宜、統合されたり、逆に、細分化されたりすることが可能なものである。
制御システム1は、実際には、各論理ブロック2〜12を、プログラムやデータベースとして、電子制御装置(ECU)に実装することにより具現化される。この際、論理ブロック間の連結関係が維持できる限り、各論理ブロック2〜12を実装する電子制御装置の数は任意である。ただし、複数の論理ブロック2〜12を共通の電子制御装置に実装する場合、それら複数の論理ブロック2〜12を異なる動作環境にて動作させることが必要であれば、動作環境を個別に設定できるよう、電子制御装置は、動作環境を個別に設定する論理ブロックの数に対応したMPUコアや、電源回路、通信回路などを備えていることが必要となる。
また、各論理ブロック2〜12を複数の電子制御装置に振り分けて実装する場合には、それら複数の電子制御装置は、論理ブロックの連結関係を維持できるように、個別の通信線を介して接続されたり、各電子制御装置が共通のネットワークに接続され、連結関係に従う所望の電子制御装置同士が通信可能に構成されたりする必要がある。
次に、図1に例示した制御システム1が制御対象とする車載装置20〜25、及び、それらの車載装置20〜25を制御するために、図1に論理ブロック2〜12として例示した制御システム1が有する各種の機能と各論理ブロック2〜12の連結関係とについて詳しく説明する。
図1に示すように、車両は、走行駆動源として、エンジン20と、モータジェネレータ(MG)21とを有する。MG21は、エンジン20の出力軸上に図示しないクラッチを介して配設される。MG21は、車両に搭載された高圧バッテリから電源供給を受けて動作し、エンジン20の駆動力をアシストしたり、エンジン20が停止しているときに単独で車両を走行させたりすることが可能なものである。また、MG21は、車両が減速するときには、車輪側からの回転駆動により発電を行い、高圧バッテリを充電(エネルギー回生)する。
なお、車両には、高圧バッテリの他に、車両に搭載された各種の電気負荷(ECU、モータ、表示モニタ、エアコン装置等)に動作電圧を提供する低圧バッテリ(メインバッテリ37、サブバッテリ38:図3参照)も設けられている。高圧バッテリと低圧バッテリとは、降圧コンバータを介して接続されており、この降圧コンバータを動作させることにより、高圧バッテリにより低圧バッテリを充電可能となっている。
ブレーキ装置22は、例えば液圧や電動モータを用いて、運転者によるブレーキペダルの操作に係らず、制動力を発生可能なものである。電動パワーステアリング装置(EPS)23は、運転者がステアリングホイールを操舵する際の操舵力を、電動モータによってアシストするとともに、運転者による操舵操作に係わらず、ステアリングシャフトを回転駆動することにより車両の操舵輪の操舵方向を制御可能なものである。エアコン装置24は、公知の冷凍サイクルとエンジン20の冷却水を利用したヒータとを用いて、車室内の空調を行うものである。シートヒータ25は、例えばシートに内蔵されたヒータを用いて、シートの暖房を行うものである。
制御システム1は、上述した車載装置20〜25を制御するための論理ブロック2〜12として、まず、統合制御部2を有する。統合制御部2は、例えば、アクセルセンサ、ブレーキセンサ、ステアリングセンサなど、運転者による運転操作に関する情報を検出する各種の操作センサ15からの信号を入力する。操作センサ15には、手動運転と自動運転とを切り替えるための切替スイッチや、エアコン装置24やシートヒータ25を操作するための操作スイッチも含まれ、統合制御部2は、それらのスイッチからの信号も入力する。また、統合制御部2は、車両が置かれた外部環境に関する情報を取得する環境センサ(例えば、先行車両や障害物などを検出するレーダ装置や、車両の周囲の画像を取得するカメラなど)からの信号を入力するとともに、地図データベース17から車両が属するエリアの地図を入力する。
統合制御部2は、切替スイッチからの信号に基づいて、車両が手動運転されるか、自動運転を実行すべきかを判別する。そして、車両が手動運転されると判別した場合、操作センサ15からの入力信号によって把握される運転者による運転操作に基づいて、目標とする車両挙動を算出し、その目標車両挙動を車両挙動制御部3に出力する。なお、統合制御部2は、車両挙動制御部3に対して手動運転の指示とともに、操作センサ15からのセンサ信号を出力し、車両挙動制御部3が、目標車両挙動を算出するようにしても良い。また、運転者による運転操作に基づいて目標車両挙動を算出する際に、運転者による運転操作をそのまま反映させると車両の挙動が不安定化することが予測される場合には、車両の挙動が安定する範囲で、目標車両挙動を算出することが好ましい。
一方、自動運転を実行すべきと判別した場合には、統合制御部2は、環境センサ16からの外部環境に関する情報と、地図データベース17からの地図情報とに基づいて、目標とする走行ラインを定めるとともに、その走行ラインを走行する際の目標速度などの自動運転のための制御目標を定める。このようにして定めた制御目標が、車両挙動制御部3に出力される。
さらに、統合制御部2は、操作スイッチからの信号に基づいて、目標車室内温度、目標シート温度などの制御目標を定め、車内環境制御部10へ出力する。ただし、統合制御部2は、例えば自動運転を実行中に、電源、通信、安全などの動作環境に関するリソースを自動運転の実行のために重点的に振り分ける必要が生じたと判断した場合などには、車内環境制御部10に対して、操作スイッチにより指示された状態よりも、電源消費量が減少可能な状態に制御したり、制御自体を停止したり、制御の実行を遅延させたりすることがある。この点については、後に詳しく説明する。
車両挙動制御部3は、車両が手動運転される場合、目標車両挙動に基づいて、前後方向の目標加速度(減速度)を算出するとともに、左右方向の目標加速度を算出する。算出された前後方向の目標加速度は前後挙動制御部4に出力され、左右方向の目標加速度は左右挙動制御部8に出力する。また、車両挙動制御部3は、車両が自動運転される場合、自動運転のための制御目標に基づいて、前後方向の目標加速度(減速度)を算出するとともに、左右方向の目標加速度及び目標操舵角を算出する。
前後挙動制御部4は、前後方向の目標加速度として正の加速度が与えられた場合、EMS制御部5及びMG制御部6に対して、それぞれの目標駆動トルクを算出して出力する。この際、前後挙動制御部4は、車両として必要な駆動トルクを最も効率良く実現するために、MG21が発生可能な最大MGトルクを考慮しつつ、EMS制御部5に目標エンジントルク、MG制御部6に目標MGトルクを与える。
一方、前後挙動制御部4は、前後方向の目標加速度として負の加速度(すなわち、減速度)が与えられた場合、その目標減速度に応じて、MG21による目標回生制動トルク及びブレーキ装置22による目標ブレーキトルクをそれぞれ算出して、MG制御部6及びブレーキ制御部7に与える。
EMS制御部5は、エンジン回転数などの情報に基づき、エンジン20が目標エンジントルクを発生するように、スロットルバルブ開度や燃料供給量などを調節してエンジン20の運転状態を制御する。MG制御部6は、MG21の駆動信号を生成するためのインバータ回路を含み、MG21の回転数や回転位置などの情報に基づき、MG21が目標MGトルクを発生するように、MG21の動作状態を制御するための駆動信号を出力する。
ブレーキ制御部7は、4輪の各車輪速や4輪の各ブレーキの液圧などの情報に基づき、ブレーキ装置22が目標ブレーキ制動トルクを発生するように、ブレーキ液圧や電動モータの駆動を制御する。なお、目標ブレーキ制動トルクは、目標制動トルクに対して目標回生制動トルクだけでは不足する場合に、その不足分を補うように算出される。この場合、MG制御部6は、MG21が発電機(ジェネレータ)として動作するように制御し、MG21によって発電された電気は、高圧電池に充電される。
左右挙動制御部8は、車両が手動運転される場合には、与えられた左右方向の目標加速度に応じた目標アシストトルクを算出して、EPS制御部9に与える。また、左右挙動制御部8は、自動運転を実行する場合には、左右方向の目標加速度を考慮しつつ、EPS23の操舵角を目標操舵角に一致させるための目標トルクを算出して、EPS制御部9に与える。EPS制御部9は、電動モータの駆動電流などの情報に基づき、EPS23が発生するトルクが目標アシストトルク又は目標トルクとなるようにEPS23を制御する。
車内環境制御部10は、統合制御部2から与えられた目標車室内温度、目標シート温度などの制御目標と、各種のセンサによって検出される実際の車室内の環境(例えば、乗員検出信号、車室内外の温度検出信号、日射量の検出信号、シートの温度検出信号によって検出される環境)とに基づいて、車室内環境を、制御目標に一致させるべく、エアコン装置24やシートヒータ25などを制御する際の目標状態を示す目標信号を生成し、エアコン制御部11及びシートヒータ制御部12に出力する。
エアコン制御部11は、車内環境制御部10からの目標信号に基づき、エアコン装置24のファンの回転数や、エアミックスドアの開度を制御することにより、目標状態に近づくように車室内の温度や湿度を制御する。また、シートヒータ制御部12は、車内環境制御部10からの目標信号に基づき、シートに内蔵されたヒータへの通電電流を制御することによりシート温度を制御する。
なお、上述した各ECUにおける機能配置は単なる一例であって、各ECUへの機能の割り振りは変更可能なものである。また、例えば、エンジン20とMG21を共通のECUによって制御するなど、複数のECUを、適宜、統合することも可能である。
次に、本実施形態に係る制御システム1の特徴について説明する。上述したように、各論理ブロック2〜12が、それぞれ電子制御装置に実装されることで、本実施形態に係る制御システム1が具現化される。この際、各論理ブロック2〜12が実装される電子制御装置毎に、電源、通信、安全などの動作環境を個別に設計しようとすると、システムが大規模となり、論理ブロックの数が増加するほど、その設計負荷も増大することになる。
そのため、本実施形態に係る制御システム1では、図2に示すように、制御システム1を構成する複数の論理ブロック2〜12にて、それぞれ独自に動作環境について定めるのではなく、それら複数の論理ブロック2〜12の動作環境を一元的に管理するように構成した。具体的には、図2に示すように、各論理ブロック2〜12に対し、その時々の状況に適した動作環境を提供するべく、電源インターフェース(IF)、安全IF、通信IFなどの、動作環境提供IFを設けた。この動作環境提供IFが、各論理ブロック2〜12に対して、電源、通信、安全に関する動作環境を提供する。このように、本実施形態に係る制御システム1では、動作環境提供IFにより各論理ブロック2〜12の動作環境を一元的に管理するように構成されているので、論理ブロック2〜12毎に個別に動作環境を設計する場合に比較して、設計負荷を軽減することができる。また、バリエーション設計のため、論理ブロック2〜12の廃止、追加、統合などが行われる場合でも、それに対応して、動作環境提供IFを改変すれば良いだけであるため、容易に対応可能となる。なお、図2には、電源、通信、安全に関する動作環境提供IFをそれぞれ設けた例を示しているが、少なくとも1種類の動作環境提供IFを設けたものであっても良い。
以下、動作環境提供IFの具体例として、電源IF、安全IF、及び通信IFについて、それぞれ、図面を参照しつつ説明する。最初に、図3〜図7を参照して、電源IF30の具体例を説明する。なお、説明の便宜のため、図3には、論理ブロックとして、統合制御部2、車両挙動制御部3、及び車内環境制御部10のみが示されている。
図3に示すように、電源IF30は、シーン特定部31、記憶部32、抽出部33、修正部34、及び電源提供部35を有している。さらに、電源提供部35は、各論理ブロックに使用可能な電力量を通知する通知部36を備えている。
シーン特定部31は、センサからの信号などに基づき、現在の車両の状況に関する情報を取得して、現在の車両の状況に対応するシーンを特定する。なお、現在の車両の状況に関する情報は、制御システム1による車載装置21〜25の制御状態から取得することも可能であるし、各論理ブロックの起動情報から取得することも可能である。例えば、シーン特定部31は、車両が停車している状態(停車シーン)、車両が手動運転されている状態(手動運転シーン)、車両において自動運転が実行されている状態(自動運転シーン)、車載装置や制御システム1になんらかの異常が発生した状態(異常シーン)などを、シーンとして特定する。
記憶部32は、上述した各種のシーンと、それら各種のシーンにおける複数の論理ブロック2、3、10の動作環境としての電源供給状態との基本的な関係を予め記憶している。この記憶の形態については、例えば、各種シーンと電源供給状態との関係をリストとして記憶しても良い。また、各種シーンを状態として捉え、その各種シーンの状態に関連づけて電源供給状態を記憶しておき、特定されたシーンに応じて状態を切り換えることにより、対応する電源供給状態を抽出できるようにしても良い。さらに、各種シーンが、複数の要因により特定されるシーンを含む場合、シーンを特定するための要因を階層化し、最下層に電源供給状態を紐付けるようにして、各種シーンと電源供給状態との関係を記憶しても良い。
記憶部32に記憶される各種シーンと電源状態との関係として、例えば、停車シーンでは、統合制御部2及び車内環境制御部10には電源を供給するが、車両挙動制御部3には電源を供給しないことが記憶される。このような各種のシーンと各論理ブロック2、3、10への電源供給の有無との関係は、各シーンにおける各論理ブロック2、3、10の動作の必要性に応じて適宜定められる。なお、手動運転シーン及び自動運転シーンにおいては、車両の走行に関与する全ての論理ブロックに電源が供給されることが記憶されている。
また、記憶部32は、図4に示すように、各種のシーンにおいて、メインバッテリ37とサブバッテリ38の使用状態も記憶している。つまり、本実施形態に係る制御システム1においては、異常シーンを含む各種のシーンにおいて必要な電源が確実に提供されるようにするため、図3に示すように、車両には、メインバッテリ37とサブバッテリ38の2つの低圧バッテリが搭載されている。記憶部32には、各種のシーンで、2つの低圧バッテリ37、38が、どのように電源供給のために使用されるかに関する情報も記憶されているのである。この各種シーンと2つの低圧バッテリ37、38の使用状態との関係は、記憶部32において、上述した各種シーンと各論理ブロック2、3、10への電源供給状態との関係と一緒に記憶されても良いし、独立して記憶されても良い。
例えば、記憶部32に記憶される各種のシーンと2つの低圧バッテリ37、38の使用状態との関係としては、停車シーンでは、電力使用量が相対的に少ないため、メインバッテリ37が蓄電している電力をすべて提供する状態(100%使用可能状態)とすることで電源の提供がなされることが記憶される。また、手動運転シーンでは、停車している状態に比較して電力使用量が増加するため、メインバッテリ37の蓄電電力を100%使用可能とする一方で、サブバッテリ38の蓄電電力は60%までの使用に制限することが記憶される。さらに、自動運転シーンでは、周囲環境を検出し、その検出された周囲環境における障害物との接触を避けながら、確実に目的地に車両を到達させる必要があるため、ECUの演算処理負荷が増加したり、車載装置を駆動するためのアクチュエータの駆動電力が増加したりする傾向がある。そのため、自動運転シーンに対しては、メインバッテリ37及びサブバッテリ38の蓄電電力をともに100%使用可能とすることが記憶される。
抽出部33は、シーン特定部31によって特定されたシーンを示す情報を取得する。さらに、抽出部33は、記憶部32に記憶された関係を参照して、特定されたシーンにおける、各論理ブロック2、3、10への電源供給に関する動作環境を抽出する。具体的には、抽出部33は、特定されたシーンに基づき、いずれの論理ブロック2、3、10への電源供給を、メインバッテリ37とサブバッテリ38とをどのように使用して行うかに関する動作環境を抽出する。
修正部34は、各論理ブロック2、3、10の少なくとも1つから当該論理ブロックの動作状態に関する情報を取得し、その動作状態に関する情報に基づき、必要に応じて抽出部33が抽出した動作環境に修正を加える。図3に示す例では、修正部34は、制御システム1全体の制御実施状況を把握できる統合制御部2から動作状態に関する情報を取得している。しかし、修正部34は、車両挙動制御部3や車内環境制御部10から動作状態に関する情報を取得しても良いし、電源を提供する論理ブロックからそれぞれ動作状態に関する情報を取得しても良い。
電源提供部35は、抽出部33によって抽出された動作環境、又は修正部34によって修正された場合には、修正が加えられた動作環境を各論理ブロック2、3、10に提供する。なお、電源提供部35から各論理ブロックもしくは所定の論理ブロックのグループへの電源供給路には、メインバッテリ37及びサブバッテリ38のそれぞれに関して、電源供給の有無を切り替え可能なリレースイッチが設けられている。このため、電源提供部35は、メインバッテリ37及びサブバッテリ38を用いた複数の論理ブロック2〜12の各々への電源供給の有無を、論理ブロック単位もしくは所定のグループ単位で個別に設定可能である。
また、電源提供部35が動作環境としての電源を提供する際には、修正部34から論理ブロックの動作状態に関する情報を取得し、その動作状態に基づき、それぞれの論理ブロック2、3、10に提供すべき電力量を算出する。そして、算出した電力量を通知部36から各論理ブロック2、3、10に伝える。各論理ブロック2、3、10では、消費電力が伝えられた電力量内に収まる範囲で、制御処理を実行する。これにより、電源IF30は、各論理ブロック2、3、10での電力消費量をよりきめ細かく制御することができるようになる。
ここで、記憶部32に記憶される各種のシーンと2つの低圧バッテリ37、38の使用状態との関係は、図4に示すように、各種のシーンにおいて、各論理ブロック2、3、10に常に不足のない電源が提供できるように定められている。しかしながら、例えば、演算処理負荷が増加する傾向にある自動運転シーンの場合であっても、常時、最大限の演算処理能力を使用して自動運転制御が行われる訳ではない。
例えば、歩行者や自転車などが多く、また交通量も多い市街地を走行する場合、他車両や歩行者に最大限の注意を払うべき交差点を走行する場合などは、制御システム1において、各論理ブロックは、制御周期を短くしたり、制御指令値を幾重にも検証した上で、各車載装置のアクチュエータに出力したりするために、最大限の演算処理能力を使用して、自動運転のための演算処理を実行すべきである。しかしながら、例えば、交通量が少なく、道路の交差や分岐も殆ど無い郊外の道路を走行する場合や、歩行者や自転車等が走行することがない高速道路を走行する場合などは、演算周期の短縮化や、制御指令値の幾重もの検証等は行わなくても車両の走行に支障は生じないと考えられる。
このような理由から、修正部34は、統合制御部2から動作状態に関する情報を取得し、その動作状態に関する情報に基づき、必要に応じて抽出部33が抽出した動作環境に修正を加える。これにより、記憶部32に記憶された基本的な関係に従って動作環境を一律に設定する場合に比較して、各論理ブロック2、3による制御状況に的確に対応した動作環境を提供することが可能になる。
なお、自動運転が実行される場合、統合制御部2から取得される動作状態に関する情報には、車両が走行するエリアや道路種別についての情報も含まれる。
また、このような修正部34による動作環境の修正は、自動運転シーンばかりでなく、他のシーンにおいても実行することが可能である。例えば、手動運転シーンの場合、車両の前後方向及び左右方向の加減速度の大きさや、車両の走行速度の高さなどに応じて、動作環境に修正を加えるようにしても良い。車両の走行状態が安定していたり、走行速度が低かったりする場合には、相対的に電力消費量も減少すると考えられるためである。
以下、図5及び図6のフローチャートに基づいて、電源IF30が、複数の論理ブロック2〜12の各々に対して、特定されたシーンに応じた電源に関する動作環境又は複数の論理ブロック2〜12の動作状態に応じて修正された動作環境を提供するための制御処理について説明する。なお、図5のフローチャートに示す処理は、例えば所定の制御周期毎に、繰り返し実行されるものである。
まず、ステップS100では、センサからの信号などに基づき、現在の車両の状況に関する情報を取得する。続くステップS110では、ステップS100において検出した現在の車両の状況に関する情報に基づき、その現在の車両の状況に対応するシーンを特定する。
そして、ステップS120において、ステップS110にて特定されたシーンが、前回の処理で特定されていたシーンから変化したか否かを判定する。シーンが変化したと判定するとステップS130の処理に進み、変化していないと判定するとステップS140の処理に進む。
ステップS130では、新たに特定されたシーンに対応する動作環境を、記憶部32に記憶されている関係を参照して抽出する。一方、ステップS140では、シーンは変化していないので、既に抽出されている動作環境をそのまま維持する。
ステップS150では、抽出された動作環境を、論理ブロックの1つである統合制御部2から取得した動作状態に関する情報に基づき、必要に応じて修正する修正処理を実行する。このステップS150の修正処理は、後に、図6のフローチャートに基づき詳しく説明する。
最後に、ステップS160において、抽出された動作環境又は修正された動作環境を、該当する論理ブロック2〜12に提供する。
次に、図6のフローチャートを参照して、動作環境の修正処理について説明する。なお、図6のフローチャートには、自動運転シーンにおいて、車両が走行するエリア(道路種別)に応じて、抽出された動作環境を修正する例が示されている。また、自動運転シーン以外のシーンにおいても、特定されたシーンに対応する動作環境を修正する場合には、シーン毎に、抽出された動作環境をどのように修正するかを決定するためのフローチャートを用意し、特定されたシーン毎に該当する修正処理を実行すれば良い。
図6のフローチャートのステップS200では、統合制御部2から動作状態を取得する。この際、制御システム1により自動運転が実行されているので、統合制御部2から取得した動作状態には、車両が走行するエリアや道路種別についての情報も含まれている。
続くステップS210では、車両の走行エリアが市街地であるか、高速道路であるか、それとも郊外であるかを判別する。市街地であると判別した場合、ステップS220の処理に進み、電源提供状態をメインバッテリ37及びサブバッテリ38とも100%のままとする。さらに、ステップS230において、各論理ブロック2〜9に対して、自動運転を実行するため、それぞれの論理ブロック2〜9に対して定められている最大電力の使用を許可する旨を通知する。
ステップS210の判別処理において、車両の走行エリアが高速道路であると判別した場合には、ステップS240の処理に進み、電源提供状態をメインバッテリ37は100%、サブバッテリ38は80%に変更する。そして、ステップS250において、各論理ブロック2〜9に対して、自動運転実行のため、最大電力の90%に相当する電力の使用を許可する旨を通知する。
ステップS210の判別処理において、車両の走行エリアが郊外の道路であると判別した場合には、ステップS260の処理に進み、電源提供状態をメインバッテリ37は100%、サブバッテリ38は60%に変更する。そして、ステップS270において、各論理ブロック2〜9に対して、自動運転実行のため、最大電力の80%に相当する電力の使用を許可する旨を通知する。
なお、上述した電源提供状態の修正は単なる一例であって、上述した例の他にも種々の修正例があり得る。例えば、シーン特定部31によって特定されるシーンに対して、記憶部32に記憶された関係には、各論理ブロック2〜12へメインバッテリ37とサブバッテリ38との両方を用いて電源供給を行うことが示されている場合に、修正部34は、論理ブロックの動作状態に基づき、メインバッテリ37とサブバッテリ38とのいずれか一方にて必要な電力量が賄えると判別した場合に、いずれか一方にて電源供給を行うように修正しても良い。
次に、動作環境提供IFが、抽出部33によって抽出された又は修正部34によって修正が加えられた必要動作環境を提供できない場合の処理について、電源IF30を例として、図7のフローチャートに基づいて説明する。この図7のフローチャートに示す処理は、電源IF30に設けられる算出部(図示せず)によって実行されれば良い。
なお、電源IF30が必要動作環境を提供できないケースとして、メインバッテリ37及び/又はサブバッテリ38やそれらの電源供給経路などに何らかの異常が生じた場合や、メインバッテリ37及びサブバッテリ38の蓄電量に対して必要な電力量が上回った場合などが考えられる。
まず、ステップS300では、電源を提供可能なメインバッテリ37及び/又はサブバッテリ38の蓄電量により、各論理ブロック2〜12が必要としている動作環境としての電力量を提供可能であるか否かを判定する。この判定処理において、必要な電力量を提供可能と判定した場合には、ステップS310の処理に進み、抽出部33によって抽出された又は修正部34によって修正が加えられた動作環境である電力をそのまま提供するとともに、使用可能な電力量を各論理ブロック2〜12に通知する。一方、ステップS300にて、必要な電力量を提供不可能と判定した場合には、ステップS320の処理に進む。
ステップS320では、電源の提供先は複数の論理ブロックもしくは論理ブロックのグループであるか否かを判定する。この判定処理において、電源の提供先は複数ではなく、1つの論理ブロック又は論理ブロックの1つグループであると判定すると、ステップS330の処理に進む。ステップS330では、その1つの論理ブロック又は論理ブロックの1つグループに対して、提供可能な電力量を算出し、論理ブロック又は論理ブロックのグループへ通知する。一方、ステップS320にて動作環境の提供先は複数あると判定した場合には、ステップS340の処理に進む。
ステップS340では、必要な電力量を提供できないにも係わらず、同時期に2以上の論理ブロック又は論理ブロックのフループへ電源を提供する必要が生じているため、まず、提供先に、優先度の優劣があるか否かを判定する。この判定処理において、優先度に優劣はないと判定した場合、ステップS350の処理に進む。ステップS350では、各提供先に提供可能な電力量を算出し、それぞれの提供先に通知する。なお、この場合、算出される電力量(動作環境)は、それぞれの提供先の必要動作環境に満たないが実際に提供可能な電力量(動作環境)となる。この場合、各提供先の論理ブロック又は論理ブロックのグループでは、実行する制御機能の内容やレベルを低下させ、消費電力が通知された電力量の範囲に収まるようにする。一方、ステップS340の判定処理において、優先度に優劣があると判定した場合、ステップS360の処理に進む。この場合、高優先度の提供先には、極力、必要電力に一致もしくは近い電力を供給できるように、提供する電力量を算出し、通知する。それに対し、低優先度の提供先には、電力の提供時期を遅らせつつ、その遅らせた提供時期に提供可能な電力を算出し、提供時期及び提供予定の電力を通知する。この際、提供時期のみ通知するようにしても良い。また、提供時期の通知に関して、当初は、提供時期が遅れることのみを通知し、実際に提供可能となったときに、提供を開始する旨を改めて通知するようにしても良い。そして、ステップS370において、いずれかのステップで算出した電力量を提供できるように、メインバッテリ37及び/又はサブバッテリ38から電力を提供する。
上述した処理により、何らかの異常が生じて必要な電力量を提供できない場合、提供可能な電力を通知することで、電力の提供先の論理ブロックが完全に処理を停止するのではなく、提供される電力量の範囲で制御を継続することができる。そして、電力の提供先が複数である場合には、優先度の優劣によって、電力の提供時期に差を付けているので、より優先度の高い、車両にとって重要な制御を担う論理ブロックに優先的に電力を提供することができる。
例えば、自動運転が実行されており、かつ、エアコン装置24及びシートヒータ25が可動している状況で、メインバッテリ37とサブバッテリ38とのいずれかの電源供給経路に異常が生じて、残りのバッテリのみからしか電力が提供できない状況となった場合、自動運転を実行させるための論理ブロックのグループに優先的に電力を提供することにより、車両の走行に極力支障が生じないようにすることができる。この場合、エアコン装置24及びシートヒータ25を制御するための論理ブロックには、自動運転のための電力消費が低下する状況となったとき、もしくは電源供給経路の異常が復旧したときなどに電力を提供する。
次に、図8を参照して、安全IF40の具体例を説明する。なお、電源IF30の場合と同様に、図8には、説明の便宜のため、論理ブロックとして、統合制御部2、車両挙動制御部3、及び車内環境制御部10のみが示されている。
図8に示すように、安全IF40は、電源IF30と同様に、シーン特定部41、記憶部42、抽出部43、及び修正部44を有している。さらに、安全IF40は、安全提供部45を有している。
シーン特定部41は、電源IF30のシーン特定部31と同様に、センサからの信号などに基づき、現在の車両の状況に関する情報を取得して、現在の車両の状況に対応するシーンを特定する。安全IFのシーン特定部41が特定するシーンは、電源IF30のシーン特定部31が特定するシーンと同じであっても良いし、異なっていても良い。
本実施形態では、図8に示すように、統合制御部2や車両挙動制御部3が実装されるECU46、49は、複数の演算コア47、48、50、51を含んでいる。そして、動作環境提供IFとしての安全IF40は、動作環境として、統合制御部2や車両挙動制御部3が実装されたECUで、統合制御部2や車両挙動制御部3としての演算処理のために使用される演算コアを割り当てる。
そのため、記憶部42は、各種のシーンと、それら各種のシーンにおける複数の論理ブロック2、3、10の動作環境として、統合制御部2と車両挙動制御部3における演算処理に割り当てられる演算コアの数との基本的な関係を予め記憶している。
例えば、自動運転シーンでは、上述したように、制御周期を短くしたり、制御指令値を幾重にも検証した上で、各車載装置20〜23に出力したりするために演算処理負荷が増加する傾向にある。演算処理負荷が増加したときにも、自動運転のための演算処理を安全かつ確実に実行可能とするために、記憶部42は、自動運転シーンにおいて、統合制御部2及び車両挙動制御部3のそれぞれの演算処理のために複数の演算コア47、48、50、51を割り当てることを記憶している。
一方、停車シーンや手動運転シーンでは、自動運転シーンに比較して演算処理負荷は低下するため、記憶部42には、自動運転シーンよりも少ない数の演算コアを割り当てることが記憶されている。なお、演算コアの数として、演算コアの能力の何%を割り当てるかを示すものであっても良い。
抽出部43は、シーン特定部41によって特定されたシーンを示す情報を取得する。そして、抽出部43は、記憶部42に記憶された関係を参照して、特定されたシーンにおける、統合制御部2及び車両挙動制御部3のそれぞれの演算処理のために割り当てる演算コアの数を動作環境として抽出する。
修正部44は、各論理ブロック2、3、10の少なくとも1つから当該論理ブロックの動作状態に関する情報を取得し、その動作状態に関する情報に基づき、必要に応じて抽出部43が抽出した動作環境に修正を加える。図8に示す例では、修正部44は、制御システム1全体の制御実施状況を把握できる統合制御部2から動作状態に関する情報を取得している。しかし、修正部44は、車両挙動制御部3や車内環境制御部10から動作状態に関する情報を取得しても良い。さらに、各論理ブロック2、3、10から動作状態に関する情報を取得しても良い。
安全提供部45は、抽出部43によって抽出された演算コアの数に関する動作環境、又は修正部44によって修正された場合には、修正が加えられた演算コアの数に関する動作環境を統合制御部2、車両挙動制御部3が実装されたECU46、49に指示する。
ここで、記憶部42に記憶される各種のシーンと、演算処理のために割り当てる演算コアの数との関係は、各種のシーンにおいて、統合制御部2、車両挙動制御部3における演算処理が安全かつ確実に実行できるように定められている。しかしながら、上述したように、演算処理負荷が増加する傾向にある自動運転シーンの場合であっても、常時、最大限の演算処理能力を使用して自動運転制御を行わなければならない訳ではない。
そのため、修正部44は、統合制御部2から動作状態に関する情報を取得し、その動作状態に関する情報に基づき、必要に応じて抽出部43が抽出した動作環境に修正を加える。例えば、修正部44は、統合制御部2の動作状態に基づき、演算処理のために複数の演算コアを割り当てる必要はないと判別した場合に、より少ない数の演算コアを割り当てるように修正する。この「少ない数の演算コア」には、演算コアの能力を制限することを含む。
これにより、記憶部42に記憶された基本的な関係に従って動作環境を一律に設定する場合に比較して、各論理ブロック2、3による演算処理負荷状況に的確に対応した動作環境を提供することが可能になる。
なお、修正部44による動作環境の修正は、電源IF30の場合と同様に、自動運転シーンばかりでなく、他のシーンにおいても実行することが可能である。例えば、手動運転シーンの場合、車両の前後方向及び左右方向の加減速度の大きさや、車両の走行速度の高さなどに応じて、動作環境に修正を加えるようにしても良い。車両の走行状態が安定していたり、走行速度が低かったりする場合には、相対的に演算処理負荷も減少すると考えられるためである。
なお、上述した安全IF40の場合も、例えば、複数の演算コアの少なくとも1つに異常が生じたり、複数の論理ブロックが共通のECUに実装され、複数の演算コアを共用したりすることによって、必要な演算コアの数に対して、提供可能な演算コアの数が不足する事態が生じた場合に、図7のフローチャートに示したのと同様の処理によって、各論理ブロックに提供可能な演算コアを算出して指示したり、演算コアの提供可能時期を遅延させたりしても良い。
次に、図9を参照して、通信IF60の具体例を説明する。なお、電源IF30の場合と同様に、図9には、説明の便宜のため、論理ブロックとして、統合制御部2、車両挙動制御部3のみが示されている。
図9に示すように、通信IF60は、電源IF30と同様に、シーン特定部61、記憶部62、抽出部63、及び修正部64を有している。さらに、通信IF60は、通信提供部65を有している。
シーン特定部61は、電源IF30のシーン特定部31と同様に、センサからの信号などに基づき、現在の車両の状況に関する情報を取得して、現在の車両の状況に対応するシーンを特定する。通信IF60のシーン特定部61が特定するシーンは、電源IF30のシーン特定部31が特定するシーンと同じであっても良いし、異なっていても良い。
本実施形態では、図9に示すように、統合制御部2と車両挙動制御部3との間には、2本の通信ライン(通信ラインA、通信ラインB)が設けられている。そして、動作環境提供IFとしての通信IF60は、動作環境として、統合制御部2と車両挙動制御部3との通信のために使用される通信線を規定する。例えば、統合制御部2と車両挙動制御部3との間で相対的に重要性の高いデータ通信が行われる場合には、通信IF60は、統合制御部2及び車両挙動制御部3に対して2本の通信線を使用して通信を行うことを指示する。一方、統合制御部2と車両挙動制御部3との間で相対的に重要性の低いデータ通信が行われる場合には、通信IF60は、統合制御部2及び車両挙動制御部3に対して1本の通信線を使用して通信を行うことを指示する。
そのため、記憶部62は、各種のシーンと、それら各種のシーンにおける複数の論理ブロック2、3の動作環境として、統合制御部2と車両挙動制御部3との通信に使用されるべき通信線との基本的な関係を予め記憶している。
例えば、自動運転シーンや手動運転シーンでは、統合制御部2から車両挙動制御部3に対して、目標車両挙動や自動運転のための制御目標が通信を介して与えられるため、記憶部62は、そのようなシーンにおいて2本の通信線を使用することを記憶している。この場合、統合制御部2は、2本の通信線を介して、目標車両挙動や自動運転のための制御目標を送信することで、通信障害などを理由として制御が中断されるような事態を回避することが可能になる。
一方、停車シーンや異常シーンでは、手動運転シーンや自動運転シーンに比較してデータ通信の重要性は低下するので、記憶部62には、手動運転シーンや自動運転シーンよりも少ない本数の通信線を使用することが記憶されている。
抽出部63は、シーン特定部61によって特定されたシーンを示す情報を取得する。そして、抽出部63は、記憶部62に記憶された関係を参照して、特定されたシーンにおける、統合制御部2と車両挙動制御部3との通信に使用される通信線を動作環境として抽出する。
修正部64は、統合制御部2などの論理ブロックから動作状態に関する情報を取得し、その動作状態に関する情報に基づき、必要に応じて抽出部63が抽出した動作環境に修正を加える。図9に示す例では、修正部64は、統合制御部2から動作状態に関する情報を取得している。しかし、修正部64は、車両挙動制御部3から動作状態に関する情報を取得しても良い。
通信提供部65は、抽出部63によって抽出された通信線に関する動作環境、又は修正部64によって修正された場合には、修正が加えられた通信線に関する動作環境を、統合制御部2及び車両挙動制御部3に指示する。
ここで、記憶部62に記憶される各種のシーンと、統合制御部2と車両挙動制御部3との通信に使用される通信線との関係は、各種のシーンにおいて、統合制御部2と車両挙動制御部3との通信が安全かつ確実に実行できるように定められている。しかしながら、上述したように、通信の重要性が高まる手動運転シーンや自動運転シーンの場合であっても、常時、通信の重要性が高いままである訳ではない。
そのため、修正部64は、統合制御部2から動作状態に関する情報を取得し、その動作状態に関する情報に基づき、必要に応じて抽出部63が抽出した動作環境に修正を加える。例えば、修正部64は、自動運転シーンにおいて郊外を走行する場合など、統合制御部2の動作状態に基づき、複数本の通信線を用いて行う必要はないと判別した場合に、複数本の通信線よりも少ない本数の通信線を用いた通信を行うように修正する。
これにより、記憶部62に記憶された基本的な関係に従って通信線に関する動作環境を一律に設定する場合に比較して、統合制御部2と車両挙動制御部3との間において実際に通信されるデータの重要性に的確に対応した動作環境を提供することが可能になる。
なお、上述した通信IF60の場合も、例えば、複数本の通信線の少なくとも1つに異常が生じたり、複数の論理ブロックが共通の通信線を共用して通信したりすることで、必要な通信線の数に対して、提供可能な通信線の数が不足する事態が生じた場合に、図7のフローチャートに示したのと同様の処理によって、各論理ブロックが使用可能な通信線の数を算出して指示したり、通信線の提供可能時期を遅延させたりしても良い。
以上、説明したように、本実施形態に係る制御システム1によれば、制御システム1を構成する複数の論理ブロック2〜12に関して、それぞれ独自に動作環境について定めるのではなく、複数の論理ブロック2〜12の動作環境を一元的に管理するように構成した。このため、論理ブロック毎に個別に動作環境を設計する場合に比較して、設計負荷を軽減することができる。また、バリエーション設計のため、論理ブロックの廃止、追加、統合などが行われる場合でも、その対応が容易になる。
さらに、本実施形態による制御システム1は、少なくとも1つの論理ブロックの動作状態に基づき、必要に応じて抽出部33、43、63が抽出した動作環境に修正を加える修正部34、44、64を備えている。このため、記憶部32、42、62に記憶された基本的な関係に従って動作環境を設定する場合に比較して、各論理ブロック2〜12による制御状況に的確に対応した動作環境を提供することが可能になる。
上述した実施形態は、本発明の制御システム1の好ましい実施形態ではあるが、本発明の制御システム1は、上記実施形態になんら制限されることなく、本発明の主旨を逸脱しない範囲において、種々変形することが可能である。
例えば、上述した実施形態では、安全IF40は、シーンに応じて、あるいは、所定の論理ブロック2,3における演算処理負荷に応じて、所定の論理ブロック2,3の演算処理のために使用される演算コアの数を指示するものであった。しかし、安全IF70は、図10に示すように、所定の論理ブロックが演算処理を実施する際の動作周波数の変更を指示するものであっても良い。すなわち、図10に示すように、シーンに応じて演算処理の動作周波数を切り替えるべき論理ブロック2、3が実装されるECU76、78には、動作周波数を少なくとも高低の2段階に変更可能な周波数変更部77、79が設けられている。安全IF70、すなわち、安全提供部75は、シーンに対応する動作周波数を指示したり、各論理ブロック2、3における演算処理負荷の増減に応じて、動作周波数の変更を指示したりして、各論理ブロック2、3における演算処理の演算速度を変更する。
この場合、記憶部72が記憶する各種のシーンと複数の論理ブロック2、3の動作環境との関係には、シーン特定部71によって特定されるシーンに対し、各論理ブロック2、3の演算処理の演算速度を相対的に速くする場合と、その演算速度を相対的に遅くする場合とが含まれる。また、シーン特定部71によって特定されるシーンに対して、抽出部73が、記憶部72に記憶された関係に基づき、論理ブロック2、3の演算処理の演算速度を相対的に速くすることを抽出した場合に、修正部74が、論理ブロック2、3の動作状態に対して、演算処理の演算速度を速くする必要はないと判別した場合に、その演算速度を相対的に遅くするように修正する。
このような構成によっても、各論理ブロック2、3における演算処理負荷状況に的確に対応した動作環境を提供することが可能になる。
また、上述した実施形態では、通信IF60が、シーンに応じて、あるいは、一対の論理ブロック2,3間のデータ通信の重要性の高低に応じて、通信に使用される通信線の本数を指示するものであった。しかし、通信IF80、すなわち、通信提供部85は、図11に示すように、一対の論理ブロック2,3間の通信を1本の通信線にて行いつつ、同一通信データの通信回数を規定するものであっても良い。この場合、記憶部82が記憶する各種のシーンと通信回数との関係として、シーン特定部81によって特定されるシーンに対し、一対の論理ブロック2,3間における通信として、同一通信データの通信を2回以上繰り返して行う場合と、それよりも少ない回数しか行わない場合とが含まれる。また、シーン特定部81によって特定されるシーンに対して、抽出部83が、記憶部82に記憶された関係に基づき、一対の論理ブロック2,3間における同一通信データの通信を2回以上繰り返して行うことを抽出した場合に、修正部84は、一対の論理ブロック2、3間のデータ通信のために同一通信データの通信を2回以上繰り返して行う必要はないと判別した場合には、それよりも少ない回数しか行わないように修正する。
このような構成によっても、論理ブロック2、3間において実際に通信されるデータの重要性に的確に対応した動作環境を提供することが可能になる。
また、上述した実施形態では、シーンに対応する動作環境として、該当するシーンに対して要求される最大能力の動作環境を記憶部に記憶させ、修正部にて、状況に応じて最大能力の動作環境を低下させるようにしていた。しかしながら、記憶部に、シーンに対する平均的な(最も頻度の高い)動作環境を記憶させておき、修正部にて、動作環境の能力を状況に応じて増加又は減少するようにしても良い。
1…制御システム、2…統合制御部、3…車両挙動制御部、4…前後挙動制御部、5…EMS制御部、6…MG制御部、7…ブレーキ制御部、8…左右挙動制御部、9…EPS制御部、10…車内環境制御部、11…エアコン制御部、12…シートヒータ制御部、15…操作センサ、16…環境センサ、17…地図データ、20…エンジン、21…モータジェネレータ、22…ブレーキ装置、23…電動パワーステアリング装置、24…エアコン装置、25…シートヒータ

Claims (23)

  1. 車両に搭載された車載装置(20〜25)を制御する制御システムであって、
    前記制御システムは、制御機能に応じて予め複数の論理ブロック(2〜12)に区分けされ、それら複数の論理ブロックが、それぞれの制御機能を発揮することで前記車載装置を制御するものであり、
    少なくともセンサからの信号に基づいて、現在の車両の状況に関する情報を取得し、その状況に対応するシーンを特定するシーン特定部(31、41、61、71、81)と、
    各種のシーンと、それら各種のシーンにおける前記複数の論理ブロックの動作環境との基本的な関係を予め記憶した記憶部(32、42、62、72、82)と、
    前記動作環境は、前記複数の論理ブロックの各々に提供される動作電源、前記複数の論理ブロックの内の少なくとも一つの論理ブロックが複数の演算コア(47、48、50、51)を有するECU(46、49)に実装された場合の、前記少なくとも一つの論理ブロックの演算処理のために使用される演算コア、前記複数の論理ブロックの内の少なくとも一対の論理ブロック(2、3)間は複数本の通信線を用いて通信を行うことが可能に構成された場合の、前記少なくとも一対の論理ブロック間における通信のために使用される通信線、前記複数の論理ブロックの内の少なくとも一対の論理ブロック間の同一データの通信回数、および前記複数の論理ブロックの内の少なくとも一つの論理ブロックが実装されるECU(76、78)が演算速度を少なくとも高低の2段階に切替可能である場合の、前記少なくとも一つの論理ブロックの演算処理のための演算速度、の少なくとも1つを規定するものであり、
    前記記憶部に記憶された関係に基づき、前記シーン特定部によって特定されたシーンに対応する前記複数の論理ブロックのそれぞれの動作環境を抽出する抽出部(33、43、63、73、83)と、
    前記複数の論理ブロックの少なくとも1つから当該論理ブロックの動作状態に関する情報として、車両が走行するエリア、道路種別、車両の前後方向の加減速度、車両の左右方向の加減速度、車両の走行速度の少なくとも1つを取得し、その動作状態に関する情報に基づき、必要に応じて前記抽出部が抽出した動作環境に修正を加える修正部(34、44、64、74、84)と、
    前記抽出部によって抽出された又は前記修正部によって修正が加えられた動作環境を前記複数の論理ブロックの各々に提供する動作環境提供部(35、45、65、75、85)と、を備える制御システム。
  2. 前記動作環境提供部(35)は、前記車両に搭載された車載電源(37、38)から前記複数の論理ブロックの各々に動作電源を提供するものであり、
    前記動作環境提供部は、前記複数の論理ブロックの各々への電源供給の有無を論理ブロック単位もしくは所定のグループ単位で個別に設定可能である請求項1に記載の制御システム。
  3. 前記動作環境提供部は、前記複数の論理ブロックの各々に提供する電力量を通知する通知部(36)を備える請求項2に記載の制御システム。
  4. 前記シーン特定部(31)によって特定されるシーンに対して、前記記憶部に記憶された関係に、所定の論理ブロックへ前記車載電源からの電源供給を行うことが示されている場合に、前記動作環境提供部は、前記所定の論理ブロックの動作状態に応じた電力量を算出し、前記通知部は、算出された電力量を提供する旨を前記所定の論理ブロックに通知する請求項3に記載の制御システム。
  5. 前記車両には、車載電源として、少なくとも主電源(37)と補助電源(38)が搭載され、
    前記動作環境提供部は、前記主電源と前記補助電源との少なくとも一方を用いて、前記複数の論理ブロックの各々に動作電源を提供するものであり、
    前記記憶部が記憶する各種のシーンと前記複数の論理ブロックの動作環境との関係には、前記シーン特定部によって特定されるシーンに対し、前記複数の論理ブロックへの電源供給に使用される電源として、前記主電源と前記補助電源とのいずれか一方もしくは両方を使用するかが含まれる請求項2に記載の制御システム。
  6. 前記シーン特定部によって特定されるシーンに対して、前記記憶部に記憶された関係に、前記複数の論理ブロックへ前記主電源と前記補助電源との両方を用いて電源供給を行うことが示されている場合に、前記修正部は、前記複数の論理ブロックの動作状態に基づき、前記主電源と前記補助電源とのいずれか一方にて必要な電力量が賄えると判別した場合に、いずれか一方にて電源供給を行うように修正する請求項5に記載の制御システム。
  7. 前記複数の論理ブロックの内、少なくとも一つの論理ブロックが実装されるECU(46、49)は複数の演算コア(47、48、50、51)を含み、
    前記動作環境提供部(45)は、前記少なくとも一つの論理ブロックの演算処理のために、複数の演算コアの割り当てと、それよりも少ない数の演算コアの割り当てを提供することが可能であり、
    前記記憶部(42)が記憶する各種のシーンと前記複数の論理ブロックの動作環境との関係には、前記シーン特定部(41)によって特定されるシーンに対し、前記少なくとも一つの論理ブロックの演算処理のために複数の演算コアを割り当てる場合と、それよりも少ない数の演算コアを割り当てる場合とが含まれる請求項1に記載の制御システム。
  8. 前記シーン特定部によって特定されるシーンに対して、前記記憶部に記憶された関係に、前記少なくとも一つの論理ブロックの演算処理のために複数の演算コアを割り当てることが示されている場合に、前記修正部(44)は、前記少なくとも1つの論理ブロックの動作状態に対し、前記少なくとも1つの論理ブロックの演算処理のために複数の演算コアを割り当てる必要はないと判別した場合に、より少ない数の演算コアを割り当てるように修正する請求項7に記載の制御システム。
  9. 前記複数の論理ブロックの内、少なくとも一対の論理ブロック(2、3)間は複数本の通信線を用いて通信を行うことが可能に構成されており、
    前記動作環境提供部(65)は、前記少なくとも一対の論理ブロック間において前記複数本の通信線を用いた通信と、それよりも少ない本数の通信先を用いた通信を提供することが可能であり、
    前記記憶部(62)が記憶する各種のシーンと前記複数の論理ブロックの動作環境との関係には、前記シーン特定部(61)によって特定されるシーンに対し、前記少なくとも一対の論理ブロック間における通信として、前記複数本の通信線を用いて行う場合と、それよりも少ない本数の通信線を用いて行う場合とが含まれる請求項1に記載の制御システム。
  10. 前記シーン特定部によって特定されるシーンに対して、前記記憶部に記憶された関係に、前記少なくとも一対の論理ブロック間におけるデータ通信を前記複数本の通信線を用いて行うことが示されている場合に、前記修正部(64)は、前記一対の論理ブロック間におけるデータ通信のために前記複数本の通信線を用いて行う必要はないと判別した場合に、前記複数本の通信線よりも少ない本数の通信線を用いた通信を行うように修正する請求項9に記載の制御システム。
  11. 前記動作環境提供部(85)は、前記複数の論理ブロックの内、少なくとも一対の論理ブロック間において同一データの2回以上の通信と、それよりも少ない回数の通信を提供することが可能であり、
    前記記憶部(82)が記憶する各種のシーンと前記複数の論理ブロックの動作環境との関係には、前記シーン特定部(81)によって特定されるシーンに対し、前記少なくとも一対の論理ブロック間における通信として、同一データの通信を2回以上繰り返して行う場合と、それよりも少ない回数しか行わない場合とが含まれる請求項1に記載の制御システム。
  12. 前記シーン特定部によって特定されるシーンに対して、前記記憶部に記憶された関係に、前記少なくとも一対の論理ブロック間における同一データの通信を2回以上繰り返して行うことが示されている場合に、前記修正部(84)は、前記少なくとも一対の論理ブロック間のデータ通信のために同一データの通信を2回以上繰り返して行う必要はないと判別した場合に、それよりも少ない回数しか行わないように修正する請求項11に記載の制御システム。
  13. 前記複数の論理ブロックの内、少なくとも一つの論理ブロックが実装されるECU(76、78)は、そのECUに含まれる演算コアでの演算速度を少なくとも高低の2段階に切替可能であり、
    前記動作環境提供部(75)は、前記少なくとも一つの論理ブロックが制御機能を実行するための演算処理を行う際に、少なくとも高低の2段階に切り替えられた演算速度を提供することが可能であり、
    前記記憶部(72)が記憶する各種のシーンと前記複数の論理ブロックの動作環境との関係には、前記シーン特定部(71)によって特定されるシーンに対し、前記少なくとも一つの論理ブロックの演算処理の演算速度を相対的に速くする場合と、その演算速度を相対的に遅くする場合とが含まれる請求項1に記載の制御システム。
  14. 前記シーン特定部によって特定されるシーンに対して、前記記憶部に記憶された関係に、前記少なくとも一つの論理ブロックの演算処理の演算速度を相対的に速くすることが示されている場合に、前記修正部(74)は、前記少なくとも1つの論理ブロックの動作状態に対して、前記少なくとも1つの論理ブロックの演算処理の演算速度を速くする必要はないと判別した場合に、その演算速度を相対的に遅くするように修正する請求項13に記載の制御システム。
  15. 前記動作環境提供部が、前記抽出部によって抽出された抽出動作環境又は前記修正部によって修正が加えられた修正動作環境を提供できない場合に、前記複数の論理ブロックへ提供可能な動作環境を算出する算出部(S330〜S360)を備え、
    前記動作環境提供部は、前記算出部によって算出された動作環境を前記複数の論理ブロックに提供する請求項1に記載の制御システム。
  16. 前記算出部は、同時期に2以上の論理ブロックへ動作環境を提供する必要が生じた際に、少なくとも一方の論理ブロックへ抽出動作環境又は修正動作環境を提供できないときに、抽出動作環境又は修正動作環境を提供できない論理ブロックに対して提供可能な動作環境を算出する請求項15に記載の制御システム。
  17. 前記算出部が算出する提供可能な動作環境には、抽出動作環境又は修正動作環境に満たないが実際に提供可能である動作環境、又は、動作環境の提供時期が含まれる請求項16に記載の制御システム。
  18. 前記算出部は、前記2以上の論理ブロックの動作環境提供に関する優先度を判別し、その優先度に優劣がある場合、相対的に低い優先度の論理ブロックに対して、動作環境の提供時期を遅延させることを決定し、その遅延に応じた動作環境の提供時期を通知する請求項17に記載の制御システム。
  19. 車両に搭載された車載装置(20〜25)を制御する制御システムであって、
    前記制御システムは、制御機能に応じて予め複数の論理ブロック(2〜12)に区分けされ、それら複数の論理ブロックが、それぞれの制御機能を発揮することで前記車載装置を制御するものであり、
    少なくともセンサからの信号に基づいて、現在の車両の状況に関する情報を取得し、その状況に対応するシーンを特定するシーン特定部(31、41、61、71、81)と、
    各種のシーンと、それら各種のシーンにおける前記複数の論理ブロックの動作環境との基本的な関係を予め記憶した記憶部(32、42、62、72、82)と、
    前記記憶部に記憶された関係に基づき、前記シーン特定部によって特定されたシーンに対応する前記複数の論理ブロックのそれぞれの動作環境を抽出する抽出部(33、43、63、73、83)と、
    前記複数の論理ブロックの少なくとも1つから当該論理ブロックの動作状態を取得し、その動作状態に基づき、必要に応じて前記抽出部が抽出した動作環境に修正を加える修正部(34、44、64、74、84)と、
    前記抽出部によって抽出された又は前記修正部によって修正が加えられた動作環境を前記複数の論理ブロックの各々に提供する動作環境提供部(35、45、65、75、85)と、を備え、
    前記動作環境提供部(35)は、前記車両に搭載された車載電源(37、38)から前記複数の論理ブロックの各々に動作電源を提供するものであり、
    前記動作環境提供部は、前記複数の論理ブロックの各々への電源供給の有無を論理ブロック単位もしくは所定のグループ単位で個別に設定可能であり、
    前記車両には、前記車載電源として、少なくとも主電源(37)と補助電源(38)が搭載され、
    前記動作環境提供部は、前記主電源と前記補助電源との少なくとも一方を用いて、前記複数の論理ブロックの各々に動作電源を提供し、
    前記記憶部が記憶する各種のシーンと前記複数の論理ブロックの動作環境との関係には、前記シーン特定部によって特定されるシーンに対し、前記複数の論理ブロックへの電源供給に使用される電源として、前記主電源と前記補助電源とのいずれか一方もしくは両方を使用するかが含まれ、
    前記シーン特定部によって特定されるシーンに対して、前記記憶部に記憶された関係に、前記複数の論理ブロックへ前記主電源と前記補助電源との両方を用いて電源供給を行うことが示されている場合に、前記修正部は、前記複数の論理ブロックの動作状態に基づき、前記主電源と前記補助電源とのいずれか一方にて必要な電力量が賄えると判別した場合に、いずれか一方にて電源供給を行うように修正する制御システム。
  20. 車両に搭載された車載装置(20〜25)を制御する制御システムであって、
    前記制御システムは、制御機能に応じて予め複数の論理ブロック(2〜12)に区分けされ、それら複数の論理ブロックが、それぞれの制御機能を発揮することで前記車載装置を制御するものであり、
    少なくともセンサからの信号に基づいて、現在の車両の状況に関する情報を取得し、その状況に対応するシーンを特定するシーン特定部(31、41、61、71、81)と、
    各種のシーンと、それら各種のシーンにおける前記複数の論理ブロックの動作環境との基本的な関係を予め記憶した記憶部(32、42、62、72、82)と、
    前記記憶部に記憶された関係に基づき、前記シーン特定部によって特定されたシーンに対応する前記複数の論理ブロックのそれぞれの動作環境を抽出する抽出部(33、43、63、73、83)と、
    前記複数の論理ブロックの少なくとも1つから当該論理ブロックの動作状態を取得し、その動作状態に基づき、必要に応じて前記抽出部が抽出した動作環境に修正を加える修正部(34、44、64、74、84)と、
    前記抽出部によって抽出された又は前記修正部によって修正が加えられた動作環境を前記複数の論理ブロックの各々に提供する動作環境提供部(35、45、65、75、85)と、を備え、
    前記複数の論理ブロックの内、少なくとも一つの論理ブロックが実装されるECU(46、49)は複数の演算コア(47、48、50、51)を含み、
    前記動作環境提供部(45)は、前記少なくとも一つの論理ブロックの演算処理のために、複数の演算コアの割り当てと、それよりも少ない数の演算コアの割り当てを提供することが可能であり、
    前記記憶部(42)が記憶する各種のシーンと前記複数の論理ブロックの動作環境との関係には、前記シーン特定部(41)によって特定されるシーンに対し、前記少なくとも一つの論理ブロックの演算処理のために複数の演算コアを割り当てる場合と、それよりも少ない数の演算コアを割り当てる場合とが含まれ、
    前記シーン特定部によって特定されるシーンに対して、前記記憶部に記憶された関係に、前記少なくとも一つの論理ブロックの演算処理のために複数の演算コアを割り当てることが示されている場合に、前記修正部(44)は、前記少なくとも1つの論理ブロックの動作状態に対し、前記少なくとも1つの論理ブロックの演算処理のために複数の演算コアを割り当てる必要はないと判別した場合に、より少ない数の演算コアを割り当てるように修正する制御システム。
  21. 車両に搭載された車載装置(20〜25)を制御する制御システムであって、
    前記制御システムは、制御機能に応じて予め複数の論理ブロック(2〜12)に区分けされ、それら複数の論理ブロックが、それぞれの制御機能を発揮することで前記車載装置を制御するものであり、
    少なくともセンサからの信号に基づいて、現在の車両の状況に関する情報を取得し、その状況に対応するシーンを特定するシーン特定部(31、41、61、71、81)と、
    各種のシーンと、それら各種のシーンにおける前記複数の論理ブロックの動作環境との基本的な関係を予め記憶した記憶部(32、42、62、72、82)と、
    前記記憶部に記憶された関係に基づき、前記シーン特定部によって特定されたシーンに対応する前記複数の論理ブロックのそれぞれの動作環境を抽出する抽出部(33、43、63、73、83)と、
    前記複数の論理ブロックの少なくとも1つから当該論理ブロックの動作状態を取得し、その動作状態に基づき、必要に応じて前記抽出部が抽出した動作環境に修正を加える修正部(34、44、64、74、84)と、
    前記抽出部によって抽出された又は前記修正部によって修正が加えられた動作環境を前記複数の論理ブロックの各々に提供する動作環境提供部(35、45、65、75、85)と、を備え、
    前記複数の論理ブロックの内、少なくとも一対の論理ブロック(2、3)間は複数本の通信線を用いて通信を行うことが可能に構成されており、
    前記動作環境提供部(65)は、前記少なくとも一対の論理ブロック間において前記複数本の通信線を用いた通信と、それよりも少ない本数の通信先を用いた通信を提供することが可能であり、
    前記記憶部(62)が記憶する各種のシーンと前記複数の論理ブロックの動作環境との関係には、前記シーン特定部(61)によって特定されるシーンに対し、前記少なくとも一対の論理ブロック間における通信として、前記複数本の通信線を用いて行う場合と、それよりも少ない本数の通信線を用いて行う場合とが含まれ、
    前記シーン特定部によって特定されるシーンに対して、前記記憶部に記憶された関係に、前記少なくとも一対の論理ブロック間におけるデータ通信を前記複数本の通信線を用いて行うことが示されている場合に、前記修正部(64)は、前記一対の論理ブロック間におけるデータ通信のために前記複数本の通信線を用いて行う必要はないと判別した場合に、前記複数本の通信線よりも少ない本数の通信線を用いた通信を行うように修正する制御システム。
  22. 車両に搭載された車載装置(20〜25)を制御する制御システムであって、
    前記制御システムは、制御機能に応じて予め複数の論理ブロック(2〜12)に区分けされ、それら複数の論理ブロックが、それぞれの制御機能を発揮することで前記車載装置を制御するものであり、
    少なくともセンサからの信号に基づいて、現在の車両の状況に関する情報を取得し、その状況に対応するシーンを特定するシーン特定部(31、41、61、71、81)と、
    各種のシーンと、それら各種のシーンにおける前記複数の論理ブロックの動作環境との基本的な関係を予め記憶した記憶部(32、42、62、72、82)と、
    前記記憶部に記憶された関係に基づき、前記シーン特定部によって特定されたシーンに対応する前記複数の論理ブロックのそれぞれの動作環境を抽出する抽出部(33、43、63、73、83)と、
    前記複数の論理ブロックの少なくとも1つから当該論理ブロックの動作状態を取得し、その動作状態に基づき、必要に応じて前記抽出部が抽出した動作環境に修正を加える修正部(34、44、64、74、84)と、
    前記抽出部によって抽出された又は前記修正部によって修正が加えられた動作環境を前記複数の論理ブロックの各々に提供する動作環境提供部(35、45、65、75、85)と、を備え、
    前記動作環境提供部(85)は、前記複数の論理ブロックの内、少なくとも一対の論理ブロック間において同一データの2回以上の通信と、それよりも少ない回数の通信を提供することが可能であり、
    前記記憶部(82)が記憶する各種のシーンと前記複数の論理ブロックの動作環境との関係には、前記シーン特定部(81)によって特定されるシーンに対し、前記少なくとも一対の論理ブロック間における通信として、同一データの通信を2回以上繰り返して行う場合と、それよりも少ない回数しか行わない場合とが含まれ、
    前記シーン特定部によって特定されるシーンに対して、前記記憶部に記憶された関係に、前記少なくとも一対の論理ブロック間における同一データの通信を2回以上繰り返して行うことが示されている場合に、前記修正部(84)は、前記少なくとも一対の論理ブロック間のデータ通信のために同一データの通信を2回以上繰り返して行う必要はないと判別した場合に、それよりも少ない回数しか行わないように修正する制御システム。
  23. 車両に搭載された車載装置(20〜25)を制御する制御システムであって、
    前記制御システムは、制御機能に応じて予め複数の論理ブロック(2〜12)に区分けされ、それら複数の論理ブロックが、それぞれの制御機能を発揮することで前記車載装置を制御するものであり、
    少なくともセンサからの信号に基づいて、現在の車両の状況に関する情報を取得し、その状況に対応するシーンを特定するシーン特定部(31、41、61、71、81)と、
    各種のシーンと、それら各種のシーンにおける前記複数の論理ブロックの動作環境との基本的な関係を予め記憶した記憶部(32、42、62、72、82)と、
    前記記憶部に記憶された関係に基づき、前記シーン特定部によって特定されたシーンに対応する前記複数の論理ブロックのそれぞれの動作環境を抽出する抽出部(33、43、63、73、83)と、
    前記複数の論理ブロックの少なくとも1つから当該論理ブロックの動作状態を取得し、その動作状態に基づき、必要に応じて前記抽出部が抽出した動作環境に修正を加える修正部(34、44、64、74、84)と、
    前記抽出部によって抽出された又は前記修正部によって修正が加えられた動作環境を前記複数の論理ブロックの各々に提供する動作環境提供部(35、45、65、75、85)と、を備え、
    前記複数の論理ブロックの内、少なくとも一つの論理ブロックが実装されるECU(76、78)は、そのECUに含まれる演算コアでの演算速度を少なくとも高低の2段階に切替可能であり、
    前記動作環境提供部(75)は、前記少なくとも一つの論理ブロックが制御機能を実行するための演算処理を行う際に、少なくとも高低の2段階に切り替えられた演算速度を提供することが可能であり、
    前記記憶部(72)が記憶する各種のシーンと前記複数の論理ブロックの動作環境との関係には、前記シーン特定部(71)によって特定されるシーンに対し、前記少なくとも一つの論理ブロックの演算処理の演算速度を相対的に速くする場合と、その演算速度を相対的に遅くする場合とが含まれ、
    前記シーン特定部によって特定されるシーンに対して、前記記憶部に記憶された関係に、前記少なくとも一つの論理ブロックの演算処理の演算速度を相対的に速くすることが示されている場合に、前記修正部(74)は、前記少なくとも1つの論理ブロックの動作状態に対して、前記少なくとも1つの論理ブロックの演算処理の演算速度を速くする必要はないと判別した場合に、その演算速度を相対的に遅くするように修正する制御システム。
JP2016187140A 2016-09-26 2016-09-26 制御システム Active JP6900163B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016187140A JP6900163B2 (ja) 2016-09-26 2016-09-26 制御システム
DE102017214671.0A DE102017214671A1 (de) 2016-09-26 2017-08-22 Steuersystem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016187140A JP6900163B2 (ja) 2016-09-26 2016-09-26 制御システム

Publications (2)

Publication Number Publication Date
JP2018052162A JP2018052162A (ja) 2018-04-05
JP6900163B2 true JP6900163B2 (ja) 2021-07-07

Family

ID=61564090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016187140A Active JP6900163B2 (ja) 2016-09-26 2016-09-26 制御システム

Country Status (2)

Country Link
JP (1) JP6900163B2 (ja)
DE (1) DE102017214671A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244269A1 (ja) * 2018-06-20 2019-12-26 三菱電機株式会社 自動運転支援システム及びその動作方法
DE102019217055A1 (de) * 2019-11-06 2021-05-06 Robert Bosch Gmbh Verfahren zum Ermitteln einer unzulässigen Abweichung des Systemverhaltens einer technischen Einrichtung von einem Normwertebereich

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006142994A (ja) 2004-11-19 2006-06-08 Denso Corp 車両用ネットワークシステムおよび電子制御装置
JP2007083944A (ja) * 2005-09-26 2007-04-05 Toyota Motor Corp 車両制御装置
JP2007237913A (ja) * 2006-03-08 2007-09-20 Toyota Infotechnology Center Co Ltd 車載装置制御システムおよび車両
JP5262936B2 (ja) * 2009-04-07 2013-08-14 株式会社デンソー 車両制御装置
JP2015033859A (ja) * 2013-08-07 2015-02-19 三洋電機株式会社 車両用電源システム

Also Published As

Publication number Publication date
JP2018052162A (ja) 2018-04-05
DE102017214671A1 (de) 2018-03-29

Similar Documents

Publication Publication Date Title
JP6584484B2 (ja) 自律運転車両/自動運転車両のための予測的なパワートレイン限界戦略
JP6485306B2 (ja) 制御システム
JP6583182B2 (ja) 車両用制御システム
JP6729405B2 (ja) 車両用制御システム
JP6996151B2 (ja) 車両用制御装置
JP7059531B2 (ja) 車両用制御システム
JP6673244B2 (ja) 車両用制御システム
JP7081959B2 (ja) 車両電源システム
JP6477430B2 (ja) 電子制御装置
JP7081958B2 (ja) 車両電源システム
JP6989431B2 (ja) 車両電源システム
JP6500672B2 (ja) 制御システム
JP2018085686A (ja) 車両用制御システム
JP6551239B2 (ja) 車両用制御システム
JP6398864B2 (ja) 制御システム
JP2018090169A (ja) 車両用制御システム
JP6900163B2 (ja) 制御システム
JP6740813B2 (ja) 電気自動車
JP6398837B2 (ja) 制御システム
JP7096046B2 (ja) 車両電源システム
JP6536448B2 (ja) 車両用制御システム
JP6439553B2 (ja) 制御システム
CN110871758B (zh) 车辆控制系统
JP6406082B2 (ja) 制御システム
CN105460005A (zh) 控制车辆动力传动系统的系统和方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200225

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200511

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200923

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210106

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210303

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210511

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210615

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210616

R150 Certificate of patent or registration of utility model

Ref document number: 6900163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250