JP6860849B2 - 三次元造形装置 - Google Patents

三次元造形装置 Download PDF

Info

Publication number
JP6860849B2
JP6860849B2 JP2017053447A JP2017053447A JP6860849B2 JP 6860849 B2 JP6860849 B2 JP 6860849B2 JP 2017053447 A JP2017053447 A JP 2017053447A JP 2017053447 A JP2017053447 A JP 2017053447A JP 6860849 B2 JP6860849 B2 JP 6860849B2
Authority
JP
Japan
Prior art keywords
powder
modeling
flattening
tank
powder layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017053447A
Other languages
English (en)
Other versions
JP2018154882A (ja
Inventor
素暎 朴
素暎 朴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2017053447A priority Critical patent/JP6860849B2/ja
Publication of JP2018154882A publication Critical patent/JP2018154882A/ja
Application granted granted Critical
Publication of JP6860849B2 publication Critical patent/JP6860849B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Powder Metallurgy (AREA)
  • Producing Shaped Articles From Materials (AREA)

Description

本発明は、三次元造形装置に関するものである。
従来、複数の回転部材を回転させながら同方向へ移動させて粉体を移送しつつ平坦化する平坦化処理を実行して粉体層を形成し、粉体層の粉体を所要形状に結合して層状構造物を形成するという動作を繰り返し行って、層状構造物が積層された三次元造形物を造形する三次元造形装置が知られている。
例えば、特許文献1には、薄層形成容器(造形槽)に薄層(粉体層)を形成する際、運搬ローラ(回転部材)とその後方を移動する押圧ローラ(回転部材)とを同方向へ移動させ、粉末材料収納容器(供給槽)の粉末材料(粉体)を薄層形成容器へ移送供給して平坦化する三次元造形装置が開示されている。この三次元造形装置は、移動方向前方側に位置する運搬ローラの最下部よりも、移動方向後方側に位置する押圧ローラの最下部の方が低くなるように設定されている。運搬ローラは、当該運搬ローラの下面側が当該運搬ローラの移動方向と同方向に表面移動する向きに回転し、押圧ローラは、当該押圧ローラの下面側が当該押圧ローラの移動方向と逆方向に表面移動する向きに回転する。
ところが、平坦化処理に用いられる複数の回転部材の中に、当該回転部材の下面側が当該回転部材の移動方向と逆方向に表面移動する向きに回転する回転部材が含まれていると、その回転部材による粉体の押し付け力が高くなり過ぎて、三次元造形物の造形精度が低下する。
上述した課題を解決するため、本発明は、複数の回転部材を回転させながら同方向へ移動させて粉体を移送しつつ平坦化する平坦化処理を実行して粉体層を形成し、該粉体層の粉体を所要形状に結合して層状構造物を形成するという動作を繰り返し行って、該層状構造物が積層された三次元造形物を造形する三次元造形装置であって、前記複数の回転部材間における最下部の高低差を変更する高さ変更手段と、前記複数の回転部材の回転方向を切り替える回転方向切替手段とを有し、造形槽へ供給する粉体を収容する2つの供給槽が該造形槽を挟んで前記複数の回転部材の移動方向に並べて配置されており、前記2つの供給槽のうちの一方の供給槽から他方の供給槽へ向かう往路に沿って前記複数の回転部材を移動させて前記造形槽の粉体に対して前記平坦化処理を行って前記粉体層を形成した後、前記他方の供給槽から前記一方の供給槽へ向かう復路に沿って該複数の回転部材を移動させて該造形槽の粉体に対して前記平坦化処理を行って該粉体層の上に新たな粉体層を形成し、前記往路及び前記復路のいずれの場合も、前記複数の回転部材のうちの移動方向前方に位置する回転部材の最下部よりも移動方向後方に位置する回転部材の最下部が低い位置になるように前記高さ変更手段によって前記高低差を変更するとともに、前記複数の回転部材のいずれも当該回転部材の下面側が当該回転部材の移動方向と同方向に表面移動する向きに回転するように前記回転方向切替手段によって回転方向を切り替えることを特徴とする。
本発明によれば、下方の粉体層に既に形成されている層状構造物の引き摺りや膨張を抑制して、三次元造形物の造形精度の低下を抑制することができる。
第1の実施形態に係る三次元造形装置の一例の概略を示す平面説明図である。 同三次元造形装置の概略を示す側面説明図である。 同三次元造形装置における造形部の概略を示す断面説明図である。 同三次元造形装置の要部の具体的構成を示す斜視説明図である。 同三次元造形装置の造形部における平坦化ローラに設けられるシール部材を示す説明図である。 同三次元造形装置における制御部を示すブロック図である。 (a)〜(f)は、同三次元造形装置における粉体層の形成動作を示す説明図である。 同三次元造形装置に設けられる2つの平坦化ローラの周面と粉体との相対速度を説明するための説明図である。 (a)〜(f)は、第2の実施形態に係る三次元造形装置における粉体層の形成動作を示す説明図である。
以下、本発明の実施の形態について添付図面を参照して説明する。
本発明における第1の実施形態に係る三次元造形装置の一例の概要について、図1ないし図4を参照して説明する。
図1は同三次元造形装置の概略平面説明図、図2は同じく概略側面説明図、図3は同じく造形部の断面説明図である。なお、図3は造形時の状態で示している。また、図4は同じく具体的構成の要部斜視説明図である。
この三次元造形装置は、粉体造形装置(粉末造形装置ともいう。)であり、粉体(粉末)が結合された層状構造物30が形成される造形部1と、造形部1の層状に敷き詰められた粉体の層(粉体層)31に対して造形液10を吐出する造形ユニット5とを備えている。
造形部1は、粉体槽11と、平坦化手段(リコータ)を構成する平坦化部材としての回転部材である2つの平坦化ローラ12A,12B(以下、区別しないときは「平坦化ローラ12」という。)と、平坦化ローラ12A,12Bの周面をクリーニングするクリーニング部材としてのクリーニングブレード13A,13B(以下、区別しないときは「クリーニングブレード13」という。)とを備えている。
クリーニングブレード13A,13Bは、それぞれ平坦化ローラ12A,12Bの周面に接触した状態で、平坦化ローラ12A,12Bとともに移動する。本実施形態の平坦化ローラ12A,12Bは、いずれも、供給槽21から造形槽22へ向かうY2方向(往路時の移動方向)へ移動する際、その下面側がY2方向と同方向に表面移動する向きに、回転駆動される。クリーニングブレード13A,13Bは、平坦化ローラ12A,12Bがこの向きに回転するときにカウンター方向となるように、平坦化ローラ12A,12Bの周面に接触する。平坦化ローラ12A,12Bがこの向きに回転するときに順方向(トレーリング方向)となるようにしてもよい。
なお、平坦化ローラ12A,12Bの周面をクリーニングするクリーニング装置の構成は、クリーニングブレード13A,13Bを用いたものに限らず、ブラシで掻き取る方式、静電的にクリーニングする方式など、特に制限はない。
粉体槽11は、造形槽22に供給する粉体20を貯留する供給槽21と、層状構造物30が積層されて三次元造形物が造形される造形槽22と、造形槽22に供給された粉体の余剰分を回収する余剰粉体受け槽29とを有している。
供給槽21の底部を構成する供給ステージ23は、鉛直方向(高さ方向)に昇降自在となっている。同様に、造形槽22の底部を構成する造形ステージ24も、鉛直方向(高さ方向)に昇降自在となっている。造形ステージ24上に層状構造物30が積層された三次元造形物が造形される。供給ステージ23は、例えば図4に示すように、モータ27によってZ方向(高さ方向)に昇降され、造形ステージ24も、同じく、モータ28によってZ方向に昇降される。
供給ステージ23の側面は供給槽21の内側面に接するように配置されている。造形ステージ24の側面も造形槽22の内側面に接するように配置されている。これらの供給ステージ23及び造形ステージ24の上面は水平に保たれている。
供給槽21には、後述する粉体供給装置554が配置されている。造形の初期動作時や供給槽21の粉体量が減少した時に、粉体供給装置554を構成するタンク内の粉体を供給槽21へ供給する。粉体供給のための粉体搬送方法としては、スクリューを利用したスクリューコンベア方式や、エアーを利用した空気輸送方式などが挙げられる。
2つの平坦化ローラ12A,12B(以下、区別しないときは「平坦化ローラ12」という。)は、それぞれ回転しながら同方向へ移動して、供給槽21の供給ステージ23上に貯留されている粉体20を造形槽22に移送して供給するとともに、造形槽22に供給された粉体20の表面を均して平坦化し、所定の厚みの粉体層を形成する。平坦化ローラ12は、その軸方向長さが造形槽22及び供給槽21の内寸幅よりも長く、造形ステージ24のステージ面(粉体20が積載される面)に沿ってY方向に、ステージ面に対して相対的に往復移動可能に配置され、往復移動機構25によって移動される。
2つの平坦化ローラ12A,12Bは、同じモータ26によって回転駆動されるが、別個のモータによってそれぞれを回転駆動する構成であってもよい。平坦化ローラ12A,12Bは、モータ26によって回転されながら、供給槽21及び造形槽22の上方を通過するようにして水平方向に移動する。これにより、供給槽21の粉体20が造形槽22へと移送供給されるとともに、平坦化ローラ12A,12Bが造形槽22上を通過しながら粉体20を移送しつつ平坦化して、所望の厚みの粉体層31が形成される。
また、2つの平坦化ローラ12A,12Bのローラ両端面には、図5に示すように、平坦化ローラ12A,12Bの移動によって移送される粉体20がローラ軸方向外側へ漏れ出るのを防止するシール部材14が設けられている。本実施形態のシール部材14は、平坦化ローラ12A,12Bの周面よりも移動方向前方へ突出するように配置され、平坦化ローラ12A,12Bとともに一体的に移動する。シール部材14は、供給槽21、造形槽22、余剰粉体受け槽29の上面に接触するように配置されており、平坦化ローラ12A,12Bとともに一体的に移動する際に、供給槽21、造形槽22、余剰粉体受け槽29の上面に対して摺動する。したがって、シール部材14は、摺動しやすい低摩擦材質で形成するのが好ましい。なお、本実施形態のシール部材14は、平坦化ローラ12A,12Bとともに一体的に移動する構成であるが、供給槽21、造形槽22、余剰粉体受け槽29に設けてもよい。
造形ユニット5は、造形ステージ24上の粉体層31に粉体20を結合させる造形液10を吐出(付与)して、粉体20が結合された層状構造物としての層状構造物30を形成する液体吐出ユニット50を備えている。
液体吐出ユニット50は、キャリッジ51と、キャリッジ51に搭載された2つ(1又は3つ以上でもよい。)の液体吐出ヘッド(以下、単に「ヘッド」という。)52a,52bを備えている。
キャリッジ51は、ガイド部材54,55に移動可能に保持されている。ガイド部材54,55は、両側の側板70,70に昇降可能に保持されている。このキャリッジ51は、後述するX方向走査機構550を構成するX方向走査モータによってプーリ及びベルトを介して主走査方向であるX方向に往復移動される。
2つのヘッド52a,52b(以下、区別しないときは「ヘッド52」という。)は、造形液10を吐出する複数のノズルを配列したノズル列がそれぞれ2列配置されている。一方のヘッド52aの2つのノズル列は、シアン造形液及びマゼンタ造形液を吐出する。他方のヘッド52bの2つのノズル列は、イエロー造形液及びブラック造形液をそれぞれ吐出する。なお、ヘッド構成はこれに限るものではない。
これらのシアン造形液、マゼンタ造形液、イエロー造形液、ブラック造形液の各々を収容した複数のタンク60がタンク装着部56に装着され、供給チューブなどを介してヘッド52a,52bに供給される。
また、X方向の一方側には、液体吐出ユニット50のヘッド52の維持回復を行うメンテナンス機構61が配置されている。メンテナンス機構61は、主にキャップ62とワイパ63で構成される。メンテナンス機構61では、キャップ62をヘッド52のノズル面(ノズルが形成された面)に密着させ、ノズルから造形液を吸引する。ノズルに詰まった粉体の排出や高粘度化した造形液を排出するためである。その後、メンテナンス機構61では、ノズルのメニスカス形成のため、ノズル面をワイパ63でワイピング(払拭)する。また、メンテナンス機構61は、造形液の吐出を行わない期間に、ヘッドのノズル面をキャップ62で覆い、粉体20がノズルに混入することや造形液10が乾燥することを防止する。
造形ユニット5は、ベース部材7上に配置されたガイド部材71に移動可能に保持されたスライダ部72を有し、造形ユニット5全体がX方向と直交するY方向(副走査方向)に往復移動可能である。この造形ユニット5は、後述するY方向走査機構552によって全体がY方向に往復移動される。
液体吐出ユニット50は、ガイド部材54,55とともにZ方向に昇降可能に配置され、後述するZ方向昇降機構551によってZ方向に昇降される。
次に、本実施形態における三次元造形装置の制御部の概要について図6を参照して説明する。
図6は同制御部のブロック図である。
制御部500は、本実施形態の三次元造形装置全体の制御を司るCPU501と、CPU501に三次元造形動作の制御を実行させるためのプログラムを含むプログラム、その他の固定データを格納するROM502と、造形データ等を一時格納するRAM503とを含む主制御部500Aを備えている。
制御部500は、装置の電源が遮断されている間もデータを保持するための不揮発性メモリ(NVRAM)504を備えている。また、制御部500は、画像データに対する各種信号処理等を行う画像処理やその他装置全体を制御するための入出力信号を処理するASIC505を備えている。
制御部500は、外部の造形データ作成装置600から造形データを受信するときに使用するデータ及び信号の送受を行うための外部I/F506を備えている。造形データ作成装置600は、最終形態の三次元造形物を各層状構造物にスライスした造形データを作成する装置であり、例えばパーソナルコンピュータ等の情報処理装置で構成される。また、制御部500は、各種センサの検知信号を取り込むためのI/O507を備えている。I/O507には、装置の環境条件としての温度及び湿度を検出する温湿度センサ560などの検知信号やその他のセンサ類の検知信号が入力される。
制御部500は、液体吐出ユニット50のヘッド52を駆動制御するヘッド駆動制御部508を備えている。また、制御部500は、液体吐出ユニット50のキャリッジ51をX方向(主走査方向)に移動させるX方向走査機構550を構成するモータを駆動するモータ駆動部510と、造形ユニット5をY方向(副走査方向)に移動させるY方向走査機構552を構成するモータを駆動するモータ駆動部512を備えている。また、制御部500は、液体吐出ユニット50のキャリッジ51をZ方向に移動(昇降)させるZ方向昇降機構551を構成するモータを駆動するモータ駆動部511を備えている。なお、矢印Z方向への昇降は造形ユニット5全体を昇降させる構成とすることもできる。
制御部500は、供給ステージ23を昇降させるモータ27を駆動するモータ駆動部513と、造形ステージ24を昇降させるモータ28を駆動するモータ駆動部514を備えている。また、制御部500は、平坦化ローラ12A,12Bを移動させる往復移動機構25のモータ553を駆動するモータ駆動部515と、平坦化ローラ12A,12Bを回転駆動するモータ26を駆動するモータ駆動部516を備えている。
制御部500は、供給槽21に粉体20を供給する粉体供給装置554を駆動する供給系駆動部517と、液体吐出ユニット50のメンテナンス機構61を駆動するメンテナンス駆動部518とを備えている。
制御部500には、必要な情報の入力及び表示を行うための操作パネル522が接続されている。
次に、本実施形態における粉体層の形成動作について、図7を参照して説明する。
図7(a)〜(f)は、本実施形態における粉体層の形成動作を説明するための説明図である。
2つの平坦化ローラ12A,12Bは、Y2方向に移動するとき、つまり、供給槽21から造形槽22に粉体20を移送供給するとき、第一平坦化ローラ12Aの移動方向後方側に第二平坦化ローラ12Bが配置され、第一平坦化ローラ12Aの移動とともに第二平坦化ローラ12Bも移動する。
2つの平坦化ローラ12A,12Bの周面に接触した状態で、クリーニングブレード13A,13Bが設けられている。クリーニングブレード13A,13Bは、平坦化ローラ12A,12Bの周面に当接した状態で、平坦化ローラ12A,12Bと一体的に移動する。また、本実施形態において、移動方向後方側に位置する第二平坦化ローラ12Bは、その最下部が移動方向前方に位置する第一平坦化ローラ12Aの最下部よりも低い位置となるように配置されている。
まず、図7(a)に示すように、造形槽22の造形ステージ24上に、1又は複数層の層状構造物30が形成されているものとする。
図7(b)に示すように、最上層の層状構造物30上に次の粉体層31を形成するときには、供給槽21の供給ステージ23をZ1方向に移動量z1分だけ上昇させ、造形槽22の造形ステージ24をZ2方向に移動量z2分だけ下降させる。このときの造形槽22の造形ステージ24の移動量z2は、粉体層31の目標厚みΔtと同じに設定される。目標厚みΔtは、例えば数十〜100μm程度であるのが好ましい。
供給ステージ23の移動量z1と造形ステージ24の移動量z2との関係は、本実施形態ではz1≧z2の関係となっている。これにより、造形槽22の全体に粉体20を敷き詰めるのに十分な量の粉体20を供給槽21から造形槽22へ供給することができる。なお、供給槽21から移送された粉体20のうち造形槽22に供給されなかった余剰粉体20’は、余剰粉体受け槽29に落下して回収される。
このような余剰粉体20’が生じるようにすると、平坦化ローラ12A,12Bが供給槽21から造形槽22へ向かうY2方向における造形槽22の下流端まで粉体20を移送する間、常に余剰分の粉体20が存在する。このような余剰分の粉体20が存在することで、その余剰分の粉体20の重みによる粉体層の押し付け効果が造形槽22の下流端まで得られる結果、より均一な高い粉体密度の粉体層を形成するのに有利である。
次に、図7(b)に示すように、第一平坦化ローラ12Aを、供給槽21の上面レベルから一定距離だけ離れた位置で、供給槽21から造形槽22へ向かうY2方向(往路の移動方向)に移動させるとともに、その移動方向後方に配置される第二平坦化ローラ12BもY2方向へ移動させる。このとき、2つの平坦化ローラ12A,12Bを、図中矢印の向きに、すなわち、その下面側がY2方向と同方向に表面移動する向き(以下「カウンター方向」という。)に、回転駆動させる。
更に、図7(c)に示すように、第一平坦化ローラ12Aは、造形槽22の上面レベルから一定距離だけ離れた位置で造形槽22を通過するように、Y2方向(往路の移動方向)へ移動する。このときも、第一平坦化ローラ12Aは、カウンター方向に回転している。そして、第一平坦化ローラ12Aが造形槽22の上方を通過する際に、造形槽22に供給された粉体20の表面が均されて平坦化され、最終的に形成される粉体層31の目標厚みΔtよりも厚みのあるプレ粉体層31’が形成される。
続いて、図7(d)に示すように、第二平坦化ローラ12Bは、造形槽22の上面レベルに沿って、Y2方向へ移動する。このときも、第二平坦化ローラ12Bは、カウンター方向に回転している。このとき、第一平坦化ローラ12Aによる平坦化処理によって造形槽22の造形ステージ24上に形成されたプレ粉体層31’の上層部分の粉体20は、造形槽22の上面レベルから上方に盛り上がった状態になっている。したがって、第二平坦化ローラ12Bは、造形槽22を通過する際にプレ粉体層31’の上層部分を移送しながら均して平坦化し、図7(e)に示すように、目標厚みΔtの粉体層31が形成される。
供給ステージ23の移動量z1と造形ステージ24の移動量z2との関係は、本実施形態ではz1≧z2の関係となっている。これにより、造形槽22の全体に粉体20を敷き詰めるのに十分な量の粉体20を供給槽21から造形槽22へ供給することができる。なお、供給槽21から移送された粉体20のうち造形槽22に供給されなかった余剰粉体20’は、余剰粉体受け槽29に落下して回収される。
このような余剰粉体20’が生じるようにすると、平坦化ローラ12A,12Bが供給槽21から造形槽22へ向かうY2方向における造形槽22の下流端まで粉体20を移送する間、常に余剰粉体20’が存在する。このような余剰粉体20’が存在することで、その余剰粉体20’の重みによる粉体層の押し付け効果が造形槽22の下流端まで得られる結果、より均一な高い粉体密度の粉体層を形成するのに有利である。
粉体層31の形成後の第一平坦化ローラ12A及び第二平坦化ローラ12Bは、図7(f)に示すように、造形槽22及び供給槽21の上方を通過して、初期位置(原点位置)に戻る(復帰する)。その後、図7(a)に示す動作に戻り、ヘッド52から造形液10の液滴を吐出して、形成した粉体層31に所要形状の層状構造物30を形成する。
なお、層状構造物30は、例えば、ヘッド52から吐出された造形液10が粉体20と混合されることで、粉体20に含まれる接着剤が溶解し、溶解した接着剤同士が結合して粉体20が結合されることで形成される。新たな層状構造物30とその下層の層状構造物30とは一体化して三次元造形物の一部を構成する。
以後、上述した動作を繰り返し行うことにより、層状構造物30が積層された三次元形状造形物(立体造形物)が造形される。
本実施形態においては、一層の粉体層31の形成にあたり、粉体層を形成する粉体を2つの平坦化ローラ12A,12Bを用いて2回に分けて押し付けることができる。これにより、粉体層の密度を段階的に高められることから、高い粉体密度で均一化された粉体層を形成することができる。その結果、三次元造形物の造形精度を高めることができる。
また、本実施形態においては、2つの平坦化ローラ12A,12Bを互いに同方向へ移動させるため、移動方向前方の第一平坦化ローラ12Aによるプレ粉体層31’の形成が完了する前に、移動方向後方の第二平坦化ローラ12Bによる粉体層31の形成を開始することができる。これにより、一層の粉体層31を形成するための処理時間が短縮でき、三次元造形物の造形時間を短くすることができるので、三次元造形物の生産性が向上する。
更に、本実施形態では、平坦化処理に用いる2つの平坦化ローラ12A,12Bを、その下面側がY2方向と同方向に表面移動する向き(カウンター方向)に回転させながら、粉体20の移送と平坦化を行う。これにより、平坦化ローラ12A,12Bの周面と粉体20との間の相対速度が高速になり、平坦化ローラ12A,12Bの周面と粉体20との間の摩擦力が低くなって、粉体層31の表面の平滑性を高めることができる。
相対速度は、各平坦化ローラ12がカウンター方向に回転しているので、図8に示すように、粉体20に対する第一平坦化ローラ12Aの相対速度V1は、第一平坦化ローラ12Aの移動速度v1と第一平坦化ローラ12Aの周速v2との和となり、粉体20に対する第二平坦化ローラ12Bの相対速度V2は、第二平坦化ローラ12Bの移動速度v3と第二平坦化ローラ12Bの周速v4との和となる。
ここで、平坦化処理に用いる平坦化ローラ12A,12Bの中に、その下面側がY2方向と逆方向に表面移動する向き(順方向)に回転する順方向平坦化ローラが含まれていると、その順方向平坦化ローラの移動によって移送される粉体が、順方向平坦化ローラの表面移動に連れ回って回転部材の下側に送り込まれる。これにより、前回形成した下方の粉体層と順方向平坦化ローラとの間に過剰な量の粉体が介在してしまう。この場合、順方向平坦化ローラの移動に伴って、下方の粉体層に既に形成されている層状構造物がその移動方向へ引き摺られたり膨張したりして、当該下方の粉体層に形成されている層状構造物の形状に誤差が生じ、層状構造物が積層して最終的に造形される三次元造形物の造形精度が低下する。
ここでいう「引き摺り」とは、下方の粉体層中の層状構造物30が平坦化ローラ12A,12Bの移動方向(平坦化方向)へ引き摺られて、位置がシフトする現象である。また、「膨張」とは、下方の粉体層中の層状構造物30が平坦化方向へ引き延ばされて層状構造物30の寸法が拡大する現象である。
本実施形態では、平坦化処理に用いる平坦化ローラ12A,12Bは、いずれも、カウンター方向に回転するものであり、順方向平坦化ローラを用いていない。カウンター方向に回転する平坦化ローラ12A,12Bの場合、平坦化ローラ12A,12Bの移動によって移送される粉体が、平坦化ローラ12A,12Bの表面移動に連れ回って平坦化ローラ12A,12Bの下側に送り込むことがない。これにより、前回形成した下方の粉体層中の層状構造物30と平坦化ローラ12A,12Bとの間には、前回形成した下方の粉体層と平坦化ローラ12A,12Bの最下部とのギャップによって決まる適量の粉体を介在させることができる。したがって、平坦化ローラ12A,12Bによる粉体の押し付け力が高くなり過ぎることがなく、下方の粉体層中の層状構造物30の引き摺りや膨張が抑制され、三次元造形物の造形精度の低下を抑制することができる。
なお、本実施形態における2つの平坦化ローラ12A,12Bは、供給槽21を通過する際にもカウンター方向へ回転している例であるが、下方の粉体層中の層状構造物30の引き摺りや膨張を抑制するうえでは、供給槽21を通過する際に回転させる必要はない。
また、本実施形態においては、一層の粉体層31を形成するために用いる平坦化ローラ12A,12Bの数が2つであるが、3つ以上であってもよい。
また、本実施形態では、2つの平坦化ローラ12A,12Bの周速v2,v4は同じ速度に設定され、かつ、2つの平坦化ローラ12A,12Bの移動速度v1,v3も同じ速度に設定されているため、粉体20に対する2つの平坦化ローラ12A,12Bの相対速度V1,V2は等しい。しかしながら、2つの平坦化ローラ12A,12Bの周速v2,v4や移動速度v1,v3を異ならせて、粉体20に対する2つの平坦化ローラ12A,12Bの相対速度V1,V2を異ならせてもよい。
特に、下方の粉体層に既に形成されている層状構造物30の引き摺りや膨張を抑制するうえでは、移動方向後方側の第二平坦化ローラ12Bの相対速度V2を、移動方向前方側の第一平坦化ローラ12Aの相対速度V1よりも速くなるように設定するのが好ましい。これは、次の理由によるものと考えられる。なお、以下のメカニズムは、本実施形態の効果の発生源を限定するものではない。
下方の粉体層中の層状構造物30の引き摺りや膨張が発生するメカニズムは、次のように考えることができる。移動中の平坦化ローラ12の周面に接する粉体20は、平坦化ローラ12の周面との間の摩擦力によって平坦化方向へ変位する。このように変位する粉体20とこれに接する下方の粉体20との間の摩擦力によって、当該下方の粉体20も変位する。これのような変位の連鎖によって、最終的に下方の粉体層に接する粉体20にも変位させる力が伝わり、下方の粉体層の引き摺りや膨張を引き起こす。
第二平坦化ローラ12Bによる平坦化処理では、前回形成した下方の粉体層31の上面(下方の粉体層31中の層状構造物30の上面)と第二平坦化ローラ12Bの最下部との間隔が、第一平坦化ローラ12Aによる平坦化処理時における下方の粉体層31の上面と第一平坦化ローラ12Aの最下部との間隔よりも狭く設定されている。そのため、第二平坦化ローラ12Bによる平坦化処理では、第一平坦化ローラ12Aによる平坦化処理時よりも、大きな力で下方の粉体層31を変位させやすい。したがって、本実施形態においては、第一平坦化ローラ12Aによる平坦化処理時よりも、第二平坦化ローラ12Bによる平坦化処理時の方が、下方の粉体層の層状構造物30の引き摺りや膨張を生じやすい。
ここで、平坦化ローラ12の周面とこれに接する粉体20との間の摩擦力が大きいほど、粉体20を平坦化ローラ12の移動方向へ変位させる力は大きくなり、下方の粉体層の引き摺りや膨張を引き起こしやすい。そして、平坦化ローラ12の周面とこれに接する粉体20との間の摩擦力は、両者の相対速度V1,V2が大きいほど、小さくものとなる。よって、第二平坦化ローラ12Bの相対速度V2を第一平坦化ローラ12Aの相対速度V1よりも速く設定することで、第一平坦化ローラ12Aによる平坦化処理時よりも下方の粉体層の層状構造物30の引き摺りや膨張を生じやすい第二平坦化ローラ12Bによる平坦化処理時における当該引き摺りや膨張を抑制できる。
このとき、粒経、比重、流動性などの粉体特性によって最適な相対速度V1,V2が異なるところ、最適な相対速度V1,V2に設定するためには、第二平坦化ローラ12Bの移動速度v3を第一平坦化ローラ12Aの移動速度v1よりも速く設定することが望まれる場合がある。この場合、移動方向後方側の第二平坦化ローラ12Bが移動方向前方側の第一平坦化ローラ12Aに衝突しないように、移動開始前における両平坦化ローラ12A,12Bの離間距離を適切に設定しておく必要がある。そのため、両平坦化ローラ12A,12Bの離間距離を変更可能に構成しておくことが好ましい。すなわち、両平坦化ローラ12A,12Bの離間距離を変更可能に構成しておけば、両平坦化ローラ12A,12Bの移動速度の調整の自由度が広がり、より多くの種類の粉体20に対応することができるようになる。
また、本実施形態では、回転部材として、平坦化ローラ12A,12Bのようなローラ部材を用いているため、平坦化処理時には、回転部材の移動方向前方で粉体20に接触する接触面(平坦化ローラ12A,12Bの周面のうちの移動方向前方下側部分)が斜め下方を向く。そのため、回転部材を移動させることで、その接触面により粉体20を移動方向へ移送するとともに下方へ押し込む力を生じさせる。よって、このような回転部材を用いることで、カウンター方向に回転する回転部材を用いる場合でも、高い粉体密度をもった粉体層31を実現できる。
また、本実施形態において、第一平坦化ローラ12Aと第二平坦化ローラ12Bのうちの少なくとも一方の高さ(粉体層31の積層方向におけるローラ最下部の位置)を変更可能に構成してもよい。このような構成は、例えば、第一平坦化ローラ12Aと第二平坦化ローラ12Bのうちの少なくとも一方のローラ軸を昇降させる昇降機構(高さ変更手段)によって実現することができる。
このような構成によれば、第一平坦化ローラ12Aと第二平坦化ローラ12Bの高さ(粉体層31の積層方向におけるローラ最下部の位置)の差Δzを、粉体20の種類や装置の使用環境等に応じて適切に調整することが可能となる。例えば、粒経が大きい粉体20を用いる場合、第一平坦化ローラ12Aと第二平坦化ローラ12Bの高さの差Δzを大きくすることで、平坦化ローラ12A,12Bによる粉体の押し付け力を抑制して、下方の粉体層中の層状構造物30の引き摺りや膨張を抑制できる。
なお、本実施形態は、前回形成した下方の粉体層31の上面と第二平坦化ローラ12Bの最下部との間隔が、第一平坦化ローラ12Aによる平坦化処理時における下方の粉体層31の上面と第一平坦化ローラ12Aの最下部との間隔と同じに設定することを排除するものではない。
また、第一平坦化ローラ12Aは、第二平坦化ローラ12Bよりも、ローラ周面の表面粗さが低いのが好ましい。この場合、第一平坦化ローラ12Aのローラ周面に付着する粉体の量を少なくできる。これにより、平坦化処理後に、第一平坦化ローラ12Aが造形槽22の上方を通過して初期位置(原点位置)に戻る(復帰する)際、第一平坦化ローラ12Aに付着している粉体が、既に形成されている粉体層31上に落下して、三次元造形物の造形精度が低下することを抑制できる。
なお、第二平坦化ローラ12Bに付着する粉体20が造形槽22の上方を通過して初期位置(原点位置)に戻る(復帰する)際に粉体層31上に落下しても、その後方を移動する第一平坦化ローラ12Aによってこれを移送して供給槽21へと戻すことが可能である。
次に、第2の実施形態について図9(a)〜(f)を参照して説明する。
第2の実施形態に係る三次元造形装置は、粉体槽11として、造形槽22と、平坦化ローラ12A,12Bの移動方向(Y方向)において造形槽22の両側に配置され、粉体20を収容する2つの供給槽21A、21B(以下、区別しないときは「供給槽21」という。)を備えている。本実施形態は、このような粉体層の形成動作に関わる構成及び動作に違いがある点を除き、上述した第1の実施形態と同様であるため、以下、上述した第1の実施形態との相違部分を中心に説明する。
本実施形態において、2つの平坦化ローラ12A,12Bは、Y2方向に移動するとき、つまり、第一供給槽21Aから造形槽22に粉体20を移送供給するとき、第一平坦化ローラ12Aの移動方向後方側に第二平坦化ローラ12Bが配置され、第一平坦化ローラ12Aの移動とともに第二平坦化ローラ12Bも移動する。本実施形態においても、移動方向後方側に位置する第二平坦化ローラ12Bは、その最下部が移動方向前方に位置する第一平坦化ローラ12Aの最下部よりも低い位置となるように配置されている。
まず、図9(a)に示すように、造形槽22において最上層の層状構造物30上に次の粉体層31を形成する場合、第一供給槽21Aの供給ステージ23AをZ1方向に移動量z1分だけ上昇させ、造形槽22の造形ステージ24をZ2方向に移動量z2分だけ下降させる。また、第二供給槽21Bの供給ステージ23Bについては、Z2方向に移動量z3分だけ下降させる。
第一供給槽21Aの移動量z1は、第一供給槽21Aの上面レベルから上方に盛り上がる粉体量が規定量(造形槽22の全体に粉体20を敷き詰めるのに十分な量の粉体20が造形槽22へ供給される量)以上となるように適宜設定される。また、第二供給槽21Bの移動量z3は、第一供給槽21Aから移送された粉体20のうち造形槽22に供給されなかった余剰粉体20’を漏れなく回収可能な十分な収容空間が形成されるように適宜設定される。
第一供給槽21Aの供給ステージ23Aの移動量z1と造形ステージ24の移動量z2との関係は、本実施形態でもz1≧z2の関係となっている。これにより、造形槽22の全体に粉体20を敷き詰めるのに十分な量の粉体20を第一供給槽21Aから造形槽22へ供給することができる。第一供給槽21Aから移送された粉体20のうち造形槽22に供給されなかった余剰粉体20’は、第二供給槽21Bに落下して回収される。
次に、図9(b)に示すように、第一平坦化ローラ12Aを、供給槽21の上面レベルから一定距離だけ離れた位置で、供給槽21から造形槽22へ向かうY2方向(往路の移動方向)に移動させるとともに、その移動方向後方に配置される第二平坦化ローラ12BもY2方向へ移動させる。このとき、2つの平坦化ローラ12A,12Bを、図中矢印で示すカウンター方向に回転駆動させる。
更に、図9(c)に示すように、第一平坦化ローラ12Aは、造形槽22の上面レベルから一定距離だけ離れた位置で造形槽22を通過するように、Y2方向(往路の移動方向)へ移動する。このときも、第一平坦化ローラ12Aは、カウンター方向に回転している。そして、第一平坦化ローラ12Aが造形槽22の上方を通過する際に、造形槽22に供給された粉体20の表面が均されて平坦化され、最終的に形成される粉体層31の目標厚みΔtよりも厚みのあるプレ粉体層31’が形成される。
続いて、第二平坦化ローラ12Bは、造形槽22の上面レベルに沿って、Y2方向へ移動する。このときも、第二平坦化ローラ12Bは、カウンター方向に回転している。このとき、第一平坦化ローラ12Aによる平坦化処理によって造形槽22の造形ステージ24上に形成されたプレ粉体層31’の上層部分の粉体20は、造形槽22の上面レベルから上方に盛り上がった状態になっている。したがって、第二平坦化ローラ12Bは、造形槽22を通過する際にプレ粉体層31’の上層部分を移送しながら均して平坦化し、目標厚みΔtの粉体層31が形成される。
その後、図9(d)に示すように、ヘッド52から造形液10の液滴を吐出して、平坦化ローラ12の往路時に形成した粉体層31に所要形状の層状構造物30を形成する。
ここで、本実施形態における第一平坦化ローラ12A及び第二平坦化ローラ12Bは、その高さ(粉体層31の積層方向におけるローラ最下部の位置)を変更可能に構成されている。具体的には、第一平坦化ローラ12Aと第二平坦化ローラ12Bの各ローラ軸を昇降させる昇降機構(高さ変更手段)が設けられている。
平坦化ローラ12の往路時に形成した粉体層31に対する層状構造物30の形成が完了するまでに、制御部500は、図9(d)に示すように、各平坦化ローラ12A,12Bの昇降機構を制御して、復路時の移動方向後方側に位置する第一平坦化ローラ12Aの最下部が復路時の移動方向前方に位置する第二平坦化ローラ12Bの最下部よりも低い位置となるように高さを変更させる。
そして、平坦化ローラ12の往路時に形成した粉体層31に対する層状構造物30の形成が完了したら、図9(e)に示すように、その層状構造物30上に次の粉体層31を形成するために、第二供給槽21Bの供給ステージ23BをZ1方向に移動量z1分だけ上昇させ、造形槽22の造形ステージ24をZ2方向に移動量z2分だけ下降させる。また、第一供給槽21Aの供給ステージ23Aについては、Z2方向に移動量z3分だけ下降させる。
復路時においても、第二供給槽21Bの供給ステージ23Bの移動量z1と造形ステージ24の移動量z2との関係は、本実施形態でもz1≧z2の関係となっている。これにより、造形槽22の全体に粉体20を敷き詰めるのに十分な量の粉体20を第二供給槽21Bから造形槽22へ供給することができる。第二供給槽21Bから移送された粉体20のうち造形槽22に供給されなかった余剰粉体20’は、第一供給槽21Aに落下して回収される。
そして、図9(e)に示すように、第二平坦化ローラ12Bを、第二供給槽21Bの上面レベルから一定距離だけ離れた位置で、第二供給槽21Bから造形槽22へ向かうY1方向(復路の移動方向)に移動させるとともに、その移動方向後方に配置される第一平坦化ローラ12AもY1方向へ移動させる。このときも、2つの平坦化ローラ12A,12Bは図中矢印で示すカウンター方向に回転駆動される。
更に、第二平坦化ローラ12Bは、造形槽22の上面レベルから一定距離だけ離れた位置で造形槽22を通過するように、Y1方向(復路の移動方向)へ移動する。このときも、第二平坦化ローラ12Bは、カウンター方向に回転している。そして、第二平坦化ローラ12Bが造形槽22の上方を通過する際に、造形槽22に供給された粉体20の表面が均されて平坦化され、最終的に形成される粉体層31の目標厚みΔtよりも厚みのあるプレ粉体層31’が形成される。
続いて、第一平坦化ローラ12Aは、造形槽22の上面レベルに沿って、Y1方向へ移動する。このときも、第一平坦化ローラ12Aは、カウンター方向に回転している。このとき、第二平坦化ローラ12Bによる平坦化処理によって造形槽22の造形ステージ24上に形成されたプレ粉体層31’の上層部分の粉体20は、造形槽22の上面レベルから上方に盛り上がった状態になっている。したがって、第一平坦化ローラ12Aは、造形槽22を通過する際にプレ粉体層31’の上層部分を移送しながら均して平坦化し、目標厚みΔtの粉体層31が形成される。
その後、図9(f)に示すように、ヘッド52から造形液10の液滴を吐出して、平坦化ローラ12の復路時に形成した粉体層31に所要形状の層状構造物30を形成する。
以後、上述した動作を繰り返し行うことにより、層状構造物30が積層された三次元形状造形物(立体造形物)が造形される。
本実施形態によれば、平坦化ローラ12A,12Bの往路時と復路時の両方で、それぞれ一層ずつ粉体層31を形成して層状構造物を形成することができるので、三次元造形物の造形時間を短縮することが可能となり、三次元造形物の生産性が向上する。
また、本実施形態においては、平坦化ローラ12A,12Bの往路時と復路時の両方で平坦化処理を実施するために、往路時と復路時のいずれでも平坦化ローラ12A,12Bの周面をクリーニングできるクリーニング装置が好ましい。本実施形態では、各平坦化ローラ12A,12Bの回転方向が往路時と復路時とで逆向きとなるため、各平坦化ローラ12A,12Bに対し、それぞれ2つずつのクリーニングブレード13A,13B,13C,13Dを設けている。各平坦化ローラ12A,12Bに設けられるクリーニングブレードの一方は、往路時の回転方向に対してカウンター方向になるように設置され、他方は、復路時の回転方向に対してカウンター方向になるように設置される。
本実施形態で適用可能な造形方法は、上述したバインダージェット方式に限らず、レーザ焼結方式(LS方式等)や電子ビーム焼結方式(EBM方式等)などであってもよい。すなわち、粉体の結合手段として、液体吐出ヘッドから吐出される液体を用いて粉体同士を結合させる手段を用いているが、これに代えて、レーザー照射手段等を用いて粉体同士を焼結等により結合させる手段などを用いることもできる。本発明は、粉体層31を形成し、粉体層中の粉体を結合させる立体造形方法であれば、応用可能である。ただし、バインダージェット方式等のように液体を用いる造形方式は、一般に、レーザ焼結方式や電子ビーム焼結方式等のようにレーザー光等と用いた場合と比較して粉体20の結着力が弱いため、本発明による造形精度の向上効果がより顕著となる。
なお、本実施形態のようなバインダージェット方式の場合、粉体20に石膏を用い、インクジェットヘッドからバインダーインクを吐出し、石膏粉を凝固させることで層状構造物30を形成するのが一般的であるが、粉体20に砂を用いて、バインダー樹脂をインクジェットヘッドから吐出することで、鋳型などに利用される三次元造形物を造形することもできる。また、バインダージェット方式であれば、粉体20に、金属、セラミック、ガラス等を用いることもできる。また、バインダージェット方式においては、結合液に溶解可能な材料をコートした粉体20を用い、結合液をインクジェットヘッドから吐出することで、粉体同士をコート材料を介して結合させ、層状構造物30を形成することもできる。
以上に説明したものは一例であり、次の態様毎に特有の効果を奏する。
(態様A)
複数の平坦化ローラ12A,12B等の回転部材を回転させながら同方向へ移動させて粉体20を移送しつつ平坦化する平坦化処理を実行して粉体層31を形成し、該粉体層の粉体を所要形状に結合して層状構造物30を形成するという動作を繰り返し行って、該層状構造物が積層された三次元造形物を造形する三次元造形装置であって、前記複数の回転部材は、いずれも、当該回転部材の下面側が当該回転部材の移動方向と同方向に表面移動する向き(カウンター方向)に回転することを特徴とする。
一般に、形成された粉体層の粉体を所要形状に結合して層状構造物を形成して三次元造形物を造形する場合、高い粉体密度で均一化された粉体層を形成することが望まれる。このとき、複数の回転部材を回転させながら同方向へ移動させて粉体を移送しつつ平坦化する平坦化処理を実行すると、一層の粉体層の形成にあたり、粉体層を形成する粉体を回転部材によって2回以上押し付けることができ、粉体層の密度を段階的に高められることから、高い粉体密度で均一化された粉体層を形成するのに有利である。
しかも、平坦化処理に用いる複数の回転部材の移動方向を同方向に揃えることで、移動方向前方の回転部材による平坦化が完了する前に、移動方向後方の回転部材による平坦化を開始できる。これにより、一層の粉体層を形成するための処理時間が短縮でき、三次元造形物の造形時間を短くすることができるので、三次元造形物の生産性が向上する。
ところが、平坦化処理に用いられる複数の回転部材の中に、当該回転部材の下面側が当該回転部材の移動方向と逆方向に表面移動する向きに回転する回転部材が含まれていると、その回転部材による粉体の押し付け力が高くなり過ぎる。これは、このように回転する回転部材の場合、回転部材の移動によって移送している粉体が、回転部材の表面移動に連れ回って回転部材の下側に送り込まれ、前回形成した下方の粉体層と回転部材との間に過剰な量の粉体が介在してしまうからである。そして、このように回転部材による粉体の押し付け力が高くなり過ぎると、回転部材の移動に伴って、下方の粉体層に既に形成されている層状構造物がその移動方向へ引き摺られたり膨張したりして、層状構造物の形状に誤差が生じ、層状構造物が積層して最終的に造形される三次元造形物の造形精度が低下する。
本態様においては、平坦化処理に用いられる複数の回転部材が、いずれも、当該回転部材の下面側が当該回転部材の移動方向と同方向に表面移動する向きに回転する。このように回転する回転部材の場合、回転部材の移動によって移送している粉体が、回転部材の表面移動に連れ回って回転部材の下側に送り込むことがない。これにより、前回層状構造物を形成した下方の粉体層と回転部材との間には、前回形成した下方の粉体層と回転部材の最下部とのギャップによって決まる適量の粉体を介在させることができる。したがって、回転部材による粉体の押し付け力が高くなり過ぎることがなく、下方の粉体層に既に形成されている層状構造物の引き摺りや膨張が抑制され、三次元造形物の造形精度の低下を抑制することができる。
(態様B)
前記態様Aにおいて、前記複数の回転部材は、移動方向前方に位置する回転部材の最下部よりも低い位置に最下部をもつ回転部材を含むことを特徴とする。
これによれば、移動方向前方に位置する回転部材の移動によって平坦化された粉体層31の目標厚みΔtよりも厚いプレ粉体層31’を形成した後、移動方向後方に位置する回転部材の移動によって平坦化された目標厚みの粉体層31を形成することができる。このように、目標厚みの粉体層31を形成するにあたり、事前に、目標厚みよりも厚く平坦化されたプレ粉体層31’を形成することで、より高い粉体密度で均一化された粉体層31を形成することができる。
(態様C)
前記態様A又はBにおいて、前記複数の回転部材は、移動方向前方に位置する回転部材の粉体に対する相対速度V1よりも速い相対速度V2である回転部材を含むことを特徴とする。
これによれば、移動方向後方に位置する回転部材による平坦化処理時に、下方の粉体層に既に形成されている層状構造物30の引き摺りや膨張が抑制され、三次元造形物の造形精度の低下を抑制することができる。
特に、前記態様Bのように、移動方向後方に位置する回転部材の最下部が移動方向前方に位置する回転部材の最下部よりも低い位置である場合、移動方向後方に位置する回転部材による平坦化処理時には移動方向前方に位置する回転部材による平坦化処理時よりも当該引き摺りや膨張が生じやすい。したがって、このような態様においては、引き摺りや膨張が生じやすい移動方向後方に位置する回転部材による平坦化処理時の引き摺りや膨張を抑制できる。
(態様D)
前記態様A〜Cのいずれかの態様において、前記複数の回転部材のうちの少なくとも1つの回転部材の最下部の高さを変更する高さ変更手段を有することを特徴とする。
これによれば、前記少なくとも1つの回転部材により平坦化される粉体20の層厚を、粉体20の種類や装置の使用環境等に応じて適切に調整することが可能である。
(態様E)
前記態様Dにおいて、前記高さ変更手段は、前記複数の回転部材間における最下部の高低差Δzを変更可能に構成されていることを特徴とする。
これによれば、複数の回転部材間における最下部の高低差Δzを、粉体20の種類や装置の使用環境等に応じて適切に調整することが可能となる。
(態様F)
前記態様A〜Eのいずれかの態様において、造形槽22へ供給する粉体20を収容する2つの供給槽21A,21Bが該造形槽を挟んで前記複数の回転部材の移動方向(Y方向)に並べて配置されており、前記2つの供給槽のうちの一方の供給槽21Aから他方の供給槽21Bへ向かう往路に沿って前記複数の回転部材を移動させて前記造形槽22の粉体に対して前記平坦化処理を行って前記粉体層31を形成した後、前記他方の供給槽21Bから前記一方の供給槽21Aへ向かう復路に沿って該複数の回転部材を移動させて該造形槽22の粉体に対して前記平坦化処理を行って該粉体層31の上に新たな粉体層31を形成することを特徴とする。
これによれば、三次元造形物の造形時間を短縮することが可能となり、三次元造形物の生産性が向上する。
(態様G)
前記態様A〜Fのいずれかの態様において、前記複数の回転部材は、移動方向前方で前記粉体に接触する面が斜め下方を向いていることを特徴とする。
これによれば、回転部材を移動させることで、その回転部材の面により粉体を移動方向へ移送するとともに下方へ押し込む力を生じさせることができ、回転部材を前記のように回転させる場合でも、粉体層31の粉体密度を十分に高めることができる。
1 造形部
5 造形ユニット
10 造形液
11 粉体槽
12 平坦化ローラ
13 クリーニングブレード
14 シール部材
20 粉体
20’ 余剰粉体
21 供給槽
21A 第一供給槽
21B 第二供給槽
22 造形槽
23,23A,23B 供給ステージ
24 造形ステージ
29 余剰粉体受け槽
30 層状構造物
31 粉体層
31’ プレ粉体層
50 液体吐出ユニット
500 制御部
600 造形データ作成装置
特開2016−107543号公報

Claims (3)

  1. 複数の回転部材を回転させながら同方向へ移動させて粉体を移送しつつ平坦化する平坦化処理を実行して粉体層を形成し、該粉体層の粉体を所要形状に結合して層状構造物を形成するという動作を繰り返し行って、該層状構造物が積層された三次元造形物を造形する三次元造形装置であって、
    前記複数の回転部材間における最下部の高低差を変更する高さ変更手段と、
    前記複数の回転部材の回転方向を切り替える回転方向切替手段とを有し、
    造形槽へ供給する粉体を収容する2つの供給槽が該造形槽を挟んで前記複数の回転部材の移動方向に並べて配置されており、
    前記2つの供給槽のうちの一方の供給槽から他方の供給槽へ向かう往路に沿って前記複数の回転部材を移動させて前記造形槽の粉体に対して前記平坦化処理を行って前記粉体層を形成した後、前記他方の供給槽から前記一方の供給槽へ向かう復路に沿って該複数の回転部材を移動させて該造形槽の粉体に対して前記平坦化処理を行って該粉体層の上に新たな粉体層を形成し、
    前記往路及び前記復路のいずれの場合も、前記複数の回転部材のうちの移動方向前方に位置する回転部材の最下部よりも移動方向後方に位置する回転部材の最下部が低い位置になるように前記高さ変更手段によって前記高低差を変更するとともに、前記複数の回転部材のいずれも当該回転部材の下面側が当該回転部材の移動方向と同方向に表面移動する向きに回転するように前記回転方向切替手段によって回転方向を切り替えることを特徴とする三次元造形装置
  2. 求項1に記載の三次元造形装置において、
    前記複数の回転部材は、移動方向前方に位置する回転部材の粉体に対する相対速度よりも速い相対速度である回転部材を含むことを特徴とする三次元造形装置
  3. 求項1又は2に記載の三次元造形装置において、
    前記複数の回転部材は、移動方向前方で前記粉体に接触する面が斜め下方を向いていることを特徴とする三次元造形装置。
JP2017053447A 2017-03-17 2017-03-17 三次元造形装置 Active JP6860849B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017053447A JP6860849B2 (ja) 2017-03-17 2017-03-17 三次元造形装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017053447A JP6860849B2 (ja) 2017-03-17 2017-03-17 三次元造形装置

Publications (2)

Publication Number Publication Date
JP2018154882A JP2018154882A (ja) 2018-10-04
JP6860849B2 true JP6860849B2 (ja) 2021-04-21

Family

ID=63717152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017053447A Active JP6860849B2 (ja) 2017-03-17 2017-03-17 三次元造形装置

Country Status (1)

Country Link
JP (1) JP6860849B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6904146B2 (ja) * 2017-08-01 2021-07-14 トヨタ自動車株式会社 三次元造形装置
JP7160647B2 (ja) * 2018-11-22 2022-10-25 ローランドディー.ジー.株式会社 三次元造形装置
JP7114444B2 (ja) * 2018-11-22 2022-08-08 ローランドディー.ジー.株式会社 三次元造形装置
GB2579638B (en) * 2018-12-07 2021-10-27 Xaar 3D Ltd Methods and apparatus for the manufacture of three-dimensional objects
WO2023218708A1 (ja) * 2022-05-13 2023-11-16 ローランドディー.ジー.株式会社 三次元造形装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2984191B1 (fr) * 2011-12-20 2014-01-10 Michelin Soc Tech Machine et procede pour la fabrication additive a base de poudre
FR2991208B1 (fr) * 2012-06-01 2014-06-06 Michelin & Cie Machine et procede pour la fabrication additive a base de poudre
JP6379684B2 (ja) * 2014-06-02 2018-08-29 株式会社リコー 立体造形装置
JP6498922B2 (ja) * 2014-12-08 2019-04-10 株式会社アスペクト 粉末積層造形装置及び粉末積層造形方法
CN107771109B (zh) * 2015-06-19 2021-09-07 应用材料公司 在增材制造中的材料分配和压实

Also Published As

Publication number Publication date
JP2018154882A (ja) 2018-10-04

Similar Documents

Publication Publication Date Title
JP6860849B2 (ja) 三次元造形装置
US10093065B2 (en) Device and method for 3D printing methods, with accelerated execution
US10850444B2 (en) Method and apparatus for fabricating three-dimensional object
JP6620505B2 (ja) 粉末積層造形装置及び粉体層の製造方法
JP2017087469A (ja) 立体造形装置
JP6565486B2 (ja) 立体造形装置、立体造形方法、プログラム
JP6743434B2 (ja) 立体造形物を造形する装置、プログラム、立体造形物を造形する方法
JP6904035B2 (ja) 立体造形物を造形する装置、立体造形物を造形する方法、立体造形物
JP6862823B2 (ja) 立体造形装置、立体造形方法
JP6905677B2 (ja) 三次元造形装置及び三次元造形物の製造方法
JP6958661B2 (ja) 立体造形装置
JP6668649B2 (ja) 立体造形装置、プログラム
JP6880492B2 (ja) 三次元造形装置、三次元造形物の製造方法及びプログラム
JP2018012282A (ja) 立体造形装置および立体造形方法
JP2016150458A (ja) 立体造形装置、立体造型方法
JP2017202620A (ja) 立体造形装置
JP6899094B2 (ja) 三次元造形装置、三次元造形物製造方法及び造形プログラム
JP7087482B2 (ja) 立体造形装置および立体造形方法
JP2018196966A (ja) 三次元造形装置、造形プログラム及び三次元造形物製造方法
JP6442997B2 (ja) 立体造形装置
JP6828267B2 (ja) 立体造形物を造形する装置、プログラム、立体造形物を造形する方法、立体造形物の造形データを作成する方法
JP6766381B2 (ja) 立体造形物を造形する装置、プログラム、立体造形物を造形する方法
JP6872170B2 (ja) 三次元造形装置、三次元造形物製造方法及びプログラム
JP6996310B2 (ja) 立体造形物の製造方法
JP6699811B2 (ja) 立体造形装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210311

R151 Written notification of patent or utility model registration

Ref document number: 6860849

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151