JP6897552B2 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP6897552B2
JP6897552B2 JP2017249787A JP2017249787A JP6897552B2 JP 6897552 B2 JP6897552 B2 JP 6897552B2 JP 2017249787 A JP2017249787 A JP 2017249787A JP 2017249787 A JP2017249787 A JP 2017249787A JP 6897552 B2 JP6897552 B2 JP 6897552B2
Authority
JP
Japan
Prior art keywords
combustion
fuel
vibration
ignition timing
frequency band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017249787A
Other languages
English (en)
Other versions
JP2019116842A (ja
Inventor
小野 智幸
智幸 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017249787A priority Critical patent/JP6897552B2/ja
Priority to BR102018073933-6A priority patent/BR102018073933A2/pt
Priority to KR1020180147279A priority patent/KR102078231B1/ko
Priority to RU2018142310A priority patent/RU2708749C1/ru
Priority to US16/207,417 priority patent/US10619579B2/en
Priority to EP18210632.8A priority patent/EP3505744B1/en
Priority to CN201811581624.1A priority patent/CN109958541B/zh
Publication of JP2019116842A publication Critical patent/JP2019116842A/ja
Application granted granted Critical
Publication of JP6897552B2 publication Critical patent/JP6897552B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/027Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using knock sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/0015Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for using exhaust gas sensors
    • F02D35/0046Controlling fuel supply
    • F02D35/0092Controlling fuel supply by means of fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/028Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the combustion timing or phasing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0045Estimating, calculating or determining the purging rate, amount, flow or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3082Control of electrical fuel pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/02Checking or adjusting ignition timing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L23/00Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
    • G01L23/22Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/12Testing internal-combustion engines by monitoring vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/281Interface circuits between sensors and control unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0618Actual fuel injection timing or delay, e.g. determined from fuel pressure drop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/14Arrangements of injectors with respect to engines; Mounting of injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/46Details, component parts or accessories not provided for in, or of interest apart from, the apparatus covered by groups F02M69/02 - F02M69/44
    • F02M69/50Arrangement of fuel distributors, e.g. with means for supplying equal portion of metered fuel to injectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は内燃機関の制御装置に関する。
特許文献1には、従来の内燃機関の制御装置として、所定の周波数帯域(5[kHz]から10[kHz]程度)をバンド幅として持つバンドパスフィルタによってフィルタ処理を施したノックセンサの出力値に基づいて、燃料の着火時期を検出するように構成されたものが開示されている。
特開2010−203342号公報
しかしながら、ノックセンサの出力値、すなわちノックセンサによって検出される振動には、燃焼によって生じる振動(燃焼振動)と、燃焼とは別の機械的な要因によって生じる振動(機械振動)と、が含まれており、前述した特許文献1のものでは、この機械振動による影響を十分に排除できていなかった。そのため、燃料の着火時期を精度良く検出するのが難しいという問題点があった。
本発明はこのような問題点に着目してなされたものであり、燃料の着火時期を精度良く検出することを目的とする。
上記課題を解決するために、本発明のある態様によれば、機関本体と、機関本体の燃焼室内に燃料を噴射する燃料噴射弁と、機関本体の振動を検出する振動センサと、を備える内燃機関を制御するための内燃機関の制御装置が、燃料噴射弁から噴射する燃料の噴射量、及び噴射時期を、機関運転状態に基づいて設定された目標噴射量、及び目標噴射時期に制御する燃料噴射制御部と、特定周波数帯域における機関本体の振動成分に基づいて、燃料の着火時期を検出する着火時期検出部と、を備える。燃料噴射制御部は、着火時期検出部によって検出した着火時期と、機関運転状態に応じた目標着火時期と、の偏差に基づいて、目標噴射量、及び目標噴射時期の一方、又は双方を補正するように構成される。特定周波数帯域は、機関本体が弾性振動する周波数帯域の低周波側の帯域であって、振動センサによって検出される振動成分の中で、機関本体が燃焼圧力を受けることによって生じる燃焼振動成分の割合が所定値以上となる帯域とされる。
本発明のこの態様によれば、燃料の着火時期を精度良く検出することができる。
図1は、本発明の第1実施形態による内燃機関及び内燃機関を制御する電子制御ユニットの概略構成図である。 図2は、ノックセンサの出力値に対して1/3オクターブバンド処理を施して算出した周波数毎の機関本体の振動レベルを、モータリング時と定常運転時とで比較した図である。 図3は、本発明の第1実施形態による着火時期の検出制御について説明するフローチャートである。 図4Aは、特定周波数帯域を0.2[kHz]から0.8[kHz]の周波数帯域とした場合の検出振動レベルと、筒内圧力と、の関係を示した図である。 図4Bは、特定周波数帯域を0.1[kHz]から1.8[kHz]の周波数帯域とした場合の検出振動レベルと、筒内圧力と、の関係を示した図である。 図4Cは、比較例として、特定周波数帯域を1.0[kHz]から3.0[kHz]の周波数帯域とした場合の検出振動レベルと、筒内圧力と、の関係を示した図である。 図5は、本発明の第1実施形態による燃料噴射制御について説明するフローチャートである。 図6は、約1.8[kHz]までの周波数帯域における機械振動レベルを、機関回転速度が低い場合と高い場合とで比較して示した図である。 図7は、本発明の第2実施形態による着火時期の検出制御について説明するフローチャートである。 図8Aは、或る機関運転状態において、多段噴射を実施して燃料を拡散燃焼させた場合の燃焼振動波形を示した図である。 図8Bは、図8Aに示した第1閾値TH1から第3閾値TH3までの3つ閾値を用いて燃焼振動波形を単純化処理して示した図である。 図9は、本発明の第3実施形態による着火時期の検出制御について説明するフローチャートである。 図10は、機関本体の運転領域を示す図である。 図11は、或る機関運転状態における燃焼振動波形を、DCモード時とPCCIモード時とで比較して示した図である。 図12は、本発明の第4実施形態による着火時期の検出制御について説明するフローチャートである。 図13Aは、或る機関運転状態における拡散燃焼時の燃焼振動波形を示した図である。 図13Bは、或る機関運転状態における予混合圧縮自着火燃焼時の燃焼振動波形を示した図である。 図14は、本発明の第5実施形態による着火時期の検出制御について説明するフローチャートである。 図15Aは、或る機関運転状態における燃焼振動波形を、拡散燃焼時と予混合圧縮自着火燃焼時とで比較して示した図である。 図15Bは、図15Aに示した第1閾値TH1から第3閾値TH3までの3つ閾値を用いて、拡散燃焼時の燃焼振動波形を単純化処理して示した図である。 図15Cは、図15Aに示した第1閾値TH1から第3閾値TH3までの3つ閾値を用いて、予混合圧縮自着火燃焼時の燃焼振動波形を単純化処理して示した図である。 図16は、本発明の第6実施形態による着火時期の検出制御について説明するフローチャートである。 図17は、本発明の第7実施形態による着火時期の検出制御について説明するフローチャートである。 図18は、補正値算出処理について説明するフローチャートである。
以下、図面を参照して本発明の各実施形態について詳細に説明する。なお、以下の説明では、同様な構成要素には同一の参照番号を付す。
(第1実施形態)
図1は、本発明の第1実施形態による内燃機関100及び内燃機関100を制御する電子制御ユニット200の概略構成図である。図2は、内燃機関100の機関本体1の断面図である。
図1に示すように、内燃機関100は、複数の気筒10を備える機関本体1と、燃料供給装置2と、吸気装置3と、排気装置4と、吸気動弁装置5と、排気動弁装置6と、を備える。
機関本体1は、各気筒10に形成される燃焼室内で燃料を自着火燃焼させて、例えば車両などを駆動するための動力を発生させる。機関本体1には、気筒毎に一対の吸気弁50と一対の排気弁60とが設けられる。また機関本体1には、機関本体1の振動を検出するためのノックセンサ210が取り付けられる。ノックセンサ210は、圧電素子を備えた振動センサ(加速度センサ)の一種であり、機関本体1の振動に応じた電圧値を出力する。
燃料供給装置2は、電子制御式の燃料噴射弁20と、デリバリパイプ21と、サプライポンプ22と、燃料タンク23と、圧送パイプ24と、燃圧センサ211と、を備える。
燃料噴射弁20は、燃焼室内に直接燃料を噴射することができるように、各気筒10の燃焼室に臨むように各気筒10に1つ設けられる。燃料噴射弁20の開弁時間(噴射量)及び開弁時期(噴射時期)は電子制御ユニット200からの制御信号によって変更され、燃料噴射弁20が開弁されると燃料噴射弁20から燃焼室内に直接燃料が噴射される。
デリバリパイプ21は、圧送パイプ24を介して燃料タンク23に接続される。圧送パイプ24の途中には、燃料タンク23に貯蔵された燃料を加圧してデリバリパイプ21に供給するためのサプライポンプ22が設けられる。デリバリパイプ21は、サプライポンプ22から圧送されてきた高圧燃料を一時的に貯蔵する。燃料噴射弁20が開弁されると、デリバリパイプ21に貯蔵された高圧燃料が燃料噴射弁20から燃焼室内に直接噴射される。
サプライポンプ22は、吐出量を変更することができるように構成されており、サプライポンプ22の吐出量は、電子制御ユニット200からの制御信号によって変更される。サプライポンプ22の吐出量を制御することで、デリバリパイプ21内の燃料圧力、すなわち燃料噴射弁20の噴射圧が制御される。
燃圧センサ211は、デリバリパイプ21に設けられる。燃圧センサ211は、デリバリパイプ21内の燃料圧力、すなわち各燃料噴射弁20から各気筒10内に噴射される燃料の圧力(噴射圧)を検出する。
吸気装置3は、燃焼室内に吸気を導くための装置であって、燃焼室内に吸入される吸気の状態(吸気圧(過給圧)、吸気温、EGR(Exhaust Gas Recirculation)ガス量)を変更することができるように構成されている。吸気装置3は、吸気通路となる吸気管30及び吸気マニホールド31と、EGR通路32と、を備える。
吸気管30は、一端がエアクリーナ34に接続され、他端が吸気マニホールド31の吸気コレクタ31aに接続される。吸気管30には、上流から順にエアフローメータ212、排気ターボチャージャ7のコンプレッサ71、インタークーラ35及びスロットル弁36が設けられる。
エアフローメータ212は、吸気管30内を流れて最終的に気筒10内に吸入される空気の流量を検出する。
コンプレッサ71は、コンプレッサハウジング71aと、コンプレッサハウジング71a内に配置されたコンプレッサホイール71bと、を備える。コンプレッサホイール71bは、同軸上に取り付けられた排気ターボチャージャ7のタービンホイール72bによって回転駆動され、コンプレッサハウジング71a内に流入してきた吸気を圧縮して吐出する。排気ターボチャージャ7のタービン72には、タービンホイール72bの回転速度を制御するための可変ノズル72cが設けられており、可変ノズル72cによってタービンホイール72bの回転速度が制御されることで、コンプレッサハウジング71a内から吐出される吸気の圧力(過給圧)が制御される。
インタークーラ35は、コンプレッサ71によって圧縮されて高温になった吸気を、例えば走行風や冷却水などによって冷却するための熱交換器である。
スロットル弁36は、吸気管30の通路断面積を変化させることで、吸気マニホールド31に導入する吸気量を調整する。スロットル弁36は、スロットルアクチュエータ36aによって開閉駆動され、スロットルセンサ213によってその開度(スロットル開度)が検出される。
吸気マニホールド31は、機関本体1に形成された吸気ポート14に接続されており、吸気管30から流入してきた吸気を、吸気ポート14を介して各気筒10に均等に分配する。吸気マニホールド31の吸気コレクタ31aには、筒内に吸入される吸気の圧力(吸気圧)を検出するための吸気圧センサ214と、筒内に吸入される吸気の温度(吸気温)を検出するための吸気温センサ215と、が設けられる。
EGR通路32は、排気マニホールド41と吸気マニホールド31の吸気コレクタ31aを連通し、各気筒10から排出された排気の一部を圧力差によって吸気コレクタ31aに戻すための通路である。以下、EGR通路32に流入した排気のことを「EGRガス」といい、筒内ガス量に占めるEGRガス量の割合、すなわち排気の還流率のことを「EGR率」という。EGRガスを吸気コレクタ31a、ひいては各気筒10に還流させることで、燃焼温度を低減させて窒素酸化物(NOx)の排出を抑えることができる。EGR通路32には、上流から順にEGRクーラ37と、EGR弁38と、が設けられる。
EGRクーラ37は、EGRガスを、例えば走行風や冷却水などによって冷却するための熱交換器である。
EGR弁38は、連続的又は段階的に開度を調整することができる電磁弁であり、その開度は機関運転状態に応じて電子制御ユニット200によって制御される。EGR弁38の開度を制御することで、吸気コレクタ31aに還流させるEGRガスの流量が調節される。
排気装置4は、筒内から排気を排出するための装置であって、排気マニホールド41と、排気通路42と、を備える。
排気マニホールド41は、機関本体1に形成された排気ポート15に接続されており、各気筒10から排出された排気を纏めて排気通路42に導入する。
排気通路42には、上流から順に排気ターボチャージャ7のタービン72と、排気後処理装置43と、が設けられる。
タービン72は、タービンハウジング72aと、タービンハウジング72a内に配置されたタービンホイール72bと、を備える。タービンホイール72bは、タービンハウジング72a内に流入してきた排気のエネルギによって回転駆動され、同軸上に取り付けられたコンプレッサホイール71bを駆動する。
タービンホイール72bの外側には、前述した可変ノズル72cが設けられている。可変ノズル72cは絞り弁として機能し、可変ノズル72cのノズル開度(弁開度)は電子制御ユニット200によって制御される。可変ノズル72cのノズル開度を変化させることでタービンホイール72bを駆動する排気の流速をタービンハウジング72a内で変化させることができる。すなわち、可変ノズル72cのノズル開度を変化させることで、タービンホイール72bの回転速度を変化させて過給圧を変化させることができる。具体的には、可変ノズル72cのノズル開度を小さくする(可変ノズル72cを絞る)と、排気の流速が上がってタービンホイール72bの回転速度が増大し、過給圧が増大する。
排気後処理装置43は、排気を浄化した上で外気に排出するための装置であって、有害物質を浄化する各種の排気浄化触媒や有害物質を捕集するフィルタなどを備える。
吸気動弁装置5は、各気筒10の吸気弁50を開閉駆動するための装置であって、機関本体1に設けられる。本実施形態による吸気動弁装置5は、吸気弁50の開閉時期を制御できるように、例えば電磁アクチュエータによって吸気弁50を開閉駆動するように構成される。しかしながら、これに限らず、吸気カムシャフトによって吸気弁50を開閉駆動するように構成し、当該吸気カムシャフトの一端部に油圧制御によってクランクシャフトに対する吸気カムシャフトの相対位相角を変更する可変動弁機構を設けることによって、吸気弁50の開閉時期を制御できるようにしてもよい。
排気動弁装置6は、各気筒10の排気弁60を開閉駆動するための装置であって、機関本体1に設けられる。本実施形態による排気動弁装置6は、排気弁60の開閉時期を制御できるように、例えば電磁アクチュエータによって排気弁60を開閉駆動するように構成される。しかしながら、これに限らず、排気カムシャフトによって排気弁60を開閉駆動するように構成し、当該排気カムシャフトの一端部に油圧制御によってクランクシャフトに対する排気カムシャフトの相対位相角を変更する可変動弁機構を設けることによって、排気弁60の開閉時期を制御できるようにしてもよい。また例えば、油圧等によってカムプロフィールを変更することで排気弁60の開閉時期やリフト量を変更できるようにしても良い。
電子制御ユニット200は、デジタルコンピュータから構成され、双方性バス201によって互いに接続されたROM(リードオンリメモリ)202、RAM(ランダムアクセスメモリ)203、CPU(マイクロプロセッサ)204、入力ポート205及び出力ポート206を備える。
入力ポート205には、前述した燃圧センサ211などの出力信号が、対応する各AD変換器207を介して入力される。また入力ポート205には、機関負荷を検出するための信号として、アクセルペダル220の踏み込み量(以下「アクセル踏込量」という。)に比例した出力電圧を発生する負荷センサ217の出力電圧が、対応するAD変換器207を介して入力される。また入力ポート205には、機関回転速度などを算出するための信号として、機関本体1のクランクシャフトが例えば15°回転する毎に出力パルスを発生するクランク角センサ218の出力信号が入力される。このように入力ポート205には、内燃機関100を制御するために必要な各種センサの出力信号が入力される。
出力ポート206は、対応する駆動回路208を介して、燃料噴射弁20などの各制御部品に接続される。
電子制御ユニット200は、入力ポート205に入力された各種センサの出力信号に基づいて、各制御部品を制御するための制御信号を出力ポート206から出力して内燃機関100を制御する。以下、本実施形態に係る電子制御ユニット200による内燃機関100の制御について説明する。
電子制御ユニット200は、燃料の着火時期が目標着火時期となるように、機関運転状態(機関回転速度及び機関負荷)に基づいて、燃料噴射弁20を制御する。
本実施形態では電子制御ユニット200は、全ての運転領域で燃料が拡散燃焼(Diffusive Combustion)するように、燃料噴射弁20から噴射する燃料の噴射量、及び噴射時期を、機関運転状態に応じて設定される目標噴射量、及び目標噴射時期に制御する。具体的には電子制御ユニット200は、多段噴射(本実施形態ではパイロット噴射、メイン噴射、及びアフター噴射)を実施し、メイン噴射によって燃焼室内に噴射された燃料が、燃料噴射後にほぼ遅れなく短い着火遅れ時間(燃焼室内に噴射された燃料が自着火に至るまでの時間)で燃焼するように、燃料噴射弁20から噴射する燃料の噴射量、及び噴射時期を制御する。
ここで着火時期が目標着火時期からずれると、排気エミッションが悪化したり、機関本体1の出力が低下してトルク変動が生じたりするなど、種々の問題が生じるおそれがある。そのため、燃料の着火時期を検出し、検出した着火時期と目標着火時期とに所定値以上のズレがあった場合には、そのズレを補正すべく、燃料噴射弁20から噴射する燃料の目標噴射量、及び目標噴射時期の一方、又は双方を補正することが望ましい。
着火時期を検出する方法としては、例えば機関本体1に筒内圧力センサを取り付け、当該筒内圧力センサの出力値に基づいて検出する方法が挙げられる。この方法によれば、筒内圧力センサによって各気筒内の圧力変動を直接検出できるため、着火時期を精度良く検出することができる。しかしながら、筒内圧力センサが気筒数だけ必要になると共に、筒内圧力センサ自体の単価も高いため、コストが増大する。
一方で、ノックセンサ210の出力値に基づいて着火時期を精度良く検出できれば、ノックセンサ210は単価が安く、また機関本体1に最低限1つ取り付ければ良いものなので、コストの増大を抑制できる。
しかしながら、ノックセンサ210の出力値、すなわちノックセンサ210によって検出される振動には、機関本体1が燃焼圧力を受けることによって生じる燃焼振動と、燃焼振動とは別の機械的な要因によって生じる機械振動と、が含まれている。機械振動は、燃焼の有無にかかわらず、クランクシャフトを回転させたときに必ず生じることになる振動であって、例えば機関本体1がピストン等から外力を受けることよって生じる振動や、回転次数に伴う振動(タイミングチェーンから発生する振動等)である。
したがってノックセンサ210の出力値には、必ず機械振動がノイズとして含まれることになり、ノックセンサ210の出力値に対して各種の処理を施して算出される機関本体1の振動レベル(以下「検出振動レベル」という。)[dB]は、機械振動に起因する機械振動レベルに、燃焼振動に起因する燃焼振動レベルを加算したものということができる。
そのため、ノックセンサ210の出力値に基づいて着火時期を精度良く検出するには、ノックセンサ210の出力値からノイズとなる機械振動の影響を可能な限り排除することが必要となる。そこで、ノックセンサ210の出力値から機械振動の影響を可能な限り排除すべく、発明者達が鋭意研究を行った結果、機械振動が小さくなる周波数帯域が存在することがわかった。
図2は、ノックセンサ210の出力値に対して1/3オクターブバンド処理を施して算出した周波数毎の機関本体1の振動レベル(検出振動レベル)を、モータリング時(燃焼を実施せずにクランクシャフトを回転させている状態)と、一定の出力トルク(80[Nm]と140[Nm])で機関本体1の運転を行っている定常運転時とで比較した図である。図2において、モータリング時の検出振動レベルが機械振動レベルに相当し、定常運転時の検出振動レベルが機械振動レベルに燃焼振動レベルを加算したものに相当する。
図2に示すように、モータリング時の振動レベル、すなわち機械振動レベルは、約0.1[kHz]までの周波数帯域で極大値D1を取り、約0.2[kHz]から約0.8[kHz]までの周波数帯域で極小値D2を取って極大値D1よりも小さくなっている。このように図2に示す例では、機械振動レベルは、約0.2[kHz]から0.8[kHz]までの周波数帯域において、その他の周波数帯域よりも低下していることがわかる。
そして図2に示す例では、約0.1[kHz]までの周波数帯域の振動は、機関本体1が剛体振動することによって生じる振動であり、それ以上の周波数帯域の振動は、機関本体1が弾性振動することによって生じる振動である。剛体振動は、機関本体1の形状は変化せず、機関本体1が形状を維持したまま変位することによって生じる振動である。一方で弾性振動は、機関本体1の形状が変化することで生じる振動である。
したがって機械振動レベルは、機関本体1が剛体振動する周波数帯域(以下「剛体周波数帯域」という。)で極大値D1を取り、機関本体1が弾性振動する周波数帯域(以下「弾性周波数帯域」という。)の低周波側の帯域で一旦極大値D1よりも低下し、弾性周波数帯域の高周波側の帯域で極大値D1よりも大きくなっていくということができる。
一方で図2に示すように、定常運転時の振動レベル(=機械振動レベル+燃焼振動レベル)は、モータリング時の振動レベルと異なり、明確に低下する周波数帯域を持たず、約0.1[kHz]から約1.8[kHz]までの周波数帯域において、モータリング時の振動レベルよりも比較的高い値を取っていることがわかる。
したがって、約0.1[kHz]から約1.8[kHz]までの周波数帯域、特に約0.2[kHz]から約0.8[kHz]までの周波数帯域は、その他の周波数帯域と比べて、定常運転時の振動レベルに占める機械振動レベルの割合が、燃焼振動レベルの割合よりも小さくなる周波数帯域ということができる。
すなわち、約0.1[kHz]から約1.8[kHz]までの周波数帯域、特に約0.2[kHz]から約0.8[kHz]までの周波数帯域は、検出振動レベルに占める燃焼振動レベルの割合が所定値以上となる周波数帯域ということができ、その他の周波数帯域と比べて、機械振動の影響が小さくなる周波数帯域ということができる。
そこで本実施形態では、この機械振動の影響が小さくなる周波数帯域(以下「特定周波数帯域」という。)をバンド幅として持つバンドパスフィルタによってフィルタ処理を施したノックセンサ210の出力値に基づいて、着火時期を検出することとした。以下、この本実施形態による着火時期の検出制御、及び燃料噴射制御について説明する。
図3は、本実施形態による着火時期の検出制御について説明するフローチャートである。
ステップS1において、電子制御ユニット200は、ノックセンサ210の出力値、及びクランク角センサ218の出力信号に基づいて算出された機関回転速度を読み込む。
ステップS2において、電子制御ユニット200は、ノックセンサ210の出力値に対して、特定周波数帯域をバンド幅に持つバンドパスフィルタによってフィルタ処理を施し、特定周波数帯域の各クランク角における振動成分を取り出した振動波形を算出する。本実施形態では、特定周波数帯域を0.2[kHz]から0.8[kHz]までの周波数帯域としている。
ステップS3において、電子制御ユニット200は、ステップS2で算出した振動波形に対して包絡線処理(エンベロープ処理)を施して、各クランク角における当該振動波形の振幅の大きさ、すなわち各クランク角における検出振動レベルを算出する。なお本実施形態では、特定周波数帯域を0.2[kHz]から0.8[kHz]までの周波数帯域としているので、包絡線処理を施す際の基準周波数を、特定周波数帯域の中心となる約0.4[kHz]から約0.5[kHz]としている。
ステップS4において、電子制御ユニット200は、機関回転速度と各クランク角における機械振動レベルとを関連付けたマップを参照し、機関回転速度に基づいて、各クランク角における機械振動レベルを算出する。前述したように機械振動は、燃焼の有無にかかわらずクランクシャフトを回転させたときに必ず生じることになる振動である。そのため、予め実験等によって機械回転速度毎の各クランク角における機械振動レベルを算出しておけば、機関回転速度と各クランク角における機械振動レベルとを関連付けたマップを作成することができる。なお機械振動レベルは、前述したようにモータリング時における検出振動レベルに相当するものなので、燃料カット時における検出振動レベルに基づいて、このマップを補正するようにしても良い。
ステップS5において、電子制御ユニット200は、検出振動レベルから機械振動レベルを減算して、燃焼振動レベルを算出し、各クランク角における燃焼振動レベルの波形(以下「燃焼振動波形」という。)を算出する。
ステップS6において、電子制御ユニット200は、燃焼振動波形を参照し、燃焼振動レベルが所定の燃焼判定閾値以上となったクランク角を、着火時期として検出する。
なお、本実施形態のように多段噴射を実施して燃料を燃焼させる場合、要求トルクを発生させるためのメイン噴射燃料の燃焼時を着火時期として検出する必要があるが、パイロット噴射燃料の燃焼時やアフター噴射燃料の燃焼時にも燃焼振動レベルは高くなる。そのため、多段噴射を実施する場合には、パイロット噴射燃料の燃焼時やアフター噴射燃料の燃焼時に生じる燃焼振動レベルよりも高くなるように、燃焼判定閾値を設定することが望ましい。
図4Aは、特定周波数帯域を0.2[kHz]から0.8[kHz]の周波数帯域とした場合の検出振動レベルと、筒内圧力と、の関係を示した図である。図4Bは、特定周波数帯域を0.1[kHz]から1.8[kHz]の周波数帯域とした場合の検出振動レベルと、筒内圧力と、の関係を示した図である。図4Cは、比較例として、特定周波数帯域を1.0[kHz]から3.0[kHz]の周波数帯域とした場合の検出振動レベルと、筒内圧力と、の関係を示した図である。
図4Aに示すように、特定周波数帯域を0.2[kHz]から0.8[kHz]までの周波数帯域とした場合は、メイン噴射燃料の燃焼(筒内圧力の上昇)に対応して検出振動レベルが燃焼判定閾値よりも高くなっており、それ以外の時期には検出振動レベルが燃焼判定閾値よりも低くなっていることがわかる。
また図4Bに示すように、特定周波数帯域を0.1[kHz]から1.8[kHz]までの周波数帯域とした場合は、特定周波数帯域を0.2[kHz]から0.8[kHz]までの周波数帯域とした場合よりもノイズが増加するものの、メイン噴射燃料の燃焼に対応して検出振動レベルが燃焼判定閾値よりも高くなっており、それ以外の時期には検出振動レベルが燃焼判定閾値よりも低くなっていることがわかる。
一方で図4Cに示すように、特定周波数帯域を1.0[kHz]から3.0[kHz]までの周波数帯域とした場合は、ノイズが増加し、メイン噴射燃料の燃焼時期以外においても検出振動レベルが燃焼判定閾値よりも高くなっていることがわかる。そのため、メイン噴射燃料の燃焼時期以外の時期を着火時期として誤検出してしまうおそれがある。
このように本実施形態によれば、特定周波数帯域をバンド幅として持つバンドパスフィルタによってフィルタ処理を施したノックセンサ210の出力値に基づいて検出振動レベルを算出することで、検出振動レベルに占める機械振動レベルの割合を小さくし、逆に燃焼振動レベルの割合を大きくすることができる。そのため、ノックセンサ210によって検出される振動中に含まれる燃焼振動成分を精度良く検出することができるので、燃料の着火時期を精度良く検出することができる。
なお本実施形態のように、ノックセンサ210の出力値に対して特定周波数帯域をバンド幅に持つバンドパスフィルタによってフィルタ処理を施して各クランク角における検出振動レベルを算出する場合、当該フィルタ処理に起因する検出遅れ(燃焼振動を検出するまでの遅れ)が生じる。このフィルタ処理に起因する検出遅れは、基本的に機関本体1の構造や材質等によって予め定まる固定値となる。
したがって、このようなフィルタ処理に起因する検出遅れが着火時期の検出精度上、無視できなくなった場合には、前述した図3のフローチャートのステップS6で検出した着火時期からフィルタ処理に起因する検出遅れに相当するクランク角を減算したものを、着火時期として採用するようにしても良い。
図5は、本実施形態による燃料噴射制御について説明するフローチャートである。
ステップS11において、電子制御ユニット200は、負荷センサ217によって検出された機関負荷と、クランク角センサ218の出力信号に基づいて算出された機関回転速度と、を読み込み、機関運転状態を検出する。
ステップS12において、電子制御ユニット200は、予め作成されたマップを参照し機関運転状態に基づいて、燃料噴射弁20から噴射する燃料の目標噴射量、及び目標噴射時期を算出する。
ステップS13において、電子制御ユニット200は、前回の燃焼サイクルにおいて着火時期の検出制御によって検出された着火時期を読み込み、その検出着火時期と、機関運転状態に応じて予め設定されている目標着火時期と、の偏差を着火時期偏差ΔCとして算出する。
ステップS14において、電子制御ユニット200は、着火時期偏差ΔCの絶対値が所定偏差未満か否かを判定する。電子制御ユニット200は、着火時期偏差ΔCの絶対値が所定偏差未満であれば、ステップS15の処理に進む。一方で電子制御ユニット200は、着火時期偏差ΔCの絶対値が所定偏差以上であれば、ステップS16の処理に進む。
ステップS15において、電子制御ユニット200は、目標噴射時期に目標噴射量の燃料が燃料噴射弁20から噴射されるように燃料供給装置を制御する。
ステップS16において、電子制御ユニット200は、検出着火時期が目標着火時期となるように、目標噴射量、及び目標噴射時期の一方、又は双方を補正する。本実施形態では電子制御ユニット200は、着火時期偏差ΔCが正の値であった場合、すなわち検出着火時期が目標着火時期よりも遅角していた場合には、検出着火時期が目標着火時期となるように、目標噴射時期を進角側に補正する。一方で電子制御ユニット200は、着火時期偏差ΔCが負の値であった場合、すなわち検出着火時期が目標着火時期よりも進角していた場合には、検出着火時期が目標着火時期となるように、目標噴射時期を遅角側に補正する。
以上説明した本実施形態によれば、機関本体1と、機関本体1の燃焼室内に燃料を噴射する燃料噴射弁20と、機関本体1の振動を検出するノックセンサ210(振動センサ)と、を備える内燃機関100を制御するための電子制御ユニット200(制御装置)が、燃料噴射弁20から噴射する燃料の噴射量、及び噴射時期を、機関運転状態に基づいて設定された目標噴射量、及び目標噴射時期に制御する燃料噴射制御部と、特定周波数帯域における機関本体1の振動成分に基づいて、燃料の着火時期を検出する着火時期検出部と、を備える。
そして燃料噴射制御部は、着火時期検出部によって検出した自着火時期と、機関運転状態に応じた目標着火時期と、の着火時期偏差ΔCに基づいて、目標噴射量、及び目標噴射時期の一方、又は双方を補正するように構成される。特定周波数帯域は、機関本体1が弾性振動する周波数帯域の低周波側の帯域であって、ノックセンサ210によって検出される振動成分の中で、機関本体1が燃焼圧力を受けることによって生じる燃焼振動成分の割合が所定値以上となる帯域とされる。具体的には特定周波数帯域は、0.1[kHz]から1.8[kHz]までの周波数帯域とされ、好ましくは0.2[kHz]から0.8[kHz]までの周波数帯域とされる。
このように、機関本体1が燃焼圧力を受けることによって生じる燃焼振動成分の割合が所定値以上となる帯域における機関本体1の振動成分に基づいて、燃料の着火時期を検出することで、ノックセンサ210によって検出される振動中に含まれる燃焼振動成分を精度良く検出することができるので、燃料の着火時期を精度良く検出することができる。
(第2実施形態)
次に本発明の第2実施形態について説明する。本実施形態は、機関回転速度に応じてバンドパスフィルタのバンド幅、すなわち特定周波数帯域を変化させる点で、第1実施形態と相違する。
図6は、約1.8[kHz]までの周波数帯域における機械振動レベルを、機関回転速度が低い場合と高い場合とで比較して示した図である。
前述した第1実施形態では、約0.1[kHz]までの周波数帯域を、機関本体1が剛体振動する剛体周波数帯域とし、それ以上の弾性周波数帯域の約0.1[kHz]から約1.8[kHz]までを特定周波数帯域としていた。
しかしながら剛体振動は、主にピストン等の往復回転系の部品に起因する振動や回転1次成分の振動などに依存しているため、剛体周波数帯域は機関回転速度に応じて変化する。具体的には、機関回転速度が高くなるほど、剛体周波数帯域が高周波数側に拡大する傾向にある。
そのため、図6に示すように、機関回転速度が高くなると、剛体周波数帯域で極大値D1をとる周波数が高周波数側の周波数となる傾向にあり、特定周波数帯域の下限周波数(前述した第1実施形態では約0.2[kHz])が増加すると共に、特定周波数帯域の上限周波数(前述した第1実施形態では約0.8[kHz])が低下する傾向にある。その結果、機械振動レベルが特に小さくなる周波数帯域(前述した第1実施形態では約0.2[kHz]から約0.8「kHz」までの周波数帯域)が狭くなり、機械振動の影響が小さくなる周波数帯域も全体として狭くなる傾向にある。
そこで本実施形態では、機関回転速度が高くなるほど、バンドパスフィルタのバンド幅、すなわち特定周波数帯域を狭くして着火時期の検出を行うこととした。以下、この本実施形態による着火時期の検出制御について説明する。
図7は、本実施形態による着火時期の検出制御について説明するフローチャートである。図7において、ステップS1からステップS6までの処理内容は、第1実施形態と同様なので、ここでは説明を省略する。
ステップS21において、電子制御ユニット200は、機関回転速度に基づいて、特定周波数帯域を設定する。具体的には電子制御ユニット200は、機関回転速度が高くなるほど、特定周波数帯域の下限周波数を高くすると共に上限周波数を低くして、特定周波数帯域を狭くする。
以上説明した本実施形態による電子制御ユニット200の着火時期検出部は、機関回転速度が高くなるほど、特定周波数帯域を狭くするように構成されている。
これにより、機関回転速度に応じて変化する剛体周波数帯域にあわせて、ノックセンサ210によって検出される振動中に含まれる燃焼振動成分を精度良く検出することができる。そのため、第1実施形態と同様の効果が得られると共に、燃料の着火時期を一層精度良く検出することができる。
(第3実施形態)
次に本発明の第3実施形態について説明する。本実施形態は、燃焼振動波形の中で、要求トルクを発生させるための燃料が燃焼したときの振動部分(以下「主振動部分」という。)を特定して着火時期を検出する点で、第1実施形態と相違する。以下、その相違点を中心に説明する。
前述した各実施形態では、燃焼振動レベルが所定の燃焼判定閾値以上となった時期を着火時期、すなわち要求トルクを発生させるための燃料の燃焼時期として検出していた。このとき、パイロット噴射燃料等の要求トルクを発生させるための燃料以外の燃焼に起因する燃焼振動レベルの上昇時期を着火時期として誤検出するのを防ぐには、燃焼判定閾値を或る程度大きい値に設定する必要がある。しかしながら、燃焼判定閾値を大きくするほど、実際の着火時期に対して検出される着火時期が遅角側のクランク角となってしまうので、着火時期の検出精度が低下してしまう。
そこで本実施形態では、燃焼振動波形に対して単純化処理を施すことで、主振動部分とそれ以外の振動部分、すなわちパイロット噴射燃料等の要求トルクを発生させるための燃料以外の燃焼による振動部分と、を特定した上で、着火時期の検出を行うこととした。
以下、図8A、及び図8Bを参照し、この本実施形態による着火時期の検出方法について説明する。
図8Aは、或る機関運転状態において、多段噴射を実施して燃料を拡散燃焼させた場合の燃焼振動波形を示した図である。図8Bは、図8Aに示した第1閾値TH1から第3閾値TH3までの3つ閾値を用いて燃焼振動波形を単純化処理して示した図である。
図8Bに示すように、本実施形態では、燃焼振動レベルが第1閾値TH1よりも小さいときは、燃焼振動レベルをゼロにし、燃焼振動レベルが第1閾値TH1以上、かつ第2閾値TH2未満のときは、燃焼振動レベルを第1閾値TH1にする。また燃焼振動レベルが第2閾値TH2以上、かつ第3閾値TH3未満のときは、燃焼振動レベルを第2閾値TH2とし、燃焼振動レベルが第3閾値TH3以上のときは、燃焼振動レベルを第3閾値TH3とする。
これにより、燃焼振動レベルが第1閾値TH1以上、かつ第2閾値TH2未満となっている部分が、パイロット噴射燃料等の要求トルクを発生させるための燃料以外の燃焼による振動部分として現れた燃焼振動波形を得ることができる。また燃焼振動レベルが第3閾値TH3以上となっている部分が、要求トルクを発生させるための燃料の燃焼による振動部分、すなわち主振動部分として現れた燃焼振動波形を得ることができる。
ここで第2閾値TH2は、パイロット噴射燃料の燃焼時やアフター噴射燃料の燃焼時に生じる燃焼振動レベルよりも高い値に設定される閾値であり、前述した各実施形態で採用していた燃焼判定閾値に相当する。したがって本実施形態によれば、主振動部分において、燃焼振動レベルが第2閾値TH2よりも小さい第1閾値TH1以上となった時期を着火時期として検出することができる。そのため、燃焼判定閾値を小さくして着火時期の検出精度を向上させることができる。
図9は、本実施形態による着火時期の検出制御について説明するフローチャートである。図9において、ステップS1からステップS5までの処理内容は、第1実施形態と同様なので、ここでは説明を省略する。
ステップS31において、電子制御ユニット200は、燃焼振動波形に対して単純化処理を施す。具体的には電子制御ユニット200は、前述した通り、燃焼振動レベルが第1閾値TH1よりも小さいときは、燃焼振動レベルをゼロにし、燃焼振動レベルが第1閾値TH1以上、かつ第2閾値TH2未満のときは、燃焼振動レベルを第1閾値TH1にする。また燃焼振動レベルが第2閾値TH2以上、かつ第3閾値TH3未満のときは、燃焼振動レベルを第2閾値TH2とし、燃焼振動レベルが第3閾値TH3以上のときは、燃焼振動レベルを第3閾値TH3とする。
ステップS32において、電子制御ユニット200は、燃焼振動レベルが第3閾値TH3以上となっている部分を主振動部分として特定する。
ステップS33において、電子制御ユニット200は、燃焼振動レベルが第1閾値TH1以上、かつ第2閾値TH2未満となっている部分の数(以下「第1閾値超え回数」という。)と、燃料噴射回数と、が一致しているか否かを判定する。
例えば多段噴射を実施している場合、第1閾値超え回数と燃料噴射回数とは一致するはずであるが、第1閾値超え回数が燃料噴射回数よりも多いときは、第1閾値が小さすぎ、ノイズの影響によって燃焼振動レベルが第1閾値TH1以上、かつ第2閾値TH2未満となっている部分があると判断できる。一方で、第1閾値超え回数が燃料噴射回数よりも少ないときは、第1閾値TH1が大きすぎると判断できる。そこで電子制御ユニット200は、第1閾値超え回数と燃料噴射回数とが一致していない場合は、第1閾値TH1の値を所定値だけ増減させて更新すべく、ステップS35の処理に進む。一方で電子制御ユニット200は、第1閾値超え回数と燃料噴射回数とが一致している場合は、第1閾値TH1の値を更新することなく、ステップS34の処理に進む。
ステップS34において、電子制御ユニット200は、主振動部分において、燃焼振動レベルが第1閾値TH1以上となったクランク角を着火時期として検出する。
ステップS35において、電子制御ユニット200は、第1閾値TH1の値を更新する。具体的には電子制御ユニット200は、第1閾値超え回数が燃料噴射回数よりも多かったときは、第1閾値TH1の値を所定値だけ大きくし、第1閾値超え回数が燃料噴射回数よりも少なかったときは、第1閾値TH1の値を所定値だけ小さくする。
以上説明した本実施形態によれば、複数の閾値(本実施形態では第1閾値TH1から第3閾値TH3)を用いて単純化した燃焼振動波形に基づいて主振動部分を特定することができる。そのため、多段噴射の影響を排除して、主振動部分において、燃焼振動レベルが燃焼判定閾値以上となった時期を着火時期として検出することができる。そのため、
燃焼判定閾値を小さくして着火時期の検出精度を向上させることができる。
(第4実施形態)
次に本発明の第4実施形態について説明する。本実施形態では、所定の運転領域において、予混合圧縮自着火燃焼(Premix Charged Compressive Ignition)を実施して機関本体1の運転を行う点で第1実施形態と相違する。以下、その相違点を中心に説明する。
本実施形態による電子制御ユニット200は、機関運転状態に基づいて、機関本体1の運転モードを予混合圧縮自着火燃焼モード(以下「PCCIモード」という。)、又は拡散燃焼モード(以下「DCモード」という。)のいずれかに切り替えて、機関本体1の運転を行う。
電子制御ユニット200は、図10に示すように、機関運転状態が低回転速度・低負荷側のPCCI領域内にあれば、運転モードをPCCIモードに切り替え、機関運転状態が高回転速度・高負荷側のDC領域内にあれば、運転モードをDCモードに切り替える。そして電子制御ユニット200は、各運転モードに応じた各制御部品の制御を実施して機関本体1の運転を行う。
具体的には電子制御ユニット200は、運転モードがDCモードのときは、前述した第1実施形態と同様に多段噴射を実施し、メイン噴射によって燃焼室内に噴射された燃料が、燃料噴射後にほぼ遅れなく短い着火遅れ時間で燃焼するように、燃料噴射弁20から多段噴射する各燃料の噴射量、及び噴射時期などを制御して機関本体1の運転を行う。
また電子制御ユニット200は、運転モードがPCCIモードのときは、燃焼室内に噴射された燃料が、燃料噴射後に空気との予混合期間をある程度置いた上で(すなわち燃料噴射後に拡散燃焼時よりも長い着火遅れ時間で)燃焼する予混合圧縮自着火燃焼を起こすように、燃料噴射弁20から噴射する燃料の噴射量、及び噴射時期などを制御して機関本体1の運転を行う。
このように、運転モードを燃焼形態の異なる複数の運転モードに切り替えながら機関本体1の運転を行う場合、運転モードに応じて燃焼振動波形が変化する場合がある。
図11は、或る機関運転状態における燃焼振動波形を、DCモード時とPCCIモード時とで比較して示した図である。
図11に示すように、本実施形態ではDCモード時に多段噴射を実施しているため、メイン噴射燃料の燃焼時に加えて、パイロット噴射燃料の燃焼時やアフター噴射燃料の燃焼時にも燃焼振動レベルが高くなる。
したがって前述したように、DCモード時において、メイン噴射燃料の燃焼時を着火時期として検出するためには、燃焼判定閾値をパイロット噴射燃料の燃焼時やアフター噴射燃料の燃焼時に生じる燃焼振動レベルよりも高くなるように設定する必要がある。
これに対してPCCIモード時には、予混合気が多点で同時期に燃焼するため、基本的に予混合気の燃焼時にだけ燃焼振動レベルが高くなる。そのため、PCCIモード時には、DCモード時のように燃焼判定閾値を高める必要がなく、逆にPCCIモード時の燃焼判定閾値をDCモード時の燃焼判定閾値と同じにすると、その分だけ実際の着火時期と比較して検出される着火時期が遅角側のクランク角となってしまい、着火時期の検出精度が悪化することになる。
そこで本実施形態では、PCCIモード時とDCモード時とで燃焼判定閾値を変化させることとした。具体的には、PCCIモード時にはDCモード時よりも燃焼判定閾値を小さくすることとした。これにより、PCCIモード時の着火時期の検出精度を向上させることができる。以下、この本実施形態による着火時期の検出制御について説明する。
図12は、本実施形態による着火時期の検出制御について説明するフローチャートである。図12において、ステップS1からステップS6までの処理内容は、第1実施形態と同様なので、ここでは説明を省略する。
ステップS41において、電子制御ユニット200は、現在の運転モードがいずれの運転モードであるかを判定する。電子制御ユニット200は、運転モードがPCCIモードであれば、ステップS42の処理に移行する。一方で電子制御ユニット200は、運転モードがDCモードであれば、ステップS43の処理に移行する。
ステップS42において、電子制御ユニット200は、燃焼判定閾値をPCCIモード時用の閾値(以下「PCCI判定閾値」という。)THpに設定する。
ステップS43において、電子制御ユニット200は、燃焼判定閾値をDCモード時用の閾値(以下「DC判定閾値」という。)THdに設定する。DC判定閾値THdは、PCCI判定閾値THpよりも大きい値である。
以上説明した本実施形態によれば、燃料を予混合圧縮自着火燃焼させる場合は、燃料を拡散燃焼させる場合よりも燃焼判定閾値を小さくすることができる。そのため、燃料を予混合圧縮自着火燃焼させた場合の着火時期を精度良く検出することができる。
また燃料を予混合圧縮自着火燃焼させる運転領域は低負荷側の領域であるため、高負荷側の領域に比べて燃焼に起因する振動成分(燃焼振動成分)が小さくなりやすいが、本実施形態によればこのような低負荷側の運転領域においても機械振動成分の影響を可能な限り排除して燃焼振動成分を抽出できる。そのため、低負荷側の運転領域で実施される予混合圧縮自着火燃焼の着火時期を精度良く検出することができる。
(第5実施形態)
次に、本発明の第5実施形態について説明する。本実施形態は、燃焼形態を判別し、燃焼形態に応じて燃焼判定閾値を変更する点で、第4実施形態と相違する。以下、その相違点を中心に説明する。
前述した第4実施形態では、運転モードに応じて燃焼判定閾値を変更していたが、本実施形態では燃焼形態、すなわち拡散燃焼しているか、又は予混合圧縮自着火燃焼しているかを燃焼振動波形に基づいて判別し、その判別結果に応じて燃焼判定閾値を変更する。以下、この本実施形態による燃焼形態の判別方法について説明する。
図13Aは、或る機関運転状態における拡散燃焼時の燃焼振動波形を示した図である。図13Bは、或る機関運転状態における予混合圧縮自着火燃焼時の燃焼振動波形を示した図である。
図13A、及び図13Bに示すように、拡散燃焼時の燃焼振動波形は、予混合圧縮自着火燃焼時の燃焼振動波形と比較して、振動期間Wが長くなる一方で燃焼振動レベルの最大値Hが小さくなる傾向にある。そのため、振動期間Wに対する燃焼振動レベルの最大値Hの比率H/Wは、拡散燃焼時には小さくなり、一方で予混合圧縮自着火燃焼時には大きくなる傾向にある。
そこで本実施形態では、比率H/Wが所定比率未満のときは、燃料が拡散燃焼していると判断して燃焼判定閾値をDC判定閾値THdに設定すると共に、比率H/Wが所定比率以上のときは、燃料が予混合圧縮自着火燃焼していると判断して燃焼判定閾値をPCCI判定閾値THpに設定する。以下、この本実施形態による着火時期の検出制御について説明する。
図14は、本実施形態による着火時期の検出制御について説明するフローチャートである。図14において、ステップS1からステップS6、ステップS42、及びステップS43の処理内容は、第1実施形態、及び第4実施形態と同様なので、ここでは説明を省略する。
ステップS51において、電子制御ユニット200は、燃焼振動波形に基づいて、当該燃焼振動波形の振動期間W、及び燃焼振動レベルの最大値Hを検出し、比率H/Wを算出する。
ステップS52において、電子制御ユニット200は、比率H/Wが所定比率以上か否かを判定する。電子制御ユニット200は、比率H/Wが所定比率以上であれば、ステップS42の処理に進む。一方で電子制御ユニット200は、比率H/Wが所定比率未満であれば、ステップS43の処理に進む。
以上説明した本実施形態によれば、第5実施形態と同様に、燃料を予混合圧縮自着火燃焼させる場合は、燃料を拡散燃焼させる場合よりも燃焼判定閾値を小さくすることができる。そのため、燃料を予混合圧縮自着火燃焼させた場合の着火時期を精度良く検出することができる。
(第6実施形態)
次に、本発明の第5実施形態について説明する。本実施形態は、燃焼形態の判別方法が第5実施形態と相違する。以下、その相違点を中心に説明する。
図15Aは、図13と同様の図であり、或る機関運転状態における燃焼振動波形を、拡散燃焼時と予混合圧縮自着火燃焼時とで比較して示した図である。
図15B、及び図15Cは、図15Aに示した第1閾値TH1から第3閾値TH3までの3つ閾値を用いて、拡散燃焼時、及び予混合圧縮自着火燃焼時の燃焼振動波形をそれぞれ単純化処理して示した図である。
図15Bに示すように、燃焼振動波形に対して単純化処理を施すことで、拡散燃焼時には、要求トルクを発生させるための燃料の燃焼によって生じた振動部分(主振動部分)と、パイロット噴射燃料等の要求トルクを発生させるための燃料以外の燃焼によって生じた振動部分と、が現れた燃焼振動波形を得ることができる。一方で図15Cに示すように、予混合圧縮自着火燃焼時には、主振動部分のみが現れることになる。
そのため、燃焼振動レベルが第1閾値TH1以上、かつ第2閾値TH2未満となっている部分の数(第1閾値超え回数)によって、燃焼形態の判別を行うことができる。そこで本実施形態では、第1閾値超え回数に応じて燃焼形態を判別し、燃焼形態に応じて燃焼判定閾値を変更することとした。以下、この本実施形態による着火時期の検出制御について説明する。
図16は、本実施形態による着火時期の検出制御について説明するフローチャートである。図16において、ステップS1からステップS6、ステップS31、ステップS32、ステップS34、ステップS42、及びステップS43の処理内容は、第1実施形態、第3実施形態、及び第4実施形態と同様なので、ここでは説明を省略する。
ステップS61において、電子制御ユニット200は、第1閾値超え回数を算出する。
ステップS62において、電子制御ユニット200は、第1閾値超え回数に基づいて、燃焼形態を判別する。本実施形態では電子制御ユニット200は、第1閾値超え回数が1回であれば、燃焼形態が予混合圧縮自着火燃焼であると判別し、第1閾値超え回数が複数回であれば、燃焼形態が拡散燃焼であると判別する。
ステップS63において、電子制御ユニット200は、燃焼形態が予混合圧縮自着火燃焼であればステップS42の処理に進み、燃焼形態が拡散燃焼であればステップS43の処理に進む。
以上説明した本実施形態によれば、第5実施形態と同様に、燃料を予混合圧縮自着火燃焼させる場合は、燃料を拡散燃焼させる場合よりも燃焼判定閾値を小さくすることができる。そのため、燃料を予混合圧縮自着火燃焼させた場合の着火時期を精度良く検出することができる。
(第7実施形態)
次に、本発明の第7実施形態について説明する。本実施形態は、着火時期偏差ΔCの移動平均値に基づいて、燃焼振動レベルを補正する点で、第1実施形態と相違する。以下、その相違点を中心に説明する。
着火時期偏差ΔCが生じる要因としては、前述したようにノックセンサ210の出力値にフィルタ処理を施していること以外にも、着火遅れ時間の変化に起因するものが挙げられる。
ここで着火遅れ時間が変化する要因としては、一時的な要因と、永続的な要因と、がある。一時的な要因としては、例えば機関負荷が変化する過渡運転時に、吸気の応答遅れによって吸気量が目標値からズレてしまうことや、給油によって燃料のセタン価やオクタン価が変化することなどが挙げられる。一方で永続的な要因としては、燃料供給装置の経年劣化によって、燃料噴射弁20から噴射される噴射量が変動してしまうことなどが挙げられる。
そこで本実施形態では、このような一時的な着火遅れ時間の変化に起因する着火時期のズレを、着火時期偏差ΔCの短期間に亘る移動平均値(以下「短期移動平均値」という。)に基づいて補償すると共に、永続的な着火遅れ時間の変化に起因する着火時期のズレを、着火時期偏差ΔCの長期間に亘る移動平均値(以下「長期移動平均値」という。)に基づいて補償することとした。以下、この本実施形態による着火時期の検出制御について説明する。
図17は、本実施形態による着火時期の検出制御について説明するフローチャートである。図17において、ステップS1からステップS6までの処理内容は、第1実施形態と同様なので、ここでは説明を省略する。
ステップS71において、電子制御ユニット200は、後述する補正値算出処理によって算出された補正値Cpを読み込み、燃焼振動レベルに補正値Cpを加算して燃焼振動レベルを補正し、各クランク角における燃焼振動レベルの波形(燃焼振動波形)を算出する。なお補正値Cpの初期値はゼロである。
ステップS72において、電子制御ユニット200は、補正値算出処理を実施する。補正値算出処理の詳細については、図18を参照して後述する。
図18は、補正値算出処理について説明するフローチャートである。
ステップS721において、電子制御ユニット200は、ステップS6で検出した着火時期と、機関運転状態に応じて予め設定されている目標着火時期と、の偏差を、着火時期偏差ΔCとして算出する。
ステップS722において、電子制御ユニット200は、下記式(1)に基づいて、着火時期偏差ΔCの短期移動平均値CSを算出する。
Figure 0006897552
ステップS723において、電子制御ユニット200は、下記式(2)に基づいて、着火時期偏差ΔCの長期移動平均値CLを算出する。
Figure 0006897552
ステップS724において、電子制御ユニット200は、短期移動平均値CSと長期移動平均値CLとを足し合わせたものに、所定の係数kを掛けたものを補正値Cp(=k×(CS+CL))として算出する。
したがって本実施形態によれば、補正値Cpが大きくなるほど、すなわち、目標着火時期に対して検出着火時期が遅角しているほど、燃焼振動レベルが高くなるように補正することができる。これにより、一時的、及び永続的な着火遅れ時間の変化に起因する自着火時期のズレを修正することができるので、着火時期を精度良く検出することができる。
以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
例えばノックセンサ210が燃焼振動を検出するまでには、振動の伝達速度(音速)に応じた遅れが生じる。この振動の伝達速度は、機関本体1の温度に応じて変化し、具体的には機関本体1の温度が高くなるほど振動の伝達速度が遅くなって遅れが大きくなる。
したがって例えば、機関本体1の温度を代表する冷却水温の温度が高いときほど、前述した図3のフローチャートのステップS6で検出した着火時期を進角側に補正するようにしても良い。
また上記の各実施形態では、機関本体1にノックセンサ210を1つ取り付けていたが、2つ以上のノックセンサ210を取り付けて、一つをメインのセンサとし、他をサブのセンサとすることで、互いのセンサ同士の出力値を監視してセンサに異常が生じているかを判断するようにしても良い。そしてメインのセンサに異常が生じたときに、サブのセンサで着火時期を検出できるようにしても良い。
また上記の第2実施形態では、機関回転速度が高くなるほど特定周波数帯域を狭くするようにしていたが、前述した図3のフローチャートのステップS3で包絡線処理を施す際の基準周波数を、機関回転速度が高くなるほど高くするように構成しても同様の効果が得られる。
1 機関本体
20 燃料噴射弁
100 内燃機関
200 電子制御ユニット(制御装置)
210 ノックセンサ(振動センサ)

Claims (8)

  1. 機関本体と、
    前記機関本体の燃焼室内に燃料を噴射する燃料噴射弁と、
    前記機関本体の振動を検出する振動センサと、
    を備える内燃機関を制御するための内燃機関の制御装置であって、
    前記燃料噴射弁から噴射する燃料の噴射量、及び噴射時期を、機関運転状態に基づいて設定された目標噴射量、及び目標噴射時期に制御する燃料噴射制御部と、
    特定周波数帯域における前記機関本体の振動成分に基づいて、燃料の着火時期を検出する着火時期検出部と、
    を備え、
    前記燃料噴射制御部は、
    前記着火時期検出部によって検出した着火時期と、機関運転状態に応じた目標着火時期と、の偏差に基づいて、前記目標噴射量、及び前記目標噴射時期の一方、又は双方を補正するように構成され、
    前記特定周波数帯域は、
    前記機関本体が弾性振動する周波数帯域の低周波側の帯域であって、前記振動センサによって検出される、前記機関本体が燃焼圧力を受けることによって生じる燃焼振動成分とクランクシャフトの回転に起因して生じる機械振動成分とを含む振動成分の中で、前記燃焼振動成分の割合が所定値以上となる帯域とされる、
    内燃機関の制御装置。
  2. 前記特定周波数帯域は、
    0.1kHzから1.8kHzまでの周波数帯域である、
    請求項1に記載の内燃機関の制御装置。
  3. 前記特定周波数帯域は、
    0.2kHzから0.8kHzまでの周波数帯域である、
    請求項1に記載の内燃機関の制御装置。
  4. 前記着火時期検出部は、
    機関回転速度が高くなるほど、前記特定周波数帯域を狭くする、
    請求項1から請求項3までのいずれか1項に記載の内燃機関の制御装置。
  5. 前記着火時期検出部は、
    特定周波数帯域における前記機関本体の振動成分に基づいて、前記燃焼振動成分と前記機械振動成分とを含む前記機関本体の振動レベルを算出し、
    機関運転状態に基づいて、前記機械振動成分のみを含む前記機関本体の機械振動レベルを算出し、
    前記振動レベルから前記機械振動レベルを減算して燃焼振動レベルを算出し、
    前記燃焼振動レベルが所定の燃焼判定閾値以上になった時期を燃料の着火時期として検出する、
    請求項1から請求項4までのいずれか1項に記載の内燃機関の制御装置。
  6. 前記着火時期検出部は、
    複数の閾値を用いて単純化した各クランク角における前記燃焼振動レベルの波形に基づいて、要求トルクを発生させるための燃料が燃焼したときの主振動部分を特定し、当該主振動部分において前記燃焼振動レベルが前記燃焼判定閾値以上になった時期を燃料の着火時期として検出する、
    請求項5に記載の内燃機関の制御装置。
  7. 前記燃料噴射制御部は、
    低負荷側の運転領域で燃料が予混合圧縮自着火燃焼を起こし、高負荷側の運転領域で燃料が拡散燃焼を起こすように、前記燃料噴射弁から噴射する燃料の噴射量、及び噴射時期を制御し、
    前記着火時期検出部は、
    燃料を予混合圧縮自着火燃焼させる場合は、燃料を拡散燃焼させる場合よりも前記燃焼判定閾値を小さくする、
    請求項5に記載の内燃機関の制御装置。
  8. 前記着火時期検出部は、
    前記偏差の短期間に亘る移動平均値と、前記偏差の長期間に亘る移動平均値と、に基づいて、前記燃焼振動レベルを補正する、
    請求項5に記載の内燃機関の制御装置。
JP2017249787A 2017-12-26 2017-12-26 内燃機関の制御装置 Active JP6897552B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2017249787A JP6897552B2 (ja) 2017-12-26 2017-12-26 内燃機関の制御装置
BR102018073933-6A BR102018073933A2 (pt) 2017-12-26 2018-11-22 Dispositivo de controle para motor de combustão interna e método de controle para motor de combustão interna
KR1020180147279A KR102078231B1 (ko) 2017-12-26 2018-11-26 내연 기관을 위한 제어 장치 및 내연 기관의 제어 방법
RU2018142310A RU2708749C1 (ru) 2017-12-26 2018-11-30 Устройство управления для двигателя внутреннего сгорания и способ управления для двигателя внутреннего сгорания
US16/207,417 US10619579B2 (en) 2017-12-26 2018-12-03 Control device for internal combustion engine and control method for internal combustion engine
EP18210632.8A EP3505744B1 (en) 2017-12-26 2018-12-06 Control device for internal combustion engine and control method for internal combustion engine
CN201811581624.1A CN109958541B (zh) 2017-12-26 2018-12-24 用于内燃机的控制装置及内燃机的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017249787A JP6897552B2 (ja) 2017-12-26 2017-12-26 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2019116842A JP2019116842A (ja) 2019-07-18
JP6897552B2 true JP6897552B2 (ja) 2021-06-30

Family

ID=64650198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017249787A Active JP6897552B2 (ja) 2017-12-26 2017-12-26 内燃機関の制御装置

Country Status (7)

Country Link
US (1) US10619579B2 (ja)
EP (1) EP3505744B1 (ja)
JP (1) JP6897552B2 (ja)
KR (1) KR102078231B1 (ja)
CN (1) CN109958541B (ja)
BR (1) BR102018073933A2 (ja)
RU (1) RU2708749C1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10544749B1 (en) * 2018-10-11 2020-01-28 Delphi Technologies Ip Limited Internal combustion engine control method
FR3100569B1 (fr) * 2019-09-11 2022-07-01 Delphi Automotive Systems Lux Procédé de détermination de caractéristiques d’ouverture d’un injecteur de carburant

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930009907B1 (ko) * 1988-10-04 1993-10-13 미쯔비시 덴끼 가부시끼가이샤 내연기관 제어장치
JPH03124969A (ja) * 1989-10-09 1991-05-28 Nippondenso Co Ltd エンジン失火検出装置
JPH0417142U (ja) * 1990-05-31 1992-02-13
JP4158335B2 (ja) * 2000-12-11 2008-10-01 日産自動車株式会社 エンジンの騒音検出装置
JP4086602B2 (ja) * 2002-09-17 2008-05-14 株式会社日立製作所 多気筒エンジンの制御装置及び制御方法
JP2004278461A (ja) * 2003-03-18 2004-10-07 Toyota Motor Corp 内燃機関のノッキング制御装置
JP2005291001A (ja) * 2004-03-31 2005-10-20 Isuzu Motors Ltd ディーゼルエンジン
JP2006152944A (ja) * 2004-11-30 2006-06-15 Isuzu Motors Ltd エンジンの着火遅れ期間算出装置
JP4452660B2 (ja) * 2005-06-28 2010-04-21 トヨタ自動車株式会社 ノッキング状態判定装置
JP4618172B2 (ja) * 2006-03-15 2011-01-26 いすゞ自動車株式会社 エンジンの着火時期判定方法及び着火時期判定装置
JP4447576B2 (ja) * 2006-05-29 2010-04-07 トヨタ自動車株式会社 内燃機関のノッキング判定装置
JP4782078B2 (ja) * 2007-07-09 2011-09-28 本田技研工業株式会社 内燃機関の制御装置
JP2009270460A (ja) * 2008-05-02 2009-11-19 Isuzu Motors Ltd エンジン燃焼騒音低減方法
JP4841638B2 (ja) * 2009-02-12 2011-12-21 本田技研工業株式会社 内燃機関の点火時期制御装置
JP5182157B2 (ja) * 2009-03-04 2013-04-10 日産自動車株式会社 ディーゼルエンジンの制御装置
JP5195530B2 (ja) * 2009-03-04 2013-05-08 日産自動車株式会社 ディーゼルエンジンの制御装置
JP5233753B2 (ja) * 2009-03-04 2013-07-10 日産自動車株式会社 ディーゼルエンジンの制御装置
JP5239949B2 (ja) * 2009-03-06 2013-07-17 日産自動車株式会社 内燃機関の制御装置
JP5152048B2 (ja) * 2009-03-12 2013-02-27 日産自動車株式会社 ディーゼルエンジンの制御装置
JP5508834B2 (ja) 2009-12-22 2014-06-04 日産自動車株式会社 内燃機関のノック判定装置
JP5832130B2 (ja) * 2011-04-20 2015-12-16 三菱電機株式会社 内燃機関の制御装置
JP2013104371A (ja) * 2011-11-15 2013-05-30 Toyota Motor Corp 内燃機関の制御装置
KR101316281B1 (ko) 2011-12-13 2013-10-08 아주대학교산학협력단 디젤엔진의 연소 제어 방법
US9043122B2 (en) * 2012-06-29 2015-05-26 Ford Global Technologies, Llc Method and system for pre-ignition control
JP5502176B2 (ja) 2012-10-26 2014-05-28 三菱電機株式会社 内燃機関の制御装置
JP5942805B2 (ja) * 2012-11-16 2016-06-29 トヨタ自動車株式会社 火花点火式内燃機関
JP6323686B2 (ja) * 2015-07-07 2018-05-16 マツダ株式会社 エンジンの制御装置
JP6323687B2 (ja) * 2015-07-07 2018-05-16 マツダ株式会社 エンジンの制御装置
WO2017101946A1 (en) 2015-12-15 2017-06-22 Vestas Wind Systems A/S Method and apparatus for applying a layer of material to a leading edge of a wind turbine blade
JP6751000B2 (ja) * 2016-10-17 2020-09-02 日立オートモティブシステムズ株式会社 内燃機関制御装置および方法

Also Published As

Publication number Publication date
CN109958541A (zh) 2019-07-02
EP3505744B1 (en) 2021-07-21
KR102078231B1 (ko) 2020-02-17
JP2019116842A (ja) 2019-07-18
BR102018073933A2 (pt) 2019-09-17
KR20190078487A (ko) 2019-07-04
US20190195148A1 (en) 2019-06-27
US10619579B2 (en) 2020-04-14
CN109958541B (zh) 2022-04-29
EP3505744A1 (en) 2019-07-03
RU2708749C1 (ru) 2019-12-11

Similar Documents

Publication Publication Date Title
EP3553301B1 (en) Control device for internal combustion engine
JP6958496B2 (ja) 内燃機関の制御装置
EP1741885B1 (en) Exhaust gas purifying apparatus for internal combustion engine
JP6447434B2 (ja) 燃料噴射制御装置
CN108071505B (zh) 内燃机的控制装置
JP5397567B1 (ja) 内燃機関の制御装置
JP6897552B2 (ja) 内燃機関の制御装置
EP1867857B1 (en) Fuel injection control system for internal combustion engine
JP6622251B2 (ja) 内燃機関の制御装置
EP3561275B1 (en) Control device for internal combustion engine
JP2012013010A (ja) 内燃機関の燃料噴射制御装置
JP6915577B2 (ja) 内燃機関の制御装置
JP2010144527A (ja) 内燃機関の燃料噴射制御装置及び制御方法
JP4510704B2 (ja) 内燃機関の燃料噴射制御装置
JP2019138292A (ja) 内燃機関の制御装置
JP2019167835A (ja) 内燃機関の制御装置
JP2019214971A (ja) 煤排出量推定装置
JP2010156250A (ja) 内燃機関の制御装置
JP2018184903A (ja) 内燃機関の制御装置
JP2016037898A (ja) 内燃機関の制御装置
JP2016109105A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210524

R151 Written notification of patent or utility model registration

Ref document number: 6897552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350