JP2012013010A - 内燃機関の燃料噴射制御装置 - Google Patents

内燃機関の燃料噴射制御装置 Download PDF

Info

Publication number
JP2012013010A
JP2012013010A JP2010150882A JP2010150882A JP2012013010A JP 2012013010 A JP2012013010 A JP 2012013010A JP 2010150882 A JP2010150882 A JP 2010150882A JP 2010150882 A JP2010150882 A JP 2010150882A JP 2012013010 A JP2012013010 A JP 2012013010A
Authority
JP
Japan
Prior art keywords
heat generation
injection
amount
pilot
generation amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010150882A
Other languages
English (en)
Inventor
Kohei Senda
耕平 千田
Yuji Yasui
裕司 安井
Osamu Takizawa
治 滝沢
Kenichi Tajiri
賢一 田尻
Kohei Kawada
浩平 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010150882A priority Critical patent/JP2012013010A/ja
Publication of JP2012013010A publication Critical patent/JP2012013010A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】 パイロット噴射の回数及び1回の噴射における燃料噴射量を適切に設定することにより、潤滑油希釈化及び燃焼騒音の増大を抑制しつつ、主噴射で噴射された燃料を確実に着火させることができる内燃機関の燃料噴射制御装置を提供する。
【解決手段】 主噴射時期θmainにおける推定燃焼室温度TCMEが算出され、主噴射において噴射された燃料が自着火可能な目標温度TCMTGTと、推定燃焼室温度TCMDとの温度差DTCMに応じて、必要熱発生量Jpilottotalが算出され、必要熱発生量Jpilottotalが上限熱発生量Jpilotmaxを超えるときに、複数のパイロット噴射が実行される。上限熱発生量Jpilotmaxは、パイロット噴射において噴射された燃料が燃焼することによる熱発生率HRRが許容閾値HRRMAX以下となるように設定される。
【選択図】 図2

Description

本発明は、内燃機関の燃料噴射制御装置に関し、特に主燃料噴射に先行するパイロット燃料噴射を実行可能な燃料噴射制御装置に関する。
特許文献1には、主燃料噴射に先行するパイロット燃料噴射を実行可能な燃料噴射制御装置が示されており、この装置によれば、燃焼室内の圧縮ガス温度と燃料の自着火温度との差に応じて総パイロット噴射量が算出され、1回のパイロット噴射における燃料噴射量を、インジェクタの最小限界噴射量に設定して複数回のパイロット噴射が実行される。
特開2009−167821号公報
特許文献1に示された手法では、パイロット噴射された燃料が燃焼室壁面へ付着することを防止することを主目的として1回のパイロット噴射における燃料噴射量が、インジェクタの最小限界噴射量に設定される。しかしながら、圧縮ガス温度と燃料の自着火温度との差が大きいときには、パイロット噴射の回数が増加し、各パイロット噴射の実行間隔を確保するためにパイロット噴射を圧縮行程の早い時期から開始する必要がある。そのため、潤滑油の希釈化を招き易いという課題がある。
本発明はこの点を考慮してなされたものであり、パイロット噴射の回数及び1回の噴射における燃料噴射量を適切に設定することにより、潤滑油希釈化及び燃焼騒音の増大を抑制しつつ、主噴射で噴射された燃料を確実に着火させることができる内燃機関の燃料噴射制御装置を提供することを目的とする。
上記目的を達成するため請求項1に記載の発明は、内燃機関(1)の燃焼室内に燃料を噴射する燃料噴射手段(9)であって、主噴射及び該主噴射に先行するパイロット噴射とを実行可能な燃料噴射手段を備える内燃機関の燃料噴射制御装置において、前記主噴射を実行する主噴射時期(θmain)における燃焼室内温度の推定値である推定燃焼室温度(TCME)を算出する推定燃焼室温度算出手段と、前記主噴射において噴射された燃料が自着火可能な目標温度(TCMTGT)と、前記推定燃焼室温度(TCME)との温度差(DTCM)に応じて、前記燃焼室内温度を前記目標温度(TCMTGT)まで高めるために必要とされる必要熱発生量(Jpilottotal)を算出する必要熱発生量算出手段と、前記必要熱発生量(Jpilottotal)が所定上限量(Jpilotmax)を超えるときに、複数のパイロット噴射を実行するパイロット噴射実行手段と、前記複数のパイロット噴射のうちの1回のパイロット噴射による熱発生量である分割熱発生量(Jpilot(i))を、前記所定上限量(Jpilotmax)以下であって、かつ前記分割熱発生量(Jpilot(i))の合計が前記必要熱発生量(Jpilottotal)と等しくなるように設定する分割熱発生量設定手段と、前記分割熱発生量(Jpilot(i))に応じて前記複数のパイロット噴射における燃料噴射量であるパイロット噴射量(Qpilot(i))を算出するパイロット噴射量算出手段とを備え、前記所定上限量(Jpilotmax)は、前記パイロット噴射において噴射された燃料が燃焼することによる熱発生率を示す熱発生率パラメータ(HRR,PCR)が許容閾値以下となるように設定されることを特徴とする。
請求項2に記載の発明は、請求項1に記載の内燃機関の燃料噴射制御装置において、前記機関の運転状態に応じて基本パイロット噴射時期(θpilotB)を算出する基本パイロット噴射時期算出手段と、前記主噴射時期(θmain)、前記基本パイロット噴射時期(θpilotB)、及び前記燃料噴射手段により実行可能な燃料噴射間隔の最小値(DθPmin)に応じて前記複数のパイロット噴射の実行時期(θpilot(i))を設定するパイロット噴射時期設定手段とを備えることを特徴とする。
請求項3に記載の発明は、請求項1または2に記載の内燃機関の燃料噴射制御装置において、前記燃焼室内の圧力である筒内圧(PCYL)を検出する筒内圧検出手段と、検出筒内圧(PCYL)に応じて前記パイロット噴射を実行したときの実熱発生量(Jpilotact)を算出する実熱発生量算出手段と、前記分割熱発生量(Jpilot(i))及び実熱発生量(Jpilotact)に応じて噴射量補正値を算出する補正値算出手段とを備え、前記パイロット噴射量算出手段は、前記分割熱発生量(Jpilot(i))及び噴射量補正値(K(i))を用いて前記パイロット噴射量(Qpilot(i))を算出することを特徴とする。
請求項1に記載の発明によれば、主噴射時期における燃焼室内温度の推定値である推定燃焼室温度が算出され、主噴射において噴射された燃料が自着火可能な目標温度と、推定燃焼室温度との温度差に応じて、燃焼室内温度を目標温度まで高めるために必要とされる必要熱発生量が算出され、必要熱発生量が所定上限量を超えるときに、複数のパイロット噴射が実行される。複数のパイロット噴射のうちの1回のパイロット噴射による熱発生量である分割熱発生量が、所定上限量以下であってかつ分割熱発生量の合計が必要熱発生量と等しくなるように設定され、分割熱発生量に応じて複数のパイロット噴射における燃料噴射量であるパイロット噴射量が算出される。したがって、主噴射時期において燃焼室内温度を確実に目標温度まで高めて、主噴射で噴射された燃料を確実に着火させることができる。さらに熱発生量の所定上限量は、パイロット噴射において噴射された燃料が燃焼することによる熱発生率を示す熱発生率パラメータが許容閾値以下となるように設定されるので、燃焼騒音を許容レベル以下に抑制し、しかもパイロット噴射の実行回数を従来の手法より減少させることができる。
請求項2に記載の発明によれば、機関の運転状態に応じて基本パイロット噴射時期が算出され、主噴射時期、基本パイロット噴射時期、及び燃料噴射間隔の最小値に応じて複数のパイロット噴射の実行時期が設定される。主噴射時期との相対的な関係及び燃料噴射間隔の最小値を考慮することにより、複数のパイロット噴射時期を適切に設定することができる。
請求項3に記載の発明によれば、検出筒内圧に応じてパイロット噴射を実行したときの実熱発生量が算出されるとともに、分割熱発生量及び実熱発生量に応じて噴射量補正値が算出され、分割熱発生量及び噴射量補正値を用いてパイロット噴射量が算出される。これにより各パイロット噴射による実熱発生量が分割熱発生量に近づくようにパイロット噴射量を算出することが可能となり、燃焼騒音の抑制を精度よく行うことができる。
本発明の一実施形態にかかる内燃機関及びその制御装置の構成を示す図である。 パイロット噴射制御処理のフローチャートである。 図2の処理で実行される噴射時期算出処理のフローチャートである。 図2の処理で参照されるマップの設定を示す図である。 パイロット噴射時期の設定手法を説明するための図である。 図2の処理を説明するためのタイムチャートである。 図2の処理を説明するためのタイムチャートである。
以下本発明の実施の形態を図面を参照して説明する。
図1は本発明の一実施形態にかかる内燃機関、及びその制御装置の構成を示す図である。内燃機関(以下「エンジン」という)1は、シリンダ内に燃料を直接噴射するディーゼルエンジンであり、各気筒に燃料噴射弁9が設けられている。燃料噴射弁9は、電子制御ユニット(以下「ECU」という)20に電気的に接続されており、燃料噴射弁9の開弁時期及び開弁時間、すなわち燃料噴射時期及び燃料噴射量は、ECU20により制御される。
エンジン1は、吸気通路2、排気通路4、及びターボチャージャ8を備えている。ターボチャージャ8は、排気の運動エネルギにより回転駆動されるタービンホイール10を有するタービン11と、タービンホイール10とシャフト14を介して連結されたコンプレッサホイール15を有するコンプレッサ16とを備えている。コンプレッサホイール15は、エンジン1に吸入される空気の加圧(圧縮)を行う。
タービン11は、タービンホイール10に吹き付けられる排気の流量を変化させるべく開閉駆動される複数の可変ベーン12(2個のみ図示)及び該可変ベーンを開閉駆動するアクチュエータ(図示せず)を有しており、可変ベーン12の開度を変化させることにより、タービンホイール10に吹き付けられる排気の流量を変化させ、タービンホイール10の回転速度を変更できるように構成されている。可変ベーン12を駆動するアクチュエータは、ECU20に接続されており、可変ベーン12の開度は、ECU20により制御される。より具体的には、ECU20は、デューティ比可変の制御信号をアクチュエータに供給し、これによってベーン開度を制御する。なお、可変ベーンを有するターボチャージャの構成は広く知られており、例えば特開平1−208501号公報に示されている。
吸気通路2のコンプレッサ16の下流側にはインタークーラ18が設けられ、さらにインタークーラ18の下流側には、スロットル弁3が設けられている。スロットル弁3は、アクチュエータ19により開閉駆動可能に構成されており、アクチュエータ19はECU20に接続されている。ECU20は、アクチュエータ19を介して、スロットル弁3の開度制御を行う。
排気通路4と吸気通路2との間には、排気を吸気通路2に還流する排気還流通路5が設けられている。排気還流通路5には、排気還流量(EGR量)を制御するための排気還流制御弁(以下[EGR弁」という)6及び還流する排気の温度を下げるためのEGRクーラ7が設けられている。EGR弁6は、ソレノイドを有する電磁弁であり、その弁開度はECU20により制御される。
吸気通路2には、吸入空気流量GAを検出する吸入空気流量センサ21、コンプレッサ16の下流側の吸気圧(過給圧)PBを検出する過給圧センサ22、吸気温TIを検出する吸気温センサ23、及び吸気圧PIを検出する吸気圧センサ24が設けられている。さらにエンジン1の燃焼室内の圧力(筒内圧)PCYLを検出する筒内圧センサ25がエンジン1の各気筒に設けられている。これらのセンサ21〜25は、ECU20と接続されており、センサ21〜25の検出信号は、ECU20に供給される。
排気通路4のエンジン1の直ぐ下流側には排気中の酸素濃度を検出する酸素濃度センサ26が設けられ、その検出信号はECU20に供給される。排気通路4のタービン11の下流側には、酸化触媒31と、触媒が付加された煤フィルタ32とが設けられている。酸化触媒30は、排気中に含まれる炭化水素(未燃燃料成分)、CO、NOの酸化を促進する。
エンジン1により駆動される車両のアクセルペダル(図示せず)の踏み込み量(以下「アクセルペダル操作量」という)APを検出するアクセルセンサ27、エンジン回転数(回転速度)NEを検出するエンジン回転数センサ28、及び大気圧PAを検出する大気圧センサ29がECU20に接続されており、これらのセンサの検出信号は、ECU20に供給される。エンジン回転数センサ28は、所定クランク角度(例えば1度)毎に発生するクランク角度パルス及びエンジン1の各気筒のピストンが上死点に位置するタイミングに同期して発生するTDCパルスをECU20に供給する。
ECU20は、各種センサからの入力信号波形を整形し、電圧レベルを所定レベルに修正し、アナログ信号値をデジタル信号値に変換する等の機能を有する入力回路、中央演算処理ユニット(以下「CPU」という)、CPUで実行される各種演算プログラム及び演算結果等を記憶する記憶回路、タービン11の可変ベーン12を駆動するアクチュエータ、燃料噴射弁9、EGR弁6、スロットル弁3を駆動するアクチュエータ19などに駆動信号を供給する出力回路から構成される。
ECU20は、エンジン運転状態(主としてエンジン回転数NE及び要求トルクTRQD)に応じて燃料噴射弁9による燃料噴射制御、EGR弁6による排気還流制御、可変ベーン12による過給圧制御などを行う。要求トルクTRQDは、アクセルペダル操作量APに応じて算出され、アクセルペダル操作量APが増加するほど増加するように設定される。
本実施形態では、エンジン1においてトルクを発生させるための主たる燃料噴射である主噴射を実行するとともに、その主噴射に先行する燃料噴射であるパイロット噴射を適宜実行する。
図2はパイロット噴射制御処理のフローチャートである。この処理はECU20のCPUにおいて所定時間毎に実行される。
ステップS11では、吸気温TI,吸気圧PI,吸入空気流量GA,排気還流率などの吸入ガスパラメータを読み込み、ステップS12では、主噴射実行時期における燃焼室内の温度(以下単に「燃焼室温度」という)の推定値である推定燃焼室温度TCMEを算出する。推定燃焼室温度TCMEは、例えば吸気温TI及び吸気圧PIを用いて公知の手法により算出される。
ステップS13では、推定燃焼室温度TCMEが目標温度TCMTGTより低いか否かを判別する。目標温度TCMTGTは、主噴射において噴射された燃料が自着火(圧縮着火)可能な温度である。ステップS13の答が否定(NO)であって、推定燃焼室温度TCMEが目標温度TCMTGT以上であるときは、パイロット噴射の制御パラメータの算出を行わずに処理を終了する。
ステップS13の答が肯定(YES)であるときは、目標温度TCMTGTと推定燃焼室温度TCMEとの温度差DTCM(=TCMTGT−TCME)を算出する(ステップS14)。ステップS15では、温度差DTCMを下記式(1)に適用し、燃焼室温度が目標温度TCMTGTに達するために必要とされる熱発生量である必要熱発生量Jpilottotalを算出する。式(1)のRはガス定数であり、Mgasは燃焼室内のガス量(モル数換算値)である。ガス量Mgasは、吸入空気流量GA及び排気還流率に応じて算出される。
Jpilottotal=DTCM×R×Mgas (1)
ステップS16では、必要熱発生量Jpilottotalを下記式(2)に適用し、パイロット噴射の実行回数(以下「噴射回数」という)NPを算出する。式(2)のJpilotmaxは、1回のパイロット噴射による熱発生量の上限値(以下「上限熱発生量」という)であり、燃焼騒音が許容レベル以下となるように設定される。また式(2)の演算結果は、切り上げによって整数値とされる。
NP=Jpilottotal/Jpilotmax (2)
ステップS17では、図3に示す噴射時期算出処理を実行し、エンジン運転状態及び噴射回数NPに応じてNP回のパイロット噴射の実行時期(以下「パイロット噴射時期」という)θpilot(i)(i=1〜NP)を算出する。「i」は、インデクスパラメータであり、主噴射の実行時期(以下「主噴射時期」という)θmainに最も近いパイロット噴射に対応する値を「1」とし、パイロット噴射時期が増加する(進角する)ほど増加するように定義されている。
ステップS18では、各パイロット噴射の必要熱発生量(以下「分割熱発生量」という)Jpilot(i)を算出する。具体的には、以下のように算出される。
Jpilot(1)=Jpilottotal−Jpilotmax×(NP−1)
(3)
Jpilot(i)=Jpilotmax (i=2〜NP) (4)
ステップS19では、下記式(5)に分割熱発生量Jpilot(i)を適用し、各パイロット噴射における燃料噴射量(以下「分割噴射量」という)Qpilot(i)を算出する。式(5)のK(i)は、後述するステップS23で算出される補正係数であり、η(i)は燃焼効率、Jfuelは燃料の低位熱発生量である。
Qpilot(i)=Jpilot(i)×K(i)/(Jfuel×η(i)) (5)
燃焼効率η(i)は、推定燃焼室温度TCME及び酸素濃度CONSO2に応じて設定されたηマップを検索することにより算出される。酸素濃度CONSO2は、酸素濃度センサ26の出力に基づいて算出される。ηマップは、図4(a)に示すように推定燃焼室温度TCMEが高くなるほど燃焼効率ηが増加するように設定されている。また図4(b)に示すように、酸素濃度CONSO2が所定濃度CONSO2Xより低い範囲では酸素濃度CONSO2が増加するほど燃焼効率ηが増加し、所定濃度CONSO2Xより高い範囲では酸素濃度CONSO2が増加するほど燃焼効率ηが減少するように設定されている。
ステップS20では、前回の燃焼サイクルにおいて検出された筒内圧PCYL(クランク角1度毎の検出値がメモリに格納されている)を読み込み、検出筒内圧PCYLを用いて各パイロット噴射による実熱発生量Jpilotact(i)を算出する(ステップS21)。
ステップS22では、下記式(6)に分割熱発生量Jpilot(i)及び実熱発生量Jpilotact(i)を適用し、補正係数K(i)を算出する。補正係数K(i)は、ECU20のメモリに格納される。なお、メモリに格納する値は、既に格納されている値と、新たな算出値とを用いたなまし演算により更新することが望ましい。
K(i)=Jpilot(i)/Jpilotact(i) (6)
図2の処理で算出されるパイロット噴射量Qpilot(i)及びパイロット噴射時期θpilot(i)に応じて、パイロット噴射が実行されるとともに、図示しない処理で算出される主噴射量Qmain及び主噴射時期θmainに応じて主噴射が実行される。
図3は、図2のステップS17で実行される噴射時期算出処理のフローチャートである。
ステップS31では、エンジン回転数NE及び要求トルクTRQDに応じて基本パイロット噴射時期θpilotBを算出する。ステップS32では、下記式(7)により、基本パイロット噴射時期θpilotBと主噴射時期θmainとの間隔(以下「基本噴射間隔」という)DθPMを算出する。
DθPM=θpilotB−θmain (7)
ステップS33では、基本噴射間隔DθPMが最小噴射間隔DθPminと等しいか否かを判別する。この答が肯定(YES)であるときは、下記式(8)によりパイロット噴射時期θpilot(i)を算出する(ステップS34)。したがって各パイロット噴射時期θpilot(i)は、図5(a)に示すように設定され、θpilot(1)が基本パイロット噴射時期θpilotBと等しくなる。なお、図5は噴射回数NPが「4」である例を示している。
θpilot(i)=DθPmin×(i−1)+θpilotB (8)
ステップS33の答が否定(NO)であるときは、基本噴射間隔DθPMが最小噴射間隔DθPminのNP倍以上であるか否かを判別する(ステップS35)。この答が肯定(YES)であるときは、下記式(9)によりパイロット噴射時期θpilot(i)を算出する(ステップS36)。したがって各パイロット噴射時期θpilot(i)は、図5(b)に示すように設定され、θpilot(NP)が基本パイロット噴射時期θpilotBと等しくなる。
θpilot(i)=DθPM×i/NP+θmain (9)
ステップS35の答が否定(NO)であるときは、下記式(10)及び(11)により、パイロット噴射時期θpilot(i)を算出する(ステップS37)。式(10)及び(11)の「A」は、主噴射時期θmainと基本パイロット噴射時期θpilotBとの間で実行可能なパイロット噴射の回数である。
θpilot(i)=DθPM×i/(A+1)+θmain (10)
θpilot(i)=DθPmin×(i−A−1)+θpilotB (11)
式(10)は、インデクスパラメータiが「1」からAまでの値をとるとき使用され、式(11)はインデクスパラメータiが(A+1)からNPまでの値をとるとき使用される。ステップS37の演算により、各パイロット噴射時期θpilot(i)は、図5(c)に示すように設定され、θpilot(A+1)が基本パイロット噴射時期θpilotBと等しくなる。図5(c)には、Aが「2」である例が示されている。
図3の処理によれば、NP個のパイロット噴射時期は、可能な限り主噴射時期θmainと基本パイロット噴射時期θpilotBとの間に等間隔に設定され、主噴射時期θmainと基本パイロット噴射時期θpilotBとの間に設定できないパイロット噴射時期が、基本パイロット噴射時期θpilotBより前(進角側)に最小噴射間隔DθPminを隔てて設定される。
図6は、上述したパイロット噴射制御を説明するためのタイムチャートである。この図の破線L1は、圧縮による燃焼室温度TCの変化を示しており、主噴射時期θmainにおける推定燃焼室温度TCMEが目標温度TCMTGTよりかなり低い例が示されている。この例において、温度差DTCMを「0」とするために1回のパイロット噴射を、パイロット噴射量を燃焼騒音が許容レベル以下となるように設定して実行すると、燃焼室温度TCは破線L2で示すように変化する。すなわち、燃焼室温度TCは上昇するが、目標温度TCMTGTに達しない。
1回のパイロット噴射量を増量することにより、実線L3で示すように燃焼室温度TCを主噴射時期θmainにおいて目標温度TCMTGTまで昇温させることができるが、この場合にはパイロット噴射で噴射された燃料の燃焼速度が速くなり、NOx排出量及び燃焼騒音が増加するという問題が発生する。
そこで上述した制御処理では、パイロット噴射の実行回数を増加させることにより、一点鎖線L4で示すような温度変化特性を実現している。これにより、NOx排出量及び燃焼騒音が増加を抑制しつつ、燃焼室温度TCを目標温度TCMTGTまで昇温させ、主噴射で噴射された燃料を確実に着火させることができる。
なお、図6に示す破線L5は、主噴射において噴射された燃料が着火したときに燃焼室温度TCの推移を示している。
図6に一点鎖線L4で示される温度変化特性は、3回のパイロット噴射を実行することにより実現される。図7はこの点を説明するための図であり、同図(a)には図6の破線L1,L5、及び一点鎖線L4が示され、同図(b)にはパイロット噴射による発生熱量Jpilotの推移が示されている。すなわち、3回のパイロット噴射によって得られる各熱発生量Jpilot(i)(i=1〜3)の合計が、必要熱発生量Jpilottotalと等しくなり、主噴射時期θmainにおいて燃焼室温度TCを目標温度TCMTGTまで昇温させることができる。
図7(c)は、熱発生率HRR[J/deg]の推移が示されており、上限熱発生量Jpilotmaxは、熱発生率HRRが許容閾値HRRMAXを超えないように設定される。なお、上限熱発生量Jpilotmaxは、筒内圧変化率PCR(クランク角度変化に対する筒内圧PCYLの変化率)が許容閾値PCRMAXを超えないように設定するようにしてもよい。
以上詳述したように本実施形態では、主噴射を実行する主噴射時期θmainにおける燃焼室温度TCの推定値である推定燃焼室温度TCMEが算出され、主噴射において噴射された燃料が自着火可能な目標温度TCMTGTと、推定燃焼室温度TCMDとの温度差DTCMに応じて、燃焼室温度TCを目標温度TCMTGTまで高めるために必要とされる必要熱発生量Jpilottotalが算出され、必要熱発生量Jpilottotalが上限熱発生量Jpilotmaxを超えるときに、複数のパイロット噴射が実行される。複数のパイロット噴射のうちの1回のパイロット噴射による熱発生量である分割熱発生量Jpilot(i)が、上限熱発生量Jpilotmax以下であってかつ分割熱発生量Jpilot(i)の合計が必要熱発生量Jpilottotalと等しくなるように設定され、分割熱発生量Jpilot(i)に応じて複数のパイロット噴射における燃料噴射量であるパイロット噴射量Qpilot(i)が算出される。したがって、主噴射時期θmainにおいて燃焼室温度TCを確実に目標温度TCMTGTまで高めて、主噴射で噴射された燃料を確実に着火させることができる。さらに上限熱発生量Jpilotmaxは、パイロット噴射において噴射された燃料が燃焼することによる熱発生率HRRが許容閾値HRRMAX以下となるように設定されるので、燃焼騒音を許容レベル以下に抑制し、しかもパイロット噴射の実行回数を従来の手法より減少させることができる。
またエンジン運転状態に応じて基本パイロット噴射時期θpilotBが算出され、主噴射時期θmain、基本パイロット噴射時期θpilotB、及び最小噴射間隔DθPminに応じて複数のパイロット噴射時期θpilot(i)が設定されるので、基本パイロット噴射時期θpilotBと主噴射時期θmainとの相対的な関係及び最小噴射間隔DθPminを考慮して、複数のパイロット噴射時期θpilot(i)を適切に設定することができる。
また検出筒内圧PCYLに応じてパイロット噴射を実行したときの実熱発生量Jpilotactが算出されるとともに、分割熱発生量Jpilot(i)及び実熱発生量Jpilotactに応じて補正係数K(i)が算出され、分割熱発生量Jpilot(i)及び補正係数K(i)を用いてパイロット噴射量Qpilot(i)が算出される。これにより各パイロット噴射による実熱発生量Jpilotactが分割熱発生量Jpilot(i)に近づくようにパイロット噴射量Qpilotを算出することが可能となり、燃焼騒音の抑制を精度よく行うことができる。
本実施形態では、燃料噴射弁9が燃料噴射手段に相当し、パイロット噴射実行手段の一部を構成する。またECU20が、推定燃焼室温度算出手段、必要熱発生量算出手段、パイロット噴射実行手段の一部、分割熱発生量設定手段、パイロット噴射量算出手段、基本パイロット噴射時期算出手段、パイロット噴射時期設定手段、実熱発生量算出手段、目標熱発生量算出手段、及び補正値算出手段を構成する。具体的には、図2のステップS12が推定燃焼室温度算出手段に相当し、ステップS14及びS15が必要熱発生量算出手段に相当し、ステップS18及びS19がそれぞれ分割熱発生量設定手段及びパイロット噴射量算出手段に相当し、ステップS21及びS22が、それぞれ実熱発生量算出手段及び補正値算出手段に相当する。また図3のステップS31が基本パイロット噴射時期算出手段に相当し、ステップS32〜S37がパイロット噴射時期設定手段に相当する。
なお本発明は上述した実施形態に限るものではなく、種々の変形が可能である。例えば、検出筒内圧PCYLに応じて実熱発生率HRRAを算出し、実熱発生率HRRAが許容閾値HRRMAXを超えるときは、上限熱発生量Jpilotmaxを減少方向に修正するようにしてもよい。あるいは、検出筒内圧PCYLから実筒内圧変化率PCRAを算出し、実筒内圧変化率PCRAが許容閾値PCRMAXを超えるときは、上限熱発生量Jpilotmaxを減少方向に修正するようにしてもよい。
また上述した実施形態では、筒内圧センサ25を備える例を示したが、本発明は筒内圧センサが設けられていないエンジンの燃料噴射制御にも適用可能である。その場合には、図2の処理のステップS20〜S23を削除し、ステップS19の演算に適用される式(5)の補正係数K(i)を「1」に設定すればよい。
また本発明は、火花点火機関についても、自着火を行う運転領域(例えばHCCI領域など)においては適用可能である。
1 内燃機関
9 燃料噴射弁(燃料噴射手段、パイロット噴射実行手段)
20 電子制御ユニット(推定燃焼室温度算出手段、必要熱発生量算出手段、パイロット噴射実行手段、分割熱発生量設定手段、パイロット噴射量算出手段、基本パイロット噴射時期算出手段、パイロット噴射時期設定手段、実熱発生量算出手段、補正値算出手段)
21 吸入空気流量センサ
23 吸気温センサ
24 吸気圧センサ
25 筒内圧センサ
26 酸素濃度センサ

Claims (3)

  1. 内燃機関の燃焼室内に燃料を噴射する燃料噴射手段であって、主噴射及び該主噴射に先行するパイロット噴射とを実行可能な燃料噴射手段を備える内燃機関の燃料噴射制御装置において、
    前記主噴射を実行する主噴射時期における燃焼室内温度の推定値である推定燃焼室温度を算出する推定燃焼室温度算出手段と、
    前記主噴射において噴射された燃料が自着火可能な目標温度と、前記推定燃焼室温度との温度差に応じて、前記燃焼室内温度を前記目標温度まで高めるために必要とされる必要熱発生量を算出する必要熱発生量算出手段と、
    前記必要熱発生量が所定上限量を超えるときに、複数のパイロット噴射を実行するパイロット噴射実行手段と、
    前記複数のパイロット噴射のうちの1回のパイロット噴射による熱発生量である分割熱発生量を、前記所定上限量以下であって、かつ前記分割熱発生量の合計が前記必要熱発生量と等しくなるように設定する分割熱発生量設定手段と、
    前記分割熱発生量に応じて前記複数のパイロット噴射における燃料噴射量であるパイロット噴射量を算出するパイロット噴射量算出手段とを備え、
    前記所定上限量は、前記パイロット噴射において噴射された燃料が燃焼することによる熱発生率を示す熱発生率パラメータが許容閾値以下となるように設定されることを特徴とする内燃機関の燃料噴射制御装置。
  2. 前記機関の運転状態に応じて基本パイロット噴射時期を算出する基本パイロット噴射時期算出手段と、
    前記主噴射時期、前記基本パイロット噴射時期、及び前記燃料噴射手段により実行可能な燃料噴射間隔の最小値に応じて前記複数のパイロット噴射の実行時期を設定するパイロット噴射時期設定手段とを備えることを特徴とする請求項1に記載の内燃機関の燃料噴射制御装置。
  3. 前記燃焼室内の圧力である筒内圧を検出する筒内圧検出手段と、
    検出筒内圧に応じて前記パイロット噴射を実行したときの実熱発生量を算出する実熱発生量算出手段と、
    前記分割熱発生量及び実熱発生量に応じて噴射量補正値を算出する補正値算出手段とを備え、
    前記パイロット噴射量算出手段は、前記分割熱発生量及び噴射量補正値を用いて前記パイロット噴射量を算出することを特徴とする請求項1または2に記載の内燃機関の燃料噴射制御装置。
JP2010150882A 2010-07-01 2010-07-01 内燃機関の燃料噴射制御装置 Pending JP2012013010A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010150882A JP2012013010A (ja) 2010-07-01 2010-07-01 内燃機関の燃料噴射制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010150882A JP2012013010A (ja) 2010-07-01 2010-07-01 内燃機関の燃料噴射制御装置

Publications (1)

Publication Number Publication Date
JP2012013010A true JP2012013010A (ja) 2012-01-19

Family

ID=45599730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010150882A Pending JP2012013010A (ja) 2010-07-01 2010-07-01 内燃機関の燃料噴射制御装置

Country Status (1)

Country Link
JP (1) JP2012013010A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101349522B1 (ko) 2012-06-20 2014-01-09 현대자동차주식회사 폐루프 제어 연료분사방법
CN103511109A (zh) * 2012-06-19 2014-01-15 本田技研工业株式会社 内燃机的控制装置
JP2015014267A (ja) * 2013-07-08 2015-01-22 日産自動車株式会社 ディーゼルエンジンの燃料噴射制御装置
JP2016070191A (ja) * 2014-09-30 2016-05-09 マツダ株式会社 エンジンの燃料制御装置
JP7509088B2 (ja) 2021-06-17 2024-07-02 株式会社豊田自動織機 内燃機関の制御システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000018074A (ja) * 1998-07-01 2000-01-18 Toyota Motor Corp 内燃機関の燃料噴射装置
JP2008184915A (ja) * 2007-01-26 2008-08-14 Mitsubishi Motors Corp 内燃機関の燃料噴射制御装置
JP2009008005A (ja) * 2007-06-28 2009-01-15 Honda Motor Co Ltd 内燃機関の制御装置
JP2009138658A (ja) * 2007-12-07 2009-06-25 Toyota Motor Corp 内燃機関の燃料噴射制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000018074A (ja) * 1998-07-01 2000-01-18 Toyota Motor Corp 内燃機関の燃料噴射装置
JP2008184915A (ja) * 2007-01-26 2008-08-14 Mitsubishi Motors Corp 内燃機関の燃料噴射制御装置
JP2009008005A (ja) * 2007-06-28 2009-01-15 Honda Motor Co Ltd 内燃機関の制御装置
JP2009138658A (ja) * 2007-12-07 2009-06-25 Toyota Motor Corp 内燃機関の燃料噴射制御装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103511109A (zh) * 2012-06-19 2014-01-15 本田技研工业株式会社 内燃机的控制装置
KR101349522B1 (ko) 2012-06-20 2014-01-09 현대자동차주식회사 폐루프 제어 연료분사방법
JP2015014267A (ja) * 2013-07-08 2015-01-22 日産自動車株式会社 ディーゼルエンジンの燃料噴射制御装置
JP2016070191A (ja) * 2014-09-30 2016-05-09 マツダ株式会社 エンジンの燃料制御装置
JP7509088B2 (ja) 2021-06-17 2024-07-02 株式会社豊田自動織機 内燃機関の制御システム

Similar Documents

Publication Publication Date Title
JP4770742B2 (ja) エンジンの燃料噴射制御装置及び燃焼装置
JP4946900B2 (ja) 圧縮着火式筒内噴射エンジンの燃焼制御装置及びエンジン制御システム
JP2015068284A (ja) 圧縮着火式内燃機関
JP2015113790A (ja) 内燃機関の制御装置
US20180334987A1 (en) Method and device for controlling fuel injection of diesel engine
US10557436B2 (en) Method and device for controlling fuel injection of diesel engine
JP2012013010A (ja) 内燃機関の燃料噴射制御装置
US10557419B2 (en) Method and device for controlling fuel injection of diesel engine
EP2757238B1 (en) Control device for an internal combustion engine
JP4833924B2 (ja) 内燃機関の制御装置
US20180334986A1 (en) Method and device for controlling fuel injection of diesel engine
US20100076668A1 (en) Control apparatus for internal combustion engine
JP4290715B2 (ja) 内燃機関の制御装置
JP5720479B2 (ja) 内燃機関の制御装置
EP2778377B1 (en) Control device of internal combustion engine
US20210054802A1 (en) Fuel injection control method and fuel injection control system for diesel engine
JP4914874B2 (ja) 内燃機関の制御装置
JP5075041B2 (ja) 内燃機関の燃料噴射制御装置
JP5525353B2 (ja) 内燃機関の燃料噴射制御装置
JP2012007541A (ja) 内燃機関の制御装置
JP4789785B2 (ja) 内燃機関の制御装置
JP2008202461A (ja) 内燃機関の燃料噴射制御装置
JP2007239738A (ja) 内燃機関の制御装置
US20200088125A1 (en) Fuel injection control method and fuel injection control system for diesel engine
JP2018193918A (ja) ディーゼルエンジンの燃料噴射制御方法及び燃料噴射制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140513