JP6825251B2 - 発光素子 - Google Patents

発光素子 Download PDF

Info

Publication number
JP6825251B2
JP6825251B2 JP2016137342A JP2016137342A JP6825251B2 JP 6825251 B2 JP6825251 B2 JP 6825251B2 JP 2016137342 A JP2016137342 A JP 2016137342A JP 2016137342 A JP2016137342 A JP 2016137342A JP 6825251 B2 JP6825251 B2 JP 6825251B2
Authority
JP
Japan
Prior art keywords
light emitting
light
emitting element
layer
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016137342A
Other languages
English (en)
Other versions
JP2018010914A (ja
Inventor
直輝 城岸
直輝 城岸
櫻井 淳
淳 櫻井
村上 朱実
朱実 村上
近藤 崇
崇 近藤
純一朗 早川
純一朗 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2016137342A priority Critical patent/JP6825251B2/ja
Priority to US15/581,686 priority patent/US10193010B2/en
Priority to CN201710431945.2A priority patent/CN107611778A/zh
Publication of JP2018010914A publication Critical patent/JP2018010914A/ja
Application granted granted Critical
Publication of JP6825251B2 publication Critical patent/JP6825251B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/14Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices
    • H01L31/147Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers
    • H01L31/153Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers formed in, or on, a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022416Electrodes for devices characterised by at least one potential jump barrier or surface barrier comprising ring electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0265Intensity modulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18311Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation
    • H01S5/18313Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation by oxidizing at least one of the DBR layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18322Position of the structure
    • H01S5/18327Structure being part of a DBR
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0207Substrates having a special shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • H01S5/04257Electrodes, e.g. characterised by the structure characterised by the configuration having positive and negative electrodes on the same side of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18322Position of the structure
    • H01S5/1833Position of the structure with more than one structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18344Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] characterized by the mesa, e.g. dimensions or shape of the mesa
    • H01S5/18347Mesa comprising active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18344Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] characterized by the mesa, e.g. dimensions or shape of the mesa
    • H01S5/1835Non-circular mesa

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Lasers (AREA)

Description

本発明は、発光素子に関する。
特許文献1には、p型及びn型の分布帰還型反射鏡に活性層が挟まれた層構造からなる発光領域を有する面発光レーザにおいて、発光領域が高抵抗領域で囲まれ、その高抵抗領域の周囲に、発光領域と同じ層構造のモニタ用フォトダイオードを有し、そして、発光領域の光強度分布の裾が、モニタ用フォトダイオードの光吸収部に達するようになっていることを特徴とする面発光レーザが開示されている。
特開2000−106471号公報
本発明は、裏面に共通電極を有するモニタ受光素子一体型の発光素子と比較して、発光部と受光部との電気的なクロストークを抑制することが可能な発光素子を提供することを目的とする。
上記の目的を達成するために、請求項1に記載の発光素子は、半絶縁性基板の表面側に形成され、量子層を含む半導体層を備える発光部と、前記発光部から連続する前記半導体層によって構成され、前記発光部から当該半導体層を介して横方向に伝播する光を受光する受光部と、前記発光部と前記受光部とを分離する、予め定められたイオンを前記半導体層に注入して形成されたイオン注入領域と、を備え、前記発光部と前記受光部のアノード電極同士及びカソード電極同士は、お互いに分離された状態で前記表面側に形成されており、前記発光部と前記受光部との間には、前記半絶縁性基板の裏面側から当該半絶縁性基板の厚みを越え、前記量子層は越えない深さの溝が形成されているものである。
また、請求項2に記載の発明は、請求項1に記載の発明において、前記イオン注入領域は、前記表面側から前記量子層に至らない深さまで形成されているものである。
また、請求項3に記載の発明は、請求項1に記載の発明において、前記イオン注入領域は、前記表面側から前記量子層を越える深さまで形成されているものである。
また、請求項4に記載の発明は、請求項1に記載の発明において、前記イオン注入領域は、前記表面側から前記半絶縁性基板に達する深さまで形成されているものである。
また、請求項に記載の発明は、請求項1〜請求項のいずれか1項に記載の発明において、前記発光部及び前記受光部の少なくとも一部はお互いに電気的に分離されているものである。
また、請求項に記載の発明は、請求項1〜請求項のいずれか1項に記載の発明において、前記受光部に接続され、前記受光部で受光された光により発生した電流を電圧に変換する電圧変換部を有するものである。
請求項1に記載の発明によれば、裏面に共通電極を有するモニタ受光素子一体型の発光素子と比較して、発光部と受光部との電気的なクロストークが抑制される、という効果を奏する。
また、電流阻止領域がイオン注入領域以外の方法で形成されている場合と比較して、発光部と受光部との電気的な分離がより簡易になされる、という効果を奏する。
請求項2に記載の発明によれば、発光部と受光部との間に、表面側から量子層に至る深さの電流阻止領域が形成されている場合と比較して、活性領域の劣化が抑制される、という効果を奏する。
請求項3に記載の発明によれば、発光部と受光部との間に表面側から量子層に至らない深さの電流阻止領域が形成されている場合と比較して、発光部と受光部とがより確実に電気的に分離される、という効果を奏する。
請求項4に記載の発明によれば、発光部と受光部との間に、表面側から量子層に至る深さまでの電流阻止領域が形成されている場合と比較して、発光部と受光部とがさらに確実に電気的に分離される、という効果を奏する。
請求項に記載の発明によれば、発光部及び受光部がお互いに電気的に分離されていない場合と比較して、光出力の検出精度が向上する、という効果を奏する。
請求項に記載の発明によれば、受光部で受光された光により発生した電流を電圧に変換する電圧変換部を有しない場合と比較して、発光部における光出力のモニタ電圧が得られる、という効果を奏する。
第1の実施の形態に係る発光素子の構成の一例を示す断面図及び平面図である。 実施の形態に係る発光素子の作用を説明する図である。 実施の形態に係る発光素子の電極構造を、従来技術に係る発光素子の電極構造と比較して説明する図である。 実施の形態に係る発光素子の光出力とモニタ電流との関係を説明する図である。 実施の形態に係る発光素子のAPC制御について説明する図である。 実施の形態に係る発光素子の製造方法の一例を示す断面図の一部である。 実施の形態に係る発光素子の製造方法の一例を示す断面図の一部である。 第2の実施の形態に係る発光素子の構成の一例を示す断面図である。 第3の実施の形態に係る発光素子の構成の一例を示す断面図である。 第4の実施の形態に係る発光素子の構成の一例を示す断面図である。 第5の実施の形態に係る発光素子の構成の一例を示す断面図である。 第6の実施の形態に係る発光素子の構成の一例を示す断面図及び平面図である。 第7の実施の形態に係る発光素子の構成の一例を示す平面図の一部である。 第7の実施の形態に係る発光素子の構成の一例を示す平面図の一部である。 第7の実施の形態に係る発光素子の構成の一例を示す平面図の一部である。
以下、図面を参照して、本発明を実施するための形態について詳細に説明する。本実施の形態に係る発光素子は、発光部における光出力の一部を受光するモニタフォトダイオード(Photo Diode。以下、「モニタPD」)を集積化したモニタPD一体型発光素子である。
[第1の実施の形態]
図1を参照して、本実施の形態に係る発光素子10の構成の一例について説明する。本実施の形態では、本発明に係る発光素子を面発光型半導体レーザ(VCSEL:Vertical Cavity Surface Emitting Laser)に適用した形態を例示して説明する。図1(a)は本実施の形態に係る発光素子10の断面図であり、図1(b)は発光素子10の平面図である。図1(a)に示す断面図は、図1(b)に示す平面図においてA−A’で切断した断面図である。
図1(a)に示すように、発光素子10は、半絶縁性GaAs(ガリウムヒ素)の基板12上に形成されたn型GaAsのコンタクト層14、下部DBR(Distributed Bragg Reflector)16、活性領域24、酸化狭窄層32、及び上部DBR26を含んで構成されている。
図1(b)に示すように、発光素子10は2つのメサ(柱状構造)、すなわち各々略矩形形状のメサM1及びメサM2を備え、メサM1とメサM2とが接続される部分に結合部40を有している。本実施の形態に係る結合部40は、メサM1とメサM2とが接続されることによって形成された半導体層のくびれ部分に設けられている。メサM1及びメサM2の各々は、コンタクト層14上に共通に形成された下部DBR16、活性領域24、酸化狭窄層32、上部DBR26を含んでいる。
また、メサM1とメサM2との間、すなわち結合部40には、上部DBR26内に形成された電流阻止領域60が配置されている。本実施の形態に係る電流阻止領域60は、メサM1、M2の上面から酸化狭窄層32にかけて(すなわち、活性領域24に至らない深さまで)、一例としてH+(プロトン)イオンを注入して形成された高抵抗領域であり、メサM1とメサM2とを電気的に分離する領域である。後述するように、本実施の形態に係る発光素子10では、メサM1が発光部(VCSEL)を構成し、メサM2が発光部における光出力を受光する受光部(モニタフォトダイオード、モニタPD)を構成している。以下では、メサM1とメサM2とから構成される全体の構造を「メサM」という。
なお、電流阻止領域60は、発光部と受光部との間の少なくとも一部を電気的に分離することにより光出力の検出精度を向上させる(S/N(Signal to Noise Ratio)比を改善する)ためのものであり、必須のものではない。つまり、検出精度の許容度によっては電流阻止領域60を用いなくともよい。
図1(a)に示すように、メサMを含む半導体層の周囲は無機絶縁膜としての層間絶縁膜34が着膜されている。該層間絶縁膜34はメサMの側面から基板12の表面まで延伸され、p側電極パッド42−1、n側電極パッド44−1の下部に配置されている。本実施の形態に係る層間絶縁膜34は、一例として、シリコン窒化膜(SiN膜)で形成されている。なお、層間絶縁膜34の材料はシリコン窒化膜に限らず、例えば、シリコン酸化膜(SiO膜)、あるいはシリコン酸窒化膜(SiON膜)等であてもよい。
図1(a)に示すように、層間絶縁膜34の開口部を介してp側電極配線36が設けられている。上部DBR26の最上層には、p側電極配線36との接続のためのコンタクト層(図示省略)が設けられており、該コンタクト層を介してp側電極配線36の一端側が上部DBR26に接続され、上部DBR26との間でオーミック性接触を形成している。
p側電極配線36の他端側はメサMの側面から基板12の表面まで延伸され、p側電極パッド42−1を構成している。p側電極配線36は、例えば、Ti(チタン)/Au(金)の積層膜を着膜して形成される。なお、以下ではp側電極パッド42−1及びp側電極パッド42−2(図1(b)参照)を総称する場合は、「p側電極パッド42」という。
発光素子10では、p側電極がアノード電極を構成している。
同様に、層間絶縁膜34の開口部を介してn側電極配線30が設けられている。n側電極配線30の一端側はコンタクト層14に接続され、コンタクト層14との間でオーミック性接触を形成している。一方、n側電極配線30の他端側は基板12の表面まで延伸され、図1(a)に示すように、n側電極パッド44−1を形成している。n側電極配線30は、例えば、AuGe/Ni/Auの積層膜を着膜して形成される。なお、以下では、n側電極パッド44−1及びn側電極パッド44−2(図1(b)参照)を総称する場合は、「n側電極パッド44」という。発光素子10では、n側電極がカソード電極を構成している。
上記のように、本実施の形態に係る基板12には、一例として半絶縁性のGaAs基板を用いている。半絶縁性のGaAs基板とは、不純物がドーピングされていないGaAs基板である。半絶縁性のGaAs基板は抵抗率が非常に高く、そのシート抵抗値は数MΩ程度の値を示す。
基板12上に形成されたコンタクト層14は、一例としてSiがドープされたGaAs層によって形成されている。コンタクト層14の一端はn型の下部DBR16に接続され、他端はn側電極配線30に接続されている。すなわち、コンタクト層14は、下部DBR16とn側電極配線30との間に介在し、メサMで構成される半導体層に一定の電位を付与する機能を有する。なお、コンタクト層14は、サーマルクリーニング後、基板表面の結晶性を良好にするために設けられるバッファ層を兼ねてもよい。
コンタクト層14上に形成されたn型の下部DBR16は、発光素子10の発振波長をλ、媒質(半導体層)の屈折率をnとした場合に、膜厚がそれぞれ0.25λ/nとされかつ屈折率の互いに異なる2つの半導体層を交互に繰り返し積層して構成される多層膜反射鏡である。具体的には、下部DBR16は、Al0.90Ga0.1Asによるn型の低屈折率層と、Al0.15Ga0.85Asによるn型の高屈折率層と、を交互に繰り返し積層することにより構成されている。なお、本実施の形態に係る発光素子10では、発振波長λを、一例として850nmとしている。
本実施の形態に係る活性領域24は、例えば、下部スペーサ層、量子井戸活性層、及び上部スペーサ層を含んで構成されてもよい(図示省略)。本実施の形態に係る量子井戸活性層は、例えば、4層のAl0.3Ga0.7Asからなる障壁層と、その間に設けられた3層のGaAsからなる量子井戸層と、で構成されてもよい。なお、下部スペーサ層、上部スペーサ層は、各々量子井戸活性層と下部DBR16との間、量子井戸活性層と上部DBR26との間に配置されることにより、共振器の長さを調整する機能とともに、キャリアを閉じ込めるためのクラッド層としての機能も有している。発光素子10では、メサM1がVCSELを構成しているので、メサM1における活性領域24が発光層を構成する一方、メサM2はモニタPDを構成しているので、メサM2における活性領域24は実質的に光吸収層として機能する。
活性領域24上に設けられたp型の酸化狭窄層32は電流狭窄層であり、非酸化領域32a及び酸化領域32bを含んで構成されている。p側電極パッド42−1からn側電極パッド44−2に向かって流れる電流は、非酸化領域32aによって絞られる。図1(b)に示す境界18は、非酸化領域32aと酸化領域32bとの境界を表わしている。図1(b)に示すように、境界18で区画された本実施の形態に係る非酸化領域32aは、結合部40でくびれた形状をなしている。
酸化狭窄層32上に形成された上部DBR26は、膜厚がそれぞれ0.25λ/nとされかつ屈折率の互いに異なる2つの半導体層を交互に繰り返し積層して構成される多層膜反射鏡である。具体的には、上部DBR26は、Al0.90Ga0.1Asによるp型の低屈折率層と、Al0.15Ga0.85Asによるp型の高屈折率層と、を交互に繰り返し積層することにより構成されている。
上部DBR26上には、光の出射面を保護する出射面保護層38が設けられている。出射面保護層38は、一例としてシリコン窒化膜を着膜して形成される。
ところで、上記のような発光素子(VCSEL)は、基板に垂直な方向にレーザ出力を取り出せ、さらに2次元集積によるアレイ化が容易であることなどから、電子写真システムの書き込み用光源や光通信用光源として利用されている。
VCSELは、半導体基板(基板12)上に設けられた一対の分布ブラッグ反射器(下部DBR16及び上部DBR26)、一対の分布ブラッグ反射器の間に設けられた活性領域(活性層、下部スペーサ層、及び上部スペーサ層を含む活性領域24)を備えて構成されている。そして、分布ブラッグ反射器の両側に設けられた電極(p側電極配線36及びn側電極配線30)により活性層へ電流を注入し、基板面に対して垂直にレーザ発振を生じさせ、素子の上部(出射面保護層38の面側)から発振した光を出射させる構成となっている。
一方、VCSELに限らず半導体レーザにおいては、温度変動や、電源変動等に伴って光出力が変動しないように安定化させることが求められる場合があり、その安定化の一方式としてAPC(Automatic Power Control)方式がある。APC方式とは、半導体レーザの光出力をモニタPD等によってモニタ電流として検出し、検出されたモニタ電流を基準値と比較して差分値を求め、この差分値を用いて駆動電流を変え半導体レーザの光出力を負帰還制御する方式である。
半導体レーザとモニタPDとは、構成する半導体材料が異なる等の理由から、モノリシックに集積化することが困難である場合が多い。この場合は、半導体レーザの外部にモニタPDを設けることになる。従って、半導体レーザとモニタPDとをモノリシックに一体化できれば部品点数の削減につながり、またノイズ等の影響も受けにくくなり安定動作の上からも好ましい。
モニタPDをモノリシックに集積化したVCSELの従来例としては、メサ状の発光部を高抵抗領域で囲み、その高抵抗領域の周囲に、発光部と同じ層構造のモニタ用フォトダイオードを配置し、発光部の光強度分布の裾がモニタ用フォトダイオードの光吸収部に達するようにしたVCSELが知られている。
一方、PDと半導体レーザとでは印加するバイアス電圧の極性が異なるため、モニタPD一体型半導体レーザ(VCSEL)では同一チップ上に形成されたVCSELとモニタPDとに個別に電源を印加する必要がある。VCSELでは、従来、一方の電極をチップの裏面(裏面電極)に設けるのが一般的であるため、モニタPD一体型VCSELでもこの裏面電極がVCSELとモニタPDの共通電極とされる。上記従来例に係るVCSELでも、発光部とモニタ用フォトダイオードとが共通の裏面電極を用いている。
しかしながら、VCSELとモニタPDとに共通電極を用いた構成のモニタPD一体型VCSELでは、特にVCSELの駆動方式として差動駆動方式を用いた場合、共通電極、あるいは共通電極周辺に電気的なクロストークが発生し、意図しない信号がモニタPDに漏れこむ場合がある。モニタPDにおいてこのようなクロストークが発生すると、モニタ電流のS/N比が劣化し、正確なAPC制御の実現が困難となる。
そこで本実施の形態に係る発光素子10では、共通電極を用いず発光部の電極と受光部の電極とを分離し、両電極を基板12の表面側に形成している。このことにより、特にVCSELを高速に差動駆動させた場合において、裏面共通電極を有する構成と比較して、発光部と受光部との電気的なクロストークが低減される。
次に、本実施の形態に係る発光素子10の構成について、より詳細に説明する。VCSELでは、多くの場合、低閾値電流化、横モードの制御性等の観点から組成にAlを含む半導体層を酸化して形成される酸化狭窄層(酸化狭窄層32)を備えており、このAlを含む半導体層を酸化するために、素子はメサ形状にエッチング加工され、酸化処理が施される。その後、エッチング加工により露出したメサ形状の側面やエッチングされた半導体表面は、シリコン窒化膜やシリコン酸化膜などの絶縁材料によって覆われるのが一般的である。
発光素子10では、メサMに対する酸化処理により、非酸化領域32aと酸化領域32bが形成される。図1(b)に示す境界18は、非酸化領域32aと酸化領域32bとの境界を示している。つまり、境界18で区画された非酸化領域32aがメサM1からメサM2にかけて形成されている。
酸化領域32bは酸化されて電気抵抗が高くなるので非導電領域として機能し、p側電極パッド42−1から注入された電流は非酸化領域32aに閉じ込められる。また、半導体は酸化されると一般に屈折率が低下するので、非酸化領域32aの屈折率は酸化領域32bの屈折率よりも大きくなる。そのため、発光部で発光した光は、低屈折率の酸化領域32bによって囲まれた非酸化領域32aに閉じ込められる。つまり、酸化狭窄層によって非酸化領域32a内に光と電流が閉じ込められる。
発光素子10では、非酸化領域32aが、メサM1で構成された発光部からメサM2で構成された受光部にかけて形成されているため、発光部で発生したレーザ発振光の一部が、基板12に対して平行方向(すなわち、発光部での発振方向と交差する方向、以下「横方向」という場合がある)に伝播し、受光部(モニタPD)に到達して電流に変換される。
このように、本実施の形態に係る発光素子10では、メサM1による発光部とメサM2による受光部とが光学的に結合されることにより結合共振器が構成され、発光部から染み出した光が結合部40を伝播し、受光部に接続された検出部でモニタ電流として検出される。つまり、本実施の形態に係る発光素子10によれば、小型で簡易なデバイス構造で、高効率なモニタPD一体型が実現される。なお、検出部ではモニタ電流を電圧に変換して検出する場合が多いので、以下では検出部の一例として「電流−電圧変換部」を例示して説明する。
図2を参照して、本実施の形態に係る結合共振器についてより詳細に説明する。上述したように、発光素子10ではメサM1によって発光部50(VCSEL)が形成され、メサM2によって受光部(モニタPD)52が形成されている。発光部50では、p側電極パッド42−1にVCSEL用電源(図示省略)の正極を接続し、n側電極パッド44−2に負極を接続する(順バイアス)。そして、p側電極パッド42−1とn側電極パッド44−2との間に駆動電流を流すことによって、図2に示すように、下部DBR16と上部DBR26とで形成された共振器で発振光Lvが発生する。発振光Lvの一部は、出射面保護層38から出射光Loとして出射される。
図2に示すように、発振光Lvの一部は伝播光Lm(モニタ光)として横方向に伝播する。この伝播光Lmは、下部DBR16と上部DBR26とで形成された共振器を全反射しつつ発光部50から受光部52へと伝播する。そのため、伝播光Lmは群速度が低下し、いわゆるスローライトとなっている。一方、受光部52では、n側電極パッド44−1にモニタPD用電源(図示省略)の正極を接続し、p側電極パッド42−2に負極を接続する(逆バイアス)。そして、n側電極パッド44−1とp側電極パッド42−2との間に伝播光Lmによる受光電流を流すことによって、発光部50における光出力をモニタする。この際、受光部52の光吸収層は、発光部を構成する活性領域24と兼用となっている。そのため、受光部52を構成する光吸収層としては必ずしも十分な膜厚とはなっていない。しかしながら、本実施の形態に係るモニタ光は上記のようにスローライトなので、薄い光吸収層でもキャリアが発生しやすく十分な光電流(フォトカレント)が得られる。
次に、本実施の形態に係る結合部40の作用について説明する。図2(b)に示すように、結合部40では非酸化領域32a及び酸化領域32bがくびれた形状となっている。
そのため、非酸化領域32aの幅が、図2(b)に示す発光部50から受光部52にかけて、「広い」→「狭い」→「広い」となっている。
一方、酸化領域32bの面積の非酸化領域32aの面積に対する割合でみると、「小さい」→「大きい」→「小さい」となっている。ここで、上記のように、非酸化領域32aの屈折率は酸化領域32bの屈折率より大きい。周知のように、光導波路において周囲に屈折率の小さい物質の割合が多くなると光導波路を伝播する光が感ずる屈折率(等価屈折率、又は実効屈折率)が低下する。そのため、結合部40における非酸化領域32aの等価屈折率は、両側の発光部50及び受光部52の非酸化領域32aの等価屈折率よりも低くなっている。すなわち、非酸化領域32aの等価屈折率が、発光部50から受光部52にかけて、「高い」→「低い」→「高い」となっている。なお、本実施の形態で用いられる等価屈折率とは、基板に対して垂直方向に積層している、屈折率の異なる半導体層の実効的な屈折率(多層半導体層の屈折率を単層の屈折率とみなす)を、等価屈折率法によって求められたものをさす。
発光素子10では、上述した構成の等価屈折率分布を有することによって、発光部50(VCSEL)で発光した光が効率よく非酸化領域32aに閉じ込められるとともに、発光部50から光(スローライト)が染み出し受光部52で受光される。なお、発光部50から受光部52にかけての、非酸化領域32aの等価屈折率が「高い」→「高い」→「高い」、すなわちほぼ一様となっている場合には発光部50における光の閉じ込めが困難である。一方、発光部50から受光部52にかけての、非酸化領域32aの等価屈折率が、「高い」→「低い」→「低い」となっている場合には発光部50における光の閉じ込めは可能であるが、染み出す光が少なくなり、例えばモニタ電流の検出が困難となり、またS/N比も悪くなる。
なお、本実施の形態では、結合部40における非酸化領域32aの幅を狭くすることにより、等価屈折率を「高い」→「低い」→「高い」とする形態を例示して説明たが、これに限られない。例えば、結合部40の位置(発光部50と受光部52との間)に溝を設けて、等価屈折率を「高い」→「低い」→「高い」とする形態としてもよい。また、幅を狭くする構成と溝を設ける構成とを組み合わせてもよい。なお、この場合、該溝には周囲の半導体層よりも屈折率の低い物質(一例として空気)を充填すればよい。
次に図3を参照して、発光素子10の駆動について説明する。図3(a)では電流の流れが直感的に理解できるように、電極を模式化して描いている。すなわち、図3(a)に示すように発光部50にはp側電極パッド42−1とn側電極パッド44−2とが接続され、受光部52には、n側電極パッド44−1とp側電極パッド42−2とが接続されている。
図3(a)は、本実施の形態に係る発光素子10に発光部50を駆動する駆動源Ds、受光部52をバイアスする電源Vpdを接続した状態を示している。また、図3(b)は、発光素子10との比較のために示す、裏面電極型の比較例に係る発光素子100に発光部112を駆動する駆動源Ds、受光部114をバイアスする電源Vpdを接続した状態を示している。図3(a)、(b)において、駆動源Dsは各々の発光素子の発光部50、112を差動駆動する状態を示している。
比較例に係る発光素子100は、発光素子10におけるn側電極パッド44の代わりに裏面電極118を有していること以外の構成は発光素子10と同様である。すなわち、図3(b)に示すように発光素子100も、半絶縁性GaAsの基板102上に形成されたn型GaAsのコンタクト層(図示省略)、下部DBR104、活性領域106、及び上部DBR108を含んで構成されている。また、メサM1が発光部112を構成し、メサM2が受光部114を構成し、メサM1とM2との間には電流阻止領域116が設けられている。
発光素子100では、駆動源Dsからp側電極配線110及び裏面電極118を介して発光部112に駆動電流Ivが供給されると、先述したように発振光Lvが発生し、その一部が出射光Loとして外部へ出射される。一方、発振光Lvの一部は伝播光Lmとなって受光部114に伝播しモニタ電流Im(受光電流)を発生する。
ここで、VCSELでは一般に積層部分(図1(a)では、下部DBR16から出射面保護層38にかけての、基板12から上の部分)は厚さが10μm程度であるのに対し、基板の厚さは、強度の確保等の理由から数100μmと厚い。そのため、発光素子100では、積層部分から基板裏面に至る電流経路において駆動電流Ivの経路とモニタ電流Imの経路とが重なりやすく、クロストークが発生しやすい。このクロストークが発生すると、図3(b)に示すように、クロストーク電流Ixが発光部112から受光部114に流れる。クロストーク電流Ixはモニタ電流Imとは無関係な信号であるため雑音となり、受光部114における光出力のモニタの妨げとなる。
これに対し、発光素子10では、図3(a)に示すように、裏面電極118の代わりにn側電極パッド44−1及び44−2が設けられており、発光部50におけるp側電極パッド42−1及びn側電極パッド44−2、受光部52におけるp側電極パッド42−2及びn側電極パッド44−1とが分離されている。そして、発光部50ではp側電極パッド42−1とn側電極パッド44−2との間に駆動源Dsが接続される。一方、受光部52ではn側電極パッド44−1に電源Vpdの正極が、p側電極パッド42−2に電源Vpdの負極が接続される。
そして、発光部50では駆動源Dsによって差動駆動され、駆動電流Ivによって発振光Lvが発生し、発振光Lvの一部が出射光Loとして外部に出力される。一方、電源Vpdで逆バイアスされた受光部52では伝播光Lmによってモニタ電流Imが発生し、このモニタ電流Imによって発光部50における光出力Poがモニタされる。
上記のよう、に発光素子10では、発光部50におけるp側電極配線36及びn側電極配線30と、受光部52におけるp側電極配線36及びn側電極配線30とが分離され、各々が発光素子10の表面側に配置されている。そのため、図3(a)に示すように、駆動電流Ivも、モニタ電流Imも基板12を貫通して流れないので、クロストーク電流の発生が抑制される。
次に、図4を参照して、発光部50(VCSEL)における出射光Loとモニタ電流Imとの関係について説明する。
発光部50では、p側電極パッド42−1に駆動源Dsの一端を接続しn側電極パッド44−2に他端を接続し、駆動電流Ivを流すことによって(図3(a)参照)、図4(a)に示すように、下部DBR16と上部DBR26とで形成された共振器で発振光Lvが発生する。発振光Lvの一部は、発光面(出射面保護層38が存在する面)から出射光Loとして出射される。一方、発振光Lvの一部は伝播光Lmとして横方向に伝播し、受光部52に入射される。受光部52では、n側電極パッド44−1に電源Vpdの正極を接続し、p側電極パッド42−2に負極を接続し、伝播光Lmによるモニタ電流Im(光電流)を流すことによって、発光部50における光出力をモニタする。すなわち、発光部50(VCSEL)の光出力Poに応じて伝播光Lmの横方向への染み出し量が変化し、その変化量に応じてモニタ電流Im(光電流)の値が変化する。
図4(b)は、駆動電流Iv、出射光Loの光パワーである光出力Po、及びモニタ電流Imの間の関係を示すグラフである。
図4(b)に示すように、発光部50(VCSEL)は、基本的に駆動電流Ivに略比例する光出力Poが発生するが、発光部50は固有の閾値電流(スレッショルド電流)Ithを有し、駆動電流Ivがこの閾値電流Ithを越えると光出力Poが発生する。一方、モニタ電流Imは光出力Poにほぼ比例して発生する。従って、モニタ電流Imを用いて発光部50の光出力Poの監視が可能となる。
次に、図5を参照してAPC制御部54について説明する。図5は、発光素子10と、発光素子10に接続されたAPC制御部54を示している。
図5に示すように、APC制御部54は、電流−電圧変換部、基準電圧発生部、比較部、及び駆動部を含んで構成されている。電流−電圧変換部は、発光素子10の受光部52で発生したモニタ電流Imを入力し、該モニタ電流Imをモニタ電圧Vmに変換する。モニタ電圧Vmもモニタ電流Im同様光出力Poに比例している。基準電圧発生部は、モニタ電圧Vmに対する基準電圧Vrを発生する部位であり、基準電圧Vrは光出力Poの目標値を決定している。なお、電流−電圧変換部は、例えばモニタ電流Imを流してモニタ電流Imに比例するモニタ電圧Vmを発生する抵抗で構成する。その際、モニタ電流Imを入力とし、モニタ電流Imに比例する電流を発生させるカレントミラー回路を用い、該抵抗を負荷としてもよい。また、電流−電圧変換部はこれらの回路に限らず、必要に応じ増幅回路等を設けてもよい。
比較部は、モニタ電圧Vmと基準電圧Vrと比較し、誤差電圧Veを発生する部位であり、APC制御ではこの誤差電圧Veがゼロに近づくように制御される。駆動部は、誤差電圧Veに応じた駆動電流Ivを発生させ、発光素子10の発光部50に負帰還させる部位である。なお、駆動電流は駆動電圧であってもよい。
発光素子10では、以上のように構成されたAPC制御部54によって発光部50の光出力Poを制御することにより、光出力Poの安定化を図っている。
次に、図6及び図7を参照して、実施の形態に係る発光素子10の製造方法について説明する。本実施の形態では、1枚のウエハ上に複数の発光素子10が形成されるが、以下ではそのうちの1つの発光素子10について図示し説明する。
図6(a)に示すように、まず、半絶縁性GaAsの基板12上に、n型のコンタクト層14、n型の下部DBR16、活性領域24、p型の上部DBR26、及びp型のコンタクト層28をこの順にエピタキシャル成長させる。
その際、n型のコンタクト層14は、一例として、キャリア濃度を約2×1018cm−3とし、膜厚を2μm程度として形成する。また、n型の下部DBR16は、一例として、各々の膜厚が媒質内波長λ/nの1/4とされた、Al0.15Ga0.85As層とAl0.9Ga0.1As層とを交互に37.5周期積層して形成される。Al0.3Ga0.7As層のキャリア濃度及びAl0.9Ga0.1As層のキャリア濃度は、各々約2×1018cm−3とされ、下部DBR16の総膜厚は約4μmとされる。また、n型キャリアとしては、一例として、Si(シリコン)を用いる。
活性領域24は、一例として、ノンドープのAl0.6Ga0.4As層による下部スぺーサ層と、ノンドープの量子井戸活性層と、ノンドープのAl0.6Ga0.4As層による上部スぺーサ層とで形成される。量子井戸活性層は、例えば、Al0.3Ga0.7Asによる4層の障壁層、及び各障壁層の間に設けられたGaAsによる3層の量子井戸層で構成される。Al0.3Ga0.7Asによる障壁層の膜厚は各々約8nmとされ、GaAsによる量子井戸層の膜厚は各々約8nmとされ、活性領域24全体の膜厚は媒質内波長λ/nとされる。
p型の上部DBR26は、一例として、各々の膜厚が媒質内波長λ/nの1/4とされた、Al0.15Ga0.85As層とAl0.9Ga0.1As層とを交互に25周期積層して形成される。この際、Al0.15Ga0.85As層のキャリア濃度及びAl0.9Ga0.1As層のキャリア濃度は、各々約4×1018cm−3とされ、上部DBR26の総膜厚は約3μmとされる。また、p型キャリアとしては、一例として、C(カーボン)を用いる。さらに、上部DBR26中には、後述の工程において酸化狭窄層32を形成するためのAlAs層が含まれている。
p型のコンタクト層28は、一例として、キャリア濃度を約1×1019cm−3以上とし、膜厚を10nm程度として形成する。
次に、エピ成長の完了したウエハのコンタクト層28上に電極材料を成膜した後、該材料を例えばフォトリソグラフィによるマスクを用いてドライエッチングし、図6(b)に示すように、p側電極配線36を取り出すためのコンタクトメタルCMpを形成する。コンタクトメタルCMpは、一例として、Ti/Auの積層膜を用いて形成される。
次に、ウエハ面上に出射面保護層となる材料を成膜した後、該材料を例えばフォトリソグラフィによるマスクを用いてドライエッチングし、図6(b)に示すように、出射面保護層38を形成する。出射面保護層38の材料としては、一例として、シリコン窒化膜を用いる。
次に、フォトリソグラフィによりマスクを形成した後、出射面保護層38を介してH+イオン等をイオン注入し、図6(c)に示すように電流阻止領域60を形成する。
次に、フォトリソグラフィ及びエッチングによりウエハ面上にマスクを形成し、該マスクを用いてドライエッチングし、図6(d)に示すようにメサMS1を形成する。メサMS1の形成に際しては、平面視で図1(b)に示すメサM1、M2に相当する層を有するメサMが形成されるようにするエッチングする。
次に、ウエハに酸化処理を施して上記のAlAs層を側面から酸化し、図6(e)に示すように、メサMS1内に酸化狭窄層32を形成する。酸化狭窄層32は、非酸化領域32a及び酸化領域32bを含んで構成されている。酸化領域32bが上記酸化処理により酸化された領域であり、酸化されないで残された領域が非酸化領域32aである。非酸化領域32aは、図1(b)に示すようにメサM1からM2にかけて連続して形成される。
次に、フォトリソグラフィ及びエッチングによりウエハ面上にマスクを形成し、該マスクを用いてドライエッチングし、図6(f)に示すようにメサMS2を形成する。
次に、フォトリソグラフィ及びエッチングによりウエハ面上にマスクを形成し、該マスクを用いてドライエッチングし、図7(a)に示すようにメサMS3を形成する。
コンタクト層14上に電極材料を成膜した後、該材料を例えばフォトリソグラフィによるマスクを用いてドライエッチングし、図7(b)に示すように、n側電極配線30を取り出すためのコンタクトメタルCMnを形成する。コンタクトメタルCMnは、一例として、AuGe/Ni/Auの積層膜を用いて形成される。
次に、図7(c)に示すように、ウエハの出射面保護層38、コンタクトメタルCMp、CMnを除く領域にシリコン窒化膜による層間絶縁膜34を成膜する。
次に、ウエハ面上に電極材料を成膜した後、該電極材料を例えばフォトリソグラフィによるマスクを用いてドライエッチングし、図7(d)に示すように、p側電極配線36及びp側電極パッド42、n側電極配線30及びn側電極パッド44を形成する。p側電極配線36及びp側電極パッド42、n側電極配線30及びn側電極パッド44は、一例として、Ti/Auの積層膜を用いて形成する。本工程により、p側電極配線36がコンタクトメタルCMpと接続され、n側電極配線30がコンタクトメタルCMnと接続される。
次に、図示しないダイシング領域においてダイシングし、発光素子10を分離して個片化する。以上の工程により、本実施の形態に係るp側電極パッド42、n側電極パッド44を含む発光素子10が製造される。
[第2の実施の形態]
図8を参照して、本実施の形態に係る発光素子10aについて説明する。発光素子10aは、上記実施の形態に係る発光素子10の電流阻止領域60を電流阻止領域60aに置き換えた形態である。従って、電流阻止領域以外の構成は発光素子10と同様なので、同様の構成には同じ符号を付し、詳細な説明を省略する。
図8に示すように、発光素子10aは活性領域24を貫通し下部DBR16の途中まで至る電流阻止領域60aを有する。電流阻止領域60aも電流阻止領域60と同様にH+(プロトン)等をイオン注入して形成される。電流阻止領域が活性領域に至ると活性領域の劣化を招く場合も想定される。そのような場合には、電流阻止領域60のように活性領域24に至らない深さまで電流阻止領域を形成すればよい。一方、活性領域24の劣化が許容される範囲内である場合には、発光素子10aのように活性領域24を貫通させて下部DBR16の途中にまで至る深さの電流阻止領域60aを設けてもよい。
本実施の形態に係る発光素子10aによれば、発光素子10と比較して発光部50と受光部52とがより確実に電気的に分離されるので、発光部50を差動駆動した場合のクロストークがより低減される。
[第3の実施の形態]
図9を参照して、本実施の形態に係る発光素子10bについて説明する。発光素子10bは、上記実施の形態に係る発光素子10aの電流阻止領域60aを電流阻止領域60bに置き換えた形態である。従って、電流阻止領域以外の構成は発光素子10aと同様なので、同様の構成には同じ符号を付し、詳細な説明を省略する。
図9に示すように、発光素子10bは活性領域24、コンタクト層14を貫通し基板12まで至る電流阻止領域60bを有する、電流阻止領域60bも電流阻止領域60aと同様にH+(プロトン)等をイオン注入して形成される。発光素子10aでは電流阻止領域60aがn型の下部DBR16の途中まで形成されているので、発光部50と受光部52とは電気的に分離されているわけではない。それに対し発光素子10bの電流阻止領域60bは基板12まで至っているので、発光部50と受光部52とは電気的に分離されている。
本実施の形態に係る発光素子10bによれば、発光素子10aと比較して発光部50と受光部52とがさらに確実に電気的に分離されるので、発光部50を差動駆動した場合のクロストークがさらに低減される。
[第4の実施の形態]
図10を参照して、本実施の形態に係る発光素子10cについて説明する。発光素子10cは、上記実施の形態に係る発光素子10の電流阻止領域60に加えて基板12の裏面側に素子分離溝62を設けた形態である。素子分離溝62は製造工程において、例えばエッチング等によって形成される。発光素子10cにおける電流阻止領域60cは、発光面から活性領域24の上部まで至る領域に形成されており、発光素子10における電流阻止領域60と同じ構成である。従って、素子分離溝62以外の構成は発光素子10と同様なので、同様の構成には同じ符号を付し、詳細な説明を省略する。
発光素子10cでは、活性領域24の上側の発光部50と受光部52とが電流阻止領域60cによって電気的に分離され、活性領域24の下側の発光部50と受光部52とが素子分離溝62によって電気的に分離されている。さらに、本実施の形態に係る発光素子10cの活性領域24は、上記のようにノンドープなので、発光素子10cでは発光部と受光部が電気的に分離される。
本実施の形態に係る発光素子10cによれば、電流阻止領域60cが活性領域24に至っていないので、同じく発光部50と受光部52とが電気的に分離された上記の発光素子10bと比較して、活性領域24の劣化を抑制しつつ発光部50と受光部52とが分離される。
[第5の実施の形態]
図11を参照して、本実施の形態に係る発光素子10dについて説明する。発光素子10dは、上記実施の形態に係る発光素子10の電流阻止領域60に代えて基板12の表面側に素子分離溝64(凹部)を設けた形態である。素子分離溝64は製造工程において、例えばエッチング等によって形成される。従って、素子分離溝64以外の構成は発光素子10と同様なので、同様の構成には同じ符号を付し、詳細な説明を省略する。
発光素子10dの素子分離溝64は、発光素子10の電流阻止領域60と同様に電気的な分離の効果を有する。従って、発光素子10dの素子分離溝64によっても、発光部50と受光部52の一部が電気的に分離される。発光素子10dでは、イオン注入による電流阻止領域60に代え物理的な溝によって発光部50と受光部52の一部を分離させているので、発光部50と受光部52の一部が発光素子10と比較してより確実に電気的に分離される。なお、素子分離溝64を設けるとその領域において非酸化領域32aの等価屈折率が低下するので、本実施の形態に係る発光素子10dでは、結合部において必ずしも半導体層をくびれさせる必要はない。
[第6の実施の形態]
図12を参照して、本実施の形態に係る発光素子10eについて説明する。上記各実施の形態では、発光部と受光部との間の少なくとも一部を電気的に分離して光出力の検出精度を向上させる(S/N比を改善する)ために電流阻止領域(電流阻止領域60、60a〜60c)、あるいは素子分離溝(素子分離溝62、64)を設けていた。しかしながら、上述したように、検出精度の許容度によっては必ずしも電流阻止領域、あるいは素子分離溝を用いなくともよい。
図12に示すように、本実施の形態に係る発光素子10eは、電流阻止領域、あるいは素子分離溝を有していない。一方、発光素子10eでは、発光部50におけるp側電極パッド42−1及びn側電極パッド44−2と、受光部52におけるp側電極パッド42−2及びn側電極パッド44−1とが分離され、発光素子10eの表面側に配置されている。従って、発光素子10eは、比較例に係る発光素子100(図3(b)参照)と比較して、特に発光部50を差動駆動した際の受光部52とのクロストークが低減される。
[第7の実施の形態]
図13ないし図15を参照して、本実施の形態に係る発光素子10fないし10jについて説明する。本実施の形態は、上記各実施の形態において、メサMの形状、及び結合部の形状を変えた形態である。
上記各実施の形態では、平面視でメサM1とM2とが対称である形態を例示して説明したが、これに限られない。例えば、図13(a)に示す発光素子10fのようにメサM1とM2とが非対称な形状であってもよく、この場合は結合部40fの形状も平面視で非対称となる。その際、図13(a)に示すように、発光部を構成するメサM1より受光部を構成するメサM2の方を大きくすると、モニタ電流Imの検出効率が向上する。
また、上記各実施の形態では、メサM1及びメサM2が矩形の形態を例示して説明したが、これに限られず、図13(b)に示す発光素子10gのように円形としてもよい。なお、発光素子10f、10gでは各々くびれ部を有する結合部40f、40gを備えているので、各々電流阻止領域60f、60gのみを有する形態であってもよいし、むろん電流阻止領域と上記素子分離溝を併用する形態であってもよい。電流阻止領域と素子分離溝を併用する形態とは、例えば図11に示すように素子分離溝64を活性領域24の上部まで形成した状態において、素子分離溝64を介してH+(プロトン)等をイオン注入し、下部DBR16に至る電流阻止領域を形態をいう。
図14及び図15は、上記のように電流阻止領域と素子分離溝を併用した形態であり、結合部の位置に、図11に示すような素子分離溝を設けた形態である。上述したように素子分離溝を設けるとその位置の非酸化領域32aの等価屈折率が低下するので、必ずしも半導体層にくびれ部を設ける必要がない。
図14(a)は略正方形のメサM1と長方形のメサM2とを接続した発光素子10hの形態であり、結合部40hにはくびれを設けていない。発光素子10hでは、メサM2の非酸化領域32aの等価屈折率がメサM1の非酸化領域32aの等価屈折率より低い一定値となっている。しかしながら、電流阻止領域60hの位置に配置された素子分離溝(図示省略)により、電流阻止領域60hの位置における等価屈折率がメサM2の等価屈折率より低い値となっている。そのため、メサM1からメサM2にかけての間にメサM2よりも等価屈折率が低い領域が存在することになる。従って、発光素子10hによっても、発光部で発光した光が効率よく非酸化領域32aに閉じ込められるとともに、発光部から光(スローライト)が染み出し受光部52で受光される。
図14(b)はメサMの全体の形状を1つの長方形として、メサM1とメサM2とを形成した発光素子10iの形態であり、結合部40iにはくびれを設けていない。従って、非酸化領域32aの等価屈折率はメサM1からM2にかけて一定である。しかしながら、電流阻止領域60iの位置に配置された素子分離溝により、電流阻止領域60iの位置における等価屈折率がメサM1、M2の等価屈折率より低い値となっている。そのため、メサM1からメサM2にかけての間にメサM1、M2よりも等価屈折率が低い領域が存在することになる。従って、発光素子10iによっても、発光部で発光した光が効率よく非酸化領域32aに閉じ込められるとともに、発光部から光(スローライト)が染み出し受光部52で受光される。
図15はメサMの全体の形状を1つの六角形として、メサM1とメサM2とを形成した発光素子10jの形態であり、結合部40jにはくびれを設けていない。従って、非酸化領域32aの等価屈折率はメサM1からM2にかけて一定である。しかしながら、電流阻止領域60jの位置に配置された素子分離溝により、電流阻止領域60jの位置における等価屈折率がメサM1、M2の等価屈折率より低い値となっている。そのため、メサM1からメサM2にかけての間にメサM1、M2よりも等価屈折率が低い領域が存在することになる。従って、発光素子10jによっても、発光部で発光した光が効率よく非酸化領域32aに閉じ込められるとともに、発光部から光(スローライト)が染み出し受光部52で受光される。
なお、上記各実施の形態ではAPC制御部54を発光素子10とを別体とする形態を例示して説明したがこれに限られない。例えば、発光素子10とAPC制御部54とを同じ半導体プロセスを用いて集積化し、1チップとする構成としてもよい。また、APC制御部54のうちの電流−電圧変換部のみをと集積化する形態としてもよく、この場合は、例えばモニタ電流検出用の抵抗、あるいは抵抗とカレントミラーとを組み合わせた回路をと集積化すればよい。
また、上記実施の形態では、半絶縁性のGaAs基板を用いたGaAs系のを例示して説明したが、これに限られず、GaN(窒化ガリウム)による基板、あるいはInP(リン化インジウム)による基板を用いた形態としてもよい。
また、上記実施の形態では、基板にn型のコンタクト層を形成する形態を例示して説明したが、これに限られず、基板にp型のコンタクト層を形成する形態としてもよい。その場合には、上記の説明において、n型とp型を逆に読み替えればよい。
10、10a〜10j 発光素子
12 基板
14 コンタクト層
16 下部DBR
18 境界
24 活性領域
26 上部DBR
28 コンタクト層
30 n側電極配線
32 酸化狭窄層
32a 非酸化領域
32b 酸化領域
34 層間絶縁膜
36 p側電極配線
38 出射面保護層
40、40f〜40j 結合部
42、42−1、42−2 p側電極パッド
44、44−1、44−2 n側電極パッド
50 発光部
52 受光部
54 APC制御部
60、60a〜60c、60f〜60j 電流阻止領域
62、64 素子分離溝
100 発光素子
102 基板
104 下部DBR
106 活性領域
108 上部DBR
110 p側電極配線
112 発光部
114 受光部
116 電流阻止領域
118 裏面電極
CMp、CMn コンタクトメタル
Ds 駆動源
Ith 閾値電流
Iv 駆動電流
Im モニタ電流
Ix クロストーク電流
Lo 出射光
Lv 発振光
Lm 伝播光
M、M1、M2 メサ
MS1、MS2、MS3 メサ
Po 光出力
Vpd 電源

Claims (6)

  1. 半絶縁性基板の表面側に形成され、量子層を含む半導体層を備える発光部と、
    前記発光部から連続する前記半導体層によって構成され、前記発光部から当該半導体層を介して横方向に伝播する光を受光する受光部と、
    前記発光部と前記受光部とを分離する、予め定められたイオンを前記半導体層に注入して形成されたイオン注入領域と、を備え、
    前記発光部と前記受光部のアノード電極同士及びカソード電極同士は、お互いに分離された状態で前記表面側に形成されており、
    前記発光部と前記受光部との間には、前記半絶縁性基板の裏面側から当該半絶縁性基板の厚みを越え、前記量子層は越えない深さの溝が形成されている
    発光素子。
  2. 前記イオン注入領域は、前記表面側から前記量子層に至らない深さまで形成されている
    請求項1に記載の発光素子。
  3. 前記イオン注入領域は、前記表面側から前記量子層を越える深さまで形成されている
    請求項1に記載の発光素子。
  4. 前記イオン注入領域は、前記表面側から前記半絶縁性基板に達する深さまで形成されている
    請求項1に記載の発光素子。
  5. 前記発光部及び前記受光部の少なくとも一部はお互いに電気的に分離されている
    請求項1〜請求項のいずれか1項に記載の発光素子。
  6. 前記受光部に接続され、前記受光部で受光された光により発生した電流を電圧に変換する電圧変換部を有する
    請求項1〜請求項のいずれか1項に記載の発光素子。
JP2016137342A 2016-07-12 2016-07-12 発光素子 Active JP6825251B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016137342A JP6825251B2 (ja) 2016-07-12 2016-07-12 発光素子
US15/581,686 US10193010B2 (en) 2016-07-12 2017-04-28 Light emitting element
CN201710431945.2A CN107611778A (zh) 2016-07-12 2017-06-09 光发射元件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016137342A JP6825251B2 (ja) 2016-07-12 2016-07-12 発光素子

Publications (2)

Publication Number Publication Date
JP2018010914A JP2018010914A (ja) 2018-01-18
JP6825251B2 true JP6825251B2 (ja) 2021-02-03

Family

ID=60941367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016137342A Active JP6825251B2 (ja) 2016-07-12 2016-07-12 発光素子

Country Status (3)

Country Link
US (1) US10193010B2 (ja)
JP (1) JP6825251B2 (ja)
CN (1) CN107611778A (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6926414B2 (ja) * 2016-08-10 2021-08-25 富士フイルムビジネスイノベーション株式会社 発光素子アレイ、及び光伝送装置
US10748881B2 (en) * 2017-12-05 2020-08-18 Seoul Viosys Co., Ltd. Light emitting device with LED stack for display and display apparatus having the same
JP2020092256A (ja) * 2018-11-27 2020-06-11 株式会社リコー 光源、光源装置、光学装置、計測装置、ロボット、電子機器、移動体、および造形装置
US20210074880A1 (en) * 2018-12-18 2021-03-11 Bolb Inc. Light-output-power self-awareness light-emitting device
CN110416874B (zh) * 2019-09-18 2020-01-17 常州纵慧芯光半导体科技有限公司 一种小间距垂直腔面发射激光器阵列的制备方法
CN114914310B (zh) * 2021-02-07 2024-04-09 中移(苏州)软件技术有限公司 氮化镓器件及其制造方法、水下通信系统

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62291987A (ja) * 1986-06-12 1987-12-18 Mitsubishi Electric Corp 光集積化素子
US5404373A (en) * 1991-11-08 1995-04-04 University Of New Mexico Electro-optical device
US5283447A (en) * 1992-01-21 1994-02-01 Bandgap Technology Corporation Integration of transistors with vertical cavity surface emitting lasers
JP3206080B2 (ja) * 1992-03-05 2001-09-04 セイコーエプソン株式会社 半導体レーザ
JPH0669491A (ja) * 1992-08-18 1994-03-11 Fujitsu Ltd 光送受信装置
JPH0793419B2 (ja) * 1992-11-04 1995-10-09 日本電気株式会社 受光発光集積素子
US6001664A (en) * 1996-02-01 1999-12-14 Cielo Communications, Inc. Method for making closely-spaced VCSEL and photodetector on a substrate
US5748661A (en) * 1996-07-19 1998-05-05 Motorola, Inc. Integrated lateral detector and laser device and method of fabrication
JPH11330609A (ja) * 1998-03-11 1999-11-30 Seiko Epson Corp モニタ付き面発光レーザおよびその製造方法
JP2000106471A (ja) 1998-09-28 2000-04-11 Nippon Telegr & Teleph Corp <Ntt> 面発光レーザ
JP3652252B2 (ja) * 2001-01-17 2005-05-25 キヤノン株式会社 半導体光装置
JP2002344079A (ja) * 2001-05-11 2002-11-29 Canon Inc 半導体リングレーザ装置及びその作製方法
JP4058633B2 (ja) * 2003-07-10 2008-03-12 セイコーエプソン株式会社 面発光型発光素子、光モジュール、光伝達装置
JP4934271B2 (ja) * 2004-06-11 2012-05-16 日本オプネクスト株式会社 単一電源駆動光集積装置
JP4940600B2 (ja) 2005-08-26 2012-05-30 セイコーエプソン株式会社 電気光学素子および光伝送モジュール、電子機器
JP4741336B2 (ja) 2005-10-14 2011-08-03 秀明 柿田 巻取り器
US8687664B2 (en) * 2006-03-08 2014-04-01 Agere Systems Llc Laser assembly with integrated photodiode
US20080240196A1 (en) 2007-04-02 2008-10-02 Seiko Epson Corporation Surface emitting laser array, method for manufacturing the same, and semiconductor device
JP2008277780A (ja) 2007-04-02 2008-11-13 Seiko Epson Corp 面発光レーザアレイおよびその製造方法ならびに半導体装置
JP2009283859A (ja) * 2008-05-26 2009-12-03 Fuji Xerox Co Ltd 光モジュール
JP6316210B2 (ja) * 2012-02-28 2018-04-25 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 交流ledのためのシリコン基板上における窒化ガリウムledの窒化アルミニウムガリウム/窒化ガリウムデバイスとの集積化

Also Published As

Publication number Publication date
CN107611778A (zh) 2018-01-19
US20180019362A1 (en) 2018-01-18
US10193010B2 (en) 2019-01-29
JP2018010914A (ja) 2018-01-18

Similar Documents

Publication Publication Date Title
JP6825251B2 (ja) 発光素子
JP6790529B2 (ja) 発光デバイス
JP5387671B2 (ja) 半導体レーザ及び集積素子
US10431722B2 (en) Light emitting element, light emitting element array, and light transmission device
JP5391240B2 (ja) 面発光レーザ、光源、および光モジュール
JP5273516B2 (ja) トンネル接合発光素子
US20120300796A1 (en) Hybrid lasers
US10348059B2 (en) Light emitting element array and optical transmission device
JP5590829B2 (ja) 面発光レーザ、面発光レーザアレイ及び画像形成装置
JP2000196189A (ja) 面発光型半導体レーザ
JP5902267B1 (ja) 半導体発光素子
JP7106820B2 (ja) 光半導体素子
JP7239920B2 (ja) 半導体光増幅素子、半導体光増幅器、光出力装置、および距離計測装置
JP2000106471A (ja) 面発光レーザ
JP7255332B2 (ja) 発光素子、および発光素子の製造方法
JP7415329B2 (ja) 発光素子、および発光素子の製造方法
JP3043797B2 (ja) 半導体光素子
JPH0433386A (ja) 端面出射型半導体発光素子およびその駆動方法
JP2020177966A (ja) 半導体光増幅器、光出力装置、および距離計測装置
JP2009088445A (ja) 光素子
JPH07142697A (ja) 光半導体装置
JPH07312457A (ja) 半導体レーザ装置
JP2011082245A (ja) 光半導体装置及びそれを用いた光モジュール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201228

R150 Certificate of patent or registration of utility model

Ref document number: 6825251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350