JP6846990B2 - 均一延伸性を有するポリエチレンナフタレート系樹脂組成物およびその成形品 - Google Patents

均一延伸性を有するポリエチレンナフタレート系樹脂組成物およびその成形品 Download PDF

Info

Publication number
JP6846990B2
JP6846990B2 JP2017116696A JP2017116696A JP6846990B2 JP 6846990 B2 JP6846990 B2 JP 6846990B2 JP 2017116696 A JP2017116696 A JP 2017116696A JP 2017116696 A JP2017116696 A JP 2017116696A JP 6846990 B2 JP6846990 B2 JP 6846990B2
Authority
JP
Japan
Prior art keywords
component
tert
acid
resin composition
butyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017116696A
Other languages
English (en)
Other versions
JP2019001880A (ja
Inventor
肖伊 銭
肖伊 銭
勇一 松野
勇一 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2017116696A priority Critical patent/JP6846990B2/ja
Publication of JP2019001880A publication Critical patent/JP2019001880A/ja
Application granted granted Critical
Publication of JP6846990B2 publication Critical patent/JP6846990B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、ゲル化せずに、良好な延伸ブロー成形性を有し、且つ均一延伸性に優れるポリエチレンナフタレート系樹脂組成物およびそれからなる成形品に関する。
ポリエステル樹脂容器は、軽量性、経済性、成形の容易性および優れた各種の物性、更には対環境問題適応性および資源再利用性などにより、最近では、従来の金属やガラス製の容器を凌駕して、日常生活や各種の産業分野において重用され、特に、飲料、食品、化粧品、洗浄剤および医薬品などの容器として汎用されている。
ポリエステル樹脂のなかでも、ポリエチレンテレフタレート(以下PETと略する)、ポリエチレンナフタレート(以下PENと略する)が挙げられ、延伸ブロー成形法で簡単に容器にすることができる特徴がある。また、PENはPETと比べ、優れた耐熱性や耐薬品性を有している。しかしながら、PENはPETより延伸ブロー時偏りが生じやすく、容器厚みのバラつきが問題点となっている。
特許文献1には、ポリ乳酸樹脂および芳香族ポリカーボネート樹脂、スチレン系共重合体、芳香族ポリエステル樹脂等から選ばれる少なくとも1種の樹脂に、エポキシ化合物およびカルボジイミド化合物を添加し、耐加水分解性や耐熱性を向上させることが開示されている。しかしながら、ブロー性に関する検討はなされていない。
特開2008−266432号公報
本発明の目的はゲル化せずに、良好な延伸ブロー成形性を有し、且つ均一延伸性に優れるポリエチレンナフタレート系樹脂組成物を提供することにある。
本発明者らは、上記目的を達成として鋭意研究を重ねた結果、ポリエチレンナフタレート系樹脂にカルボジイミド化合物およびグリシジルエーテルエステル系エポキシ化合物を配合することにより、ゲル化せずに、良好な延伸ブロー成形性を有し、且つ均一延伸性に優れるポリエチレンナフタレート系樹脂組成物が得られることを見出し、上記課題を解決するに至った。
すなわち上記課題は、(A)ポリエチレンナフタレート系樹脂(A成分)100重量部に対し、(B)カルボジイミド化合物(B成分)0.1〜4.9重量部および(C)グリシジルエーテルエステル系エポキシ化合物(C成分)0.1〜4.9重量部を含有する樹脂組成物により達成できる。
本発明によれば、ゲル化せずに、良好な延伸ブロー成形性を有し、且つ均一延伸性に優れるポリエチレンナフタレート系樹脂組成物を提供することができる。本発明の樹脂組成物より得られるブロー延伸容器は、薬品や香料等を保存する容器に好適である。
高温SS引張試験により得られるSSカーブの一例である。
以下、本発明に使用する樹脂の調製方法、成形加工方法について順次説明する。
<A成分について>
本発明のA成分であるポリエチレンナフタレート系樹脂は、ジカルボン酸成分が、ナフタレンジカルボン酸またはそのエステル誘導体80〜100モル%並びにテレフタル酸、イソフタル酸およびこれらのエステル誘導体からなる群より選ばれる1種0〜20モル%からなり、ジオール成分がエチレングリコールからなるポリエチレンナフタレート系樹脂である。
ポリエチレンナフタレート系樹脂の固有粘度(IV)は、0.5〜1.0dl/gであることが好ましく、より好ましくは0.55〜0.90dl/g、さらに好ましくは0.6〜0.85dl/gである。固有粘度が1.0dl/gより大きいと、射出成形時に加わる樹脂圧力の増加により、ゲート部分(容器の底部)が白化する外観不良を起こすことがある。固有粘度が0.5dl/g未満であると、ポリエチレンナフタレート系樹脂の結晶性が高くなり、プリフォームを成形したときに結晶化し、ブロー成形体が白濁することがあるため好ましくない。なお、固有粘度は、樹脂0.6gをフェノール/テトラクロロエタン=3/2(重量比)混合溶媒50ml中に加熱溶融した後、室温に冷却し、得られた樹脂溶液の粘度を、オストワルド式粘度管を用いて35℃の温度条件で測定し、得られた溶液粘度のデータから求めた。
ポリエチレンナフタレート系樹脂は、従来公知の製造方法によって製造することができる。すなわちジカルボン酸とジオール成分とを直接反応させて水を留去しエステル化した後、減圧下に重縮合を行う直接エステル化法、またはジカルボン酸ジメチルエステルとジオール成分とを反応させてメチルアルコールを留去しエステル交換させた後、減圧下に重縮合を行うエステル交換法などにより製造される。更に極限粘度数を増大させるために固相重合を行うことができる。
上記のエステル交換反応、エステル化反応および重縮合反応時には、触媒および安定剤を使用することが好ましい。エステル交換触媒としてはマグネシウム化合物、マンガン化合物、カルシウム化合物、亜鉛化合物などが使用され、例えばこれらの酢酸塩、モノカルボン酸塩、アルコラート、および酸化物などが挙げられる。またエステル化反応は触媒を添加せずに、ジカルボン酸成分およびジオール成分のみで実施することが可能であるが、重縮合触媒の存在下に実施することもできる。重縮合触媒としては、ゲルマニウム化合物、チタン化合物、アンチモン化合物などが使用可能であり、例えば二酸化ゲルマニウム、水酸化ゲルマニウム、ゲルマニウムアルコラート、チタンテトラブトキサイド、チタンテトライソプロポキサイド、および蓚酸チタンなどが挙げられる。安定剤としてはリン化合物を用いることが好ましい。好ましいリン化合物としては、リン酸およびそのエステル、亜リン酸およびそのエステル並びに次亜リン酸およびそのエステルなどが挙げられる。またエステル化反応時には、ジエチレングリコール副生を抑制するためにトリエチルアミンなどの第3級アミン、水酸化テトラエチルアンモニウムなどの水酸化第4級アンモニウム、および炭酸ナトリウムなどの塩基性化合物を添加することもできる。
<B成分について>
本発明の樹脂組成物を構成するカルボジイミド化合物は、カルボジイミド基(−N=C=N−)を分子内に有する化合物である。
分子内に1個のカルボジイミド基を有するモノカルボジイミドとしては、例えば、N,N′−ジ−2,6−ジイソプロピルフェニルカルボジイミド、N,N′−ジフェニルカルボジイミド、N,N′−ジ−2,6−ジメチルフェニルカルボジイミド、N,N′−ジ−2,6−ジ−tert−ブチルフェニルカルボジイミド、N−トリル−N′−フェニルカルボジイミド、N,N′−ジ−p−ニトロフェニルカルボジイミド、N,N′−ジ−p−アミノフェニルカルボジイミド、N,N′−ジ−p−ヒドロキシフェニルカルボジイミド、N−オクタデシル−N′−フェニルカルボジイミド、N−ベンジル−N′−フェニルカルボジイミド、N,N′−ジ−o−エチルフェニルカルボジイミド、N,N′−ジ−p−エチルフェニルカルボジイミド、N,N′−ジ−o−イソプロピルフェニルカルボジイミド、N,N′−ジ−p−イソプロピルフェニルカルボジイミド、N,N′−ジ−o−イソブチルフェニルカルボジイミド、N,N′−ジ−p−イソブチルフェニルカルボジイミド、N,N′−ジ−2,6−ジエチルフェニルカルボジイミド、N,N′−ジ−2−エチル−6−イソプロピルフェニルカルボジイミド、N,N′−ジ−2−イソブチル−6−イソプロピルフェニルカルボジイミド、N,N′−ジ−2,4,6−トリメチルフェニルカルボジイミド、N,N′−ジ−2,4,6−トリイソプロピルフェニルカルボジイミド、N,N′−ジ−2,4,6−トリイソブチルフェニルカルボジイミド、ジ−β−ナフチルカルボジイミド、N,N′−ジ−o−トリルカルボジイミド、N−トリル−N′−シクロヘキシルカルボジイミド、N,N′−ジ−p−トリルカルボジイミド、N,N′−ベンジルカルボジイミド、N−オクタデシル−N′−トリルカルボジイミド、N−シクロヘキシル−N′−トリルカルボジイミド、N−ベンジル−N′−トリルカルボジイミド等の芳香族モノカルボジイミド、N,N′−ジオクチルデシルカルボジイミド、N,N′−ジ−シクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、ジメチルカルボジイミド、ジイソブチルカルボジイミド、ジオクチルカルボジイミド、t−ブチルイソプロピルカルボジイミド、ジ−t−ブチルカルボジイミド等の脂肪族/または脂環族モノカルボジイミドが挙げられる。
同一分子内に2個以上のカルボジイミド基を有するポリカルボジイミドとしては、例えば、ポリ(p−フェニレンカルボジイミド)、ポリ(m−フェニレンカルボジイミド)、ポリ(4,4′−ジフェニルメタンカルボジイミド)、ポリ(メチル−ジイソプロピルフェニレンカルボジイミド)、ポリ(トリイソプロピルフェニレンカルボジイミド)、ポリ(トリイルカルボジイミド)、ポリ(ジイソプロピルフェニレンカルボジイミド)、p−フェニレン−ビス−ジ−o−トリルカルボジイミド、p−フェニレン−ビス−ジシクロヘキシルカルボジイミド、エチレン−ビス−ジフェニルカルボジイミド、ヘキサメチレン−ビス−ジシクロヘキシルカルボジイミド等が挙げられる。これらの化合物のうち、カルボジイミド基を2つ含有するカルボジイミドはp−フェニレン−ビス−ジ−o−トリルカルボジイミド、p−フェニレン−ビス−ジシクロヘキシルカルボジイミド、エチレン−ビス−ジフェニルカルボジイミド、ヘキサメチレン−ビス−ジシクロヘキシルカルボジイミドである。
ポリカルボジイミドは、上述のモノカルボジイミドをポリマー化させて製造することができ、また市販品を用いることもできる。ポリカルボジイミドの市販品としては、例えば、ラインヘミー社製スタバックゾールP、ラインヘミー社製スタバックゾールP−100、ラインヘミー社製スタバックゾールP−400などの芳香族ポリカルボジイミド、日清紡ケミカル社製LA−1、日清紡ケミカル社製HMV−15CAなどの脂肪族/または脂環族ポリカルボジイミドを挙げることができる。
更に、そのカルボジイミドは環状であることがより好ましい。環状であることにより、イソシアネートガスの発生が抑制でき、作業環境が良くなる。
環状カルボジイミド化合物において、下記式(1)で表される化合物が挙げられる。
Figure 0006846990
式中Xは、下記式(1−1)で表される4価の基である。式中Ar〜Arは各々独立に、炭素数1〜6のアルキル基もしくはフェニル基で置換されていてもよい、オルトフェニレン基または1,2−ナフタレン−ジイル基である。置換基の炭素数1〜6のアルキル基として、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基などが挙げられる。
Figure 0006846990
環状カルボジイミド化合物は環状構造を有する。環状構造は、カルボジイミド基(−N=C=N−)を1個有しその第一窒素と第二窒素とが結合基により結合されている。一つの環状構造中には、1個のカルボジイミド基のみを有する。
環状カルボジイミド化合物の分子量は、好ましくは100〜1,000である。分子量が、100より小さいと、環状カルボジイミド化合物について構造の安定性や揮発性が問題となる場合がある。また分子量が、1,000より大きいと、環状カルボジイミドの製造上、希釈系での合成が必要となったり、収率が低下したりするため、コスト面で問題となる場合がある。かかる観点より、より好ましくは100〜750であり、さらに好ましくは250〜750である。
かかる環状カルボジイミド化合物としては、下記化合物を挙げることができる。
Figure 0006846990
Figure 0006846990
Figure 0006846990
また、これらの環状カルボジイミド化合物は、各種の文献および特許公報などで周知の方法(例えば、国際公開WO10/071213号パンフレットに記載の方法)により製造することができる。
B成分の含有量は、A成分100重量部に対し、0.1〜4.9重量部であり、0.2〜4重量部が好ましく、0.3〜3重量部がより好ましく、0.4〜2重量部がさらに好ましい。B成分の含有量が0.1重量部未満では、均一延伸性が悪化する。一方、含有量が4.9重量部を超えると、ゲル化するとともに、延伸ブロー成形性が悪化しブロー成形が困難となる。
<C成分について>
本発明に使用されるエポキシ化合物はグリシジルエーテルエステル系エポキシ化合物である。理由が定かではないが、グリシジルエーテルエステル系エポキシ化合物を用いることで、エーテルエポキシとエステルエポキシの反応速度が異なることにより、ゲル化を抑えることができると推測される。
グリシジルエーテルエステル系エポキシ化合物は具体例として、オキシナフトエ酸グリシジルエーテルエステル、安息香酸グリシジルエーテルエステル、tert−ブチル−安息香酸グリシジルエーテルエステル、P−トルイル酸グリシジルエーテルエステル、シクロヘキサンカルボン酸グリシジルエーテルエステル、ペラルゴン酸グリシジルエーテルエステル、ステアリン酸グリシジルエーテルエステル、ラウリン酸グリシジルエーテルエステル、パルミチン酸グリシジルエーテルエステル、ベヘン酸グリシジルエーテルエステル、バーサティク酸グリシジルエーテルエステル、オレイン酸グリシジルエーテルエステル、リノール酸グリシジルエーテルエステルなどが挙げられる。その中でも、ナフタレン環を有するグリシジルエーテルエステル系エポキシ化合物が好ましく、オキシナフトエ酸グリシジルエーテルエステルがより好ましい。オキシナフトエ酸としては、2−ヒドロキシ−6−ナフトエ酸が最も好ましく用いられるが、その他、1−ヒドロキシ−6−ナフトエ酸、2−ヒドロキシ−7−ナフトエ酸、1−ヒドロキシ−4−ナフトエ酸、1−ヒドロキシ−5−ナフトエ酸、2−ヒドロキシ−5−ナフトエ酸、2−ヒドロキシ−8−ナフトエ酸、2−ヒドロキシ−3−ナフトエ酸、1−ヒドロキシ−7−ナフトエ酸あるいはこれらの混合物等も用いることができる。
ナフタレン環を有するグリシジルエーテルエステル系エポキシ化合物はナフタレン環を有するためポリエチレンナフタレート系樹脂との反応性を高めることができて、更なるゲル化抑制の効果が期待できる。
上記オキシナフトエ酸グリシジルエーテルエステの中でも下記式(2)で表される化合物が好ましく用いられる。
Figure 0006846990
[式中nは0又は1〜10の整数である。好ましくは0、1又は2、更に好ましくは0である。]
C成分の含有量は、A成分100重量部に対し、0.1〜4.9重量部であり、0.2〜4重量部が好ましく、0.3〜3重量部がより好ましく、0.4〜2重量部がさらに好ましい。C成分の含有量が0.1重量部未満では、ゲル化することにより、均一延伸性が悪化する。一方、4.9重量部を超えても、均一延伸性が悪化する。
なお、B成分とC成分の含有量の合計は、A成分100重量部に対し、0.2〜5.0重量部であることが好ましく、0.4〜4.0重量部がより好ましく、0.6〜3.0重量部がさらに好ましく、0.8〜2.0重量部が特に好ましい。B成分とC成分の合計含有量が0.2重量部未満では、均一延伸性が悪化する場合があり、5重量部を超えると、延伸ブロー成形性が悪化し、またゲル化することにより均一延伸性が悪化する場合がある。
<その他の成分>
なお、本発明の樹脂組成物は、本発明の趣旨に反しない範囲で、加熱助剤、酸化防止剤、離型剤等の各添加剤を含むことが出来る。
<加熱助剤>
本発明の樹脂組成物は、ブロー成形時の赤外線(IR)ヒーターによる加熱効率を良くし、加熱時間を短縮する目的で、加熱助剤を含むことが出来る。かかる加熱助剤としてはフタロシアニン系近赤外線吸収剤、ATO、ITO、酸化イリジウムおよび酸化ルテニウムおよび酸化イモニウムなどの金属酸化物系近赤外線吸収剤、ホウ化ランタン、ホウ化セリウムおよびホウ化タングステンなどの金属ホウ化物系や酸化タングステン系近赤外線吸収剤などの近赤外吸収能に優れた各種の金属化合物、ならびに炭素フィラーが好適に例示される。かかるフタロシアニン系近赤外線吸収剤としてはたとえば三井化学(株)製MIR−362が市販され容易に入手可能である。炭素フィラーとしてはカーボンブラック、グラファイト(天然、および人工のいずれも含む)およびフラーレンなどが例示され、好ましくはカーボンブラックおよびグラファイトである。これらは単体または2種以上を併用して使用することができる。フタロシアニン系近赤外線吸収剤の含有量は、A成分100重量部に対し、0.0005〜0.2重量部が好ましく、0.0008〜0.1重量部がより好ましく、0.001〜0.07重量部がさらに好ましい。上記含有量が0.0005重量部より少ない場合は加熱助剤としての効果が十分に得られずに、ブロー成形時のプリフォームの加熱に時間を多く要する場合がある。また、かかる含有量が0.2重量部よりも多い場合、ブロー成形の過熱時に加熱助剤がブリードアウトする場合がある。金属酸化物系近赤外線吸収剤、金属ホウ化物系近赤外線吸収剤、酸化タングステン系赤外線吸収剤および炭素フィラーの含有量は、樹脂組成物中、0.1〜500ppm(重量割合)の範囲が好ましく、0.5〜300ppmの範囲がより好ましい。上記含有量が0.1ppmより少ない場合は加熱助剤としての効果が十分に得られずに、ブロー成形時のプリフォームの加熱に時間を多く要する場合がある。また、かかる含有量が500ppmよりも多い場合、樹脂成分が大きく分解する場合がある。
<酸化防止剤>
本発明の樹脂組成物は酸化防止剤として、ヒンダードフェノール系化合物、ホスファイト系化合物、ホスホナイト系化合物、およびチオエーテル系化合物からなる群より選ばれる少なくとも1種の酸化防止剤を含むことができる。酸化防止剤を配合することにより、成形加工時の色相や流動性が安定するだけでなく、耐加水分解性の向上にも効果がある。
ヒンダードフェノール系化合物としては、例えば、α−トコフェロール、ブチルヒドロキシトルエン、シナピルアルコール、ビタミンE、n−オクタデシル−β−(4’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェル)プロピオネート、2−tert−ブチル−6−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシベンジル)−4−メチルフェニルアクリレート、2,6−ジ−tert−ブチル−4−(N,N−ジメチルアミノメチル)フェノール、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホネートジエチルエステル、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−tert−ブチルフェノール)、4,4’−メチレンビス(2,6−ジ−tert−ブチルフェノール)、2,2’−メチレンビス(4−メチル−6−シクロヘキシルフェノール)、2,2’−ジメチレン−ビス(6−α−メチル−ベンジル−p−クレゾール)2,2’−エチリデン−ビス(4,6−ジ−tert−ブチルフェノール)、2,2’−ブチリデン−ビス(4−メチル−6−tert−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート、1,6−へキサンジオールビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ビス[2−tert−ブチル−4−メチル6−(3−tert−ブチル−5−メチル−2−ヒドロキシベンジル)フェニル]テレフタレート、3,9−ビス{2−[3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]−1,1,−ジメチルエチル}−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、4,4’−チオビス(6−tert−ブチル−m−クレゾール)、4,4’−チオビス(3−メチル−6−tert−ブチルフェノール)、2,2’−チオビス(4−メチル−6−tert−ブチルフェノール)、ビス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)スルフィド、4,4’−ジ−チオビス(2,6−ジ−tert−ブチルフェノール)、4,4’−トリ−チオビス(2,6−ジ−tert−ブチルフェノール)、2,2−チオジエチレンビス−[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,4−ビス(n−オクチルチオ)−6−(4−ヒドロキシ−3’,5’−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン、N,N’−ヘキサメチレンビス−(3,5−ジ−tert−ブチル−4−ヒドロキシヒドロシンナミド)、N,N’−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニル]ヒドラジン、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−tert−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)イソシアヌレート、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、1,3,5−トリス(4−tert−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)イソシアヌレート、1,3,5−トリス2[3(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]エチルイソシアヌレート、およびテトラキス[メチレン−3−(3’,5’−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタンなどが例示される。上記化合物の中でも、テトラキス[メチレン−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート]メタン、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、および3,9−ビス[2−{3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカンが好ましく利用される。特にオクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネートが好ましい。これらはいずれも入手容易である。上記ヒンダードフェノール系化合物は、単独でまたは2種以上を組み合わせて使用することができる。
ホスファイト系化合物としては、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ−iso−プロピルフェニル)ホスファイト、トリス(ジ−n−ブチルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−エチルフェニル)ペンタエリスリトールジホスファイト、ビス{2,4−ビス(1−メチル−1−フェニルエチル)フェニル}ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、およびジシクロヘキシルペンタエリスリトールジホスファイト等が挙げられる。さらに他のホスファイト系化合物としては二価フェノール類と反応し環状構造を有するものも使用できる。例えば、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2,4−ジ−tert−ブチルフェニル)ホスファイト、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、および2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト等が挙げられる。好適なホスファイト系化合物は、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、およびビス{2,4−ビス(1−メチル−1−フェニルエチル)フェニル}ペンタエリスリトールジホスファイトである。
また、例えば2,4,8,10−テトラ−t−ブチル−6−[3−(3−メチル−4−ヒドロキシ−5−t−ブチルフェニル)プロポキシ]ジベンゾ[d,f][1,3,2]ジオキサホスフェピン〔「スミライザーGP」(住友化学株式会社製)として市販されている。〕、2,10−ジメチル−4,8−ジ−t−ブチル−6−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロポキシ]−12H−ジベンゾ[d,g][1,3,2]ジオキサホスホシン、2,4,8,10−テトラ−t−ブチル−6−[3−(3、5−ジ−t−ブチル−4−ヒドロキシフェニル)プロポキシ]ジベンゾ[d,f][1,3,2]ジオキサホスフェピン、2,4,8,10−テトラ−t−ペンチル−6−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロポキシ]−12−メチル−12H−ジベンゾ[d,g][1,3,2]ジオキサホスホシン、2,10−ジメチル−4,8−ジ−t−ブチル−6−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]−12H−ジベンゾ[d,g][1,3,2]ジオキサホスホシン、2,4,8,10−テトラ−t−ペンチル−6−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]−12−メチル−12H−ジベンゾ[d,g][1,3,2]ジオキサホスホシン、2,4,8,10−テトラ−t−ブチル−6−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]−ジベンゾ[d,f][1,3,2]ジオキサホスフェピン、2,10−ジメチル−4,8−ジ−t−ブチル−6−(3,5−ジ−t−ブチル−4−ヒドロキシベンゾイルオキシ)−12H−ジベンゾ[d,g][1,3,2]ジオキサホスホシン、2,4,8,10−テトラ−t−ブチル−6−(3,5−ジ−t−ブチル−4−ヒドロキシベンゾイルオキシ)−12−メチル−12H−ジベンゾ[d,g][1,3,2]ジオキサホスホシン、2,10−ジメチル−4,8−ジ−t−ブチル−6−[3−(3−メチル−4−ヒドロキシ−5−t−ブチルフェニル)プロポキシ]−12H−ジベンゾ[d,g][1,3,2]ジオキサホスホシン、2,4,8,10−テトラ−t−ブチル−6−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロポキシ]−12H−ジベンゾ[d,g][1,3,2]ジオキサホスホシン、2,10−ジエチル−4,8−ジ−t−ブチル−6−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロポキシ]−12H−ジベンゾ[d,g][1,3,2]ジオキサホスホシン、2,4,8,10−テトラ−t−ブチル−6−[2,2−ジメチル−3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロポキシ]−ジベンゾ[d,f][1,3,2]ジオキサホスフェピンなどを挙げることができる。これらはいずれも入手容易である。上記ホスファイト系化合物は、単独でまたは2種以上を組み合わせて使用することができる。
ホスホナイト系化合物としては、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−n−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト等が挙げられる。テトラキス(ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトが好ましく、テトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトがより好ましい。かかるホスホナイト系化合物は上記アルキル基が2以上置換したアリール基を有するホスファイト系化合物との併用可能であり好ましい。ホスホナイト系化合物としてはテトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイトが好ましく、該ホスホナイトを主成分とする安定剤は、Sandostab P−EPQ(商標、Clariant社製)およびIrgafos P−EPQ(商標、CIBA SPECIALTY CHEMICALS社製)として市販されておりいずれも利用できる。上記ホスホナイト系化合物は、単独でまたは2種以上を組み合わせて使用することができる。
チオエーテル系化合物の具体例として、ジラウリルチオジプロピオネート、ジトリデシルチオジプロピオネート、ジミリスチルチオジプロピオネート、ジステアリルチオジプロピオネート、ペンタエリスリトール−テトラキス(3−ラウリルチオプロピオネート)、ペンタエリスリトール−テトラキス(3−ドデシルチオプロピオネート)、ペンタエリスリトール−テトラキス(3−オクタデシルチオプロピオネート)、ペンタエリスリトールテトラキス(3−ミリスチルチオプロピオネート)、ペンタエリスリトール−テトラキス(3−ステアリルチオプロピオネート)等が挙げられる。上記チオエーテル系化合物は、単独でまたは2種以上を組み合わせて使用することができる。
酸化防止剤の含有量は、A成分100重量部に対し、0.01〜2重量部が好ましく、より好ましくは0.03〜1重量部、さらに好ましくは0.05〜0.5重量部である。酸化防止剤の含有量が0.01重量部より少ない場合は酸化防止効果が不足し、成形加工時の色相や流動性が不安定になるだけでなく、耐加水分解性も悪化する場合がある。また、かかる含有量が2重量部よりも多い場合、酸化防止剤由来の反応成分などがかえって耐加水分解性を悪化させてしまう場合がある。
また、前記ヒンダードフェノール系化合物とホスファイト系化合物、ホスホナイト系化合物、チオエーテル系化合物のいずれか2種類以上を組み合わせて使用することが好ましい。ヒンダードフェノール系化合物とホスファイト系化合物、ホスホナイト系化合物、チオエーテル系化合物のいずれか2種類以上を組み合わせて使用することで、安定剤としての相乗効果が発揮され、より成形加工時の色相、流動性の安定化、耐加水分解性の向上に効果がある。
<離型剤>
本発明の樹脂組成物は離型剤を含むことができる。離型剤として具体的には、脂肪酸、脂肪酸金属塩、オキシ脂肪酸、パラフィン、低分子量のポリオレフィン、脂肪酸アミド、アルキレンビス脂肪酸アミド、脂肪族ケトン、脂肪酸部分鹸化エステル、脂肪酸低級アルコールエステル、脂肪酸多価アルコールエステル、脂肪酸ポリグリコールエステルおよび変性シリコーン等を挙げることができる。これらを配合することで機械特性、成形性、耐熱性に優れた成形品を得ることができる。
脂肪酸としては炭素数6〜40のものが好ましく、具体的には、オレイン酸、ステアリン酸、ラウリン酸、ヒドロキシステアリン酸、ベヘン酸、アラキドン酸、リノール酸、リノレン酸、リシノール酸、パルミチン酸、モンタン酸およびこれらの混合物等が挙げられる。脂肪酸金属塩としては炭素数6〜40の脂肪酸のアルカリ(土類)金属塩が好ましく、具体的にはステアリン酸カルシウム、モンタン酸ナトリウム、モンタン酸カルシウム等が挙げられる。
オキシ脂肪酸としては1,2−オキシステリン酸等が挙げられる。パラフィンとしては炭素数18以上のものが好ましく、流動パラフィン、天然パラフィン、マイクロクリスタリンワックス、ペトロラクタム等が挙げられる。
低分子量のポリオレフィンとしては例えば分子量5000以下のものが好ましく、具体的にはポリエチレンワックス、マレイン酸変性ポリエチレンワックス、酸化タイプポリエチレンワックス、塩素化ポリエチレンワックス、ポリプロピレンワックス等が挙げられる。
脂肪酸アミドとしては炭素数6以上のものが好ましく、具体的にはオレイン酸アミド、エルカ酸アミド、ベヘン酸アミド等が挙げられる。
アルキレンビス脂肪酸アミドとしては炭素数6以上のものが好ましく、具体的にはメチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド、N,N−ビス(2−ヒドロキシエチル)ステアリン酸アミド等が挙げられる。
脂肪族ケトンとしては炭素数6以上のものが好ましく、高級脂肪族ケトン等が挙げられる。
脂肪酸部分鹸化エステルとしてはモンタン酸部分鹸化エステル等が挙げられる。脂肪酸低級アルコールエステルとしてはステアリン酸エステル、オレイン酸エステル、リノール酸エステル、リノレン酸エステル、アジピン酸エステル、ベヘン酸エステル、アラキドン酸エステル、モンタン酸エステル、イソステアリン酸エステル等が挙げられる。
脂肪酸多価アルコールエステルとしては、グリセロールトリステアレート、グリセロールジステアレート、グリセロールモノステアレート、ペンタエリスルトールテトラステアレート、ペンタエリスルトールトリステアレート、ペンタエリスルトールジミリステート、ペンタエリスルトールモノステアレート、ペンタエリスルトールアジペートステアレート、ソルビタンモノベヘネート等が挙げられる。脂肪酸ポリグリコールエステルとしてはポリエチレングリコール脂肪酸エステル、ポリトリメチレングリコール脂肪酸エステル、ポリプロピレングリコール脂肪酸エステル等が挙げられる。
変性シリコーンとしてはポリエーテル変性シリコーン、高級脂肪酸アルコキシ変性シリコーン、高級脂肪酸含有シリコーン、高級脂肪酸エステル変性シリコーン、メタクリル変性シリコーン、フッ素変性シリコーン等が挙げられる。
そのうち脂肪酸、脂肪酸金属塩、オキシ脂肪酸、脂肪酸エステル、脂肪酸部分鹸化エステル、パラフィン、低分子量ポリオレフィン、脂肪酸アミド、アルキレンビス脂肪酸アミドが好ましく、脂肪酸部分鹸化エステル、アルキレンビス脂肪酸アミドがより好ましい。なかでもモンタン酸エステル、モンタン酸部分鹸化エステル、ポリエチレンワックス、酸価ポリエチレンワックス、ソルビタン脂肪酸エステル、エルカ酸アミド、エチレンビスステアリン酸アミドが好ましく、特にモンタン酸部分鹸化エステル、エチレンビスステアリン酸アミドが好ましい。
離型剤は、1種類で用いても良いし2種以上を組み合わせて用いても良い。離型剤の含有量は、A成分100重量部に対し、好ましくは0.01〜3重量部、より好ましくは0.03〜2重量部である。
<プリフォームの成形>
本発明の樹脂組成物は、通常ペレットとして得られ、これを原料としてプリフォームを成形する。成形方法は、射出成形、プレス成形、押出成形など各種成形方法を選択出来るが、プリフォームを結晶化させずに急冷する観点から、射出成形、プレス成形が好ましい。射出成形においては、通常のコールドランナー方式の成形法だけでなく、ホットランナー方式の成形法も可能である。かかる射出成形においては、通常の成形方法だけでなく、適宜目的に応じて、射出圧縮成形、射出プレス成形、発泡成形(超臨界流体の注入によるものを含む)、インサート成形、インモールドコーティング成形、急速加熱冷却金型成形などの射出成形法を用いて成形品を得ることができる。例えばブロー成形用のプリフォームの射出成形であれば、各ペレットを130〜170℃の熱風乾燥機で5時間以上予備乾燥した後、シリンダ温度260〜300℃で溶融し、射出成形するのが好ましい。予備乾燥温度が130℃未満では乾燥が不十分となり、ペレット中に残存した水分によって樹脂分解を起こし、固有粘度が安定しない場合があり、予備乾燥温度が170℃より高いとペレットが黄変し、成形体の外観が損なわれる場合がある。成形する際の金型温度は5〜40℃が好ましく、10〜30℃が更に好ましい。金型温度が5℃未満では、金型の結露により成形品にシルバーなどの外観が多発する場合があり、金型温度が40℃を超えると成形品の結晶化が進み、ブロー成形の際に容器が破損する場合がある。
<ブロー成形>
本発明の容器の作製方法は、任意の方法が採用される。例えば、ダイレクトブロー成形、押出ダイレクトブロー成形、1ステージの2軸延伸ブロー成形、2ステージの2軸延伸ブロー成形などを挙げることができるが、2ステージの2軸延伸ブロー成形が好ましい。
本発明の容器は、縦2倍以上、横2倍以上の延伸倍率が好ましく、縦2.5倍以上、横2.5倍以上の延伸倍率が更に好ましい。延伸倍率が縦2倍未満、横2倍未満の場合、容器に延伸ムラが発生することがある。さらに、縦方向に少なくとも2倍以上延伸し、かつ、縦方向への延伸の開始から完了までの間に、横方向への2倍以上の延伸を開始することが好ましい。
2ステージにて2軸延伸ブローする場合、ブロー成形する前に予め加熱(予備加熱)しておくのが好ましい。予備加熱温度は、70〜140℃が好ましく、90℃〜130℃がより好ましく、100℃〜110℃が最も好ましい。予備加熱温度が70℃未満では、後工程の本加熱時間に時間を要し、予備加熱温度が140℃を超えると樹脂組成物が結晶化してしまい、ブロー成形中に容器が破損することがある。予備加熱の方法は、熱風乾燥機内でのプリフォームの保管、赤外線ヒーター加熱など任意の方法を取ることができる。
ブロー成形時の加熱(本加熱)は、プリフォーム内部からの加熱(内部加熱)、プリフォーム外部からの加熱(外部加熱)の両方から加熱しても良い。加熱方式は、加熱効率が良いため赤外線加熱方式が好ましい。ここで、樹脂温度は130〜160℃程度に温める必要がある。かかる樹脂温度範囲でブロー成形することで、厚みムラが少なく、破れなどのない良好なブロー成形体を得ることが出来る。
以下、実施例により本発明を詳述する、ただし、本発明はこれらに限定されるものではない。
評価は以下の方法により実施した。
(1).ゲル化
下記(ISO試験片の成形)に記載のISO試験片の成形時のトルクと成形品の外観によりゲル化の状況を確認し、下記の基準で評価した。ゲル化した場合、均一延伸性が悪化する。
○ ・・・ 成形時にトルク上昇がほとんど無く、ゲル化がほとんど見られない。
× ・・・ 成形時にトルク上昇が有り、ゲル化が見られる。
×× ・・・ 成形時に著しくトルクが上昇し、激しいゲル化が見られる。
(2).高温SS引張試験による延伸ブロー成形性および均一延伸性の評価
150℃で10分間予備加熱したISO引張試験片を恒温槽付の引張試験機(島津製作所(製)AG−10KNX)にチャック間距離110mmで取り付けた。恒温槽内の温度が150℃に到達してから6分後に試験速度1000mm/minにて試験を開始し、引張試験のSSカーブを得た。
(I)延伸ブロー成形性
試験片を330mmまで延伸させ、下記の基準で評価した。
○ ・・・ 試験片が切れずに330mmまで延伸できた。
× ・・・ 試験片が330mmに到達する前に切断した。
(II)均一延伸性
(i)歪み硬化開始位置
得られたSSカーブは、実施例1〜3および比較例3〜5においては図1に示されるように初期の降伏歪みまでの立ち上がる領域(領域1)、中間のやや立下り部分(領域2)、立ち下り部分がほとんどない安定した領域(領域3)、最後の引張強度の立ち上がり領域(領域4)とに分けることができた。領域1と領域2の境を降伏歪みとし、その際の応力を降伏応力とした。なお、比較例1、2および6においては、中間のやや立下り部分(領域2)および立ち下り部分がほとんどない安定した領域(領域3)が観察されなかったため降伏応力は算出できなかった。次に、最後の引張強度の立ち上がり部分で線形近似曲線数式を導き出し、その線形近似曲線数式のピアソン積分相関係数Rの2乗であるR−2乗値が0.95以上で、傾きが0.01以上となる点の歪みを歪み硬化開始位置とした。歪み硬化開始位置が降伏歪みの後に存在することが好ましい。
(ii)降伏後応力低下率
初期の降伏歪みから歪み硬化開始位置までにおける最も低い応力値(最低応力値)を検出し、下記式(a)により降伏後応力低下率を算出した。降伏後応力低下率は18%以下であることが好ましい。
Figure 0006846990
(式中、Sは降伏応力値、Sは降伏歪みから歪み硬化開始位置までにおける最も低い応力値(最低応力値)を表す。)
歪み硬化開始位置が降伏歪みの後に存在し、かつ降伏後応力低下率が18%以下である場合、良好な均一延伸性が得られる。
(3).ブロー成形による評価(延伸ブロー成形性、均一延伸性)
下記(ブロー成形)記載の方法でブロー成形を実施し、下記の評価を実施した。
(I)延伸ブロー成形性
○ ・・・ ブロー成形可能
× ・・・ ブロー成形不可能
(II)均一延伸性
○ ・・・ ボトル肉厚のバラつきが0.6mm未満である。
× ・・・ ボトル肉厚のバラつきが0.6mm以上である。
なお、本発明の実施例、比較例においては以下の材料を使用した。
<A成分>
A−I:帝人(株)製 ポリエチレンナフタレート TN8065S
<B成分>
B−I:下記の製造例で製造された環状カルボジイミド
製造例中における各値は下記の方法で求めた。
(1)環状カルボジイミド構造のNMRによる同定
NMRによる同定は、日本電子(株)製JNREX270を使用し、1H−NMR、13C−NMRによって確認した。尚、溶媒は重クロロホルムを用いた。
(2)カルボジイミド骨格のIRによる同定
カルボジイミド骨格の同定は、ニコレー(株)製Magna−750を使用し、FT−IRよってカルボジイミドに特徴的な2100〜2200cm−1の吸収ピークを確認することで行った。
[製造例1]
o−ニトロフェノール(0.11mol)とペンタエリトリチルテトラブロミド(0.025mol)、炭酸カリウム(0.33mol)、N,N−ジメチルホルムアミド200mlを攪拌装置及び加熱装置を設置した反応装置にN雰囲気下仕込み、130℃で12時間反応後、DMFを減圧により除去し、得られた固形物をジクロロメタン200mlに溶かし、水100mlで3回分液を行った。有機層を硫酸ナトリウム5gで脱水し、ジクロロメタンを減圧により除去し、中間生成物D(ニトロ体)を得た。
次に中間生成物D(0.1mol)と5%パラジウムカーボン(Pd/C)(2g)、エタノール/ジクロロメタン(70/30)400mlを、攪拌装置を設置した反応装置に仕込み、水素置換を5回行い、25℃で水素を常に供給した状態で反応させ、水素の減少がなくなったら反応を終了した。Pd/Cを回収し、混合溶媒を除去すると中間生成物E(アミン体)が得られた。
次に攪拌装置及び加熱装置、滴下ロートを設置した反応装置に、N雰囲気下、トリフェニルホスフィンジブロミド(0.11mol)と1,2−ジクロロエタン150mlを仕込み攪拌させた。そこに中間生成物E(0.025mol)とトリエチルアミン(0.25mol)を1,2−ジクロロエタン50mlに溶かした溶液を25℃で徐々に滴下した。滴下終了後、70℃で5時間反応させた。その後、反応溶液をろ過し、ろ液を水100mlで5回分液を行った。有機層を硫酸ナトリウム5gで脱水し、1,2−ジクロロエタンを減圧により除去し、中間生成物F(トリフェニルホスフィン体)が得られた。
次に、攪拌装置及び滴下ロートを設置した反応装置に、N雰囲気下、ジ−tert−ブチルジカーボネート(0.11mol)とN,N−ジメチル−4−アミノピリジン(0.055mol)、ジクロロメタン150mlを仕込み攪拌させた。そこに、25℃で中間生成物F(0.025mol)を溶かしたジクロロメタン100mlをゆっくりと滴下させた。滴下後、12時間反応させた。その後、ジクロロメタンを除去し得られた固形物を、精製することで、下記式で表されるB−I成分を得た。B−I成分の構造はNMR、IRにより確認した。
Figure 0006846990
<C成分>
C−I:下記の製造例で製造されたグリシジルエーテルエステル系エポキシ化合物
[製造例2]
1Lの4口コルベンに6−ヒドロキシ−2−ナフトエ酸95.0gとエピクロロヒドリン467gとを仕込み、窒素気流下で80℃に昇温した。次いで、テトラメチルアンモニウムクロリドの50%水溶液を80℃で2時間かけて滴下し、同温度で1時間撹拌した。さらに、48%水酸化ナトリウム水溶液87.1gを80℃で3時間かけて滴下し、同温度で30分撹拌した後、エピクロロヒドリンを減圧蒸留により除去した。残渣にトルエン560gを加えて10分撹拌した後、析出物を濾過した。ろ液を水250gで洗浄した後、48%NaOH水溶液19gを加えて、1時間還流した。さらに水250gで洗浄した後、5%リン水溶液250gで洗浄し、再び水250gで洗浄した。トルエンを減圧蒸留によって除去し、6−ヒドロキシ−2−ナフトエ酸グリシジルエーテルエステルの粗組成物105gを得た。
200mLの4口コルベンに、得られた6−ヒドロキシ−2−ナフトエ酸グリシジルエーテルエステルの粗組成物20.0gおよびメタノール80.0gを仕込んだ後、窒素気流下60℃に昇温し、6−ヒドロキシ−2−ナフトエ酸グリシジルエーテルエステルの粗組成物が溶解するまで加熱撹拌を行った。その後、7℃まで徐冷することにより晶析し、濾過により固形物を得た。得られた固形物を減圧乾燥することにより下記式で表されるC−I成分を得た。
Figure 0006846990
C−II:三菱ケミカル(株)製 JER819(グリシジルエーテルエーテル系エポキシ化合物)
C−III:ナガセケムテックス(株)製 デナコール EX−711(グリシジルエステルエステル系エポキシ化合物)
(組成物の調整)
A成分、B成分およびC成分を用いて、表1の組成をドライブレンドにて均一に予備混合した後、かかる予備混合物を第1供給口より供給し、溶融押出してペレット化した。ここで、第一供給口とは根元の供給口のことである。溶融押出は、サイドスクリューを備えた径30mmφのベント式二軸押出機[(株)日本製鋼所製TEX30α−38.5BW−3V]を用い実施した。また、押出温度は、C1/C2/C3/C4〜D=50℃/120℃/280℃/300℃とし、メインスクリュー回転数は200rpm、サイドスクリュー回転数は50rpm、吐出量は20kg/h、ベント減圧度は3kPaとした。
(ISO試験片の成形)
組成物ペレットを熱風循環式乾燥機で150℃で、5時間乾燥し、射出成形機(三菱重工業(株)製:80MSP−5)を使用して、シリンダー温度300℃、金型温度80℃にてISO527−1、ISO527−2に準拠して試験片を作成した。
成形時のトルクおよび成形で得られたISO試験片を用いて、前述のゲル化の評価を行った。また成形で得られたISO試験片を用いて前述の高温SS引張試験を行った。結果を表1に示す。
(ブロー成形)
得られたペレットを160℃、5時間熱風乾燥機で乾燥した後、東芝機械(株)製EC160NII−4Yを使用し、シリンダ温度295℃、金型温度20℃、冷却時間20秒にて成形を行い、厚み4.2mmのプリフォームを得た。次に、フロンティア(株)製FDB−1Dをブロー機として用い、1.5L容器形状のブロー金型(縦2.3倍×横3.4倍)を用いて、下記の要領で前記プリフォームの2軸延伸ブロー成形を行った。100℃、1時間熱風乾燥機内で予備加熱を行ったプリフォームをブロー成形機内にセットし、プリフォーム表面温度が150℃になるようにIR加熱ヒーターの出力を設定し、本加熱を行った。続いて、ロッド延伸速度80%、1次ブロー遅延時間0.28秒、1次ブロー時間0.3秒、1次ブロー圧1.2MPa、2次ブロー時間1.2秒、2次ブロー圧3.4MPa、金型温度20℃の条件にて成形を行い、ブロー成形を行った。
各実施例、比較例について前述の延伸ブロー成形性の評価を行った。結果を表1に示す。
Figure 0006846990
<実施例1〜3>
本発明の請求範囲内にある樹脂組成物は、ゲル化せずに、高温SS引張試験で3倍延伸も可能であり、良好な延伸ブロー成形性を有し、かつ均一延伸性にも優れていた。
<比較例1、2>
C成分としてエーテルエーテルタイプのエポキシまたはエステルエステルタイプのエポキシ化合物を使用したため、ゲル化するとともに、延伸ブロー成形性が悪化し、高温SS引張試験において降伏応力が算出できなかった。また、延伸ブロー成形もできなかった。
<比較例3>
C成分を含まないため、ゲル化することにより、均一延伸性に劣った。
<比較例4>
B成分を含まないため、均一延伸性に劣った。
<比較例5>
C成分の添加量が多いため、均一延伸性に劣った。
<比較例6>
B成分の添加量が多いため、ゲル化するとともに、延伸ブロー成形性が悪化し、高温SS引張試験において降伏応力が算出できなかった。また、延伸ブロー成形もできなかった。

Claims (5)

  1. (A)ジカルボン酸成分が、ナフタレンジカルボン酸またはそのエステル誘導体80〜100モル%並びにテレフタル酸、イソフタル酸およびこれらのエステル誘導体からなる群より選ばれる1種0〜20モル%からなり、ジオール成分がエチレングリコールからなるポリエチレンナフタレート系樹脂(A成分)100重量部に対し、(B)カルボジイミド化合物0.1〜4.9重量部(B成分)および(C)グリシジルエーテルエステル系エポキシ化合物(C成分)0.1〜4.9重量部を含有する樹脂組成物。
  2. C成分がナフタレン環を含有するグリシジルエーテルエステル系エポキシ化合物であることを特徴とする請求項1に記載の樹脂組成物。
  3. C成分が下記式(1)で表されるグリシジルエーテルエステル系エポキシ化合物であることを特徴とする請求項1または2に記載の樹脂組成物。
    Figure 0006846990
    [式中、nは0又は1〜10の整数である。]
  4. 請求項1〜3のいずれかに記載の樹脂組成物からブロー成形又は射出成形されてなる成形体。
  5. 請求項1〜3のいずれかに記載の樹脂組成物を用いてプリフォームを成形し、次に該プリフォームを縦方向に少なくとも2倍以上延伸し、かつ、縦方向への延伸の開始から完了までの間に、横方向への2倍以上の延伸を開始することを特徴とする延伸ブロー成形により成形品を得る方法。
JP2017116696A 2017-06-14 2017-06-14 均一延伸性を有するポリエチレンナフタレート系樹脂組成物およびその成形品 Active JP6846990B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017116696A JP6846990B2 (ja) 2017-06-14 2017-06-14 均一延伸性を有するポリエチレンナフタレート系樹脂組成物およびその成形品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017116696A JP6846990B2 (ja) 2017-06-14 2017-06-14 均一延伸性を有するポリエチレンナフタレート系樹脂組成物およびその成形品

Publications (2)

Publication Number Publication Date
JP2019001880A JP2019001880A (ja) 2019-01-10
JP6846990B2 true JP6846990B2 (ja) 2021-03-24

Family

ID=65007375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017116696A Active JP6846990B2 (ja) 2017-06-14 2017-06-14 均一延伸性を有するポリエチレンナフタレート系樹脂組成物およびその成形品

Country Status (1)

Country Link
JP (1) JP6846990B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH039948A (ja) * 1989-06-06 1991-01-17 Toray Ind Inc ポリエステル組成物
JP3247790B2 (ja) * 1994-03-16 2002-01-21 東レ株式会社 ポリエステルモノフィラメントおよび工業用織物
JP2006321933A (ja) * 2005-05-20 2006-11-30 Teijin Ltd ポリエチレンナフタレート樹脂組成物およびその製造方法
JP6181582B2 (ja) * 2014-03-14 2017-08-16 上野製薬株式会社 液晶ポリエステル樹脂組成物

Also Published As

Publication number Publication date
JP2019001880A (ja) 2019-01-10

Similar Documents

Publication Publication Date Title
US8722813B2 (en) Resin composition
JP6787326B2 (ja) ポリエステル樹脂及び該ポリエステル樹脂の製造方法並びにポリエステル樹脂組成物
KR102049411B1 (ko) 내약품성이 우수한 고분자 수지 조성물
JPWO2009099225A1 (ja) 樹脂組成物および成形品
KR20130055234A (ko) 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드 및 이를 이용한 성형제품
KR20140058549A (ko) 폴리유산 수지 조성물, 그 제조 방법 및 그것으로 이루어지는 성형품
JP2006265399A (ja) 脂肪族ポリエステル樹脂組成物
JP5173747B2 (ja) ポリ乳酸組成物の製造方法
JP2003192883A (ja) ポリ乳酸系樹脂組成物、成形品及びその製造方法
JP2016089162A (ja) オーバーヘッドコンソール用耐薬品性高分子樹脂組成物
JP5874642B2 (ja) ポリ乳酸樹脂およびその製造方法
KR101801702B1 (ko) 내충격성 및 내열성이 우수한 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드 및 이를 이용한 성형제품
KR102042692B1 (ko) 내약품성이 우수한 고내열 고분자 수지 조성물
JP6811628B2 (ja) 熱可塑性ポリエステル樹脂組成物およびその成形品
JP6259700B2 (ja) ポリエステル樹脂、フィルム及び成形体
JP6846990B2 (ja) 均一延伸性を有するポリエチレンナフタレート系樹脂組成物およびその成形品
WO2011052252A1 (ja) ポリ乳酸樹脂組成物、ポリ乳酸樹脂組成物の製造方法、成形品、携帯電話機用卓上ホルダー、携帯電話機の内部シャーシ部品、電子機器用筐体及び電子機器用内部部品
JP6761284B2 (ja) 熱可塑性ポリエステル樹脂組成物およびその成形品
JP6857542B2 (ja) 熱可塑性ポリエステル樹脂組成物およびその成形品
KR102046493B1 (ko) 자동차, 전기전자기기, 가전기기, 사무기기 또는 생활용품용 부품
KR102362662B1 (ko) 폴리에스터 수지 조성물
JPS586745B2 (ja) ネツアンテイカポリエステルソセイブツ
JP2006104361A (ja) ポリエステル樹脂組成物
JP2021152133A (ja) ポリエチレンナフタレート樹脂組成物からなる成形品
JP6902348B2 (ja) 熱可塑性ポリエステル樹脂組成物、その製造方法およびそれからなる成形品

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210302

R150 Certificate of patent or registration of utility model

Ref document number: 6846990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150