JP6803667B2 - 発光素子、表示装置、電子機器、及び照明装置 - Google Patents

発光素子、表示装置、電子機器、及び照明装置 Download PDF

Info

Publication number
JP6803667B2
JP6803667B2 JP2016043530A JP2016043530A JP6803667B2 JP 6803667 B2 JP6803667 B2 JP 6803667B2 JP 2016043530 A JP2016043530 A JP 2016043530A JP 2016043530 A JP2016043530 A JP 2016043530A JP 6803667 B2 JP6803667 B2 JP 6803667B2
Authority
JP
Japan
Prior art keywords
light emitting
layer
emitting element
abbreviation
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016043530A
Other languages
English (en)
Other versions
JP2016171318A (ja
Inventor
俊介 細海
俊介 細海
崇浩 石曽根
崇浩 石曽根
辰義 高橋
辰義 高橋
瀬尾 哲史
哲史 瀬尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2016171318A publication Critical patent/JP2016171318A/ja
Application granted granted Critical
Publication of JP6803667B2 publication Critical patent/JP6803667B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Filters (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)

Description

本発明の一態様は、発光素子、または該発光素子を有する表示装置、電子機器、及び照明装置に関する。
なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様の技術分野は、物、方法、または、製造方法に関する。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関する。そのため、より具体的に本明細書で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、液晶表示装置、発光装置、照明装置、蓄電装置、記憶装置、それらの駆動方法、または、それらの製造方法、を一例として挙げることができる。
近年、エレクトロルミネッセンス(Electroluminescence:EL)を利用した発光素子の研究開発が盛んに行われている。これら発光素子の基本的な構成は、一対の電極間に発光性の物質を含む層(EL層)を挟んだ構成である。この素子の電極間に電圧を印加することにより、発光性の物質からの発光が得られる。
上述の発光素子は自発光型であるため、これを用いた表示装置は、視認性に優れ、バックライトが不要であり、消費電力が少ない等の利点を有する。さらに、薄型軽量に作製でき、応答速度が高いなどの利点も有する。
発光性の物質に有機化合物を用い、一対の電極間に当該発光性の物質を含むEL層を設けた発光素子(例えば、有機EL素子)の場合、一対の電極間に電圧を印加することにより、陰極から電子が、陽極から正孔(ホール)がそれぞれ発光性のEL層に注入され、電流が流れる。そして、注入された電子及び正孔が再結合することによって発光性の有機化合物が励起状態となり、励起された発光性の有機化合物から発光を得ることができる。
有機化合物が形成する励起状態の種類としては、一重項励起状態(S)と三重項励起状態(T)があり、一重項励起状態からの発光が蛍光、三重項励起状態からの発光が燐光と呼ばれている。また、発光素子におけるそれらの統計的な生成比率は、S:T=1:3である。そのため、蛍光を発する化合物(蛍光性化合物)を用いた発光素子より、燐光を発する化合物(燐光性化合物)を用いた発光素子の方が、高い発光効率を得ることが可能となる。したがって、三重項励起状態を発光に変換することが可能な燐光性化合物を用いた発光素子の開発が近年盛んに行われている。
燐光性化合物を用いた発光素子のうち、特に青色の発光を呈する発光素子においては、高い三重項励起エネルギー準位を有する安定な化合物の開発が困難であるため、未だ実用化に至っていない。そのため、より安定な蛍光性化合物を用いた発光素子の開発が行われており、蛍光性化合物を用いた発光素子(蛍光発光素子)の発光効率を高める手法が探索されている。
三重項励起状態の一部を発光に変換することが可能な材料として、熱活性化遅延蛍光(Thermally Activated Delayed Fluorescence:TADF)体が知られている。熱活性化遅延蛍光体では、三重項励起状態から逆項間交差により一重項励起状態が生成され、一重項励起状態から発光に変換される。
熱活性化遅延蛍光体を用いた発光素子において、発光効率を高めるためには、熱活性化遅延蛍光体において、三重項励起状態から一重項励起状態が効率よく生成するだけでなく、一重項励起状態から効率よく発光が得られること、すなわち蛍光量子収率が高いことが重要となる。しかしながら、この2つを同時に満たす発光材料を設計することは困難である。
そこで、熱活性化遅延蛍光体と、蛍光性化合物と、を有する発光素子において、熱活性化遅延蛍光体の一重項励起エネルギーを、蛍光性化合物へと移動させ、蛍光性化合物から発光を得る方法が提案されている(特許文献1参照)。
特開2014−45179号公報
熱活性化遅延蛍光体と、蛍光性化合物と、を有する発光素子において、発光効率を高めるためには、三重項励起状態から一重項励起状態が効率よく生成することが好ましい。また、熱活性化遅延蛍光体の一重項励起状態から蛍光性化合物の一重項励起状態へ、効率よくエネルギーが移動することが好ましい。また、熱活性化遅延蛍光体の三重項励起状態から蛍光性化合物の三重項励起状態へのエネルギー移動を抑制することが好ましい。
したがって、本発明の一態様では、蛍光性化合物を有し、発光効率が高い発光素子を提供することを課題の一とする。または、本発明の一態様では、消費電力が低減された発光素子を提供することを課題の一とする。または、本発明の一態様では、新規な発光素子を提供することを課題の一とする。または、本発明の一態様では、新規な発光装置を提供することを課題の一とする。または、本発明の一態様では、新規な表示装置を提供することを課題の一とする。
なお、上記の課題の記載は、他の課題の存在を妨げない。なお、本発明の一態様は、必ずしも、これらの課題の全てを解決する必要はない。上記以外の課題は、明細書等の記載から自ずと明らかであり、明細書等の記載から上記以外の課題を抽出することが可能である。
本発明の一態様は、発光素子がEL層を有し、EL層が、励起錯体を形成する発光層を有することにより、三重項励起子を一重項励起子に変換し、一重項励起子から発光させることができる発光素子であり、該一重項励起子のエネルギー移動によって蛍光性化合物から発光させることができる発光素子である。
したがって、本発明の一態様は、蛍光発光材料と、ホスト材料と、を有し、ホスト材料は、第1の有機化合物と、第2の有機化合物と、を有し、第1の有機化合物、及び第2の有機化合物は、第1の有機化合物と、第2の有機化合物と、が励起錯体を形成する機能を有し、第1の有機化合物または第2の有機化合物の少なくとも一方と、蛍光発光材料と、の重心間距離の最小値が0.7nm以上5nm以下である発光素子である。
また、本発明の他の一態様は、蛍光発光材料と、ホスト材料と、を有し、蛍光発光材料は、70%以上の蛍光量子収率を有し、ホスト材料は、第1の有機化合物と、第2の有機化合物と、を有し、第1の有機化合物、及び第2の有機化合物は、第1の有機化合物と、第2の有機化合物と、が励起錯体を形成する機能を有し、第1の有機化合物または第2の有機化合物の少なくとも一方と、蛍光発光材料と、の重心間距離の最小値が0.7nm以上5nm以下である発光素子である。
また、上記各構成において、第1の有機化合物と、蛍光発光材料と、の重心間距離の最小値、および第2の有機化合物と、蛍光発光材料と、の重心間距離の最小値、がそれぞれ0.7nm以上5nm以下であると好ましい。また、重心間距離の最小値は、古典分子動力学法によって算出される積算配位数が0より大きい距離であると好ましい。
また、上記各構成において、蛍光発光材料は、炭素数2以上のアルキル基を少なくとも2つ以上有すると好ましい。あるいは、蛍光発光材料は、炭素数3以上10以下の分岐を有するアルキル基を少なくとも2つ以上有すると好ましい。あるいは、蛍光発光材料は、炭素数3以上10以下の環式炭化水素基を少なくとも2つ以上、または炭素数3以上10以下の架橋環式炭化水素基を少なくとも2つ以上有すると好ましい。
また、上記各構成において、蛍光発光材料は、炭素数3以上12以下の縮合芳香族炭化水素を有すると好ましい。
また、上記各構成において、励起錯体は、蛍光発光材料へ励起エネルギーを供与する機能を有すると好ましい。
また、上記各構成において、励起錯体が呈する発光は、蛍光発光材料の最も低いエネルギー側の吸収帯と重なる領域を有すると好ましい。
また、上記各構成において、励起錯体が呈する発光は、遅延蛍光成分の占める割合が10%以上であり、遅延蛍光成分は、蛍光寿命が10ns以上50μs以下の遅延蛍光成分を有すると好ましい。
また、上記各構成において、第1の有機化合物または第2の有機化合物の一方は、電子を輸送する機能を有し、第1の有機化合物または第2の有機化合物の他方は、正孔を輸送する機能を有すると好ましい。あるいは、第1の有機化合物または第2の有機化合物の一方は、π電子不足型複素芳香環骨格を有し、第1の有機化合物または第2の有機化合物の他方は、π電子過剰型複素芳香環骨格または芳香族アミン骨格を有すると好ましい。
また、本発明の他の一態様は、上記各構成の発光素子と、カラーフィルタまたはトランジスタの少なくとも一方と、を有する表示装置である。また、本発明の他の一態様は、当該表示装置と、筐体またはタッチセンサの少なくとも一方と、を有する電子機器である。また、本発明の他の一態様は、上記各構成の発光素子と、筐体またはタッチセンサの少なくとも一方と、を有する照明装置である。また、本発明の一態様は、発光素子を有する発光装置だけでなく、発光装置を有する電子機器も範疇に含める。従って、本明細書中における発光装置とは、画像表示デバイス、もしくは光源(照明装置含む)を指す。また、発光装置にコネクター、例えばFPC(Flexible Printed Circuit)、TCP(Tape Carrier Package)が取り付けられた表示モジュール、TCPの先にプリント配線板が設けられた表示モジュール、または発光素子にCOG(Chip On Glass)方式によりIC(集積回路)が直接実装された表示モジュールも発光装置を含む場合がある。
本発明の一態様により、蛍光性化合物を有し、発光効率が高い発光素子を提供することができる。または、本発明の一態様により、消費電力が低減された発光素子を提供することができる。または、本発明の一態様により、新規な発光素子を提供することができる。または、本発明の一態様により、新規な発光装置を提供することができる。または、本発明の一態様により、新規な表示装置を提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
本発明の一態様の発光素子の断面模式図、及び発光層におけるエネルギー準位の相関を説明する図。 ホスト材料とゲスト材料との位置関係を説明する図。 ゲスト材料に対するホスト材料の積算配位数を説明する図。 ホスト材料とゲスト材料との位置関係を説明する図。 ホスト材料とゲスト材料の三重項励起状態の最安定構造を説明する図。 本発明の一態様の発光素子の断面模式図、及び発光層におけるエネルギー準位の相関を説明する図。 本発明の一態様の発光素子の断面模式図、及び発光層におけるエネルギー準位の相関を説明する図。 本発明の一態様の発光素子の断面模式図。 本発明の一態様の発光素子の断面模式図。 本発明の一態様の発光素子の作製方法を説明する断面模式図。 本発明の一態様の発光素子の作製方法を説明する断面模式図。 本発明の一態様の表示装置を説明する上面図及び断面模式図。 本発明の一態様の表示装置を説明する断面模式図。 本発明の一態様の表示装置を説明する断面模式図。 本発明の一態様の表示装置を説明する断面模式図。 本発明の一態様の表示装置を説明する断面模式図。 本発明の一態様の表示装置を説明する断面模式図。 本発明の一態様の表示装置を説明する断面模式図。 本発明の一態様の表示装置を説明するブロック図及び回路図。 本発明の一態様の表示装置の画素回路を説明する回路図。 本発明の一態様の表示装置の画素回路を説明する回路図。 本発明の一態様のタッチパネルの一例を示す斜視図。 本発明の一態様の表示装置、及びタッチセンサの一例を示す断面図。 本発明の一態様のタッチパネルの一例を示す断面図。 本発明の一態様に係るタッチセンサのブロック図及びタイミングチャート図。 本発明の一態様に係るタッチセンサの回路図。 本発明の一態様の表示モジュールを説明する斜視図。 本発明の一態様の電子機器について説明する図。 本発明の一態様の発光装置を説明する斜視図及び断面図。 本発明の一態様の発光装置を説明する断面図。 本発明の一態様の照明装置及び電子機器を説明する図。 本発明の一態様の照明装置について説明する図。 実施例に係る、発光素子の電流効率−輝度特性を説明する図。 実施例に係る、発光素子の外部量子効率−輝度特性を説明する図。 実施例に係る、発光素子の輝度−電圧特性を説明する図。 実施例に係る、発光素子の電界発光スペクトルを説明する図。 実施例に係る、発光素子の蛍光寿命特性を説明する図。 実施例に係る、発光素子の過渡電界発光スペクトルを説明する図。 実施例に係る、発光素子の過渡電界発光スペクトルを説明する図。 実施例に係る、発光素子の電流効率−輝度特性を説明する図。 実施例に係る、発光素子の外部量子効率−輝度特性を説明する図。 実施例に係る、発光素子の輝度−電圧特性を説明する図。 実施例に係る、発光素子の電界発光スペクトルを説明する図。 実施例に係る、発光素子の時間分解蛍光測定の結果を説明する図。 実施例に係る、発光素子の過渡電界発光スペクトルを説明する図。 実施例に係る、発光素子の過渡電界発光スペクトルを説明する図。 実施例に係る、発光素子の電流効率−輝度特性を説明する図。 実施例に係る、発光素子の外部量子効率−輝度特性を説明する図。 実施例に係る、発光素子の輝度−電圧特性を説明する図。 実施例に係る、発光素子の電界発光スペクトルを説明する図。 実施例に係る、薄膜の時間分解蛍光測定の結果を説明する図。 実施例に係る、薄膜の時間分解蛍光測定の結果を説明する図。
以下、本発明の実施の態様について図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることが可能である。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されない。
なお、図面等において示す各構成の、位置、大きさ、範囲などは、理解の簡単のため、実際の位置、大きさ、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面等に開示された位置、大きさ、範囲などに限定されない。
また、本明細書等において、第1、第2等として付される序数詞は便宜上用いており、工程順又は積層順を示さない場合がある。そのため、例えば、「第1の」を「第2の」又は「第3の」などと適宜置き換えて説明することができる。また、本明細書等に記載されている序数詞と、本発明の一態様を特定するために用いられる序数詞は一致しない場合がある。
また、本明細書等において、図面を用いて発明の構成を説明するにあたり、同じものを指す符号は異なる図面間でも共通して用いる場合がある。
また、本明細書等において、「膜」という用語と、「層」という用語とは、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能な場合がある。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能な場合がある。
また、本明細書等において、一重項励起状態(S)は、励起エネルギーを有する一重項状態のことである。また、一重項励起エネルギー準位の最も低い準位(S1準位)は、最も低い一重項励起状態の励起エネルギー準位のことである。また、三重項励起状態(T)は、励起エネルギーを有する三重項状態のことである。また、三重項励起エネルギー準位の最も低い準位(T1準位)は、最も低い三重項励起状態の励起エネルギー準位のことである。
また、本明細書等において蛍光材料または蛍光性化合物とは、一重項励起状態から基底状態へ緩和する際に可視光領域に発光を与える材料または化合物である。燐光材料または燐光性化合物とは、三重項励起状態から基底状態へ緩和する際に、室温において可視光領域に発光を与える材料または化合物である。換言すると燐光材料または燐光性化合物とは、三重項励起エネルギーを可視光へ変換可能な材料または化合物の一つである。
なお、本明細書等において、室温とは、0℃以上40℃以下のいずれかの温度をいう。
また、本明細書等において、青色の波長領域とは、400nm以上490nm未満の波長領域であり、青色の発光は該波長領域に少なくとも一つの発光スペクトルピークを有する。また、緑色の波長領域とは、490nm以上580nm未満の波長領域であり、緑色の発光は該波長領域に少なくとも一つの発光スペクトルピークを有する。また、赤色の波長領域とは、580nm以上680nm以下の波長領域であり、赤色の発光は該波長領域に少なくとも一つの発光スペクトルピークを有する。
(実施の形態1)
本実施の形態では、本発明の一態様の発光素子について、図1乃至図5を用いて以下説明する。
<発光素子の構成例>
まず、本発明の一態様の発光素子の構成について、図1(A)(B)及び(C)を用いて、以下説明する。
図1(A)は、本発明の一態様の発光素子250の断面模式図である。
発光素子250は、一対の電極(電極101及び電極102)を有し、該一対の電極間に設けられたEL層100を有する。EL層100は、少なくとも発光層130を有する。
また、図1(A)に示すEL層100は、発光層130の他に、正孔注入層111、正孔輸送層112、電子輸送層118、及び電子注入層119等の機能層を有する。
なお、本実施の形態においては、一対の電極のうち、電極101を陽極として、電極102を陰極として説明するが、発光素子250の構成としては、その限りではない。つまり、電極101を陰極とし、電極102を陽極とし、当該電極間の各層の積層を、逆の順番にしてもよい。すなわち、陽極側から、正孔注入層111と、正孔輸送層112と、発光層130と、電子輸送層118と、電子注入層119と、が積層する順番とすればよい。
なお、EL層100の構成は、図1(A)に示す構成に限定されず、正孔注入層111、正孔輸送層112、電子輸送層118、及び電子注入層119の中から選ばれた少なくとも一つを有する構成とすればよい。あるいは、EL層100は、正孔または電子の注入障壁を低減する、正孔または電子の輸送性を向上する、正孔または電子の輸送性を阻害する、または電極による消光現象を抑制する、ことができる等の機能を有する機能層を有する構成としてもよい。なお、機能層はそれぞれ単層であっても、複数の層が積層された構成であってもよい。
図1(B)は、図1(A)に示す発光層130の一例を示す断面模式図である。図1(B)に示す発光層130は、ホスト材料131と、ゲスト材料132と、を有する。また、ホスト材料131は、有機化合物131_1と、有機化合物131_2と、を有する。
なお、ゲスト材料132としては、発光性の有機化合物を用いればよく、該発光性の有機化合物としては、蛍光を発することができる物質(以下、蛍光性化合物ともいう)であると好適である。以下の説明においては、ゲスト材料132として、蛍光性化合物を用いる構成について説明する。なお、ゲスト材料132を蛍光材料または蛍光性化合物として読み替えてもよい。
本発明の一態様の発光素子250においては、一対の電極(電極101及び電極102)間に電圧を印加することにより、陰極から電子が、陽極から正孔(ホール)が、それぞれEL層100に注入され、電流が流れる。そして、注入された電子及び正孔が再結合することによって、励起子が形成される。キャリア(電子および正孔)の再結合によって生じる励起子のうち、一重項励起子と三重項励起子の比(以下、励起子生成確率)は、統計的確率により、1:3となる。そのため、蛍光発光材料を用いた発光素子において、発光に寄与する一重項励起子が生成する割合は25%であり、発光に寄与しない三重項励起子が生成する割合は75%となる。したがって、発光に寄与しない三重項励起子を、発光に寄与する一重項励起子へ変換することが、発光素子の発光効率を向上させるためには重要である。
<発光素子の発光機構>
次に、発光層130の発光機構について、以下説明を行う。
発光層130におけるホスト材料131が有する有機化合物131_1および有機化合物131_2は、励起錯体(エキサイプレックス、エキシプレックスまたはExciplexともいう)を形成する。
有機化合物131_1と有機化合物131_2との組み合わせは、励起錯体を形成することが可能な組み合わせであればよいが、一方が正孔を輸送する機能(正孔輸送性)を有する化合物であり、他方が電子を輸送する機能(電子輸送性)を有する化合物であることが、より好ましい。この場合、ドナー−アクセプター型の励起錯体を形成しやすくなり、効率よく励起錯体を形成することができる。また、有機化合物131_1と有機化合物131_2との組み合わせが、正孔輸送性を有する化合物と電子輸送性を有する化合物との組み合わせである場合、その混合比によってキャリアバランスを容易に制御することが可能となる。具体的には、正孔輸送性を有する化合物:電子輸送性を有する化合物=1:9から9:1(重量比)の範囲が好ましい。また、該構成を有することで、容易にキャリアバランスを制御することができることから、キャリア再結合領域の制御も簡便に行うことができる。
また、効率よく励起錯体を形成するホスト材料の組み合わせとしては、有機化合物131_1及び有機化合物131_2のうち一方の最高被占軌道(Highest Occupied Molecular Orbital、HOMOともいう)準位が他方のHOMO準位より高く、一方の最低空軌道(Lowest Unoccupied Molecular Orbital、LUMOともいう)準位が他方のLUMO準位より高いことが好ましい。例えば、一方の有機化合物が正孔輸送性を有し、他方の有機化合物が電子輸送性を有する場合、一方の有機化合物のHOMO準位が他方の有機化合物のHOMO準位より高いことが好ましく、一方の有機化合物のLUMO準位が他方の有機化合物のLUMO準位より高いことが好ましい。具体的には、一方の有機化合物のHOMO準位と他方の有機化合物のHOMO準位とのエネルギー差は、好ましくは0.05eV以上であり、より好ましくは0.1eV以上であり、さらに好ましくは0.2eV以上である。また、一方の有機化合物のLUMO準位と他方の有機化合物のLUMO準位とのエネルギー差は、好ましくは0.05eV以上であり、より好ましくは0.1eV以上であり、さらに好ましくは0.2eV以上である。
発光層130における有機化合物131_1と、有機化合物131_2と、ゲスト材料132とのエネルギー準位の相関を図1(C)に示す。なお、図1(C)における表記及び符号は、以下の通りである。
・Host(131_1):有機化合物131_1
・Host(131_2):有機化合物131_2
・Guest(132):ゲスト材料132(蛍光性化合物)
・S:有機化合物131_1(ホスト材料)のS1準位
・T:有機化合物131_1(ホスト材料)のT1準位
・S:ゲスト材料132(蛍光性化合物)のS1準位
・T:ゲスト材料132(蛍光性化合物)のT1準位
・S:励起錯体のS1準位
・T:励起錯体のT1準位
本発明の一態様の発光素子においては、発光層130が有する有機化合物131_1と有機化合物131_2とが励起錯体を形成する。励起錯体の最も低い一重項励起エネルギー準位(S)と励起錯体の最も低い三重項励起エネルギー準位(T)とは、互いに隣接したエネルギー準位となる(図1(C) ルートE参照)。
励起錯体は、2種類の物質からなる励起状態であり、光励起の場合、励起状態となった一方の物質が基底状態である他方の物質と相互作用することによって形成される。そして、光を発することによって基底状態になると、励起錯体を形成していた2種類の物質は、また元の別々の物質として振る舞う。電気励起の場合は、一方が励起状態になると、速やかに他方と相互作用することで励起錯体を形成する。あるいは、一方が正孔を、他方が電子を受け取ることで速やかに励起錯体を形成することができる。この場合、いずれの物質においても励起状態を形成することなく励起錯体を形成することができるため、発光層130における励起子のほとんどが励起錯体として存在することが可能となる。励起錯体の励起エネルギー準位(SまたはT)は、励起錯体を形成するホスト材料(有機化合物131_1および有機化合物131_2)の一重項励起エネルギー準位(S)より低くなるため、より低い励起エネルギーでホスト材料131の励起状態を形成することが可能となる。これによって、発光素子250の駆動電圧を低減することができる。
励起錯体の一重項励起エネルギー準位(S)と三重項励起エネルギー準位(T)は、互いに隣接したエネルギー準位であるため、熱活性化遅延蛍光を呈する機能を有する。すなわち、励起錯体は三重項励起エネルギーを逆項間交差(アップコンバージョン)によって一重項励起エネルギーに変換する機能を有する(図1(C) ルートE参照)。したがって、発光層130で生成した三重項励起エネルギーの一部は励起錯体により一重項励起エネルギーに変換される。そのためには、励起錯体の一重項励起エネルギー準位(S)と三重項励起エネルギー準位(T)とのエネルギー差は0eVより大きく0.2eV以下であると好ましい。なお、逆項間交差を効率よく生じさせるためには、励起錯体の三重項励起エネルギー準位(T)が、励起錯体を形成するホスト材料を構成している各有機化合物(有機化合物131_1および有機化合物131_2)の三重項励起エネルギー準位よりも低いことが好ましい。これにより、各有機化合物による励起錯体の三重項励起エネルギーのクエンチが生じにくくなり、効率よく逆項間交差が発生する。
また、励起錯体の一重項励起エネルギー準位(S)は、ゲスト材料132の一重項励起エネルギー準位(S)より高いことが好ましい。そうすることで、生成した励起錯体の一重項励起エネルギーは、励起錯体の一重項励起エネルギー準位(S)からゲスト材料132の一重項励起エネルギー準位(S)へエネルギー移動することができ、ゲスト材料132が一重項励起状態となり、発光する(図1(C) ルートE参照)。
なお、ゲスト材料132の一重項励起状態から効率よく発光を得るためには、ゲスト材料132の蛍光量子収率は高いことが好ましく、具体的には、好ましくは50%以上、より好ましくは70%以上、さらに好ましくは90%以上である。
なお、励起錯体の一重項励起エネルギー準位(S)から、ゲスト材料132の三重項励起エネルギー準位(T)へのエネルギー移動は、ゲスト材料132における一重項基底状態から三重項励起状態への直接遷移が禁制であることから、主たるエネルギー移動過程になりにくい。
また、励起錯体の三重項励起エネルギー準位(T)からゲスト材料132の三重項励起エネルギー準位(T)へ三重項励起エネルギー移動が生じると、三重項励起エネルギーは失活してしまう(図1(C) ルートE参照)。そのため、ルートEのエネルギー移動が少ない方が、ゲスト材料132の三重項励起状態の生成効率を低減することができ、熱失活を減少することができるため好ましい。そのためには、ホスト材料131とゲスト材料132との重量比は、ゲスト材料132の重量比が低いことが好ましく、具体的にはホスト材料131に対するゲスト材料132の重量比が、好ましくは0.001以上0.05以下であり、より好ましくは0.001以上0.01以下である。
なお、ゲスト材料132においてキャリアの直接再結合過程が支配的になると、発光層130において三重項励起子が多数生成することになり、熱失活によって発光効率を損ねてしまう。そのため、ゲスト材料132においてキャリアが直接再結合する過程よりも、励起錯体の生成過程を経たエネルギー移動過程(図1(C) ルートE及びE)の割合が多い方が、ゲスト材料132の三重項励起状態の生成効率を低減することができ、熱失活を抑制することができるため好ましい。そのためには、やはりホスト材料131とゲスト材料132との重量比は、ゲスト材料132の重量比が低いことが好ましく、具体的にはホスト材料131に対するゲスト材料132の重量比が、好ましくは0.001以上0.05以下であり、より好ましくは0.001以上0.01以下である。
以上のように、上述のルートE及びEのエネルギー移動過程が全て効率よく生じれば、ホスト材料131の一重項励起エネルギー及び三重項励起エネルギーの双方が効率よくゲスト材料132の一重項励起状態のエネルギーに変換されるため、発光素子250は高い発光効率で発光することが可能となる。
上記に示すルートE、E、及びEの過程を、本明細書等において、ExSET(Exciplex−Singlet Energy Transfer)またはExEF(Exciplex−Enhanced Fluorescence)と呼称する場合がある。別言すると、発光層130は、励起錯体からゲスト材料132への励起エネルギーの供与がある。
発光層130を上述の構成とすることで、発光層130のゲスト材料132からの発光を効率よく得ることができる。
<エネルギー移動機構>
次に、ホスト材料131と、ゲスト材料132との分子間のエネルギー移動過程の支配因子について説明する。分子間のエネルギー移動の機構としては、フェルスター機構(双極子−双極子相互作用)と、デクスター機構(電子交換相互作用)の2つの機構が提唱されている。ここでは、ホスト材料131とゲスト材料132との分子間のエネルギー移動過程について説明するが、ホスト材料131が励起錯体の場合も同様である。
≪フェルスター機構≫
フェルスター機構では、エネルギー移動に、分子間の直接的接触を必要とせず、ホスト材料131及びゲスト材料132間の双極子振動の共鳴現象を通じてエネルギー移動が起こる。双極子振動の共鳴現象によってホスト材料131がゲスト材料132にエネルギーを受け渡し、励起状態のホスト材料131が基底状態になり、基底状態のゲスト材料132が励起状態になる。なお、フェルスター機構の速度定数kh*→gを数式(1)に示す。
数式(1)において、νは、振動数を表し、f’(ν)は、ホスト材料131の規格化された発光スペクトル(一重項励起状態からのエネルギー移動を論じる場合は蛍光スペクトル、三重項励起状態からのエネルギー移動を論じる場合は燐光スペクトル)を表し、ε(ν)は、ゲスト材料132のモル吸光係数を表し、Nは、アボガドロ数を表し、nは、媒体の屈折率を表し、Rは、ホスト材料131とゲスト材料132の分子間距離を表し、τは、実測される励起状態の寿命(蛍光寿命や燐光寿命)を表し、cは、光速を表し、φは、発光量子収率(一重項励起状態からのエネルギー移動を論じる場合は蛍光量子収率、三重項励起状態からのエネルギー移動を論じる場合は燐光量子収率)を表し、Kは、ホスト材料131とゲスト材料132の遷移双極子モーメントの配向を表す係数(0から4)である。なお、ランダム配向の場合はK=2/3である。
≪デクスター機構≫
デクスター機構では、ホスト材料131とゲスト材料132が軌道の重なりを生じる接触有効距離に近づき、励起状態のホスト材料131の電子と、基底状態のゲスト材料132との電子の交換を通じてエネルギー移動が起こる。なお、デクスター機構の速度定数kh*→gを数式(2)に示す。
数式(2)において、hは、プランク定数であり、Kは、エネルギーの次元を持つ定数であり、νは、振動数を表し、f’(ν)は、ホスト材料131の規格化された発光スペクトル(一重項励起状態からのエネルギー移動を論じる場合は蛍光スペクトル、三重項励起状態からのエネルギー移動を論じる場合は燐光スペクトル)を表し、ε’(ν)は、ゲスト材料132の規格化された吸収スペクトルを表し、Lは、実効分子半径を表し、Rは、ホスト材料131とゲスト材料132の分子間距離を表す。
ここで、ホスト材料131からゲスト材料132へのエネルギー移動効率φETは、数式(3)で表される。kは、ホスト材料131の発光過程(一重項励起状態からのエネルギー移動を論じる場合は蛍光、三重項励起状態からのエネルギー移動を論じる場合は燐光)の速度定数を表し、kは、ホスト材料131の非発光過程(熱失活や項間交差)の速度定数を表し、τは、実測されるホスト材料131の励起状態の寿命を表す。
数式(3)より、エネルギー移動効率φETを高くするためには、エネルギー移動の速度定数kh*→gを大きくし、他の競合する速度定数k+k(=1/τ)が相対的に小さくなれば良いことがわかる。
≪エネルギー移動を高めるための概念≫
まず、フェルスター機構によるエネルギー移動を考える。数式(3)に数式(1)を代入することでτを消去することができる。したがって、フェルスター機構の場合、エネルギー移動効率φETは、ホスト材料131の励起状態の寿命τに依存しない。また、エネルギー移動効率φETは、発光量子収率φ(一重項励起状態からのエネルギー移動を論じているので、蛍光量子収率)が高い方が良いと言える。一般的に、有機化合物の三重項励起状態からの発光量子収率は室温において非常に低い。そのため、ホスト材料131が三重項励起状態である場合、フェルスター機構によるエネルギー移動過程は無視でき、ホスト材料131が一重項励起状態である場合のみ考慮すればよい。
また、ホスト材料131の発光スペクトル(一重項励起状態からのエネルギー移動を論じる場合は蛍光スペクトル)とゲスト材料132の吸収スペクトル(一重項基底状態から一重項励起状態への遷移に相当する吸収)との重なりが大きいことが好ましい。さらに、ゲスト材料132のモル吸光係数も高い方が好ましい。このことは、ホスト材料131の発光スペクトルと、ゲスト材料132の最も長波長側に現れる吸収帯とが重なることを意味する。なお、ゲスト材料132における一重項基底状態から三重項励起状態への直接遷移が禁制であることから、ゲスト材料132において三重項励起状態が係わるモル吸光係数は無視できる量である。このことから、フェルスター機構によるゲスト材料132の三重項励起状態へのエネルギー移動過程は無視でき、ゲスト材料132の一重項励起状態へのエネルギー移動過程のみ考慮すればよい。すなわち、フェルスター機構においては、ホスト材料131の一重項励起状態からゲスト材料132の一重項励起状態へのエネルギー移動過程を考えればよい。
次に、デクスター機構によるエネルギー移動を考える。数式(2)によれば、速度定数kh*→gを大きくするにはホスト材料131の発光スペクトル(一重項励起状態からのエネルギー移動を論じる場合は蛍光スペクトル)とゲスト材料132の吸収スペクトル(一重項基底状態から一重項励起状態への遷移に相当する吸収)との重なりが大きい方が良いことがわかる。したがって、エネルギー移動効率の最適化は、ホスト材料131の発光スペクトルと、ゲスト材料132の最も長波長側に現れる吸収帯とが重なることによって実現される。
また、数式(3)に数式(2)を代入すると、デクスター機構におけるエネルギー移動効率φETは、τに依存することが分かる。デクスター機構は、電子交換に基づくエネルギー移動過程であるため、ホスト材料131の一重項励起状態からゲスト材料132の一重項励起状態へのエネルギー移動と同様に、ホスト材料131の三重項励起状態からゲスト材料132の三重項励起状態へのエネルギー移動も生じる。
本発明の一態様の発光素子においては、ゲスト材料132は蛍光材料であるため、ゲスト材料132の三重項励起状態へのエネルギー移動効率は低いことが好ましい。すなわち、ホスト材料131からゲスト材料132へのデクスター機構に基づくエネルギー移動効率は低いことが好ましく、ホスト材料131からゲスト材料132へのフェルスター機構に基づくエネルギー移動効率は高いことが好ましい。
既に述べたように、フェルスター機構におけるエネルギー移動効率は、ホスト材料131の励起状態の寿命τに依存しない。一方、デクスター機構におけるエネルギー移動効率は、ホスト材料131の励起寿命τに依存し、デクスター機構におけるエネルギー移動効率を低下させるためには、ホスト材料131の励起寿命τは短いことが好ましい。
また、フェルスター機構の速度定数は、ホスト材料131とゲスト材料132の距離の6乗に反比例し、デクスター機構の速度定数は、ホスト材料131とゲスト材料132の距離の指数関数に反比例する。そのため、二分子間の距離がおよそ1nm以下ではデクスター機構が優勢となり、およそ1nm以上ではフェルスター機構が優勢となる。したがって、デクスター機構におけるエネルギー移動効率を低下させるためには、ホスト材料131とゲスト材料132との距離を大きくすることが好ましく、具体的には、好ましくは0.7nm以上、より好ましくは0.9nm以上、さらに好ましくは1nm以上である。また、フェルスター機構が効率よく生じるためには、ホスト材料131とゲスト材料132との距離は、5nm以下であることが好ましい。
<ホスト材料とゲスト材料との距離について>
ホスト材料131とゲスト材料132との距離を大きくするため、より厳密には、ホスト材料131のうちエネルギー移動に係わる領域と、ゲスト材料132のうちエネルギー移動に係わる領域と、の距離を大きくするためには、ホスト材料131またはゲスト材料132の少なくとも一方が互いの近接を阻害する置換基を有することが好ましい。
なお、発光層130中では、ホスト材料131が最も多く存在し、ゲスト材料132は、ホスト材料131中に分散される。したがって、ゲスト材料132が、ホスト材料131との近接を阻害する置換基を有することが好ましい。
なお、該置換基はホスト材料131とゲスト材料132とのエネルギー移動に関わりが低いことが好ましい。すなわち、該置換基は、一重項励起状態および三重項励起状態において分子軌道の分布及びスピン密度が小さいことが好ましい。該置換基としては、脂肪族炭化水素が好ましく、より好ましくはアルキル基、さらに好ましくは分岐を有するアルキル基である。
したがって、本発明の一態様の発光素子において、ゲスト材料132は、炭素数2以上のアルキル基を少なくとも2つ以上有すると好ましい。あるいは、ゲスト材料132は、炭素数3以上10以下の分岐を有するアルキル基を少なくとも2つ以上有すると好ましい。あるいは、ゲスト材料132は、炭素数3以上10以下の環式炭化水素基を少なくとも2つ以上、または炭素数3以上10以下の架橋環式炭化水素基を少なくとも2つ以上有すると好ましい。また、ゲスト材料132は、炭素数3以上12以下の縮合芳香族炭化水素を有すると好ましい。
炭素数2以上のアルキル基としては、直鎖または分岐のいずれでもよく、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等の炭素数2以上10以下のアルキル基が好ましい。アルキル基としては特に、炭素数3以上10以下の分岐を有するアルキル基が好ましく、イソプロピル基、イソブチル基、sec−ブチル基、tert−ブチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、イソヘキシル基、2−エチルヘキシル基、2−エチルオクチル基等が挙げられる。炭素数3以上10以下の環式炭化水素基または炭素数3以上10以下の架橋環式炭化水素基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等の環式炭化水素基や、ノルボルニル基、ボルニル基、フェンキル基、ビシクロ[2.2.2]オクタニル基、ビシクロ[3.2.1]オクタニル基、アダマンチル基等の架橋環式炭化水素基が挙げられる。また、ゲスト材料で好ましい炭素数3以上12以下の縮合芳香族炭化水素としては、アントラセン、フェナントレン、フルオレン、インダセン、テトラセン、トリフェニレン、クリセン、ピレン、フルオランテン、ペンタセン、ペリレン、ルビセン、トリナフチレン、ジベンゾペリフランテン(またはジベンゾ[5,6]インデノ[1,2,3−cd:1’,2’,3’−lm]ペリレン)等の骨格が好ましく、特に炭素数3以上6以下の縮合芳香族炭化水素がより好ましい。
次に、本発明の一態様の発光素子に好適に用いることができるホスト材料およびゲスト材料について、古典分子動力学法を用いた計算によってホスト材料とゲスト材料との距離を算出した一例を示す。計算に用いた化合物の構造及び略称を以下に示す。また、計算条件を表1に示す。
計算方法に関しては、以下の通りである。古典分子動力学計算ソフトウェアとして、富士通株式会社製SCIGRESS ME2.0を用いた。また、ポテンシャルには、Lennard−Jones VdW PotenntialであるDREIDINGとOPLSを用いた。なお、計算は、ハイパフォーマンスコンピュータ(SGI社製、C2112)を用いて行った。
計算モデルとしては、ホスト材料として4,6−ビス[3−(9H−カルバゾール−9−イル)フェニル]ピリミジン(略称:4,6mCzP2Pm)を99個と、ゲスト材料として2,8−ジ−tert−ブチル−5,11−ビス(4−tert−ブチルフェニル)−6,12−ジフェニルテトラセン(略称:TBRb)またはRubrene(ルブレンともいう)を1個と、有する基準セルを用いた。各材料における分子構造の初期構造は、第一原理計算から得られた最安定構造(一重項基底状態)を用いた。また、第一原理計算から得られた結果を基に静電ポテンシャル近似を行い各分子の電荷分布を算出し、「原子電荷」として設定した。
なお、上記第一原理計算としては、量子化学計算プログラムであるGaussian09を使用し、一重項基底状態における最安定構造を密度汎関数法(DFT)で計算した。基底関数としては6−311G(d,p)を用い、汎関数はB3LYPを用いた。なお、計算は、ハイパフォーマンスコンピュータ(SGI社製、ICE X)を用いて行った。
上記の初期構造について、分子振動を再現する刻み時間(0.2fs)に対して十分な緩和時間(1ns)で計算し、アモルファス構造を算出した。上記手法によって算出された、ホスト材料(4,6mCzP2Pm)とゲスト材料(Rubrene)とを有するアモルファス構造の基準セルの一部を抜粋した図を図2に示す。なお、図2においては明瞭化のため、ゲスト材料であるRubreneはスペースフィリング表示とし、ホスト材料である4,6mCzP2Pmはスティック表示とした。
図2に示すように、ゲスト材料分子の周辺には、ホスト材料分子が多数あることがわかる。
続いて、算出したアモルファス構造に対して、解析のため一定時間(150ps)における座標情報を積算した。該座標情報から分子の重心を基準として、ゲスト材料に対するホスト材料の積算配位数を算出した。
なお、積算配位数とは、ある原子種iを中心とする、半径rの球内に存在する原子種jの個数を表す。積算配位数Nij(r)は二体相関関数gij(r)を用いて表すことができる。
二体相関関数gij(r)は、ある原子種iを中心とする、半径rの球内に存在する原子種jの単位体積当たりの平均原子数を表す。なお、二体相関関数gij(r)は、平均密度N/V当たりの平均原子数として表す。系に含まれる原子種iの全原子数をNとし、体積をVとし、距離rの位置における厚さΔrの球殻に含まれる原子種kの原子数をnikとすると、二体相関関数gij(r)は数式(4)で表される。また、積算配位数Nij(r)は数式(5)で表される。なお、原子種iと原子種jとが同種原子の場合、N=N−1となる。
本実施の形態においては、複数の時系列データにおいて平均化、及び原子数による平均化を行って二体相関関数gij(r)を算出した。また、積算配位数Nij(r)の算出にあたり、nはn・Δrがrに達するまでの数とした。積算配位数Nij(r)についても、複数の時系列データにおいて平均化、及び原子数による平均化を行った。
上記手法によって算出した積算配位数を図3に示す。図3において、縦軸はゲスト材料分子に対するホスト材料分子の積算配位数を示し、横軸はホスト材料分子とゲスト材料分子との重心間距離を示す。図3に示す積算配位数が0を超えるときの重心間距離から、ゲスト材料分子に対して最も近い距離にあるホスト材料分子との距離を求めることができる。ゲスト材料がRubreneのとき、Rubrene分子に対して最も近い距離にあるホスト材料(4,6mCzP2Pm)分子とRubrene分子との重心間距離は0.59nmであった。一方、ゲスト材料がTBRbのとき、TBRb分子に対して最も近い距離にあるホスト材料(4,6mCzP2Pm)分子とTBRb分子との重心間距離は0.90nmであり、Rubreneがゲスト材料の場合よりも大きい結果となった。また、ゲスト材料分子から1nm以内に存在するホスト材料分子の数は、Rubreneの場合は6個であるのに対して、TBRbの場合は2個と、少ない結果となった。したがって、TBRbをゲスト材料に用いることで、ホスト材料とゲスト材料との距離が大きくなり、ホスト材料とゲスト材料とのデクスター機構に基づくエネルギー移動効率を低減させることができる。またこの結果から、ゲスト材料分子から1nm以内に存在するホスト材料分子の数は、好ましくは5個以下であり、より好ましくは4個以下であり、さらに好ましくは2個以下であるといえる。
なお、TBRbの1nm以下に近接する2個のホスト材料分子は、TBRbの分子構造においてtert−ブチル基のない場所(テトラセン骨格とフェニル基とを有する面に凡そ垂直な方向に位置する。)に近接しているホスト材料分子である。すなわち、TBRbがtert−ブチル基を有する場所においては、ホスト材料は1nmより大きい距離にあり、tert−ブチル基によって、ゲスト材料とホスト材料との近接を阻害している。
次に、算出した基準セルの中から、ゲスト材料分子(TBRbまたはRubrene)に対して最も近接する位置にあるホスト材料分子(4,6mCzP2Pm)と、ゲスト材料分子と、を抜粋した図を図4に示す。図4(A)には、ゲスト材料分子がTBRbであり、ホスト材料分子として4,6mCzP2Pmであるときの近接した二分子を示し、図4(B)には、ゲスト材料分子がRubreneであり、ホスト材料分子が4,6mCzP2Pmである時の近接した二分子を示す。
図4(B)のように、ゲスト材料分子がRubreneであるときは、テトラセン骨格の末端が水素原子であるため、ホスト材料分子(4,6mCzP2Pm)との距離が小さい。一方、図4(A)のように、ゲスト材料分子がTBRbのときは、テトラセン骨格の末端にtert−ブチル基を有するため、ホスト材料分子(4,6mCzP2Pm)とTBRbが有するテトラセン骨格との距離が大きくなること分かる。
また、ホスト材料(4,6mCzP2Pm)、及びゲスト材料(TBRbおよびRubrene)の三重項励起状態における最安定構造とスピン密度分布を、第一原理計算を用いて算出した結果を図5に示す。なお、第一原理計算としては、量子化学計算プログラムであるGaussian09を使用し、三重項励起状態における最安定構造を密度汎関数法(DFT)で計算した。基底関数としては6−311G(d,p)を用い、汎関数はB3LYPを用いた。なお、図5(A)(B)、及び(C)にそれぞれ、4,6mCzP2Pm、TBRb、及びRubrene、の三重項励起状態の最安定構造とスピン密度分布を示す。
図5(B)(C)に示すように、TBRb及びRubreneのスピン密度分布は、テトラセン骨格に局在化しており、TBRbが有するtert−ブチル基は、スピン密度分布が小さい。そのため、TBRbのtert−ブチル基がホスト材料分子である4,6mCzP2Pmと近接しても、ホスト材料とゲスト材料とのエネルギー移動に係わる確率は小さい。すなわち、ゲスト材料においてスピン密度分布が高い骨格(ここではテトラセン骨格)と、ホスト材料との距離が大きいことが重要となる。
なお、ゲスト材料が、ホスト材料との近接を阻害する置換基を少なくとも2つ有することで、ゲスト材料とホスト材料との近接を効果的に阻害することができるため好ましい。
したがって、本発明の一態様において、ゲスト材料132は、炭素数2以上のアルキル基を少なくとも2つ以上有すると好ましい。あるいは、ゲスト材料132は、炭素数3以上10以下の分岐を有するアルキル基を少なくとも2つ以上有すると好ましい。あるいは、ゲスト材料132は、炭素数3以上10以下の環式炭化水素基を少なくとも2つ以上、または炭素数3以上10以下の架橋環式炭化水素基を少なくとも2つ以上有すると好ましい。さらに、ゲスト材料132は、炭素数3以上12以下の縮合芳香族炭化水素を有すると好ましい。
なお、ホスト材料131からゲスト材料132へのエネルギー移動と同様に、励起錯体からゲスト材料132へのエネルギー移動過程についても、フェルスター機構、及びデクスター機構の双方の機構によるエネルギー移動が生じる。
そこで、本発明の一態様は、ゲスト材料132に効率的にエネルギー移動が可能なエネルギードナーとしての機能を有する励起錯体、を形成する組み合わせの有機化合物131_1および有機化合物131_2をホスト材料131として有する発光素子を提供する。有機化合物131_1および有機化合物131_2が形成する励起錯体は、一重項励起エネルギー準位と、三重項励起エネルギー準位とが近接しているという特徴を有する。そのため、発光層130において生成する三重項励起子から一重項励起子への遷移(逆項間交差)が起こりやすい。したがって、発光層130において一重項励起子の生成効率を高めることができる。さらに、励起錯体の一重項励起状態からエネルギーアクセプターとなるゲスト材料132の一重項励起状態へのエネルギー移動を生じやすくするためには、励起錯体の発光スペクトルと、ゲスト材料132の最も長波長側(低エネルギー側)に現れる吸収帯と、が重なると好ましい。そうすることで、ゲスト材料132の一重項励起状態の生成効率を高めることができる。また、ゲスト材料132が、励起錯体との近接を阻害する置換基を少なくとも2つ以上有することで、励起錯体の三重項励起状態からゲスト材料132の三重項励起状態へのエネルギー移動効率を低下させることができ、一重項励起状態の生成効率を高めることができる。
また、励起錯体が呈する発光のうち、熱活性化遅延蛍光成分における蛍光寿命は短いことが好ましく、具体的には、好ましくは10ns以上50μs以下、より好ましくは10ns以上20μs以下、さらに好ましくは10ns以上10μs以下である。
また、励起錯体が呈する発光のうち、熱活性化遅延蛍光成分が占める割合は高いことが好ましい。具体的には、励起錯体が呈する発光のうち、熱活性化遅延蛍光成分が占める割合は好ましくは10%以上、より好ましくは30%以上、さらに好ましくは50%以上である。
<材料>
次に、本発明の一態様に係わる発光素子の構成要素の詳細について、以下説明を行う。
≪発光層≫
発光層130に用いることができる材料について、それぞれ以下に説明する。
発光層130中では、ホスト材料131が重量比で最も多く存在し、ゲスト材料132(蛍光材料)は、ホスト材料131中に分散される。発光層130のホスト材料131(有機化合物131_1及び有機化合物131_2)のS1準位は、発光層130のゲスト材料132(蛍光材料)のS1準位よりも高いことが好ましい。また、発光層130のホスト材料131(有機化合物131_1及び有機化合物131_2)のT1準位は、発光層130のゲスト材料132(蛍光材料)のT1準位よりも高いことが好ましい。
発光層130において、ゲスト材料132としては、炭素数3以上12以下の縮合芳香族炭化水素を有する材料が好ましい。さらに、ゲスト材料132は、炭素数2以上のアルキル基を少なくとも2つ以上有すると好ましい。あるいは、ゲスト材料132は、炭素数3以上10以下の分岐を有するアルキル基を少なくとも2つ以上有すると好ましい。あるいは、ゲスト材料132は、炭素数3以上10以下の環式炭化水素基を少なくとも2つ以上、または炭素数3以上10以下の架橋環式炭化水素基を少なくとも2つ以上有すると好ましい。
ゲスト材料132が上記構造を有することで、ホスト材料131とゲスト材料132との重心間距離の最小値を0.7nm以上5nm以下にすることができ、ホスト材料131からゲスト材料132へのデクスター機構によるエネルギー移動を抑制することができる。そのため、ホスト材料131の三重項励起状態からゲスト材料132の三重項励起状態へのエネルギー移動効率を低減することができる。
上記構成を有するゲスト材料の一例としては、2,8−ジ−tert−ブチル−5,11−ビス(4−tert−ブチルフェニル)−6,12−ジフェニルテトラセン(略称:TBRb)、2,5,8,11−テトラ(tert−ブチル)ペリレン(略称:TBP)、クマリン6、クマリン30、ナイルレッド、N,N’−ビス[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]−N,N’−ビス(4−tert−ブチルフェニル)ピレン−1,6−ジアミン(略称:1,6tBu−FLPAPrn)、N,N’−ビス[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]−N,N’−ジフェニル−3,8−ジシクロヘキシルピレン−1,6−ジアミン(略称:ch−1,6FLPAPrn)などのテトラセン誘導体、ペリレン誘導体、ピレン誘導体、クマリン誘導体、フェノキサジン誘導体、フェノチアジン誘導体、アントラセン誘導体、クリセン誘導体、フェナントレン誘導体、スチルベン誘導体、アクリドン誘導体等が挙げられる。
有機化合物131_1としては、亜鉛やアルミニウム系金属錯体の他、オキサジアゾール誘導体、トリアゾール誘導体、ベンゾイミダゾール誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、ジベンゾチオフェン誘導体、ジベンゾフラン誘導体、ピリミジン誘導体、トリアジン誘導体、ピリジン誘導体、ビピリジン誘導体、フェナントロリン誘導体などが挙げられる。他の例としては、芳香族アミンやカルバゾール誘導体などが挙げられる。
また、以下の正孔輸送性材料および電子輸送性材料を用いることができる。
正孔輸送性材料としては、電子よりも正孔の輸送性の高い材料を用いることができ、1×10−6cm/Vs以上の正孔移動度を有する材料であることが好ましい。具体的には、芳香族アミン、カルバゾール誘導体、芳香族炭化水素、スチルベン誘導体などを用いることができる。また、該正孔輸送性材料は高分子化合物であっても良い。
これら正孔輸送性の高い材料として、例えば、芳香族アミン化合物としては、N,N’−ジ(p−トリル)−N,N’−ジフェニル−p−フェニレンジアミン(略称:DTDPPA)、4,4’−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ビフェニル(略称:DPAB)、N,N’−ビス{4−[ビス(3−メチルフェニル)アミノ]フェニル}−N,N’−ジフェニル−(1,1’−ビフェニル)−4,4’−ジアミン(略称:DNTPD)、1,3,5−トリス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ベンゼン(略称:DPA3B)等を挙げることができる。
また、カルバゾール誘導体としては、具体的には、3−[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzDPA1)、3,6−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzDPA2)、3,6−ビス[N−(4−ジフェニルアミノフェニル)−N−(1−ナフチル)アミノ]−9−フェニルカルバゾール(略称:PCzTPN2)、3−[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA1)、3,6−ビス[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA2)、3−[N−(1−ナフチル)−N−(9−フェニルカルバゾール−3−イル)アミノ]−9−フェニルカルバゾール(略称:PCzPCN1)等を挙げることができる。
また、カルバゾール誘導体としては、他に、4,4’−ジ(N−カルバゾリル)ビフェニル(略称:CBP)、1,3,5−トリス[4−(N−カルバゾリル)フェニル]ベンゼン(略称:TCPB)、9−[4−(10−フェニル−9−アントラセニル)フェニル]−9H−カルバゾール(略称:CzPA)、1,4−ビス[4−(N−カルバゾリル)フェニル]−2,3,5,6−テトラフェニルベンゼン等を用いることができる。
また、芳香族炭化水素としては、例えば、2−tert−ブチル−9,10−ジ(2−ナフチル)アントラセン(略称:t−BuDNA)、2−tert−ブチル−9,10−ジ(1−ナフチル)アントラセン、9,10−ビス(3,5−ジフェニルフェニル)アントラセン(略称:DPPA)、2−tert−ブチル−9,10−ビス(4−フェニルフェニル)アントラセン(略称:t−BuDBA)、9,10−ジ(2−ナフチル)アントラセン(略称:DNA)、9,10−ジフェニルアントラセン(略称:DPAnth)、2−tert−ブチルアントラセン(略称:t−BuAnth)、9,10−ビス(4−メチル−1−ナフチル)アントラセン(略称:DMNA)、2−tert−ブチル−9,10−ビス[2−(1−ナフチル)フェニル]アントラセン、9,10−ビス[2−(1−ナフチル)フェニル]アントラセン、2,3,6,7−テトラメチル−9,10−ジ(1−ナフチル)アントラセン、2,3,6,7−テトラメチル−9,10−ジ(2−ナフチル)アントラセン、9,9’−ビアントリル、10,10’−ジフェニル−9,9’−ビアントリル、10,10’−ビス(2−フェニルフェニル)−9,9’−ビアントリル、10,10’−ビス[(2,3,4,5,6−ペンタフェニル)フェニル]−9,9’−ビアントリル、アントラセン、テトラセン、ルブレン、ペリレン、2,5,8,11−テトラ(tert−ブチル)ペリレン等が挙げられる。また、この他、ペンタセン、コロネン等も用いることができる。このように、1×10−6cm/Vs以上の正孔移動度を有し、炭素数14以上炭素数42以下である芳香族炭化水素を用いることがより好ましい。
なお、芳香族炭化水素は、ビニル骨格を有していてもよい。ビニル基を有している芳香族炭化水素としては、例えば、4,4’−ビス(2,2−ジフェニルビニル)ビフェニル(略称:DPVBi)、9,10−ビス[4−(2,2−ジフェニルビニル)フェニル]アントラセン(略称:DPVPA)等が挙げられる。
また、ポリ(N−ビニルカルバゾール)(略称:PVK)やポリ(4−ビニルトリフェニルアミン)(略称:PVTPA)、ポリ[N−(4−{N’−[4−(4−ジフェニルアミノ)フェニル]フェニル−N’−フェニルアミノ}フェニル)メタクリルアミド](略称:PTPDMA)、ポリ[N,N’−ビス(4−ブチルフェニル)−N,N’−ビス(フェニル)ベンジジン](略称:Poly−TPD)等の高分子化合物を用いることもできる。
また、正孔輸送性の高い材料としては、例えば、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPBまたはα−NPD)やN,N’−ビス(3−メチルフェニル)−N,N’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン(略称:TPD)、4,4’,4’’−トリス(カルバゾール−9−イル)トリフェニルアミン(略称:TCTA)、4,4’,4’’−トリス[N−(1−ナフチル)−N−フェニルアミノ]トリフェニルアミン(略称:1’−TNATA)、4,4’,4’’−トリス(N,N−ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’−ビス[N−(スピロ−9,9’−ビフルオレン−2−イル)−N―フェニルアミノ]ビフェニル(略称:BSPB)、4−フェニル−4’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:BPAFLP)、4−フェニル−3’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:mBPAFLP)、N−(9,9−ジメチル−9H−フルオレン−2−イル)−N−{9,9−ジメチル−2−[N’−フェニル−N’−(9,9−ジメチル−9H−フルオレン−2−イル)アミノ]−9H−フルオレン−7−イル}フェニルアミン(略称:DFLADFL)、N−(9,9−ジメチル−2−ジフェニルアミノ−9H−フルオレン−7−イル)ジフェニルアミン(略称:DPNF)、2−[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]スピロ−9,9’−ビフルオレン(略称:DPASF)、4−フェニル−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBA1BP)、4,4’−ジフェニル−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBBi1BP)、4−(1−ナフチル)−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBANB)、4,4’−ジ(1−ナフチル)−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBNBB)、4−フェニルジフェニル−(9−フェニル−9H−カルバゾール−3−イル)アミン(略称:PCA1BP)、N,N’−ビス(9−フェニルカルバゾール−3−イル)−N,N’−ジフェニルベンゼン−1,3−ジアミン(略称:PCA2B)、N,N’,N’’−トリフェニル−N,N’,N’’−トリス(9−フェニルカルバゾール−3−イル)ベンゼン−1,3,5−トリアミン(略称:PCA3B)、N−(4−ビフェニル)−N−(9,9−ジメチル−9H−フルオレン−2−イル)−9−フェニル−9H−カルバゾール−3−アミン(略称:PCBiF)、N−(1,1’−ビフェニル−4−イル)−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]−9,9−ジメチル−9H−フルオレン−2−アミン(略称:PCBBiF)、9,9−ジメチル−N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]フルオレン−2−アミン(略称:PCBAF)、N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]スピロ−9,9’−ビフルオレン−2−アミン(略称:PCBASF)、2−[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]スピロ−9,9’−ビフルオレン(略称:PCASF)、2,7−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]−スピロ−9,9’−ビフルオレン(略称:DPA2SF)、N−[4−(9H−カルバゾール−9−イル)フェニル]−N−(4−フェニル)フェニルアニリン(略称:YGA1BP)、N,N’−ビス[4−(カルバゾール−9−イル)フェニル]−N,N’−ジフェニル−9,9−ジメチルフルオレン−2,7−ジアミン(略称:YGA2F)などの芳香族アミン化合物等を用いることができる。また、3−[4−(1−ナフチル)−フェニル]−9−フェニル−9H−カルバゾール(略称:PCPN)、3−[4−(9−フェナントリル)−フェニル]−9−フェニル−9H−カルバゾール(略称:PCPPn)、3,3’−ビス(9−フェニル−9H−カルバゾール)(略称:PCCP)、1,3−ビス(N−カルバゾリル)ベンゼン(略称:mCP)、3,6−ビス(3,5−ジフェニルフェニル)−9−フェニルカルバゾール(略称:CzTP)、4−{3−[3−(9−フェニル−9H−フルオレン−9−イル)フェニル]フェニル}ジベンゾフラン(略称:mmDBFFLBi−II)、4,4’,4’’−(ベンゼン−1,3,5−トリイル)トリ(ジベンゾフラン)(略称:DBF3P−II)、1,3,5−トリ(ジベンゾチオフェン−4−イル)−ベンゼン(略称:DBT3P−II)、2,8−ジフェニル−4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]ジベンゾチオフェン(略称:DBTFLP−III)、4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]−6−フェニルジベンゾチオフェン(略称:DBTFLP−IV)、4−[3−(トリフェニレン−2−イル)フェニル]ジベンゾチオフェン(略称:mDBTPTp−II)等のアミン化合物、カルバゾール化合物、チオフェン化合物、フラン化合物、フルオレン化合物、トリフェニレン化合物、フェナントレン化合物等を用いることができる。ここに述べた物質は、主に1×10−6cm/Vs以上の正孔移動度を有する物質である。但し、電子よりも正孔の輸送性の高い物質であれば、これら以外の物質を用いてもよい。
電子輸送性材料としては、正孔よりも電子の輸送性の高い材料を用いることができ、1×10−6cm/Vs以上の電子移動度を有する材料であることが好ましい。電子を受け取りやすい材料(電子輸送性を有する材料)としては、含窒素複素芳香族化合物のようなπ電子不足型複素芳香族や金属錯体などを用いることができる。具体的には、キノリン配位子、ベンゾキノリン配位子、オキサゾール配位子、あるいはチアゾール配位子を有する金属錯体が挙げられる。また、オキサジアゾール誘導体、トリアゾール誘導体、フェナントロリン誘導体、ピリジン誘導体、ビピリジン誘導体、ピリミジン誘導体などが挙げられる。
例えば、トリス(8−キノリノラト)アルミニウム(III)(略称:Alq)、トリス(4−メチル−8−キノリノラト)アルミニウム(III)(略称:Almq)、ビス(10−ヒドロキシベンゾ[h]キノリナト)ベリリウム(II)(略称:BeBq)、ビス(2−メチル−8−キノリノラト)(4−フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8−キノリノラト)亜鉛(II)(略称:Znq)など、キノリン骨格またはベンゾキノリン骨格を有する金属錯体等である。また、この他ビス[2−(2−ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2−(2−ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)などのオキサゾール系、チアゾール系配位子を有する金属錯体なども用いることができる。さらに、金属錯体以外にも、2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾール(略称:PBD)や、1,3−ビス[5−(p−tert−ブチルフェニル)−1,3,4−オキサジアゾール−2−イル]ベンゼン(略称:OXD−7)、9−[4−(5−フェニル−1,3,4−オキサジアゾール−2−イル)フェニル]−9H−カルバゾール(略称:CO11)、3−(4−ビフェニリル)−4−フェニル−5−(4−tert−ブチルフェニル)−1,2,4−トリアゾール(略称:TAZ)、2,2’,2’’−(1,3,5−ベンゼントリイル)トリス(1−フェニル−1H−ベンゾイミダゾール)(略称:TPBI)、2−[3−(ジベンゾチオフェン−4−イル)フェニル]−1−フェニル−1H−ベンゾイミダゾール(略称:mDBTBIm−II)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)、2,9−ビス(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン(略称:NBPhen)などの複素環化合物や、2−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2mDBTPDBq−II)、2−[3’−(ジベンゾチオフェン−4−イル)ビフェニル−3−イル]ジベンゾ[f、h]キノキサリン(略称:2mDBTBPDBq−II)、2−[3’−(9H−カルバゾール−9−イル)ビフェニル−3−イル]ジベンゾ[f、h]キノキサリン(略称:2mCzBPDBq)、2−[4−(3,6−ジフェニル−9H−カルバゾール−9−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2CzPDBq−III)、7−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:7mDBTPDBq−II)、及び、6−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:6mDBTPDBq−II)、4,6−ビス[3−(フェナントレン−9−イル)フェニル]ピリミジン(略称:4,6mPnP2Pm)、4,6−ビス[3−(4−ジベンゾチエニル)フェニル]ピリミジン(略称:4,6mDBTP2Pm−II)、4,6−ビス[3−(9H−カルバゾール−9−イル)フェニル]ピリミジン(略称:4,6mCzP2Pm)などのジアジン骨格を有する複素環化合物や、2−{4−[3−(N−フェニル−9H−カルバゾール−3−イル)−9H−カルバゾール−9−イル]フェニル}−4,6−ジフェニル−1,3,5−トリアジン(略称:PCCzPTzn)などのトリアジン骨格を有する複素環化合物や、3,5−ビス[3−(9H−カルバゾール−9−イル)フェニル]ピリジン(略称:35DCzPPy)、1,3,5−トリ[3−(3−ピリジル)フェニル]ベンゼン(略称:TmPyPB)などのピリジン骨格を有する複素環化合物、4,4’−ビス(5−メチルベンゾオキサゾール−2−イル)スチルベン(略称:BzOs)などの複素芳香族化合物も用いることができる。また、ポリ(2,5−ピリジンジイル)(略称:PPy)、ポリ[(9,9−ジヘキシルフルオレン−2,7−ジイル)−co−(ピリジン−3,5−ジイル)](略称:PF−Py)、ポリ[(9,9−ジオクチルフルオレン−2,7−ジイル)−co−(2,2’−ビピリジン−6,6’−ジイル)](略称:PF−BPy)のような高分子化合物を用いることもできる。ここに述べた物質は、主に1×10−6cm/Vs以上の電子移動度を有する物質である。なお、正孔よりも電子の輸送性の高い物質であれば、上記以外の物質を用いても構わない。
有機化合物131_2としては、有機化合物131_1と励起錯体を形成できる組み合わせが好ましい。具体的には、上記で示した正孔輸送性材料および電子輸送性材料を用いることができる。この場合、有機化合物131_1と有機化合物131_2とで形成される励起錯体の発光ピークが、ゲスト材料132(蛍光材料)の最も長波長側(低エネルギー側)の吸収帯と重なるように、有機化合物131_1、有機化合物131_2、およびゲスト材料132(蛍光材料)を選択することが好ましい。これにより、発光効率が飛躍的に向上した発光素子とすることができる。
発光層130が有するホスト材料131(有機化合物131_1および有機化合物131_2)としては、三重項励起エネルギーを一重項励起エネルギーに変換する機能を有する材料であればよい。該三重項励起エネルギーを一重項励起エネルギーに変換する機能を有する材料としては、励起錯体の他に、熱活性化遅延蛍光(Thermally activated delayed fluorescence:TADF)材料が挙げられる。したがって、励起錯体と記載した部分に関しては、熱活性化遅延蛍光材料と読み替えても構わない。なお、熱活性化遅延蛍光材料とは、三重項励起エネルギー準位と一重項励起エネルギー準位との差が小さく、逆項間交差によって三重項励起状態から一重項励起状態へエネルギーを変換する機能を有する材料である。そのため、三重項励起状態をわずかな熱エネルギーによって一重項励起状態にアップコンバート(逆項間交差)が可能で、一重項励起状態からの発光(蛍光)を効率よく呈することができる。また、熱活性化遅延蛍光が効率良く得られる条件としては、三重項励起エネルギー準位と一重項励起エネルギー準位のエネルギー差が好ましくは0eVより大きく0.2eV以下、さらに好ましくは0eVより大きく0.1eV以下であることが挙げられる。
また、熱活性化遅延蛍光を示す材料は、単独で三重項励起状態から逆項間交差により一重項励起状態を生成できる材料であっても良い。熱活性化遅延蛍光材料が、一種類の材料から構成される場合、例えば以下の材料を用いることができる。
まず、フラーレンやその誘導体、プロフラビン等のアクリジン誘導体、エオシン等が挙げられる。また、マグネシウム(Mg)、亜鉛(Zn)、カドミウム(Cd)、スズ(Sn)、白金(Pt)、インジウム(In)、もしくはパラジウム(Pd)等を含む金属含有ポルフィリンが挙げられる。該金属含有ポルフィリンとしては、例えば、プロトポルフィリン−フッ化スズ錯体(SnF(Proto IX))、メソポルフィリン−フッ化スズ錯体(SnF(Meso IX))、ヘマトポルフィリン−フッ化スズ錯体(SnF(Hemato IX))、コプロポルフィリンテトラメチルエステル−フッ化スズ錯体(SnF(Copro III−4Me))、オクタエチルポルフィリン−フッ化スズ錯体(SnF(OEP))、エチオポルフィリン−フッ化スズ錯体(SnF(Etio I))、オクタエチルポルフィリン−塩化白金錯体(PtClOEP)等が挙げられる。
また、一種の材料から構成される熱活性化遅延蛍光材料としては、π電子過剰型複素芳香環及びπ電子不足型複素芳香環を有する複素環化合物も用いることができる。具体的には、2−(ビフェニル−4−イル)−4,6−ビス(12−フェニルインドロ[2,3−a]カルバゾール−11−イル)−1,3,5−トリアジン(略称:PIC−TRZ)、2−{4−[3−(N−フェニル−9H−カルバゾール−3−イル)−9H−カルバゾール−9−イル]フェニル}−4,6−ジフェニル−1,3,5−トリアジン(略称:PCCzPTzn)、2−[4−(10H−フェノキサジン−10−イル)フェニル]−4,6−ジフェニル−1,3,5−トリアジン(略称:PXZ−TRZ)、3−[4−(5−フェニル−5,10−ジヒドロフェナジン−10−イル)フェニル]−4,5−ジフェニル−1,2,4−トリアゾール(略称:PPZ−3TPT)、3−(9,9−ジメチル−9H−アクリジン−10−イル)−9H−キサンテン−9−オン(略称:ACRXTN)、ビス[4−(9,9−ジメチル−9,10−ジヒドロアクリジン)フェニル]スルホン(略称:DMAC−DPS)、10−フェニル−10H,10’H−スピロ[アクリジン−9,9’−アントラセン]−10’−オン(略称:ACRSA)等が挙げられる。該複素環化合物は、π電子過剰型複素芳香環及びπ電子不足型複素芳香環を有するため、電子輸送性及び正孔輸送性が高く、好ましい。なお、π電子過剰型複素芳香環とπ電子不足型複素芳香環とが直接結合した物質は、π電子過剰型複素芳香環のドナー性とπ電子不足型複素芳香環のアクセプター性が共に強く、一重項励起エネルギー準位と三重項励起エネルギー準位の差が小さくなるため、特に好ましい。
なお、発光層130は2層以上の複数層でもって構成することもできる。例えば、第1の発光層と第2の発光層を正孔輸送層側から順に積層して発光層130とする場合、第1の発光層のホスト材料として正孔輸送性を有する物質を用い、第2の発光層のホスト材料として電子輸送性を有する物質を用いる構成などがある。
また、発光層130において、ホスト材料131およびゲスト材料132以外の材料を有していても良い。
≪一対の電極≫
電極101及び電極102は、発光層130へ正孔と電子を注入する機能を有する。電極101及び電極102は、金属、合金、導電性化合物、およびこれらの混合物や積層体などを用いて形成することができる。金属としてはアルミニウム(Al)が典型例であり、その他、銀(Ag)、タングステン、クロム、モリブデン、銅、チタンなどの遷移金属、リチウム(Li)やセシウムなどのアルカリ金属、カルシウム、マグネシウム(Mg)などの第2族金属を用いることができる。遷移金属としてイッテルビウム(Yb)などの希土類金属を用いても良い。合金としては、上記金属を含む合金を使用することができ、例えばMgAg、AlLiなどが挙げられる。導電性化合物としては、例えば、インジウム錫酸化物(Indium Tin Oxide、以下ITO)、珪素または酸化珪素を含むインジウム錫酸化物(略称:ITSO)、インジウム亜鉛酸化物(Indium Zinc Oxide)、タングステン及び亜鉛を含有したインジウム酸化物などの金属酸化物が挙げられる。導電性化合物としてグラフェンなどの無機炭素系材料を用いても良い。上述したように、これらの材料の複数を積層することによって電極101及び電極102の一方または双方を形成しても良い。
また、発光層130から得られる発光は、電極101及び電極102の一方または双方を通して取り出される。したがって、電極101及び電極102の少なくとも一つは可視光を透過する機能を有する。光を透過する機能を有する導電性材料としては、可視光の透過率が40%以上100%以下、好ましくは60%以上100%以下であり、かつその抵抗率が1×10−2Ω・cm以下の導電性材料が挙げられる。また、光を取り出す方の電極は、光を透過する機能と、光を反射する機能と、を有する導電性材料により形成されても良い。該導電性材料としては、可視光の反射率が20%以上80%以下、好ましくは40%以上70%以下であり、かつその抵抗率が1×10−2Ω・cm以下の導電性材料が挙げられる。光を取り出す方の電極に金属や合金などの光透過性の低い材料を用いる場合には、可視光を透過できる程度の厚さ(例えば、1nmから10nmの厚さ)で電極101及び電極102の一方または双方を形成すればよい。
なお、本明細書等において、光を透過する機能を有する電極には、可視光を透過する機能を有し、且つ導電性を有する材料を用いればよく、例えば上記のようなITOに代表される酸化物導電体層に加えて、酸化物半導体層、または有機物を含む有機導電体層を含む。有機物を含む有機導電体層としては、例えば、有機化合物と電子供与体(ドナー)とを混合してなる複合材料を含む層、有機化合物と電子受容体(アクセプター)とを混合してなる複合材料を含む層等が挙げられる。また、透明導電層の抵抗率としては、好ましくは1×10Ω・cm以下、さらに好ましくは1×10Ω・cm以下である。
また、電極101及び電極102の成膜方法は、スパッタリング法、蒸着法、印刷法、塗布法、MBE(Molecular Beam Epitaxy)法、CVD法、パルスレーザ堆積法、ALD(Atomic Layer Deposition)法等を適宜用いることができる。
≪正孔注入層≫
正孔注入層111は、一対の電極の一方(電極101または電極102)からのホール注入障壁を低減することでホール注入を促進する機能を有し、例えば遷移金属酸化物、フタロシアニン誘導体、あるいは芳香族アミンなどによって形成される。遷移金属酸化物としては、モリブデン酸化物やバナジウム酸化物、ルテニウム酸化物、タングステン酸化物、マンガン酸化物などが挙げられる。フタロシアニン誘導体としては、フタロシアニンや金属フタロシアニンなどが挙げられる。芳香族アミンとしてはベンジジン誘導体やフェニレンジアミン誘導体などが挙げられる。ポリチオフェンやポリアニリンなどの高分子化合物を用いることもでき、例えば自己ドープされたポリチオフェンであるポリ(エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)などがその代表例である。
正孔注入層111として、正孔輸送性材料と、これに対して電子受容性を示す材料の複合材料を有する層を用いることもできる。あるいは、電子受容性を示す材料を含む層と正孔輸送性材料を含む層の積層を用いても良い。これらの材料間では定常状態、あるいは電界存在下において電荷の授受が可能である。電子受容性を示す材料としては、キノジメタン誘導体やクロラニル誘導体、ヘキサアザトリフェニレン誘導体などの有機アクセプターを挙げることができる。具体的には、7,7,8,8−テトラシアノ−2,3,5,6−テトラフルオロキノジメタン(略称:F−TCNQ)、クロラニル、2,3,6,7,10,11−ヘキサシアノ−1,4,5,8,9,12−ヘキサアザトリフェニレン(略称:HAT−CN)等の電子吸引基(ハロゲン基やシアノ基)を有する化合物である。また、遷移金属酸化物、例えば第4族から第8族金属の酸化物を用いることができる。具体的には、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化モリブデン、酸化タングステン、酸化マンガン、酸化レニウムなどである。中でも酸化モリブデンは大気中でも安定であり、吸湿性が低く、扱いやすいため好ましい。
正孔輸送性材料としては、電子よりも正孔の輸送性の高い材料を用いることができ、1×10−6cm/Vs以上の正孔移動度を有する材料であることが好ましい。具体的には、発光層130に用いることができる正孔輸送性材料として挙げた芳香族アミン、カルバゾール誘導体、芳香族炭化水素、スチルベン誘導体などを用いることができる。また、該正孔輸送性材料は高分子化合物であっても良い。
≪正孔輸送層≫
正孔輸送層112は正孔輸送性材料を含む層であり、正孔注入層111の材料として例示した材料を使用することができる。正孔輸送層112は正孔注入層111に注入された正孔を発光層130へ輸送する機能を有するため、正孔注入層111のHOMO準位と同じ、あるいは近いHOMO準位を有することが好ましい。
上記正孔輸送性材料として、正孔注入層111の材料として例示した材料を用いることができる。また、1×10−6cm/Vs以上の正孔移動度を有する物質であることが好ましい。但し、電子よりも正孔の輸送性の高い物質であれば、これら以外の物質を用いてもよい。なお、正孔輸送性の高い物質を含む層は、単層だけでなく、上記物質からなる層が二層以上積層してもよい。
≪電子輸送層≫
電子輸送層118は、電子注入層119を経て一対の電極の他方(電極101または電極102)から注入された電子を発光層130へ輸送する機能を有する。電子輸送性材料としては、正孔よりも電子の輸送性の高い材料を用いることができ、1×10−6cm/Vs以上の電子移動度を有する材料であることが好ましい。電子を受け取りやすい化合物(電子輸送性を有する材料)としては、含窒素複素芳香族化合物のようなπ電子不足型複素芳香族や金属錯体などを用いることができる。具体的には、発光層130に用いることができる電子輸送性材料として挙げたキノリン配位子、ベンゾキノリン配位子、オキサゾール配位子、あるいはチアゾール配位子を有する金属錯体が挙げられる。また、オキサジアゾール誘導体、トリアゾール誘導体、フェナントロリン誘導体、ピリジン誘導体、ビピリジン誘導体、ピリミジン誘導体などが挙げられる。また、1×10−6cm/Vs以上の電子移動度を有する物質であることが好ましい。なお、正孔よりも電子の輸送性の高い物質であれば、上記以外の物質を電子輸送層として用いても構わない。また、電子輸送層118は、単層だけでなく、上記物質からなる層が二層以上積層してもよい。
また、電子輸送層118と発光層130との間に電子キャリアの移動を制御する層を設けても良い。これは上述したような電子輸送性の高い材料に、電子トラップ性の高い物質を少量添加した層であって、電子キャリアの移動を抑制することによって、キャリアバランスを調節することが可能となる。このような構成は、発光層を電子が突き抜けてしまうことにより発生する問題(例えば素子寿命の低下)の抑制に大きな効果を発揮する。
≪電子注入層≫
電子注入層119は電極102からの電子注入障壁を低減することで電子注入を促進する機能を有し、例えば第1族金属、第2族金属、あるいはこれらの酸化物、ハロゲン化物、炭酸塩などを用いることができる。また、先に示す電子輸送性材料と、これに対して電子供与性を示す材料の複合材料を用いることもできる。電子供与性を示す材料としては、第1族金属、第2族金属、あるいはこれらの酸化物などを挙げることができる。具体的には、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)、リチウム酸化物(LiO)等のようなアルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。また、フッ化エルビウム(ErF)のような希土類金属化合物を用いることができる。また、電子注入層119にエレクトライドを用いてもよい。該エレクトライドとしては、例えば、カルシウムとアルミニウムの混合酸化物に電子を高濃度添加した物質等が挙げられる。また、電子注入層119に、電子輸送層118で用いることが出来る物質を用いても良い。
また、電子注入層119に、有機化合物と電子供与体(ドナー)とを混合してなる複合材料を用いてもよい。このような複合材料は、電子供与体によって有機化合物に電子が発生するため、電子注入性および電子輸送性に優れている。この場合、有機化合物としては、発生した電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述した電子輸送層118を構成する物質(金属錯体や複素芳香族化合物等)を用いることができる。電子供与体としては、有機化合物に対し電子供与性を示す物質であればよい。具体的には、アルカリ金属やアルカリ土類金属や希土類金属が好ましく、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、アルカリ金属酸化物やアルカリ土類金属酸化物が好ましく、リチウム酸化物、カルシウム酸化物、バリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。
なお、上述した、発光層、正孔注入層、正孔輸送層、電子輸送層、及び電子注入層は、それぞれ、蒸着法(真空蒸着法を含む)、インクジェット法、塗布法、グラビア印刷等の方法で形成することができる。また、上述した、発光層、正孔注入層、正孔輸送層、電子輸送層、及び電子注入層には、上述した材料の他、量子ドットなどの無機化合物または高分子化合物(オリゴマー、デンドリマー、ポリマー等)を用いてもよい。
なお、量子ドットとしては、コロイド状量子ドット、合金型量子ドット、コア・シェル型量子ドット、コア型量子ドット、などを用いてもよい。また、2族と16族、13族と15族、13族と17族、11族と17族、または14族と15族の元素グループを含む量子ドットを用いてもよい。または、カドミウム(Cd)、セレン(Se)、亜鉛(Zn)、硫黄(S)、リン(P)、インジウム(In)、テルル(Te)、鉛(Pb)、ガリウム(Ga)、ヒ素(As)、アルミニウム(Al)、等の元素を有する量子ドットを用いてもよい。
≪基板≫
また、本発明の一態様に係る発光素子は、ガラス、プラスチックなどからなる基板上に作製すればよい。基板上に作製する順番としては、電極101側から順に積層しても、電極102側から順に積層しても良い。
なお、本発明の一態様に係る発光素子を形成できる基板としては、例えばガラス、石英、又はプラスチックなどを用いることができる。また可撓性基板を用いてもよい。可撓性基板とは、曲げることができる(フレキシブル)基板のことであり、例えば、ポリカーボネート、ポリアリレートからなるプラスチック基板等が挙げられる。また、フィルム、無機蒸着フィルムなどを用いることもできる。なお、発光素子、及び光学素子の作製工程において支持体として機能するものであれば、これら以外のものでもよい。あるいは、発光素子、及び光学素子を保護する機能を有するものであればよい。
例えば、本発明等においては、様々な基板を用いて発光素子を形成することが出来る。基板の種類は、特に限定されない。その基板の一例としては、半導体基板(例えば単結晶基板又はシリコン基板)、SOI基板、ガラス基板、石英基板、プラスチック基板、金属基板、ステンレス・スチル基板、ステンレス・スチル・ホイルを有する基板、タングステン基板、タングステン・ホイルを有する基板、可撓性基板、貼り合わせフィルム、繊維状の材料を含む紙、又は基材フィルムなどがある。ガラス基板の一例としては、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス、又はソーダライムガラスなどがある。可撓性基板、貼り合わせフィルム、基材フィルムなどの一例としては、以下が挙げられる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリテトラフルオロエチレン(PTFE)に代表されるプラスチックがある。または、一例としては、アクリル等の樹脂などがある。または、一例としては、ポリプロピレン、ポリエステル、ポリフッ化ビニル、又はポリ塩化ビニルなどがある。または、一例としては、ポリアミド、ポリイミド、アラミド、エポキシ、無機蒸着フィルム、又は紙類などがある。
また、基板として、可撓性基板を用い、可撓性基板上に直接、発光素子を形成してもよい。または、基板と発光素子との間に剥離層を設けてもよい。剥離層は、その上に発光素子を一部あるいは全部完成させた後、基板より分離し、他の基板に転載するために用いることができる。その際、耐熱性の劣る基板や可撓性の基板にも発光素子を転載できる。なお、上述の剥離層には、例えば、タングステン膜と酸化シリコン膜との無機膜の積層構造の構成や、基板上にポリイミド等の樹脂膜が形成された構成等を用いることができる。
つまり、ある基板を用いて発光素子を形成し、その後、別の基板に発光素子を転置し、別の基板上に発光素子を配置してもよい。発光素子が転置される基板の一例としては、上述した基板に加え、セロファン基板、石材基板、木材基板、布基板(天然繊維(絹、綿、麻)、合成繊維(ナイロン、ポリウレタン、ポリエステル)若しくは再生繊維(アセテート、キュプラ、レーヨン、再生ポリエステル)などを含む)、皮革基板、又はゴム基板などがある。これらの基板を用いることにより、壊れにくい発光素子、耐熱性の高い発光素子、軽量化された発光素子、または薄型化された発光素子とすることができる。
また、上述した基板上に、例えば電界効果トランジスタ(FET)を形成し、FETと電気的に接続された電極上に発光素子250を作製してもよい。これにより、FETによって発光素子の駆動を制御するアクティブマトリクス型の表示装置を作製できる。
なお、本実施の形態において、本発明の一態様について述べた。または、他の実施の形態において、本発明の一態様について述べる。ただし、本発明の一態様は、これらに限定されない。例えば、本発明の一態様では、発光素子が蛍光発光材料とホスト材料とを有し、蛍光発光材料とホスト材料との重心間距離の最小値が0.7nm以上5nm以下である場合の例を示したが、本発明の一態様は、これに限定されない。場合によっては、または、状況に応じて、本発明の一態様では、例えば、蛍光発光材料とホスト材料との重心間距離の最小値が0.7nm未満であってもよい。あるいは、蛍光発光材料とホスト材料との重心間距離の最小値が5nmより大きくてもよい。または、例えば、本発明の一態様では、ホスト材料が、第1の有機化合物と第2の有機化合物とを有する場合の例を示したが、本発明の一態様は、これに限定されない。場合によっては、または、状況に応じて、本発明の一態様では、例えば、ホスト材料が第1の有機化合物あるいは第2の有機化合物を有さなくてもよい。または、例えば、本発明の一態様では、蛍光発光材料が70%以上の蛍光量子収率を有する場合の例を示したが、本発明の一態様は、これに限定されない。場合によっては、または、状況に応じて、本発明の一態様では、例えば、蛍光発光材料が70%未満の蛍光量子収率であってもよい。または、例えば、本発明の一態様では、励起錯体が10ns以上50μs以下の蛍光寿命を有する遅延蛍光成分を有する場合の例を示したが、本発明の一態様は、これに限定されない。場合によっては、または、状況に応じて、本発明の一態様では、例えば、励起錯体が10ns未満の蛍光寿命を有する遅延蛍光成分を有してもよい。あるいは、例えば、励起錯体が50μsより大きい蛍光寿命を有する遅延蛍光成分を有してもよい。または、例えば、本発明の一態様では、蛍光発光材料は、炭素数2以上のアルキル基を少なくとも2つ以上有する場合の例、あるいは、炭素数3以上10以下の分岐を有するアルキル基を少なくとも2つ以上有する場合の例、あるいは、炭素数3以上10以下の環式炭化水素基を少なくとも2つ以上、または炭素数3以上10以下の架橋環式炭化水素基を少なくとも2つ以上有する場合の例、また、炭素数3以上12以下の縮合芳香族炭化水素を有する場合の例を示したが、本発明の一態様は、これに限定されない。場合によっては、または、状況に応じて、本発明の一態様では、例えば、蛍光発光材料は、炭素数2以上のアルキル基を2つ以上有さなくてもよい。または、炭素数3以上10以下の分岐を有するアルキル基を2つ以上有さなくてもよい。または、炭素数3以上10以下の環式炭化水素基を2つ以上、または炭素数3以上10以下の架橋環式炭化水素基を2つ以上有さなくてもよい。また、炭素数3以上12以下の縮合芳香族炭化水素を有さなくてもよい。
以上、本実施の形態に示す構成は、他の実施の形態と適宜組み合わせて用いることができる。
(実施の形態2)
本実施の形態においては、実施の形態1に示す構成と異なる構成の発光素子、及び当該発光素子の発光機構について、図6及び図7を用いて、以下説明を行う。なお、図6及び図7において、図1(A)に示す符号と同様の機能を有する箇所には、同様のハッチパターンとし、符号を省略する場合がある。また、同様の機能を有する箇所には、同様の符号を付し、その詳細な説明は省略する場合がある。
<発光素子の構成例1>
図6(A)は、発光素子260の断面模式図である。
図6(A)に示す発光素子260は、一対の電極(電極101及び電極102)の間に、複数の発光ユニット(図6(A)においては、発光ユニット106及び発光ユニット108)を有する。1つの発光ユニットは、図1(A)で示すEL層100と同様な構成を有する。つまり、図1(A)で示した発光素子250は、1つの発光ユニットを有し、発光素子260は、複数の発光ユニットを有する。なお、発光素子260において、電極101が陽極として機能し、電極102が陰極として機能するとして、以下説明するが、発光素子260の構成としては、逆であっても構わない。
また、図6(A)に示す発光素子260において、発光ユニット106と発光ユニット108とが積層されており、発光ユニット106と発光ユニット108との間には電荷発生層115が設けられる。なお、発光ユニット106と発光ユニット108は、同じ構成でも異なる構成でもよい。例えば、発光ユニット108に、図1(A)で示すEL層100を用いると好ましい。
また、発光素子260は、発光層120と、発光層130と、を有する。また、発光ユニット106は、発光層120の他に、正孔注入層111、正孔輸送層112、電子輸送層113、及び電子注入層114を有する。また、発光ユニット108は、発光層130の他に、正孔注入層116、正孔輸送層117、電子輸送層118、及び電子注入層119を有する。
電荷発生層115は、正孔輸送性材料に電子受容体であるアクセプター性物質が添加された構成であっても、電子輸送性材料に電子供与体であるドナー性物質が添加された構成であってもよい。また、これらの両方の構成が積層されていても良い。
電荷発生層115に、有機化合物とアクセプター性物質の複合材料が含まれる場合、該複合材料には実施の形態1に示す正孔注入層111に用いることができる複合材料を用いればよい。有機化合物としては、芳香族アミン化合物、カルバゾール化合物、芳香族炭化水素、高分子化合物(オリゴマー、デンドリマー、ポリマー等)など、種々の化合物を用いることができる。なお、有機化合物としては、正孔移動度が1×10−6cm/Vs以上である物質を適用することが好ましい。ただし、電子よりも正孔の輸送性の高い物質であれば、これら以外の物質を用いてもよい。有機化合物とアクセプター性物質の複合材料は、キャリア注入性、キャリア輸送性に優れているため、低電圧駆動、低電流駆動を実現することができる。なお、発光ユニット108のように、発光ユニットの陽極側の面が電荷発生層115に接している場合は、電荷発生層115が発光ユニットの正孔注入層または正孔輸送層の役割も担うことができるため、該発光ユニットには正孔注入層または正孔輸送層を設けなくとも良い。
なお、電荷発生層115は、有機化合物とアクセプター性物質の複合材料を含む層と他の材料により構成される層を組み合わせた積層構造として形成してもよい。例えば、有機化合物とアクセプター性物質の複合材料を含む層と、電子供与性物質の中から選ばれた一の化合物と電子輸送性の高い化合物とを含む層とを組み合わせて形成してもよい。また、有機化合物とアクセプター性物質の複合材料を含む層と、透明導電性材料を含む層とを組み合わせて形成してもよい。
なお、発光ユニット106と発光ユニット108とに挟まれる電荷発生層115は、電極101と電極102とに電圧を印加したときに、一方の発光ユニットに電子を注入し、他方の発光ユニットに正孔を注入するものであれば良い。例えば、図6(A)において、電極101の電位の方が電極102の電位よりも高くなるように電圧を印加した場合、電荷発生層115は、発光ユニット106に電子を注入し、発光ユニット108に正孔を注入する。
なお、電荷発生層115は、光取出し効率の点から、可視光に対して透光性(具体的には、電荷発生層115に対する可視光の透過率が40%以上)を有することが好ましい。また、電荷発生層115は、一対の電極(電極101及び電極102)よりも低い導電率であっても機能する。電荷発生層115の導電率が一対の電極と同程度に高い場合、電荷発生層115によって発生したキャリアが、膜面方向に流れることで、電極101と電極102とが重ならない領域で発光が生じてしまう場合がある。このような不良を抑制するためには、電荷発生層115は、一対の電極よりも導電率が低い材料で形成されると好ましい。
上述した材料を用いて電荷発生層115を形成することにより、発光層が積層された場合における駆動電圧の上昇を抑制することができる。
また、図6(A)においては、2つの発光ユニットを有する発光素子について説明したが、3つ以上の発光ユニットを積層した発光素子についても、同様に適用することが可能である。発光素子260に示すように、一対の電極間に複数の発光ユニットを電荷発生層で仕切って配置することで、電流密度を低く保ったまま、高輝度発光を可能とし、さらに長寿命な発光素子を実現できる。また、消費電力が低い発光素子を実現することができる。
なお、複数のユニットのうち、少なくとも一つのユニットに、図1(A)で示すEL層100の構成を適用することによって、発光効率の高い、発光素子を提供することができる。
また、発光ユニット108が有する発光層130は、実施の形態1で示した構成を有すると好ましい。そうすることで、発光素子260は、発光材料として蛍光材料を有し、且つ発光効率の高い発光素子となり好適である。
また、発光ユニット108が有する発光層120は、図6(B)に示すように、ホスト材料121と、ゲスト材料122とを有する。なお、ゲスト材料122は蛍光材料として、以下説明する。
≪発光層120の発光機構≫
発光層120の発光機構について、以下説明を行う。
一対の電極(電極101及び電極102)あるいは電荷発生層から注入された電子および正孔が発光層120において再結合することにより、励起子が生成する。ゲスト材料122と比較してホスト材料121は大量に存在するので、励起子の生成により、ホスト材料121の励起状態が形成される。
なお、励起子はキャリア(電子および正孔)対のことである。励起子はエネルギーを有するため、励起子が生成した材料は励起状態となる。
形成されたホスト材料121の励起状態が一重項励起状態である場合、ホスト材料121のS1準位からゲスト材料122のS1準位へ一重項励起エネルギーがエネルギー移動し、ゲスト材料122の一重項励起状態が形成される。
ゲスト材料122は蛍光材料であるため、ゲスト材料122において一重項励起状態が形成されると、ゲスト材料122は速やかに発光する。このとき、高い発光効率を得るためには、ゲスト材料122の蛍光量子収率は高いことが好ましい。なお、ゲスト材料122において、キャリアが再結合し、生成した励起状態が一重項励起状態である場合も同様である。
次に、キャリアの再結合によってホスト材料121の三重項励起状態が形成される場合について説明する。この場合のホスト材料121およびゲスト材料122のエネルギー準位の相関を図6(C)に示す。また、図6(C)における表記および符号は、以下の通りである。なお、ホスト材料121のT1準位がゲスト材料122のT1準位より低いことが好ましいため、図6(C)では、この場合を図示するが、ホスト材料121のT1準位がゲスト材料122のT1準位よりも高くてもよい。
・Host(121):ホスト材料121
・Guest(122):ゲスト材料122(蛍光材料)
・SFH:ホスト材料121のS1準位
・TFH:ホスト材料121のT1準位
・SFG:ゲスト材料122(蛍光材料)のS1準位
・TFG:ゲスト材料122(蛍光材料)のT1準位
図6(C)に示すように、キャリアの再結合によって生成した三重項励起子同士が近接することにより、一方がホスト材料121のS1準位(SFH)のエネルギーを有する一重項励起子に変換される反応、すなわち三重項−三重項消滅(TTA:triplet−triplet annihilation)が生じる(図6(C) TTA参照)。ホスト材料121の一重項励起エネルギーは、SFHから、それよりもエネルギーの低いゲスト材料122のS1準位(SFG)へエネルギー移動が生じ(図6(C) ルートE参照)、ゲスト材料122の一重項励起状態が形成され、ゲスト材料122が発光する。
なお、発光層120における三重項励起子の密度が十分に高い場合(例えば1×10−12cm−3以上)では、三重項励起子単体の失活を無視し、2つの近接した三重項励起子による反応のみを考えることができる。
また、ゲスト材料122においてキャリアが再結合し三重項励起状態が形成されるとき、ゲスト材料122の三重項励起状態は熱失活するため、発光に利用することが困難となる。しかしながら、ホスト材料121のT1準位(TFH)がゲスト材料122のT1準位(TFG)より低い場合、ゲスト材料122の三重項励起エネルギーは、ゲスト材料122のT1準位(TFG)からホスト材料121のT1準位(TFH)へエネルギー移動する(図6(C) ルートE参照)ことが可能であり、その後TTAに利用される。
すなわち、ホスト材料121は、三重項励起エネルギーをTTAによって一重項励起エネルギーに変換する機能を有すると好ましい。そうすることで、発光層120で生成した三重項励起エネルギーの一部を、ホスト材料121におけるTTAによって一重項励起エネルギーに変換し、該一重項励起エネルギーをゲスト材料122に移動することで、蛍光発光として取り出すことが可能となる。そのためには、ホスト材料121のS1準位(SFH)は、ゲスト材料122のS1準位(SFG)より高いことが好ましい。また、ホスト材料121のT1準位(TFH)は、ゲスト材料122のT1準位(TFG)より低いことが好ましい。
なお、特にゲスト材料122のT1準位(TFG)がホスト材料121のT1準位(TFH)よりも低い場合においては、ホスト材料121とゲスト材料122との重量比は、ゲスト材料122の重量比が低い方が好ましい。具体的には、ホスト材料121に対するゲスト材料122の重量比が、0より大きく0.05以下が好ましい。そうすることで、ゲスト材料122でキャリアが再結合する確率を低減させることができる。また、ホスト材料121のT1準位(TFH)からゲスト材料122のT1準位(TFG)へのエネルギー移動が生じる確率を低減させることができる。
なお、ホスト材料121は単一の化合物で構成されていても良く、複数の化合物から構成されていても良い。
なお、上記各構成において、発光ユニット106および発光ユニット108に用いるゲスト材料(蛍光材料)としては、同じであっても異なっていてもよい。発光ユニット106と発光ユニット108とで同じゲスト材料を有する場合、発光素子260は少ない電流値で高い発光輝度を呈する発光素子となり好ましい。また、発光ユニット106と発光ユニット108とで異なるゲスト材料を有する場合、発光素子260は多色発光を呈する発光素子となり好ましい。特に、演色性の高い白色発光、あるいは少なくとも赤色と緑色と青色とを有する発光、になるようゲスト材料を選択することが好適である。
<発光素子の構成例2>
図7(A)は、発光素子262の断面模式図である。
図7(A)に示す発光素子262は、先に示した発光素子260と同様に、一対の電極(電極101及び電極102)の間に、複数の発光ユニット(図7(A)においては、発光ユニット106及び発光ユニット108)を有する。1つの発光ユニットは、図1(A)で示すEL層100と同様な構成を有する。なお、発光ユニット106と発光ユニット108は、同じ構成でも異なる構成でもよい。
また、図7(A)に示す発光素子262において、発光ユニット106と発光ユニット108とが積層されており、発光ユニット106と発光ユニット108との間には電荷発生層115が設けられる。例えば、発光ユニット106に、図1(A)で示すEL層100を用いると好ましい。
また、発光素子262は、発光層130と、発光層140と、を有する。また、発光ユニット106は、発光層130の他に、正孔注入層111、正孔輸送層112、電子輸送層113、及び電子注入層114を有する。また、発光ユニット108は、発光層140の他に、正孔注入層116、正孔輸送層117、電子輸送層118、及び電子注入層119を有する。
また、発光ユニット108の発光層が燐光材料を有すると好適である。すなわち、発光ユニット106が有する発光層130は、実施の形態1で示した構成を有し、発光ユニット108が有する発光層140は、燐光材料を有すると好適である。この場合の発光素子262の構成例について、以下説明を行う。
また、発光ユニット108が有する発光層140は、図7(B)で示すように、ホスト材料141と、ゲスト材料142とを有する。また、ホスト材料141は、有機化合物141_1と、有機化合物141_2と、を有する。なお、発光層140が有するゲスト材料142が燐光材料として、以下説明する。
≪発光層140の発光機構≫
次に、発光層140の発光機構について、以下説明を行う。
発光層140が有する、有機化合物141_1と、有機化合物141_2とは励起錯体を形成する。
発光層140における励起錯体を形成する有機化合物141_1と有機化合物141_2との組み合わせは、励起錯体を形成することが可能な組み合わせであればよいが、一方が正孔輸送性を有する化合物であり、他方が電子輸送性を有する化合物であることが、より好ましい。
発光層140における有機化合物141_1と、有機化合物141_2と、ゲスト材料142とのエネルギー準位の相関を図7(C)に示す。なお、図7(C)における表記及び符号は、以下の通りである。
・Host(141_1):有機化合物141_1(ホスト材料)
・Host(141_2):有機化合物141_2(ホスト材料)
・Guest(142):ゲスト材料142(燐光材料)
・SPH:有機化合物141_1(ホスト材料)のS1準位
・TPH:有機化合物141_1(ホスト材料)のT1準位
・TPG:ゲスト材料142(燐光材料)のT1準位
・SPE:励起錯体のS1準位
・TPE:励起錯体のT1準位
有機化合物141_1と有機化合物141_2とにより形成される、励起錯体の一重項励起状態の最も低い準位(SPE)と励起錯体の三重項励起状態の最も低い準位(TPE)とは互いに隣接することになる(図7(C)Route C参照)。
そして、励起錯体の(SPE)と(TPE)の双方のエネルギーを、ゲスト材料142(燐光材料)の三重項励起状態の最も低い準位へ移動させて発光が得られる(図7(C)Route D参照)。
なお、上記に示すRoute C及びRoute Dの過程を、本明細書等においてExTET(Exciplex−Triplet Energy Transfer)と呼称する場合がある。
また、有機化合物141_1及び有機化合物141_2は、一方がホールを、他方が電子を受け取ることで励起錯体を形成する。あるいは、一方が励起状態となると、他方と相互作用することで励起錯体を形成する。したがって、発光層140における励起子のほとんどが励起錯体として存在する。励起錯体は、有機化合物141_1及び有機化合物141_2のどちらよりもバンドギャップは小さくなるため、より低い励起エネルギーで励起状態を形成することが可能となる。そのため、励起錯体が形成されることにより、発光素子の駆動電圧を下げることができる。
発光層140を上述の構成とすることで、発光層140のゲスト材料142(燐光材料)からの発光を、効率よく得ることが可能となる。
なお、発光層130からの発光が、発光層140からの発光よりも短波長側に発光のピークを有する構成とすることが好ましい。短波長の発光を呈する燐光材料を用いた発光素子は輝度劣化が早い傾向がある。そこで、短波長の発光を蛍光発光とすることによって、輝度劣化の小さい発光素子を提供することができる。
また、発光層130と発光層140とで異なる発光波長の光を得ることによって、多色発光の素子とすることができる。この場合、発光スペクトルは異なる発光ピークを有する発光が合成された光となるため、少なくとも二つの極大値を有する発光スペクトルとなる。
また、上記の構成は白色発光を得るためにも好適である。発光層130と発光層140との光を互いに補色の関係とすることによって、白色発光を得ることができる。
また、発光層130及び発光層140のいずれか一方または双方に発光波長の異なる複数の発光材料を用いることによって、三原色や、4色以上の発光色からなる演色性の高い白色発光を得ることもできる。この場合、発光層130及び発光層140のいずれか一方または双方を層状にさらに分割し、当該分割した層ごとに異なる発光材料を含有させるようにしても良い。
<発光層に用いることができる材料の例>
次に、発光層120、発光層130及び発光層140に用いることのできる材料について、以下説明する。
≪発光層130に用いることのできる材料≫
発光層130に用いることのできる材料としては、先の実施の形態1に示す発光層130に用いることのできる材料を援用すればよい。そうすることで、一重項励起状態の生成効率が高く、発光効率の高い発光素子を作製することができる。
≪発光層120に用いることのできる材料≫
発光層120中では、ホスト材料121が重量比で最も多く存在し、ゲスト材料122(蛍光材料)は、ホスト材料121中に分散される。ホスト材料121のS1準位は、ゲスト材料122(蛍光材料)のS1準位よりも高く、ホスト材料121のT1準位は、ゲスト材料122(蛍光材料)のT1準位よりも低いことが好ましい。
発光層120において、ゲスト材料122としては、例えば以下の材料を用いることができる。
5,6−ビス[4−(10−フェニル−9−アントリル)フェニル]−2,2’−ビピリジン(略称:PAP2BPy)、5,6−ビス[4’−(10−フェニル−9−アントリル)ビフェニル−4−イル]−2,2’−ビピリジン(略称:PAPP2BPy)、N,N’−ジフェニル−N,N’−ビス[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]ピレン−1,6−ジアミン(略称:1,6FLPAPrn)、N,N’−ビス(3−メチルフェニル)−N,N’−ビス[3−(9−フェニル−9H−フルオレン−9−イル)フェニル]ピレン−1,6−ジアミン(略称:1,6mMemFLPAPrn)、N,N’−ビス[4−(9H−カルバゾール−9−イル)フェニル]−N,N’−ジフェニルスチルベン−4,4’−ジアミン(略称:YGA2S)、4−(9H−カルバゾール−9−イル)−4’−(10−フェニル−9−アントリル)トリフェニルアミン(略称:YGAPA)、4−(9H−カルバゾール−9−イル)−4’−(9,10−ジフェニル−2−アントリル)トリフェニルアミン(略称:2YGAPPA)、N,9−ジフェニル−N−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール−3−アミン(略称:PCAPA)、ペリレン、2,5,8,11−テトラ(tert−ブチル)ペリレン(略称:TBP)、4−(10−フェニル−9−アントリル)−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBAPA)、N,N’’−(2−tert−ブチルアントラセン−9,10−ジイルジ−4,1−フェニレン)ビス[N,N’,N’−トリフェニル−1,4−フェニレンジアミン](略称:DPABPA)、N,9−ジフェニル−N−[4−(9,10−ジフェニル−2−アントリル)フェニル]−9H−カルバゾール−3−アミン(略称:2PCAPPA)、N−[4−(9,10−ジフェニル−2−アントリル)フェニル]−N,N’,N’−トリフェニル−1,4−フェニレンジアミン(略称:2DPAPPA)、N,N,N’,N’,N’’,N’’,N’’’,N’’’−オクタフェニルジベンゾ[g,p]クリセン−2,7,10,15−テトラアミン(略称:DBC1)、クマリン30、N−(9,10−ジフェニル−2−アントリル)−N,9−ジフェニル−9H−カルバゾール−3−アミン(略称:2PCAPA)、N−[9,10−ビス(1,1’−ビフェニル−2−イル)−2−アントリル]−N,9−ジフェニル−9H−カルバゾール−3−アミン(略称:2PCABPhA)、N−(9,10−ジフェニル−2−アントリル)−N,N’,N’−トリフェニル−1,4−フェニレンジアミン(略称:2DPAPA)、N−[9,10−ビス(1,1’−ビフェニル−2−イル)−2−アントリル]−N,N’,N’−トリフェニル−1,4−フェニレンジアミン(略称:2DPABPhA)、9,10−ビス(1,1’−ビフェニル−2−イル)−N−[4−(9H−カルバゾール−9−イル)フェニル]−N−フェニルアントラセン−2−アミン(略称:2YGABPhA)、N,N,9−トリフェニルアントラセン−9−アミン(略称:DPhAPhA)、クマリン6、クマリン545T、N,N’−ジフェニルキナクリドン(略称:DPQd)、ルブレン、5,12−ビス(1,1’−ビフェニル−4−イル)−6,11−ジフェニルテトラセン(略称:BPT)、2−(2−{2−[4−(ジメチルアミノ)フェニル]エテニル}−6−メチル−4H−ピラン−4−イリデン)プロパンジニトリル(略称:DCM1)、2−{2−メチル−6−[2−(2,3,6,7−テトラヒドロ−1H,5H−ベンゾ[ij]キノリジン−9−イル)エテニル]−4H−ピラン−4−イリデン}プロパンジニトリル(略称:DCM2)、N,N,N’,N’−テトラキス(4−メチルフェニル)テトラセン−5,11−ジアミン(略称:p−mPhTD)、7,14−ジフェニル−N,N,N’,N’−テトラキス(4−メチルフェニル)アセナフト[1,2−a]フルオランテン−3,10−ジアミン(略称:p−mPhAFD)、2−{2−イソプロピル−6−[2−(1,1,7,7−テトラメチル−2,3,6,7−テトラヒドロ−1H,5H−ベンゾ[ij]キノリジン−9−イル)エテニル]−4H−ピラン−4−イリデン}プロパンジニトリル(略称:DCJTI)、2−{2−tert−ブチル−6−[2−(1,1,7,7−テトラメチル−2,3,6,7−テトラヒドロ−1H,5H−ベンゾ[ij]キノリジン−9−イル)エテニル]−4H−ピラン−4−イリデン}プロパンジニトリル(略称:DCJTB)、2−(2,6−ビス{2−[4−(ジメチルアミノ)フェニル]エテニル}−4H−ピラン−4−イリデン)プロパンジニトリル(略称:BisDCM)、2−{2,6−ビス[2−(8−メトキシ−1,1,7,7−テトラメチル−2,3,6,7−テトラヒドロ−1H,5H−ベンゾ[ij]キノリジン−9−イル)エテニル]−4H−ピラン−4−イリデン}プロパンジニトリル(略称:BisDCJTM)、5,10,15,20−テトラフェニルビスベンゾ[5,6]インデノ[1,2,3−cd:1’,2’,3’−lm]ペリレン、などが挙げられる。
なお、発光層120において、ホスト材料121に用いることが可能な材料としては、特に限定はないが、例えば、トリス(8−キノリノラト)アルミニウム(III)(略称:Alq)、トリス(4−メチル−8−キノリノラト)アルミニウム(III)(略称:Almq)、ビス(10−ヒドロキシベンゾ[h]キノリナト)ベリリウム(II)(略称:BeBq)、ビス(2−メチル−8−キノリノラト)(4−フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8−キノリノラト)亜鉛(II)(略称:Znq)、ビス[2−(2−ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2−(2−ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)などの金属錯体、2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾール(略称:PBD)、1,3−ビス[5−(p−tert−ブチルフェニル)−1,3,4−オキサジアゾール−2−イル]ベンゼン(略称:OXD−7)、3−(4−ビフェニリル)−4−フェニル−5−(4−tert−ブチルフェニル)−1,2,4−トリアゾール(略称:TAZ)、2,2’,2’’−(1,3,5−ベンゼントリイル)トリス(1−フェニル−1H−ベンゾイミダゾール)(略称:TPBI)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)、2,9−ビス(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン(略称:NBPhen)、9−[4−(5−フェニル−1,3,4−オキサジアゾール−2−イル)フェニル]−9H−カルバゾール(略称:CO11)などの複素環化合物、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPBまたはα−NPD)、N,N’−ビス(3−メチルフェニル)−N,N’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン(略称:TPD)、4,4’−ビス[N−(スピロ−9,9’−ビフルオレン−2−イル)−N―フェニルアミノ]ビフェニル(略称:BSPB)などの芳香族アミン化合物が挙げられる。また、アントラセン誘導体、フェナントレン誘導体、ピレン誘導体、クリセン誘導体、ジベンゾ[g,p]クリセン誘導体等の縮合多環芳香族化合物が挙げられ、具体的には、9,10−ジフェニルアントラセン(略称:DPAnth)、N,N−ジフェニル−9−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール−3−アミン(略称:CzA1PA)、4−(10−フェニル−9−アントリル)トリフェニルアミン(略称:DPhPA)、4−(9H−カルバゾール−9−イル)−4’−(10−フェニル−9−アントリル)トリフェニルアミン(略称:YGAPA)、N,9−ジフェニル−N−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール−3−アミン(略称:PCAPA)、N,9−ジフェニル−N−{4−[4−(10−フェニル−9−アントリル)フェニル]フェニル}−9H−カルバゾール−3−アミン(略称:PCAPBA)、N,9−ジフェニル−N−(9,10−ジフェニル−2−アントリル)−9H−カルバゾール−3−アミン(略称:2PCAPA)、6,12−ジメトキシ−5,11−ジフェニルクリセン、N,N,N’,N’,N’’,N’’,N’’’,N’’’−オクタフェニルジベンゾ[g,p]クリセン−2,7,10,15−テトラアミン(略称:DBC1)、9−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(略称:CzPA)、3,6−ジフェニル−9−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(略称:DPCzPA)、9,10−ビス(3,5−ジフェニルフェニル)アントラセン(略称:DPPA)、9,10−ジ(2−ナフチル)アントラセン(略称:DNA)、2−tert−ブチル−9,10−ジ(2−ナフチル)アントラセン(略称:t−BuDNA)、9,9’−ビアントリル(略称:BANT)、9,9’−(スチルベン−3,3’−ジイル)ジフェナントレン(略称:DPNS)、9,9’−(スチルベン−4,4’−ジイル)ジフェナントレン(略称:DPNS2)、1,3,5−トリ(1−ピレニル)ベンゼン(略称:TPB3)などを挙げることができる。また、これら及び公知の物質の中から、上記ゲスト材料122のエネルギーギャップより大きなエネルギーギャップを有する物質を、一種もしくは複数種選択して用いればよい。
なお、発光層120は2層以上の複数層でもって構成することもできる。例えば、第1の発光層と第2の発光層を正孔輸送層側から順に積層して発光層120とする場合、第1の発光層のホスト材料として正孔輸送性を有する物質を用い、第2の発光層のホスト材料として電子輸送性を有する物質を用いる構成などがある。
また、発光層120において、ホスト材料121は、一種の化合物から構成されていても良く、複数の化合物から構成されていても良い。あるいは、発光層120において、ホスト材料121およびゲスト材料122以外の材料を有していても良い。
≪発光層140に用いることのできる材料≫
発光層140中では、ホスト材料141が重量比で最も多く存在し、ゲスト材料142(燐光材料)は、ホスト材料141中に分散される。発光層140のホスト材料141(有機化合物141_1及び有機化合物141_2)のT1準位は、発光層140のゲスト材料(ゲスト材料142)のT1準位よりも高いことが好ましい。
有機化合物141_1としては、亜鉛やアルミニウム系金属錯体の他、オキサジアゾール誘導体、トリアゾール誘導体、ベンゾイミダゾール誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、ジベンゾチオフェン誘導体、ジベンゾフラン誘導体、ピリミジン誘導体、トリアジン誘導体、ピリジン誘導体、ビピリジン誘導体、フェナントロリン誘導体などが挙げられる。他の例としては、芳香族アミンやカルバゾール誘導体などが挙げられる。具体的には、実施の形態1で示した電子輸送性材料および正孔輸送性材料を用いることができる。
有機化合物141_2としては、有機化合物141_1と励起錯体を形成できる組み合わせとする。具体的には、実施の形態1で示した電子輸送性材料および正孔輸送性材料を用いることができる。この場合、有機化合物141_1と有機化合物141_2とで形成される励起錯体の発光ピークが、ゲスト材料142(燐光材料)の三重項MLCT(Metal to Ligand Charge Transfer)遷移の吸収帯、より具体的には、最も長波長側の吸収帯と重なるように、有機化合物141_1、有機化合物141_2、およびゲスト材料142(燐光材料)を選択することが好ましい。これにより、発光効率が飛躍的に向上した発光素子とすることができる。ただし、燐光材料に替えて熱活性化遅延蛍光材料を用いる場合においては、最も長波長側の吸収帯は一重項の吸収帯であることが好ましい。
ゲスト材料142(燐光材料)としては、イリジウム、ロジウム、または白金系の有機金属錯体、あるいは金属錯体が挙げられ、中でも有機イリジウム錯体、例えばイリジウム系オルトメタル錯体が好ましい。オルトメタル化する配位子としては4H−トリアゾール配位子、1H−トリアゾール配位子、イミダゾール配位子、ピリジン配位子、ピリミジン配位子、ピラジン配位子、あるいはイソキノリン配位子などが挙げられる。金属錯体としては、ポルフィリン配位子を有する白金錯体などが挙げられる。
青色または緑色に発光ピークを有する物質としては、例えば、トリス{2−[5−(2−メチルフェニル)−4−(2,6−ジメチルフェニル)−4H−1,2,4−トリアゾール−3−イル−κN2]フェニル−κC}イリジウム(III)(略称:Ir(mpptz−dmp))、トリス(5−メチル−3,4−ジフェニル−4H−1,2,4−トリアゾラト)イリジウム(III)(略称:Ir(Mptz))、トリス[4−(3−ビフェニル)−5−イソプロピル−3−フェニル−4H−1,2,4−トリアゾラト]イリジウム(III)(略称:Ir(iPrptz−3b))、トリス[3−(5−ビフェニル)−5−イソプロピル−4−フェニル−4H−1,2,4−トリアゾラト]イリジウム(III)(略称:Ir(iPr5btz))のような4H−トリアゾール骨格を有する有機金属イリジウム錯体や、トリス[3−メチル−1−(2−メチルフェニル)−5−フェニル−1H−1,2,4−トリアゾラト]イリジウム(III)(略称:Ir(Mptz1−mp))、トリス(1−メチル−5−フェニル−3−プロピル−1H−1,2,4−トリアゾラト)イリジウム(III)(略称:Ir(Prptz1−Me))のような1H−トリアゾール骨格を有する有機金属イリジウム錯体や、fac−トリス[1−(2,6−ジイソプロピルフェニル)−2−フェニル−1H−イミダゾール]イリジウム(III)(略称:Ir(iPrpmi))、トリス[3−(2,6−ジメチルフェニル)−7−メチルイミダゾ[1,2−f]フェナントリジナト]イリジウム(III)(略称:Ir(dmpimpt−Me))のようなイミダゾール骨格を有する有機金属イリジウム錯体や、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)テトラキス(1−ピラゾリル)ボラート(略称:FIr6)、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)ピコリナート(略称:FIrpic)、ビス{2−[3’,5’−ビス(トリフルオロメチル)フェニル]ピリジナト−N,C2’}イリジウム(III)ピコリナート(略称:Ir(CFppy)(pic))、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)アセチルアセトナート(略称:FIr(acac))のような電子吸引基を有するフェニルピリジン誘導体を配位子とする有機金属イリジウム錯体が挙げられる。上述した中でも、4H−トリアゾール骨格を有する有機金属イリジウム錯体は、信頼性や発光効率に優れるため、特に好ましい。
また、緑色または黄色に発光ピークを有する物質としては、例えば、トリス(4−メチル−6−フェニルピリミジナト)イリジウム(III)(略称:Ir(mppm))、トリス(4−t−ブチル−6−フェニルピリミジナト)イリジウム(III)(略称:Ir(tBuppm))、(アセチルアセトナト)ビス(6−メチル−4−フェニルピリミジナト)イリジウム(III)(略称:Ir(mppm)(acac))、(アセチルアセトナト)ビス(6−tert−ブチル−4−フェニルピリミジナト)イリジウム(III)(略称:Ir(tBuppm)(acac))、(アセチルアセトナト)ビス[4−(2−ノルボルニル)−6−フェニルピリミジナト]イリジウム(III)(略称:Ir(nbppm)(acac))、(アセチルアセトナト)ビス[5−メチル−6−(2−メチルフェニル)−4−フェニルピリミジナト]イリジウム(III)(略称:Ir(mpmppm)(acac))、(アセチルアセトナト)ビス{4,6−ジメチル−2−[6−(2,6−ジメチルフェニル)−4−ピリミジニル−κN3]フェニル−κC}イリジウム(III)(略称:Ir(dmppm−dmp)(acac))、(アセチルアセトナト)ビス(4,6−ジフェニルピリミジナト)イリジウム(III)(略称:Ir(dppm)(acac))のようなピリミジン骨格を有する有機金属イリジウム錯体や、(アセチルアセトナト)ビス(3,5−ジメチル−2−フェニルピラジナト)イリジウム(III)(略称:Ir(mppr−Me)(acac))、(アセチルアセトナト)ビス(5−イソプロピル−3−メチル−2−フェニルピラジナト)イリジウム(III)(略称:Ir(mppr−iPr)(acac))のようなピラジン骨格を有する有機金属イリジウム錯体や、トリス(2−フェニルピリジナト−N,C2’)イリジウム(III)(略称:Ir(ppy))、ビス(2−フェニルピリジナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir(ppy)(acac))、ビス(ベンゾ[h]キノリナト)イリジウム(III)アセチルアセトナート(略称:Ir(bzq)(acac))、トリス(ベンゾ[h]キノリナト)イリジウム(III)(略称:Ir(bzq))、トリス(2−フェニルキノリナト−N,C2’)イリジウム(III)(略称:Ir(pq))、ビス(2−フェニルキノリナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir(pq)(acac))のようなピリジン骨格を有する有機金属イリジウム錯体や、ビス(2,4−ジフェニル−1,3−オキサゾラト−N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir(dpo)(acac))、ビス{2−[4’−(パーフルオロフェニル)フェニル]ピリジナト−N,C2’}イリジウム(III)アセチルアセトナート(略称:Ir(p−PF−ph)(acac))、ビス(2−フェニルベンゾチアゾラト−N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir(bt)(acac))など有機金属イリジウム錯体の他、トリス(アセチルアセトナト)(モノフェナントロリン)テルビウム(III)(略称:Tb(acac)(Phen))のような希土類金属錯体が挙げられる。上述した中でも、ピリミジン骨格を有する有機金属イリジウム錯体は、信頼性や発光効率に際だって優れるため、特に好ましい。
また、黄色または赤色に発光ピークを有する物質としては、例えば、(ジイソブチリルメタナト)ビス[4,6−ビス(3−メチルフェニル)ピリミジナト]イリジウム(III)(略称:Ir(5mdppm)(dibm))、ビス[4,6−ビス(3−メチルフェニル)ピリミジナト](ジピバロイルメタナト)イリジウム(III)(略称:Ir(5mdppm)(dpm))、ビス[4,6−ジ(ナフタレン−1−イル)ピリミジナト](ジピバロイルメタナト)イリジウム(III)(略称:Ir(d1npm)(dpm))のようなピリミジン骨格を有する有機金属イリジウム錯体や、(アセチルアセトナト)ビス(2,3,5−トリフェニルピラジナト)イリジウム(III)(略称:Ir(tppr)(acac))、ビス(2,3,5−トリフェニルピラジナト)(ジピバロイルメタナト)イリジウム(III)(略称:Ir(tppr)(dpm))、(アセチルアセトナト)ビス[2,3−ビス(4−フルオロフェニル)キノキサリナト]イリジウム(III)(略称:[Ir(Fdpq)(acac)])のようなピラジン骨格を有する有機金属イリジウム錯体や、トリス(1−フェニルイソキノリナト−N,C2’)イリジウム(III)(略称:Ir(piq))、ビス(1−フェニルイソキノリナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir(piq)(acac))のようなピリジン骨格を有する有機金属イリジウム錯体の他、2,3,7,8,12,13,17,18−オクタエチル−21H,23H−ポルフィリン白金(II)(略称:PtOEP)のような白金錯体や、トリス(1,3−ジフェニル−1,3−プロパンジオナト)(モノフェナントロリン)ユーロピウム(III)(略称:Eu(DBM)(Phen))、トリス[1−(2−テノイル)−3,3,3−トリフルオロアセトナト](モノフェナントロリン)ユーロピウム(III)(略称:Eu(TTA)(Phen))のような希土類金属錯体が挙げられる。上述した中でも、ピリミジン骨格を有する有機金属イリジウム錯体は、信頼性や発光効率に際だって優れるため、特に好ましい。また、ピラジン骨格を有する有機金属イリジウム錯体は、色度の良い赤色発光が得られる。
発光層140に含まれる発光材料としては、三重項励起エネルギーを発光に変換できる材料であればよい。該三重項励起エネルギーを発光に変換できる材料としては、燐光材料の他に、熱活性化遅延蛍光(Thermally activated delayed fluorescence:TADF)材料が挙げられる。したがって、燐光材料と記載した部分に関しては、熱活性化遅延蛍光材料と読み替えても構わない。なお、熱活性化遅延蛍光材料とは、三重項励起エネルギー準位と一重項励起エネルギー準位との差が小さく、逆項間交差によって三重項励起状態から一重項励起状態へエネルギーを変換する機能を有する材料である。そのため、三重項励起状態をわずかな熱エネルギーによって一重項励起状態にアップコンバート(逆項間交差)が可能で、一重項励起状態からの発光(蛍光)を効率よく呈することができる。また、熱活性化遅延蛍光が効率良く得られる条件としては、三重項励起エネルギー準位と一重項励起エネルギー準位のエネルギー差が好ましくは0eVより大きく0.2eV以下、さらに好ましくは0eVより大きく0.1eV以下であることが挙げられる。
また、熱活性化遅延蛍光を示す材料は、単独で三重項励起状態から逆項間交差により一重項励起状態を生成できる材料であっても良いし、励起錯体(エキサイプレックス、またはExciplexともいう)を形成する複数の材料から構成されても良い。
熱活性化遅延蛍光材料が、一種類の材料から構成される場合、具体的には、実施の形態1で示した熱活性化遅延蛍光材料を用いることができる。
また、熱活性化遅延蛍光材料をホスト材料として用いる場合、励起錯体を形成する2種類の化合物を組み合わせて用いることが好ましい。この場合、上記に示した励起錯体を形成する組み合わせである電子を受け取りやすい化合物と、正孔を受け取りやすい化合物とを用いることが特に好ましい。
また、発光層120、発光層130、及び発光層140に含まれる発光材料の発光色に限定は無く、それぞれ同じでも異なっていても良い。各々から得られる発光が混合されて素子外へ取り出されるので、例えば両者の発光色が互いに補色の関係にある場合、発光素子は白色の光を与えることができる。発光素子の信頼性を考慮すると、発光層120に含まれる発光材料の発光ピーク波長は発光層140に含まれる発光材料のそれよりも短いことが好ましい。
なお、発光ユニット106、発光ユニット108、及び電荷発生層115は、蒸着法(真空蒸着法を含む)、インクジェット法、塗布法、グラビア印刷等の方法で形成することができる。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用いることができる。
(実施の形態3)
本実施の形態では、実施の形態1及び実施の形態2に示す構成と異なる構成の発光素子の例について、図8乃至図11を用いて以下に説明する。
<発光素子の構成例1>
図8(A)(B)は、本発明の一態様の発光素子を示す断面図である。なお、図8(A)(B)において、図1(A)に示す符号と同様の機能を有する箇所には、同様のハッチパターンとし、符号を省略する場合がある。また、同様の機能を有する箇所には、同様の符号を付し、その詳細な説明は省略する場合がある。
図8(A)(B)に示す発光素子270a及び発光素子270bは、基板200側に光を取り出す下面射出(ボトムエミッション)型の発光素子であってもよく、基板200と反対方向に光を取り出す上面射出(トップエミッション)型の発光素子であってもよい。なお、本発明の一態様はこれに限定されず、発光素子が呈する光を基板200の上方および下方の双方に取り出す両面射出(デュアルエミッション)型の発光素子であっても良い。
発光素子270a及び発光素子270bが、ボトムエミッション型である場合、電極101は、光を透過する機能を有することが好ましい。また、電極102は、光を反射する機能を有することが好ましい。あるいは、発光素子270a及び発光素子270bが、トップエミッション型である場合、電極101は、光を反射する機能を有することが好ましい。また、電極102は、光を透過する機能を有することが好ましい。
発光素子270a及び発光素子270bは、基板200上に電極101と、電極102とを有する。また、電極101と電極102との間に、発光層123Bと、発光層123Gと、発光層123Rと、を有する。また、正孔注入層111と、正孔輸送層112と、電子輸送層118と、電子注入層119と、を有する。
また、発光素子270bは、電極101の構成の一部として、導電層101aと、導電層101a上の導電層101bと、導電層101a下の導電層101cとを有する。すなわち、発光素子270bは、導電層101aが、導電層101bと、導電層101cとで挟持された電極101の構成を有する。
発光素子270bにおいて、導電層101bと、導電層101cとは、異なる材料で形成されてもよく、同じ材料で形成されても良い。電極101が、同じ導電性材料で挟持される構成を有する場合、エッチング工程によるパターン形成が容易になるため好ましい。
なお、発光素子270bにおいて、導電層101bまたは導電層101cにおいて、いずれか一方のみを有する構成としてもよい。
なお、電極101が有する導電層101a、101b、導電層101cは、それぞれ実施の形態1で示した電極101または電極102と同様の構成および材料を用いることができる。
図8(A)(B)においては、電極101と電極102とで挟持された領域221B、領域221G、及び領域221R、の間に隔壁145を有する。隔壁145は、絶縁性を有する。隔壁145は、電極101の端部を覆い、該電極と重畳する開口部を有する。隔壁145を設けることによって、各領域の基板200上の電極101を、それぞれ島状に分離することが可能となる。
なお、発光層123Bと、発光層123Gとは、隔壁145と重畳する領域において、互いに重なる領域を有していてもよい。また、発光層123Gと、発光層123Rとは、隔壁145と重畳する領域において、互いに重なる領域を有していてもよい。また、発光層123Rと、発光層123Bとは、隔壁145と重畳する領域において、互いに重なる領域を有していてもよい。
隔壁145としては、絶縁性であればよく、無機材料または有機材料を用いて形成される。該無機材料としては、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、窒化アルミニウム等が挙げられる。該有機材料としては、例えば、アクリル樹脂、またはポリイミド樹脂等の感光性の樹脂材料が挙げられる。
また、発光層123R、発光層123G、発光層123Bは、それぞれ異なる色を呈する機能を有する発光材料を有することが好ましい。例えば、発光層123Rが赤色を呈する機能を有する発光材料を有することで、領域221Rは赤色の発光を呈し、発光層123Gが緑色を呈する機能を有する発光材料を有することで、領域221Gは緑色の発光を呈し、発光層123Bが青色を呈する機能を有する発光材料を有することで、領域221Bは青色の発光を呈する。このような構成を有する発光素子270aまたは発光素子270bを、表示装置の画素に用いることで、フルカラー表示が可能な表示装置を作製することができる。また、それぞれの発光層の膜厚は、同じであっても良いし、異なっていても良い。
また、発光層123B、発光層123G、発光層123R、のいずれか一つまたは複数の発光層は、実施の形態1で示した発光層130を有することが好ましい。そうすることで、発光効率の良好な発光素子を作製することができる。
なお、発光層123B、発光層123G、発光層123R、のいずれか一つまたは複数の発光層は、2層以上が積層された構成としても良い。
以上のように、少なくとも一つの発光層が実施の形態1で示した発光層を有し、該発光層を有する発光素子270aまたは発光素子270bを、表示装置の画素に用いることで、発光効率の高い表示装置を作製することができる。すなわち、発光素子270aまたは発光素子270bを有する表示装置は、消費電力を低減することができる。
なお、光を取り出す電極上に、カラーフィルタを設けることで、発光素子270a及び発光素子270bの色純度を向上させることができる。そのため、発光素子270aまたは発光素子270bを有する表示装置の色純度を高めることができる。
また、光を取り出す電極上に、偏光板を設けることで、発光素子270a及び発光素子270bの外光反射を低減することができる。そのため、発光素子270aまたは発光素子270bを有する表示装置のコントラスト比を高めることができる。
なお、発光素子270a及び発光素子270bにおける他の構成については、実施の形態1における発光素子の構成を参酌すればよい。
<発光素子の構成例2>
次に、図8に示す発光素子と異なる構成例について、図9(A)(B)を用いて、以下説明を行う。
図9(A)(B)は、本発明の一態様の発光素子を示す断面図である。なお、図9(A)(B)において、図8に示す符号と同様の機能を有する箇所には、同様のハッチパターンとし、符号を省略する場合がある。また、同様の機能を有する箇所には、同様の符号を付し、その詳細な説明は省略する場合がある。
図9(A)(B)は、一対の電極間に、発光層を有する発光素子の構成例である。図9(A)に示す発光素子272aは、基板200と反対の方向に光を取り出す上面射出(トップエミッション)型の発光素子、図9(B)に示す発光素子272bは、基板200側に光を取り出す下面射出(ボトムエミッション)型の発光素子である。ただし、本発明の一態様はこれに限定されず、発光素子が呈する光を発光素子が形成される基板200の上方および下方の双方に取り出す両面射出(デュアルエミッション)型であっても良い。
発光素子272a及び発光素子272bは、基板200上に電極101と、電極102と、電極103と、電極104とを有する。また、電極101と電極102との間、及び電極102と電極103との間、及び電極102と電極104との間に、少なくとも発光層130と、電荷発生層115とを有する。また、正孔注入層111と、正孔輸送層112と、発光層150と、電子輸送層113と、電子注入層114と、正孔注入層116と、正孔輸送層117と、電子輸送層118と、電子注入層119と、を有する。
また、電極101は、導電層101aと、導電層101a上に接する導電層101bと、を有する。また、電極103は、導電層103aと、導電層103a上に接する導電層103bと、を有する。電極104は、導電層104aと、導電層104a上に接する導電層104bと、を有する。
図9(A)に示す発光素子272a、及び図9(B)に示す発光素子272bは、電極101と電極102とで挟持された領域222B、電極102と電極103とで挟持された領域222G、及び電極102と電極104とで挟持された領域222R、の間に、隔壁145を有する。隔壁145は、絶縁性を有する。隔壁145は、電極101、電極103、及び電極104の端部を覆い、該電極と重畳する開口部を有する。隔壁145を設けることによって、各領域の基板200上の該電極を、それぞれ島状に分離することが可能となる。
また、発光素子272a及び発光素子272bは、領域222B、領域222G、及び領域222Rから呈される光が取り出される方向に、それぞれ光学素子224B、光学素子224G、及び光学素子224Rを有する基板220を有する。各領域から呈される光は、各光学素子を介して発光素子外部に射出される。すなわち、領域222Bから呈される光は、光学素子224Bを介して射出され、領域222Gから呈される光は、光学素子224Gを介して射出され、領域222Rから呈される光は、光学素子224Rを介して射出される。
また、光学素子224B、光学素子224G、及び光学素子224Rは、入射される光から特定の色を呈する光を選択的に透過する機能を有する。例えば、光学素子224Bを介して射出される領域222Bから呈される光は、青色を呈する光となり、光学素子224Gを介して射出される領域222Gから呈される光は、緑色を呈する光となり、光学素子224Rを介して射出される領域222Rから呈される光は、赤色を呈する光となる。
光学素子224R、光学素子224G、及び光学素子224Bには、例えば、着色層(カラーフィルタともいう)、バンドパスフィルタ、多層膜フィルタなどを適用できる。また、光学素子に色変換素子を適用することができる。色変換素子は、入射される光を、当該光の波長より長い波長の光に変換する光学素子である。色変換素子として、量子ドットを用いる素子であると好適である。量子ドットを用いることにより、表示装置の色再現性を高めることができる。
なお、光学素子224R、光学素子224G、及び光学素子224B上に複数の光学素子を重ねて設けてもよい。他の光学素子としては、例えば円偏光板や反射防止膜などを設けることができる。円偏光板を、表示装置の発光素子が発する光が取り出される側に設けると、表示装置の外部から入射した光が、表示装置の内部で反射されて、外部に射出される現象を防ぐことができる。また、反射防止膜を設けると、表示装置の表面で反射される外光を弱めることができる。これにより、表示装置が発する発光を、鮮明に観察できる。
なお、図9(A)(B)において、各光学素子を介して各領域から射出される光を、青色(B)を呈する光、緑色(G)を呈する光、赤色(R)を呈する光、として、それぞれ破線の矢印で模式的に図示している。
また、各光学素子の間には、遮光層223を有する。遮光層223は、隣接する領域から発せられる光を遮光する機能を有する。なお、遮光層223を設けない構成としても良い。
遮光層223としては、外光の反射を抑制する機能を有する。または、遮光層223としては、隣接する発光素子から発せられる光の混色を防ぐ機能を有する。遮光層223としては、金属、黒色顔料を含んだ樹脂、カーボンブラック、金属酸化物、複数の金属酸化物の固溶体を含む複合酸化物等を用いることができる。
なお、基板200、及び光学素子を有する基板220としては、実施の形態1を参酌すればよい。
さらに、発光素子272a及び発光素子272bは、マイクロキャビティ構造を有する。
発光層130、及び発光層150から射出される光は、一対の電極(例えば、電極101と電極102)の間で共振される。また、発光層130及び発光層150は、射出される光のうち所望の波長の光が強まる位置に形成される。例えば、電極101の反射領域から発光層130の発光領域までの光学距離と、電極102の反射領域から発光層130の発光領域までの光学距離と、を調整することにより、発光層130から射出される光のうち所望の波長の光を強めることができる。また、電極101の反射領域から発光層150の発光領域までの光学距離と、電極102の反射領域から発光層150の発光領域までの光学距離と、を調整することにより、発光層150から射出される光のうち所望の波長の光を強めることができる。すなわち、複数の発光層(ここでは、発光層130及び発光層150)を積層する発光素子の場合、発光層130及び発光層150のそれぞれの光学距離を最適化すると好ましい。
また、発光素子272a及び発光素子272bにおいては、各領域で導電層(導電層101b、導電層103b、及び導電層104b)の厚さを調整することで、発光層130及び発光層150から呈される光のうち所望の波長の光を強めることができる。なお、各領域で正孔注入層111及び正孔輸送層112のうち、少なくとも一つの厚さを異ならせることで、発光層130及び発光層150から呈される光を強めても良い。
例えば、電極101乃至電極104において、光を反射する機能を有する導電性材料の屈折率が、発光層130または発光層150の屈折率よりも小さい場合においては、電極101が有する導電層101bの膜厚を、電極101と電極102との間の光学距離がmλ/2(mは自然数、λは領域222Bで強める光の波長を、それぞれ表す)となるよう調整する。同様に、電極103が有する導電層103bの膜厚を、電極103と電極102との間の光学距離がmλ/2(mは自然数、λは領域222Gで強める光の波長を、それぞれ表す)となるよう調整する。さらに、電極104が有する導電層104bの膜厚を、電極104と電極102との間の光学距離がmλ/2(mは自然数、λは領域222Rで強める光の波長を、それぞれ表す)となるよう調整する。
上記のように、マイクロキャビティ構造を設け、各領域の一対の電極間の光学距離を調整することで、各電極近傍における光の散乱および光の吸収を抑制し、高い光取り出し効率を実現することができる。なお、上記構成においては、導電層101b、導電層103b、導電層104bは、光を透過する機能を有することが好ましい。また、導電層101b、導電層103b、導電層104b、を構成する材料は、互いに同じであっても良いし、異なっていても良い。また、導電層101b、導電層103b、導電層104bは、それぞれ2層以上の層が積層された構成であっても良い。
なお、図9(A)に示す発光素子272aは、上面射出型の発光素子であるため、導電層101a、導電層103a、及び導電層104aは、光を反射する機能を有することが好ましい。また、電極102は、光を透過する機能と、光を反射する機能とを有することが好ましい。
また、図9(B)に示す発光素子272bは、下面射出型の発光素子であるため、導電層101a、導電層103a、導電層104aは、光を透過する機能と、光を反射する機能と、を有することが好ましい。また、電極102は、光を反射する機能を有することが好ましい。
また、発光素子272a及び発光素子272bにおいて、導電層101a、導電層103a、または導電層104a、に同じ材料を用いても良いし、異なる材料を用いても良い。導電層101a、導電層103a、導電層104a、に同じ材料を用いる場合、発光素子272a及び発光素子272bの製造コストを低減できる。なお、導電層101a、導電層103a、導電層104aは、それぞれ2層以上の層が積層された構成であっても良い。
また、発光素子272a及び発光素子272bにおける発光層130は、実施の形態1で示した構成を有することが好ましい。そうすることで、高い発光効率を示す発光素子を作製することができる。
また、発光層130及び発光層150は、例えば発光層150a及び発光層150bのように、一方または双方で2層が積層された構成としてもよい。2層の発光層に、第1の発光材料及び第2の発光材料という、異なる色を呈する機能を有する2種類の発光材料をそれぞれ用いることで、複数の色を含む発光を得ることができる。特に発光層130と、発光層150と、が呈する発光により、白色となるよう、各発光層に用いる発光材料を選択すると好ましい。
また、発光層130または発光層150は、一方または双方で3層以上が積層された構成としても良く、発光材料を有さない層が含まれていても良い。
以上のように、実施の形態1で示した発光層の構成を有する発光素子272aまたは発光素子272bを、表示装置の画素に用いることで、発光効率の高い表示装置を作製することができる。すなわち、発光素子272aまたは発光素子272bを有する表示装置は、消費電力を低減することができる。
なお、発光素子272a及び発光素子272bにおける他の構成については、発光素子270aまたは発光素子270b、あるいは実施の形態1及び実施の形態2で示した発光素子の構成を参酌すればよい。
<発光素子の作製方法>
次に、本発明の一態様の発光素子の作製方法について、図10及び図11を用いて以下説明を行う。なお、ここでは、図9(A)に示す発光素子272aの作製方法について説明する。
図10及び図11は、本発明の一態様の発光素子の作製方法を説明するための断面図である。
以下で説明する発光素子272aの作製方法は、第1乃至第7の7つのステップを有する。
≪第1のステップ≫
第1のステップは、発光素子の電極(具体的には、電極101を構成する導電層101a、電極103を構成する導電層103a、及び電極104を構成する導電層104a)を、基板200上に形成する工程である(図10(A)参照)。
本実施の形態においては、基板200上に、光を反射する機能を有する導電層を形成し、該導電層を所望の形状に加工することで、導電層101a、導電層103a、及び導電層104aを形成する。上記光を反射する機能を有する導電層としては、銀とパラジウムと銅の合金膜(Ag−Pd−Cu膜、APCともいう)を用いる。このように、導電層101a、導電層103a、及び導電層104aを、同一の導電層を加工する工程を経て形成することで、製造コストを安くすることができるため好適である。
なお、第1のステップの前に、基板200上に複数のトランジスタを形成してもよい。また、上記複数のトランジスタと、導電層101a、導電層103a、及び導電層104aとを、それぞれ電気的に接続させてもよい。
≪第2のステップ≫
第2のステップは、電極101を構成する導電層101a上に光を透過する機能を有する導電層101bを、電極103を構成する導電層103a上に光を透過する機能を有する導電層103bを、電極104を構成する導電層104a上に光を透過する機能を有する導電層104bを、形成する工程である(図10(B)参照)。
本実施の形態においては、光を反射する機能を有する導電層101a、103a、及び104a、の上にそれぞれ、光を透過する機能を有する導電層101b、103b、及び104bを形成することで、電極101、電極103、及び電極104を形成する。上記の導電層101b、103b、及び104bとしては、ITSO膜を用いる。
なお、光を透過する機能を有する導電層101b、103b、及び104bは、複数回に分けて形成してもよい。複数回に分けて形成することで、各領域で適したマイクロキャビティ構造となる膜厚で、導電層101b、103b、及び104bを形成することができる。
≪第3のステップ≫
第3のステップは、発光素子の各電極の端部を覆う隔壁145を形成する工程である(図10(C)参照)。
隔壁145は、電極と重なるように開口部を有する。該開口部によって露出する導電膜が発光素子の陽極として機能する。本実施の形態では、隔壁145として、ポリイミド樹脂を用いる。
なお、第1乃至第3のステップにおいては、EL層(有機化合物を含む層)を損傷するおそれがないため、さまざまな成膜方法及び微細加工技術を適用できる。本実施の形態では、スパッタリング法を用いて反射性の導電層を成膜し、リソグラフィ法を用いて、該導電層をパターン形成し、その後ドライエッチング法またはウエットエッチング法を用いて、該導電層を島状に加工することで、電極101を構成する導電層101a、電極103を構成する導電層103a、及び電極104を構成する導電層104a、を形成する。その後、スパッタリング法を用いて透明性を有する導電膜を成膜し、リソグラフィ法を用いて、該透明性を有する導電膜にパターンを形成し、その後ウエットエッチング法を用いて、該透明性を有する導電膜を島状に加工して、電極101、電極103、及び電極104を形成する。
≪第4のステップ≫
第4のステップは、正孔注入層111、正孔輸送層112、発光層150、電子輸送層113、電子注入層114、及び電荷発生層115を形成する工程である(図11(A)参照)。
正孔注入層111としては、正孔輸送性材料とアクセプター性物質を含む材料とを共蒸着することで形成することができる。なお、共蒸着とは、異なる複数の物質をそれぞれ異なる蒸発源から同時に蒸発させる蒸着法である。また、正孔輸送層112としては、正孔輸送性材料を蒸着することで形成することができる。
発光層150としては、緑色、黄緑色、黄色、橙色、または赤色の中から選ばれる少なくともいずれか一つの発光を呈するゲスト材料を蒸着することで形成することができる。ゲスト材料としては、蛍光または燐光を呈する発光性の有機化合物を用いることができる。また、実施の形態1および実施の形態2で示した発光層の構成を用いることが好ましい。また、発光層150として、2層の構成としてもよい。その場合、2層の発光層は、それぞれ互いに異なる発光色を呈する発光性の物質を有することが好ましい。
電子輸送層113としては、電子輸送性の高い物質を蒸着することで形成することができる。また、電子注入層114としては、電子注入性の高い物質を蒸着することで形成することができる。
電荷発生層115としては、正孔輸送性材料に電子受容体(アクセプター)が添加された材料、または電子輸送性材料に電子供与体(ドナー)が添加された材料を蒸着することで形成することができる。
≪第5のステップ≫
第5のステップは、正孔注入層116、正孔輸送層117、発光層130、電子輸送層118、電子注入層119、及び電極102を形成する工程である(図11(B)参照)。
正孔注入層116としては、先に示す正孔注入層111と同様の材料及び同様の方法により形成することができる。また、正孔輸送層117としては、先に示す正孔輸送層112と同様の材料及び同様の方法により形成することができる。
発光層130としては、紫色、青色、または青緑色の中から選ばれる少なくともいずれか一つの発光を呈するゲスト材料を蒸着することで形成することができる。ゲスト材料としては、蛍光性の有機化合物を用いることができる。また、該蛍光性の有機化合物は、単独で蒸着してもよいが、他の材料と混合して蒸着してもよい。また、蛍光性の有機化合物をゲスト材料とし、ゲスト材料より励起エネルギーが大きなホスト材料に該ゲスト材料を分散して蒸着してもよい。
電子輸送層118としては、先に示す電子輸送層113と同様の材料及び同様の方法により形成することができる。また、電子注入層119としては、先に示す電子注入層114と同様の材料及び同様の方法により形成することができる。
電極102としては、反射性を有する導電膜と、透光性を有する導電膜を積層することで形成することができる。また、電極102としては、単層構造、または積層構造としてもよい。
上記工程を経て、電極101、電極103、及び電極104上に、それぞれ領域222B、領域222G、及び領域222Rを有する発光素子が基板200上に形成される。
≪第6のステップ≫
第6のステップは、基板220上に遮光層223、光学素子224B、光学素子224G、及び光学素子224Rを形成する工程である(図11(C)参照)。
遮光層223としては、黒色顔料の含んだ樹脂膜を所望の領域に形成する。その後、基板220及び遮光層223上に、光学素子224B、光学素子224G、及び光学素子224Rを形成する。光学素子224Bとしては、青色顔料の含んだ樹脂膜を所望の領域に形成する。また、光学素子224Gとしては、緑色顔料の含んだ樹脂膜を所望の領域に形成する。また、光学素子224Rとしては、赤色顔料の含んだ樹脂膜を所望の領域に形成する。
≪第7のステップ≫
第7のステップは、基板200上に形成された発光素子と、基板220上に形成された遮光層223、光学素子224B、光学素子224G、及び光学素子224Rと、を貼り合わせ、シール材を用いて封止する工程である(図示しない)。
以上の工程により、図9(A)に示す発光素子272aを形成することができる。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用いることができる。
(実施の形態4)
本実施の形態では、本発明の一態様の表示装置について、図12乃至図18を用いて説明する。
<表示装置の構成例1>
図12(A)は表示装置600を示す上面図、図12(B)は図12(A)の一点鎖線A−B、及び一点鎖線C−Dで切断した断面図である。表示装置600は、駆動回路部(信号線駆動回路部601、及び走査線駆動回路部603)、並びに画素部602を有する。なお、信号線駆動回路部601、走査線駆動回路部603、及び画素部602は、発光素子の発光を制御する機能を有する。
また、表示装置600は、素子基板610と、封止基板604と、シール材605と、シール材605で囲まれた領域607と、引き回し配線608と、FPC609と、を有する。
なお、引き回し配線608は、信号線駆動回路部601及び走査線駆動回路部603に入力される信号を伝送するための配線であり、外部入力端子となるFPC609からビデオ信号、クロック信号、スタート信号、リセット信号等を受け取る。なお、ここではFPC609しか図示されていないが、FPC609にはプリント配線基板(PWB:Printed Wiring Board)が取り付けられていても良い。
また、信号線駆動回路部601は、Nチャネル型のトランジスタ623とPチャネル型のトランジスタ624とを組み合わせたCMOS回路が形成される。なお、信号線駆動回路部601または走査線駆動回路部603は、種々のCMOS回路、PMOS回路、またはNMOS回路を用いることが出来る。また、本実施の形態では、基板上に駆動回路部を形成したドライバと画素とを同一の表面上に設けた表示装置を示すが、必ずしもその必要はなく、駆動回路部を基板上ではなく外部に形成することもできる。
また、画素部602は、スイッチング用のトランジスタ611と、電流制御用のトランジスタ612と、電流制御用のトランジスタ612のドレインに電気的に接続された下部電極613と、を有する。なお、下部電極613の端部を覆って隔壁614が形成されている。隔壁614としては、ポジ型の感光性アクリル樹脂膜を用いることができる。
また、被覆性を良好にするため、隔壁614の上端部または下端部に曲率を有する曲面が形成されるようにする。例えば、隔壁614の材料としてポジ型の感光性アクリルを用いた場合、隔壁614の上端部のみに曲率半径(0.2μm以上3μm以下)を有する曲面を持たせることが好ましい。また、隔壁614として、ネガ型の感光性樹脂、またはポジ型の感光性樹脂のいずれも使用することができる。
なお、トランジスタ(トランジスタ611、612、623、624)の構造は、特に限定されない。例えば、スタガ型のトランジスタを用いてもよい。また、トランジスタの極性についても特に限定はなく、Nチャネル型およびPチャネル型のトランジスタを有する構造、及びNチャネル型のトランジスタまたはPチャネル型のトランジスタのいずれか一方のみからなる構造を用いてもよい。また、トランジスタに用いられる半導体膜の結晶性についても特に限定はない。例えば、非晶質半導体膜、結晶性半導体膜を用いることができる。また、半導体材料としては、14族(ケイ素等)半導体、化合物半導体(酸化物半導体を含む)、有機半導体等を用いることができる。トランジスタとしては、例えば、エネルギーギャップが2eV以上、好ましくは2.5eV以上、さらに好ましくは3eV以上の酸化物半導体を用いることで、トランジスタのオフ電流を低減することができるため好ましい。該酸化物半導体としては、In−Ga酸化物、In−M−Zn酸化物(Mは、アルミニウム(Al)、ガリウム(Ga)、イットリウム(Y)、ジルコニウム(Zr)、ランタン(La)、セリウム(Ce)、スズ(Sn)、ハフニウム(Hf)、またはネオジム(Nd)を表す)等が挙げられる。
下部電極613上には、EL層616、および上部電極617がそれぞれ形成されている。なお、下部電極613は、陽極として機能し、上部電極617は、陰極として機能する。
また、EL層616は、蒸着マスクを用いた蒸着法、インクジェット法、スピンコート法等の種々の方法によって形成される。また、EL層616を構成する他の材料としては、低分子化合物、または高分子化合物(オリゴマー、デンドリマーを含む)であっても良い。
なお、下部電極613、EL層616、及び上部電極617により、発光素子618が形成される。発光素子618は、実施の形態1乃至実施の形態3の構成を有する発光素子である。なお、画素部は複数の発光素子が形成される場合、実施の形態1乃至実施の形態3に記載の発光素子と、それ以外の構成を有する発光素子の両方が含まれていても良い。
また、シール材605で封止基板604を素子基板610と貼り合わせることにより、素子基板610、封止基板604、およびシール材605で囲まれた領域607に発光素子618が備えられた構造になっている。なお、領域607には、充填材が充填されており、不活性気体(窒素やアルゴン等)が充填される場合の他、シール材605に用いることができる紫外線硬化樹脂または熱硬化樹脂で充填される場合もあり、例えば、PVC(ポリビニルクロライド)系樹脂、アクリル系樹脂、ポリイミド系樹脂、エポキシ系樹脂、シリコーン系樹脂、PVB(ポリビニルブチラル)系樹脂、またはEVA(エチレンビニルアセテート)系樹脂を用いることができる。封止基板には凹部を形成し、そこに乾燥剤を設けると水分の影響による劣化を抑制することができ、好ましい構成である。
また、発光素子618と互いに重なるように、光学素子621が封止基板604の下方に設けられる。また、封止基板604の下方には、遮光層622が設けられる。光学素子621及び遮光層622としては、それぞれ、実施の形態3に示す光学素子、及び遮光層と同様の構成とすればよい。
なお、シール材605にはエポキシ系樹脂やガラスフリットを用いるのが好ましい。また、これらの材料はできるだけ水分や酸素を透過しにくい材料であることが望ましい。また、封止基板604に用いる材料としてガラス基板や石英基板の他、FRP(Fiber Reinforced Plastics)、PVF(ポリビニルフロライド)、ポリエステルまたはアクリル等からなるプラスチック基板を用いることができる。
以上のようにして、実施の形態1乃至実施の形態3に記載の発光素子及び光学素子を有する表示装置を得ることができる。
<表示装置の構成例2>
次に、表示装置の別の一例について、図13(A)(B)及び図14を用いて説明を行う。なお、図13(A)(B)及び図14は、本発明の一態様の表示装置の断面図である。
図13(A)には基板1001、下地絶縁膜1002、ゲート絶縁膜1003、ゲート電極1006、1007、1008、第1の層間絶縁膜1020、第2の層間絶縁膜1021、周辺部1042、画素部1040、駆動回路部1041、発光素子の下部電極1024R、1024G、1024B、隔壁1025、EL層1028、発光素子の上部電極1026、封止層1029、封止基板1031、シール材1032などが図示されている。
また、図13(A)では、光学素子の一例として、着色層(赤色の着色層1034R、緑色の着色層1034G、及び青色の着色層1034B)を透明な基材1033に設けている。また、遮光層1035をさらに設けても良い。着色層及び遮光層が設けられた透明な基材1033は、位置合わせし、基板1001に固定する。なお、着色層、及び遮光層は、オーバーコート層1036で覆われている。また、図13(A)においては、着色層を透過する光は赤、緑、青となることから、3色の画素で映像を表現することができる。
図13(B)では、光学素子の一例として、着色層(赤色の着色層1034R、緑色の着色層1034G、青色の着色層1034B)をゲート絶縁膜1003と第1の層間絶縁膜1020との間に形成する例を示している。このように、着色層は基板1001と封止基板1031の間に設けられていても良い。
図14では、光学素子の一例として、着色層(赤色の着色層1034R、緑色の着色層1034G、青色の着色層1034B)を第1の層間絶縁膜1020と第2の層間絶縁膜1021との間に形成する例を示している。このように、着色層は基板1001と封止基板1031の間に設けられていても良い。
また、以上に説明した表示装置では、トランジスタが形成されている基板1001側に光を取り出す構造(ボトムエミッション型)の表示装置としたが、封止基板1031側に発光を取り出す構造(トップエミッション型)の表示装置としても良い。
<表示装置の構成例3>
トップエミッション型の表示装置の断面図の一例を図15(A)(B)に示す。図15(A)(B)は、本発明の一態様の表示装置を説明する断面図であり、図13(A)(B)及び図14に示す駆動回路部1041、周辺部1042等を省略して例示している。
この場合、基板1001は光を通さない基板を用いることができる。トランジスタと発光素子の陽極とを接続する接続電極を作製するまでは、ボトムエミッション型の表示装置と同様に形成する。その後、電極1022を覆うように、第3の層間絶縁膜1037を形成する。この絶縁膜は平坦化の役割を担っていても良い。第3の層間絶縁膜1037は第2の層間絶縁膜と同様の材料の他、他の様々な材料を用いて形成することができる。
発光素子の下部電極1024R、1024G、1024Bはここでは陽極とするが、陰極であっても構わない。また、図15(A)(B)のようなトップエミッション型の表示装置である場合、下部電極1024R、1024G、1024Bは光を反射する機能を有することが好ましい。また、EL層1028上に上部電極1026が設けられる。上部電極1026は光を反射する機能と、光を透過する機能を有し、下部電極1024R、1024G、1024Bと、上部電極1026との間で、マイクロキャビティ構造を採用し、特定波長における光強度を増加させると好ましい。
図15(A)のようなトップエミッションの構造では、着色層(赤色の着色層1034R、緑色の着色層1034G、及び青色の着色層1034B)を設けた封止基板1031で封止を行うことができる。封止基板1031には画素と画素との間に位置するように遮光層1035を設けても良い。なお、封止基板1031は透光性を有する基板を用いると好適である。
また、図15(A)においては、複数の発光素子と、該複数の発光素子にそれぞれ着色層を設ける構成を例示したが、これに限定されない。例えば、図15(B)に示すように、緑色の着色層を設けずに、赤色の着色層1034R、及び青色の着色層1034Bを設けて、赤、緑、青の3色でフルカラー表示を行う構成としてもよい。図15(A)に示すように、発光素子と、該発光素子にそれぞれ着色層を設ける構成とした場合、外光反射を抑制できるといった効果を奏する。一方で、図15(B)に示すように、発光素子と、緑色の着色層を設けずに、赤色の着色層、及び青色の着色層を設ける構成とした場合、緑色の発光素子から射出された光のエネルギー損失が少ないため、消費電力を低くできるといった効果を奏する。
<表示装置の構成例4>
以上に示す表示装置は、3色(赤色、緑色、及び青色)の副画素を有する構成を示したが、4色(赤色、緑色、青色、及び黄色、あるいは赤色、緑色、青色、及び白色)の副画素を有する構成としてもよい。図16乃至図18は、下部電極1024R、1024G、1024B、及び1024Yを有する表示装置の構成である。図16(A)(B)及び図17は、トランジスタが形成されている基板1001側に光を取り出す構造(ボトムエミッション型)の表示装置であり、図18(A)(B)は、封止基板1031側に発光を取り出す構造(トップエミッション型)の表示装置である。
図16(A)は、光学素子(着色層1034R、着色層1034G、着色層1034B、着色層1034Y)を透明な基材1033に設ける表示装置の例である。また、図16(B)は、光学素子(着色層1034R、着色層1034G、着色層1034B)をゲート絶縁膜1003と第1の層間絶縁膜1020との間に形成する表示装置の例である。また、図17は、光学素子(着色層1034R、着色層1034G、着色層1034B、着色層1034Y)を第1の層間絶縁膜1020と第2の層間絶縁膜1021との間に形成する表示装置の例である。
着色層1034Rは赤色の光を透過し、着色層1034Gは緑色の光を透過し、着色層1034Bは青色の光を透過する機能を有する。また、着色層1034Yは黄色の光を透過する機能、あるいは青色、緑色、黄色、赤色の中から選ばれる複数の光を透過する機能を有する。着色層1034Yが青色、緑色、黄色、赤色の中から選ばれる複数の光を透過する機能を有するとき、着色層1034Yを透過した光は白色であってもよい。黄色あるいは白色の発光を呈する発光素子は発光効率が高いため、着色層1034Yを有する表示装置は、消費電力を低減することができる。
また、図18に示すトップエミッション型の表示装置においては、下部電極1024Yを有する発光素子においても、図15(A)の表示装置と同様に、下部電極1024R、1024G、1024B、1024Yと、上部電極1026との間で、マイクロキャビティ構造を有する構成が好ましい。また、図18(A)の表示装置では、着色層(赤色の着色層1034R、緑色の着色層1034G、青色の着色層1034B、及び黄色の着色層1034Y)を設けた封止基板1031で封止を行うことができる。
マイクロキャビティ、及び黄色の着色層1034Yを介して呈される発光は、黄色の領域に発光スペクトルを有する発光となる。黄色は視感度が高い色であるため、黄色の発光を呈する発光素子は発光効率が高い。すなわち、図18(A)の構成を有する表示装置は、消費電力を低減することができる。
また、図18(A)においては、複数の発光素子と、該複数の発光素子にそれぞれ着色層を設ける構成を例示したが、これに限定されない。例えば、図18(B)に示すように、黄色の着色層を設けずに、赤色の着色層1034R、緑色の着色層1034G、及び青色の着色層1034Bを設けて、赤、緑、青、黄の4色、または赤、緑、青、白の4色でフルカラー表示を行う構成としてもよい。図18(A)に示すように、発光素子と、該発光素子にそれぞれ着色層を設ける構成とした場合、外光反射を抑制できるといった効果を奏する。一方で、図18(B)に示すように、発光素子と、黄色の着色層を設けずに、赤色の着色層、緑色の着色層、及び青色の着色層を設ける構成とした場合、黄色または白色の発光素子から射出された光のエネルギー損失が少ないため、消費電力を低くできるといった効果を奏する。
なお、本実施の形態に示す構成は、他の実施の形態や本実施の形態中の他の構成と適宜組み合わせることが可能である。
(実施の形態5)
本実施の形態では、本発明の一態様の発光素子を有する表示装置について、図19乃至図21を用いて説明を行う。
なお、図19(A)は、本発明の一態様の表示装置を説明するブロック図であり、図19(B)は、本発明の一態様の表示装置が有する画素回路を説明する回路図である。
<表示装置に関する説明>
図19(A)に示す表示装置は、表示素子の画素を有する領域(以下、画素部802という)と、画素部802の外側に配置され、画素を駆動するための回路を有する回路部(以下、駆動回路部804という)と、素子の保護機能を有する回路(以下、保護回路806という)と、端子部807と、を有する。なお、保護回路806は、設けない構成としてもよい。
駆動回路部804の一部、または全部は、画素部802と同一基板上に形成されていることが望ましい。これにより、部品数や端子数を減らすことが出来る。駆動回路部804の一部、または全部が、画素部802と同一基板上に形成されていない場合には、駆動回路部804の一部、または全部は、COGやTAB(Tape Automated Bonding)によって、実装することができる。
画素部802は、X行(Xは2以上の自然数)Y列(Yは2以上の自然数)に配置された複数の表示素子を駆動するための回路(以下、画素回路801という)を有し、駆動回路部804は、画素を選択する信号(走査信号)を出力する回路(以下、走査線駆動回路804aという)、画素の表示素子を駆動するための信号(データ信号)を供給するための回路(以下、信号線駆動回路804b)などの駆動回路を有する。
走査線駆動回路804aは、シフトレジスタ等を有する。走査線駆動回路804aは、端子部807を介して、シフトレジスタを駆動するための信号が入力され、信号を出力する。例えば、走査線駆動回路804aは、スタートパルス信号、クロック信号等が入力され、パルス信号を出力する。走査線駆動回路804aは、走査信号が与えられる配線(以下、走査線GL_1乃至GL_Xという)の電位を制御する機能を有する。なお、走査線駆動回路804aを複数設け、複数の走査線駆動回路804aにより、走査線GL_1乃至GL_Xを分割して制御してもよい。または、走査線駆動回路804aは、初期化信号を供給することができる機能を有する。ただし、これに限定されず、走査線駆動回路804aは、別の信号を供給することも可能である。
信号線駆動回路804bは、シフトレジスタ等を有する。信号線駆動回路804bは、端子部807を介して、シフトレジスタを駆動するための信号の他、データ信号の元となる信号(画像信号)が入力される。信号線駆動回路804bは、画像信号を元に画素回路801に書き込むデータ信号を生成する機能を有する。また、信号線駆動回路804bは、スタートパルス、クロック信号等が入力されて得られるパルス信号に従って、データ信号の出力を制御する機能を有する。また、信号線駆動回路804bは、データ信号が与えられる配線(以下、データ線DL_1乃至DL_Yという)の電位を制御する機能を有する。または、信号線駆動回路804bは、初期化信号を供給することができる機能を有する。ただし、これに限定されず、信号線駆動回路804bは、別の信号を供給することも可能である。
信号線駆動回路804bは、例えば複数のアナログスイッチなどを用いて構成される。信号線駆動回路804bは、複数のアナログスイッチを順次オン状態にすることにより、画像信号を時分割した信号をデータ信号として出力できる。また、シフトレジスタなどを用いて信号線駆動回路804bを構成してもよい。
複数の画素回路801のそれぞれは、走査信号が与えられる複数の走査線GLの一つを介してパルス信号が入力され、データ信号が与えられる複数のデータ線DLの一つを介してデータ信号が入力される。また、複数の画素回路801のそれぞれは、走査線駆動回路804aによりデータ信号のデータの書き込み及び保持が制御される。例えば、m行n列目の画素回路801は、走査線GL_m(mはX以下の自然数)を介して走査線駆動回路804aからパルス信号が入力され、走査線GL_mの電位に応じてデータ線DL_n(nはY以下の自然数)を介して信号線駆動回路804bからデータ信号が入力される。
図19(A)に示す保護回路806は、例えば、走査線駆動回路804aと画素回路801の間の配線である走査線GLに接続される。または、保護回路806は、信号線駆動回路804bと画素回路801の間の配線であるデータ線DLに接続される。または、保護回路806は、走査線駆動回路804aと端子部807との間の配線に接続することができる。または、保護回路806は、信号線駆動回路804bと端子部807との間の配線に接続することができる。なお、端子部807は、外部の回路から表示装置に電源及び制御信号、及び画像信号を入力するための端子が設けられた部分をいう。
保護回路806は、自身が接続する配線に一定の範囲外の電位が与えられたときに、該配線と別の配線とを導通状態にする回路である。
図19(A)に示すように、画素部802と駆動回路部804にそれぞれ保護回路806を設けることにより、ESD(Electro Static Discharge:静電気放電)などにより発生する過電流に対する表示装置の耐性を高めることができる。ただし、保護回路806の構成はこれに限定されず、例えば、走査線駆動回路804aに保護回路806を接続した構成、または信号線駆動回路804bに保護回路806を接続した構成とすることもできる。あるいは、端子部807に保護回路806を接続した構成とすることもできる。
また、図19(A)においては、走査線駆動回路804aと信号線駆動回路804bによって駆動回路部804を形成している例を示しているが、この構成に限定されない。例えば、走査線駆動回路804aのみを形成し、別途用意された信号線駆動回路が形成された基板(例えば、単結晶半導体膜、多結晶半導体膜で形成された駆動回路基板)を実装する構成としても良い。
<画素回路の構成例>
図19(A)に示す複数の画素回路801は、例えば、図19(B)に示す構成とすることができる。
図19(B)に示す画素回路801は、トランジスタ852、854と、容量素子862と、発光素子872と、を有する。
トランジスタ852のソース電極及びドレイン電極の一方は、データ信号が与えられる配線(データ線DL_n)に電気的に接続される。さらに、トランジスタ852のゲート電極は、ゲート信号が与えられる配線(走査線GL_m)に電気的に接続される。
トランジスタ852は、データ信号のデータの書き込みを制御する機能を有する。
容量素子862の一対の電極の一方は、電位が与えられる配線(以下、電位供給線VL_aという)に電気的に接続され、他方は、トランジスタ852のソース電極及びドレイン電極の他方に電気的に接続される。
容量素子862は、書き込まれたデータを保持する保持容量としての機能を有する。
トランジスタ854のソース電極及びドレイン電極の一方は、電位供給線VL_aに電気的に接続される。さらに、トランジスタ854のゲート電極は、トランジスタ852のソース電極及びドレイン電極の他方に電気的に接続される。
発光素子872のアノード及びカソードの一方は、電位供給線VL_bに電気的に接続され、他方は、トランジスタ854のソース電極及びドレイン電極の他方に電気的に接続される。
発光素子872としては、実施の形態1乃至実施の形態3に示す発光素子を用いることができる。
なお、電位供給線VL_a及び電位供給線VL_bの一方には、高電源電位VDDが与えられ、他方には、低電源電位VSSが与えられる。
図19(B)の画素回路801を有する表示装置では、例えば、図19(A)に示す走査線駆動回路804aにより各行の画素回路801を順次選択し、トランジスタ852をオン状態にしてデータ信号のデータを書き込む。
データが書き込まれた画素回路801は、トランジスタ852がオフ状態になることで保持状態になる。さらに、書き込まれたデータ信号の電位に応じてトランジスタ854のソース電極とドレイン電極の間に流れる電流量が制御され、発光素子872は、流れる電流量に応じた輝度で発光する。これを行毎に順次行うことにより、画像を表示できる。
また、画素回路に、トランジスタのしきい値電圧等の変動の影響を補正する機能を持たせてもよい。図20(A)(B)及び図21(A)(B)に画素回路の一例を示す。
図20(A)に示す画素回路は、6つのトランジスタ(トランジスタ303_1乃至303_6)と、容量素子304と、発光素子305と、を有する。また、図20(A)に示す画素回路には、配線301_1乃至301_5、並びに配線302_1及び配線302_2が電気的に接続されている。なお、トランジスタ303_1乃至303_6については、例えばPチャネル型のトランジスタを用いることができる。
図20(B)に示す画素回路は、図20(A)に示す画素回路に、トランジスタ303_7を追加した構成である。また、図20(B)に示す画素回路には、配線301_6及び配線301_7が電気的に接続されている。ここで、配線301_5と配線301_6とは、それぞれ電気的に接続されていてもよい。なお、トランジスタ303_7については、例えばPチャネル型のトランジスタを用いることができる。
図21(A)に示す画素回路は、6つのトランジスタ(トランジスタ308_1乃至308_6)と、容量素子304と、発光素子305と、を有する。また、図21(A)に示す画素回路には、配線306_1乃至306_3、並びに配線307_1乃至307_3が電気的に接続されている。ここで配線306_1と配線306_3とは、それぞれ電気的に接続されていてもよい。なお、トランジスタ308_1乃至308_6については、例えばPチャネル型のトランジスタを用いることができる。
図21(B)に示す画素回路は、2つのトランジスタ(トランジスタ309_1及びトランジスタ309_2)と、2つの容量素子(容量素子304_1及び容量素子304_2)と、発光素子305と、を有する。また、図21(B)に示す画素回路には、配線311_1乃至配線311_3、配線312_1、及び配線312_2が電気的に接続されている。また、図21(B)に示す画素回路の構成とすることで、例えば、電圧入力−電流駆動方式(CVCC方式ともいう)とすることができる。なお、トランジスタ309_1及び309_2については、例えばPチャネル型のトランジスタを用いることができる。
また、本発明の一態様の発光素子は、表示装置の画素に能動素子を有するアクティブマトリクス方式、または、表示装置の画素に能動素子を有しないパッシブマトリクス方式のそれぞれの方式に適用することができる。
アクティブマトリクス方式では、能動素子(アクティブ素子、非線形素子)として、トランジスタだけでなく、さまざまな能動素子(アクティブ素子、非線形素子)を用いることが出来る。例えば、MIM(Metal Insulator Metal)、又はTFD(Thin Film Diode)などを用いることも可能である。これらの素子は、製造工程が少ないため、製造コストの低減、又は歩留まりの向上を図ることができる。または、これらの素子は、素子のサイズが小さいため、開口率を向上させることができ、低消費電力化や高輝度化をはかることが出来る。
アクティブマトリクス方式以外のものとして、能動素子(アクティブ素子、非線形素子)を用いないパッシブマトリクス型を用いることも可能である。能動素子(アクティブ素子、非線形素子)を用いないため、製造工程が少ないため、製造コストの低減、又は歩留まりの向上を図ることができる。または、能動素子(アクティブ素子、非線形素子)を用いないため、開口率を向上させることができ、低消費電力化、又は高輝度化などを図ることが出来る。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態6)
本実施の形態においては、本発明の一態様の発光素子を有する表示装置、及び該表示装置に入力装置を取り付けた電子機器について、図22乃至図26を用いて説明を行う。
<タッチパネルに関する説明1>
なお、本実施の形態において、電子機器の一例として、表示装置と、入力装置とを合わせたタッチパネル2000について説明する。また、入力装置の一例として、タッチセンサを用いる場合について説明する。
図22(A)(B)は、タッチパネル2000の斜視図である。なお、図22(A)(B)において、明瞭化のため、タッチパネル2000の代表的な構成要素を示す。
タッチパネル2000は、表示装置2501とタッチセンサ2595とを有する(図22(B)参照)。また、タッチパネル2000は、基板2510、基板2570、及び基板2590を有する。なお、基板2510、基板2570、及び基板2590はいずれも可撓性を有する。ただし、基板2510、基板2570、及び基板2590のいずれか一つまたは全てが可撓性を有さない構成としてもよい。
表示装置2501は、基板2510上に複数の画素及び該画素に信号を供給することができる複数の配線2511を有する。複数の配線2511は、基板2510の外周部にまで引き回され、その一部が端子2519を構成している。端子2519はFPC2509(1)と電気的に接続する。また、複数の配線2511は、信号線駆動回路2503s(1)からの信号を複数の画素に供給することができる。
基板2590は、タッチセンサ2595と、タッチセンサ2595と電気的に接続する複数の配線2598とを有する。複数の配線2598は、基板2590の外周部に引き回され、その一部は端子を構成する。そして、該端子はFPC2509(2)と電気的に接続される。なお、図22(B)では明瞭化のため、基板2590の裏面側(基板2510と対向する面側)に設けられるタッチセンサ2595の電極や配線等を実線で示している。
タッチセンサ2595として、例えば静電容量方式のタッチセンサを適用できる。静電容量方式としては、表面型静電容量方式、投影型静電容量方式等がある。
投影型静電容量方式としては、主に駆動方式の違いから自己容量方式、相互容量方式などがある。相互容量方式を用いると同時多点検出が可能となるため好ましい。
なお、図22(B)に示すタッチセンサ2595は、投影型静電容量方式のタッチセンサを適用した構成である。
なお、タッチセンサ2595には、指等の検知対象の近接または接触を検知することができる、様々なセンサを適用することができる。
投影型静電容量方式のタッチセンサ2595は、電極2591と電極2592とを有する。電極2591は、複数の配線2598のいずれかと電気的に接続し、電極2592は複数の配線2598の他のいずれかと電気的に接続する。
電極2592は、図22(A)(B)に示すように、一方向に繰り返し配置された複数の四辺形が角部で接続される形状を有する。
電極2591は四辺形であり、電極2592が延在する方向と交差する方向に繰り返し配置されている。
配線2594は、電極2592を挟む二つの電極2591と電気的に接続する。このとき、電極2592と配線2594の交差部の面積ができるだけ小さくなる形状が好ましい。これにより、電極が設けられていない領域の面積を低減でき、透過率のバラツキを低減できる。その結果、タッチセンサ2595を透過する光の輝度のバラツキを低減することができる。
なお、電極2591及び電極2592の形状はこれに限定されず、様々な形状を取りうる。例えば、複数の電極2591をできるだけ隙間が生じないように配置し、絶縁層を介して電極2592を、電極2591と重ならない領域ができるように離間して複数設ける構成としてもよい。このとき、隣接する2つの電極2592の間に、これらとは電気的に絶縁されたダミー電極を設けると、透過率の異なる領域の面積を低減できるため好ましい。
<表示装置に関する説明>
次に、図23(A)を用いて、表示装置2501の詳細について説明する。図23(A)は、図22(B)に示す一点鎖線X1−X2間の断面図に相当する。
表示装置2501は、マトリクス状に配置された複数の画素を有する。該画素は表示素子と、該表示素子を駆動する画素回路とを有する。
以下の説明においては、白色の光を射出する発光素子を表示素子に適用する場合について説明するが、表示素子はこれに限定されない。例えば、隣接する画素毎に射出する光の色が異なるように、発光色が異なる発光素子を適用してもよい。
基板2510及び基板2570としては、例えば、水蒸気の透過率が1×10−5g・m−2・day−1以下、好ましくは1×10−6g・m−2・day−1以下である可撓性を有する材料を好適に用いることができる。または、基板2510の熱膨張率と、基板2570の熱膨張率とが、およそ等しい材料を用いると好適である。例えば、線膨張率が1×10−3/K以下、好ましくは5×10−5/K以下、より好ましくは1×10−5/K以下である材料を好適に用いることができる。
なお、基板2510は、発光素子への不純物の拡散を防ぐ絶縁層2510aと、可撓性基板2510bと、絶縁層2510a及び可撓性基板2510bを貼り合わせる接着層2510cと、を有する積層体である。また、基板2570は、発光素子への不純物の拡散を防ぐ絶縁層2570aと、可撓性基板2570bと、絶縁層2570a及び可撓性基板2570bを貼り合わせる接着層2570cと、を有する積層体である。
接着層2510c及び接着層2570cとしては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミド等)、ポリイミド、ポリカーボネートまたはアクリル、ウレタン、エポキシを用いることができる。また、シロキサン結合を有する樹脂を含む材料を用いることができる。
また、基板2510と基板2570との間に封止層2560を有する。封止層2560は、空気より大きい屈折率を有すると好ましい。また、図23(A)に示すように、封止層2560側に光を取り出す場合は、封止層2560は光学的な接合層を兼ねることができる。
また、封止層2560の外周部にシール材を形成してもよい。当該シール材を用いることにより、基板2510、基板2570、封止層2560、及びシール材で囲まれた領域に発光素子2550Rを有する構成とすることができる。なお、封止層2560として、不活性気体(窒素やアルゴン等)を充填してもよい。また、当該不活性気体内に、乾燥剤を設けて、水分等を吸着させる構成としてもよい。また、上述のシール材としては、例えば、エポキシ系樹脂やガラスフリットを用いるのが好ましい。また、シール材に用いる材料としては、水分や酸素を透過しない材料を用いると好適である。
また、表示装置2501は、画素2502Rを有する。また、画素2502Rは発光モジュール2580Rを有する。
画素2502Rは、発光素子2550Rと、発光素子2550Rに電力を供給することができるトランジスタ2502tとを有する。なお、トランジスタ2502tは、画素回路の一部として機能する。また、発光モジュール2580Rは、発光素子2550Rと、着色層2567Rとを有する。
発光素子2550Rは、下部電極と、上部電極と、下部電極と上部電極の間にEL層とを有する。発光素子2550Rとして、例えば、実施の形態1乃至実施の形態3に示す発光素子を適用することができる。
また、下部電極と上部電極との間で、マイクロキャビティ構造を採用し、特定波長における光強度を増加させてもよい。
また、封止層2560が光を取り出す側に設けられている場合、封止層2560は、発光素子2550Rと着色層2567Rに接する。
着色層2567Rは、発光素子2550Rと重なる位置にある。これにより、発光素子2550Rが発する光の一部は着色層2567Rを透過して、図中に示す矢印の方向の発光モジュール2580Rの外部に射出される。
また、表示装置2501には、光を射出する方向に遮光層2567BMが設けられる。遮光層2567BMは、着色層2567Rを囲むように設けられている。
着色層2567Rとしては、特定の波長領域の光を透過する機能を有していればよく、例えば、赤色の波長領域の光を透過するカラーフィルタ、緑色の波長領域の光を透過するカラーフィルタ、青色の波長領域の光を透過するカラーフィルタ、黄色の波長領域の光を透過するカラーフィルタなどを用いることができる。各カラーフィルタは、様々な材料を用いて、印刷法、インクジェット法、フォトリソグラフィ技術を用いたエッチング方法などで形成することができる。
また、表示装置2501には、絶縁層2521が設けられる。絶縁層2521はトランジスタ2502tを覆う。なお、絶縁層2521は、画素回路に起因する凹凸を平坦化するための機能を有する。また、絶縁層2521に不純物の拡散を抑制できる機能を付与してもよい。これにより、不純物の拡散によるトランジスタ2502t等の信頼性の低下を抑制できる。
また、発光素子2550Rは、絶縁層2521の上方に形成される。また、発光素子2550Rが有する下部電極には、該下部電極の端部に重なる隔壁2528が設けられる。なお、基板2510と、基板2570との間隔を制御するスペーサを、隔壁2528上に形成してもよい。
走査線駆動回路2503g(1)は、トランジスタ2503tと、容量素子2503cとを有する。なお、駆動回路を画素回路と同一の工程で同一基板上に形成することができる。
また、基板2510上には、信号を供給することができる配線2511が設けられる。また、配線2511上には、端子2519が設けられる。また、端子2519には、FPC2509(1)が電気的に接続される。また、FPC2509(1)は、ビデオ信号、クロック信号、スタート信号、リセット信号等を供給する機能を有する。なお、FPC2509(1)にはプリント配線基板(PWB)が取り付けられていても良い。
また、表示装置2501には、様々な構造のトランジスタを適用することができる。図23(A)においては、ボトムゲート型のトランジスタを適用する場合について、例示しているが、これに限定されず、例えば、図23(B)に示す、トップゲート型のトランジスタを表示装置2501に適用する構成としてもよい。
また、トランジスタ2502t及びトランジスタ2503tの極性については、特に限定はなく、Nチャネル型およびPチャネル型のトランジスタを有する構造、Nチャネル型のトランジスタまたはPチャネル型のトランジスタのいずれか一方のみからなる構造を用いてもよい。また、トランジスタ2502t及び2503tに用いられる半導体膜の結晶性についても特に限定はない。例えば、非晶質半導体膜、結晶性半導体膜を用いることができる。また、半導体材料としては、14族の半導体(例えば、ケイ素を有する半導体)、化合物半導体(酸化物半導体を含む)、有機半導体等を用いることができる。トランジスタ2502t及びトランジスタ2503tのいずれか一方または双方に、エネルギーギャップが2eV以上、好ましくは2.5eV以上、さらに好ましくは3eV以上の酸化物半導体を用いることで、トランジスタのオフ電流を低減することができるため好ましい。当該酸化物半導体としては、In−Ga酸化物、In−M−Zn酸化物(Mは、Al、Ga、Y、Zr、La、Ce、Sn、Hf、またはNdを表す)等が挙げられる。
<タッチセンサに関する説明>
次に、図23(C)を用いて、タッチセンサ2595の詳細について説明する。図23(C)は、図22(B)に示す一点鎖線X3−X4間の断面図に相当する。
タッチセンサ2595は、基板2590上に千鳥状に配置された電極2591及び電極2592と、電極2591及び電極2592を覆う絶縁層2593と、隣り合う電極2591を電気的に接続する配線2594とを有する。
電極2591及び電極2592は、透光性を有する導電材料を用いて形成する。透光性を有する導電性材料としては、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガリウムを添加した酸化亜鉛などの導電性酸化物を用いることができる。なお、グラフェンを含む膜を用いることもできる。グラフェンを含む膜は、例えば膜状に形成された酸化グラフェンを含む膜を還元して形成することができる。還元する方法としては、熱を加える方法等を挙げることができる。
例えば、透光性を有する導電性材料を基板2590上にスパッタリング法により成膜した後、フォトリソグラフィ法等の様々なパターン形成技術により、不要な部分を除去して、電極2591及び電極2592を形成することができる。
また、絶縁層2593に用いる材料としては、例えば、アクリル、エポキシなどの樹脂、シロキサン結合を有する樹脂の他、酸化シリコン、酸化窒化シリコン、酸化アルミニウムなどの無機絶縁材料を用いることもできる。
また、電極2591に達する開口が絶縁層2593に設けられ、配線2594が隣接する電極2591と電気的に接続する。透光性の導電性材料は、タッチパネルの開口率を高めることができるため、配線2594に好適に用いることができる。また、電極2591及び電極2592より導電性の高い材料は、電気抵抗を低減できるため配線2594に好適に用いることができる。
電極2592は、一方向に延在し、複数の電極2592がストライプ状に設けられている。また、配線2594は電極2592と交差して設けられている。
一対の電極2591が1つの電極2592を挟んで設けられる。また、配線2594は一対の電極2591を電気的に接続している。
なお、複数の電極2591は、1つの電極2592と必ずしも直交する方向に配置される必要はなく、0度より大きく90度未満の角度をなすように配置されてもよい。
また、配線2598は、電極2591または電極2592と電気的に接続される。また、配線2598の一部は、端子として機能する。配線2598としては、例えば、アルミニウム、金、白金、銀、ニッケル、チタン、タングステン、クロム、モリブデン、鉄、コバルト、銅、またはパラジウム等の金属材料や、該金属材料を含む合金材料を用いることができる。
なお、絶縁層2593及び配線2594を覆う絶縁層を設けて、タッチセンサ2595を保護してもよい。
また、接続層2599は、配線2598とFPC2509(2)を電気的に接続させる。
接続層2599としては、異方性導電フィルム(ACF:Anisotropic Conductive Film)や、異方性導電ペースト(ACP:Anisotropic Conductive Paste)などを用いることができる。
<タッチパネルに関する説明2>
次に、図24(A)を用いて、タッチパネル2000の詳細について説明する。図24(A)は、図22(A)に示す一点鎖線X5−X6間の断面図に相当する。
図24(A)に示すタッチパネル2000は、図23(A)で説明した表示装置2501と、図23(C)で説明したタッチセンサ2595と、を貼り合わせた構成である。
また、図24(A)に示すタッチパネル2000は、図23(A)及び図23(C)で説明した構成の他、接着層2597と、反射防止層2567pと、を有する。
接着層2597は、配線2594と接して設けられる。なお、接着層2597は、タッチセンサ2595が表示装置2501に重なるように、基板2590を基板2570に貼り合わせている。また、接着層2597は、透光性を有すると好ましい。また、接着層2597としては、熱硬化性樹脂、または紫外線硬化樹脂を用いることができる。例えば、アクリル系樹脂、ウレタン系樹脂、エポキシ系樹脂、またはシロキサン系樹脂を用いることができる。
反射防止層2567pは、画素に重なる位置に設けられる。反射防止層2567pとして、例えば円偏光板を用いることができる。
次に、図24(A)に示す構成と異なる構成のタッチパネルについて、図24(B)を用いて説明する。
図24(B)は、タッチパネル2001の断面図である。図24(B)に示すタッチパネル2001は、図24(A)に示すタッチパネル2000と、表示装置2501に対するタッチセンサ2595の位置が異なる。ここでは異なる構成について詳細に説明し、同様の構成を用いることができる部分は、タッチパネル2000の説明を援用する。
着色層2567Rは、発光素子2550Rと重なる位置にある。また、図24(B)に示す発光素子2550Rは、トランジスタ2502tが設けられている側に光を射出する。これにより、発光素子2550Rが発する光の一部は、着色層2567Rを透過して、図中に示す矢印の方向の発光モジュール2580Rの外部に射出される。
また、タッチセンサ2595は、表示装置2501の基板2510側に設けられている。
接着層2597は、基板2510と基板2590の間にあり、表示装置2501とタッチセンサ2595を貼り合わせる。
図24(A)(B)に示すように、発光素子から射出される光は、基板2510の上側及び下側のいずれか一方または双方に射出されればよい。
<タッチパネルの駆動方法に関する説明>
次に、タッチパネルの駆動方法の一例について、図25(A)(B)を用いて説明を行う。
図25(A)は、相互容量方式のタッチセンサの構成を示すブロック図である。図25(A)では、パルス電圧出力回路2601、電流検出回路2602を示している。なお、図25(A)では、パルス電圧が与えられる電極2621をX1−X6として、電流の変化を検知する電極2622をY1−Y6として、それぞれ6本の配線で例示している。また、図25(A)は、電極2621と、電極2622とが重畳することで形成される容量2603を示している。なお、電極2621と電極2622とはその機能を互いに置き換えてもよい。
パルス電圧出力回路2601は、X1−X6の配線に順にパルスを印加するための回路である。X1−X6の配線にパルス電圧が印加されることで、容量2603を形成する電極2621と電極2622との間に電界が生じる。この電極間に生じる電界が遮蔽等により容量2603の相互容量に変化を生じさせることを利用して、被検知体の近接、または接触を検出することができる。
電流検出回路2602は、容量2603での相互容量の変化による、Y1−Y6の配線での電流の変化を検出するための回路である。Y1−Y6の配線では、被検知体の近接、または接触がないと検出される電流値に変化はないが、検出する被検知体の近接、または接触により相互容量が減少する場合には電流値が減少する変化を検出する。なお電流の検出は、積分回路等を用いて行えばよい。
次に、図25(B)には、図25(A)で示す相互容量方式のタッチセンサにおける入出力波形のタイミングチャートを示す。図25(B)では、1フレーム期間で各行列での被検知体の検出を行う。また図25(B)では、被検知体を検出しない場合(非タッチ)と被検知体を検出する場合(タッチ)との2つの場合について示している。なお、図25(B)では、Y1−Y6の配線で検出される電流値に対応する電圧値の波形を示している。
X1−X6の配線には、順にパルス電圧が与えられ、該パルス電圧にしたがってY1−Y6の配線での波形が変化する。被検知体の近接または接触がない場合には、X1−X6の配線の電圧の変化に応じてY1−Y6の波形が一様に変化する。一方、被検知体が近接または接触する箇所では、電流値が減少するため、これに対応する電圧値の波形も変化する。
このように、相互容量の変化を検出することにより、被検知体の近接または接触を検知することができる。
<センサ回路に関する説明>
また、図25(A)ではタッチセンサとして配線の交差部に容量2603のみを設けるパッシブマトリクス型のタッチセンサの構成を示したが、トランジスタと容量とを有するアクティブマトリクス型のタッチセンサとしてもよい。アクティブマトリクス型のタッチセンサに含まれるセンサ回路の一例を図26に示す。
図26に示すセンサ回路は、容量2603と、トランジスタ2611と、トランジスタ2612と、トランジスタ2613とを有する。
トランジスタ2613はゲートに信号G2が与えられ、ソースまたはドレインの一方に電圧VRESが与えられ、他方が容量2603の一方の電極およびトランジスタ2611のゲートと電気的に接続する。トランジスタ2611は、ソースまたはドレインの一方がトランジスタ2612のソースまたはドレインの一方と電気的に接続し、他方に電圧VSSが与えられる。トランジスタ2612は、ゲートに信号G1が与えられ、ソースまたはドレインの他方が配線MLと電気的に接続する。容量2603の他方の電極には電圧VSSが与えられる。
次に、図26に示すセンサ回路の動作について説明する。まず、信号G2としてトランジスタ2613をオン状態とする電位が与えられることで、トランジスタ2611のゲートが接続されるノードnに電圧VRESに対応した電位が与えられる。次に、信号G2としてトランジスタ2613をオフ状態とする電位が与えられることで、ノードnの電位が保持される。
続いて、指等の被検知体の近接または接触により、容量2603の相互容量が変化することに伴い、ノードnの電位がVRESから変化する。
読み出し動作は、信号G1にトランジスタ2612をオン状態とする電位を与える。ノードnの電位に応じてトランジスタ2611に流れる電流、すなわち配線MLに流れる電流が変化する。この電流を検出することにより、被検知体の近接または接触を検出することができる。
トランジスタ2611、トランジスタ2612、及びトランジスタ2613としては、酸化物半導体層をチャネル領域が形成される半導体層に用いることが好ましい。とくにトランジスタ2613にこのようなトランジスタを適用することにより、ノードnの電位を長期間に亘って保持することが可能となり、ノードnにVRESを供給しなおす動作(リフレッシュ動作)の頻度を減らすことができる。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態7)
本実施の形態では、本発明の一態様の発光素子を有する表示モジュール及び電子機器について、図27及び図28を用いて説明を行う。
<表示モジュールに関する説明>
図27に示す表示モジュール8000は、上部カバー8001と下部カバー8002との間に、FPC8003に接続されたタッチセンサ8004、FPC8005に接続された表示装置8006、フレーム8009、プリント基板8010、バッテリ8011を有する。
本発明の一態様の発光素子は、例えば、表示装置8006に用いることができる。
上部カバー8001及び下部カバー8002は、タッチセンサ8004及び表示装置8006のサイズに合わせて、形状や寸法を適宜変更することができる。
タッチセンサ8004は、抵抗膜方式または静電容量方式のタッチセンサを表示装置8006に重畳して用いることができる。また、表示装置8006の対向基板(封止基板)に、タッチセンサ機能を持たせるようにすることも可能である。また、表示装置8006の各画素内に光センサを設け、光学式のタッチセンサとすることも可能である。
フレーム8009は、表示装置8006の保護機能の他、プリント基板8010の動作により発生する電磁波を遮断するための電磁シールドとしての機能を有する。またフレーム8009は、放熱板としての機能を有していてもよい。
プリント基板8010は、電源回路、ビデオ信号及びクロック信号を出力するための信号処理回路を有する。電源回路に電力を供給する電源としては、外部の商用電源であっても良いし、別途設けたバッテリ8011による電源であってもよい。バッテリ8011は、商用電源を用いる場合には、省略可能である。
また、表示モジュール8000は、偏光板、位相差板、プリズムシートなどの部材を追加して設けてもよい。
<電子機器に関する説明>
図28(A)乃至図28(G)は、電子機器を示す図である。これらの電子機器は、筐体9000、表示部9001、スピーカ9003、操作キー9005(電源スイッチ、又は操作スイッチを含む)、接続端子9006、センサ9007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい又は赤外線を測定する機能を含むもの)、マイクロフォン9008、等を有することができる。
図28(A)乃至図28(G)に示す電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチセンサ機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)によって処理を制御する機能、無線通信機能、無線通信機能を用いて様々なコンピュータネットワークに接続する機能、無線通信機能を用いて様々なデータの送信または受信を行う機能、記録媒体に記録されているプログラムまたはデータを読み出して表示部に表示する機能、等を有することができる。なお、図28(A)乃至図28(G)に示す電子機器が有することのできる機能はこれらに限定されず、様々な機能を有することができる。また、図28(A)乃至図28(G)には図示していないが、電子機器には、複数の表示部を有する構成としてもよい。また、該電子機器にカメラ等を設け、静止画を撮影する機能、動画を撮影する機能、撮影した画像を記録媒体(外部またはカメラに内蔵)に保存する機能、撮影した画像を表示部に表示する機能、等を有していてもよい。
図28(A)乃至図28(G)に示す電子機器の詳細について、以下説明を行う。
図28(A)は、携帯情報端末9100を示す斜視図である。携帯情報端末9100が有する表示部9001は、可撓性を有する。そのため、湾曲した筐体9000の湾曲面に沿って表示部9001を組み込むことが可能である。また、表示部9001はタッチセンサを備え、指やスタイラスなどで画面に触れることで操作することができる。例えば、表示部9001に表示されたアイコンに触れることで、アプリケーションを起動することができる。
図28(B)は、携帯情報端末9101を示す斜視図である。携帯情報端末9101は、例えば電話機、手帳又は情報閲覧装置等から選ばれた一つ又は複数の機能を有する。具体的には、スマートフォンとして用いることができる。なお、携帯情報端末9101は、スピーカ9003、接続端子9006、センサ9007等を省略して図示しているが、図28(A)に示す携帯情報端末9100と同様の位置に設けることができる。また、携帯情報端末9101は、文字や画像情報をその複数の面に表示することができる。例えば、3つの操作ボタン9050(操作アイコンまたは単にアイコンともいう)を表示部9001の一の面に表示することができる。また、破線の矩形で示す情報9051を表示部9001の他の面に表示することができる。なお、情報9051の一例としては、電子メールやSNS(ソーシャル・ネットワーキング・サービス)や電話などの着信を知らせる表示、電子メールやSNSなどの題名、電子メールやSNSなどの送信者名、日時、時刻、バッテリの残量、アンテナ受信の強度などがある。または、情報9051が表示されている位置に、情報9051の代わりに、操作ボタン9050などを表示してもよい。
図28(C)は、携帯情報端末9102を示す斜視図である。携帯情報端末9102は、表示部9001の3面以上に情報を表示する機能を有する。ここでは、情報9052、情報9053、情報9054がそれぞれ異なる面に表示されている例を示す。例えば、携帯情報端末9102の使用者は、洋服の胸ポケットに携帯情報端末9102を収納した状態で、その表示(ここでは情報9053)を確認することができる。具体的には、着信した電話の発信者の電話番号又は氏名等を、携帯情報端末9102の上方から観察できる位置に表示する。使用者は、携帯情報端末9102をポケットから取り出すことなく、表示を確認し、電話を受けるか否かを判断できる。
図28(D)は、腕時計型の携帯情報端末9200を示す斜視図である。携帯情報端末9200は、移動電話、電子メール、文章閲覧及び作成、音楽再生、インターネット通信、コンピュータゲームなどの種々のアプリケーションを実行することができる。また、表示部9001はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うことができる。また、携帯情報端末9200は、通信規格された近距離無線通信を実行することが可能である。例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。また、携帯情報端末9200は、接続端子9006を有し、他の情報端末とコネクターを介して直接データのやりとりを行うことができる。また接続端子9006を介して充電を行うこともできる。なお、充電動作は接続端子9006を介さずに無線給電により行ってもよい。
図28(E)(F)(G)は、折り畳み可能な携帯情報端末9201を示す斜視図である。また、図28(E)が携帯情報端末9201を展開した状態の斜視図であり、図28(F)が携帯情報端末9201を展開した状態または折り畳んだ状態の一方から他方に変化する途中の状態の斜視図であり、図28(G)が携帯情報端末9201を折り畳んだ状態の斜視図である。携帯情報端末9201は、折り畳んだ状態では可搬性に優れ、展開した状態では、継ぎ目のない広い表示領域により表示の一覧性に優れる。携帯情報端末9201が有する表示部9001は、ヒンジ9055によって連結された3つの筐体9000に支持されている。ヒンジ9055を介して2つの筐体9000間を屈曲させることにより、携帯情報端末9201を展開した状態から折りたたんだ状態に可逆的に変形させることができる。例えば、携帯情報端末9201は、曲率半径1mm以上150mm以下で曲げることができる。
本実施の形態において述べた電子機器は、何らかの情報を表示するための表示部を有することを特徴とする。ただし、本発明の一態様の発光素子は、表示部を有さない電子機器にも適用することができる。また、本実施の形態において述べた電子機器の表示部においては、可撓性を有し、湾曲した表示面に沿って表示を行うことができる構成、または折り畳み可能な表示部の構成について例示したが、これに限定されず、可撓性を有さず、平面部に表示を行う構成としてもよい。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態8)
本実施の形態では、本発明の一態様の発光素子を有する発光装置について、図29及び図30を用いて説明する。
本実施の形態で示す、発光装置3000の斜視図を図29(A)に、図29(A)に示す一点鎖線E−F間に相当する断面図を図29(B)に、それぞれ示す。なお、図29(A)において、図面の煩雑さを避けるために、構成要素の一部を破線で表示している。
図29(A)(B)に示す発光装置3000は、基板3001と、基板3001上の発光素子3005と、発光素子3005の外周に設けられた第1の封止領域3007と、第1の封止領域3007の外周に設けられた第2の封止領域3009と、を有する。
また、発光素子3005からの発光は、基板3001及び基板3003のいずれか一方または双方から射出される。図29(A)(B)においては、発光素子3005からの発光が下方側(基板3001側)に射出される構成について説明する。
また、図29(A)(B)に示すように、発光装置3000は、発光素子3005が第1の封止領域3007と、第2の封止領域3009とに、囲まれて配置される二重封止構造である。二重封止構造とすることで、発光素子3005側に入り込む外部の不純物(例えば、水、酸素など)を、好適に抑制することができる。ただし、第1の封止領域3007及び第2の封止領域3009を、必ずしも設ける必要はない。例えば、第1封止領域3007のみの構成としてもよい。
なお、図29(B)において、第1の封止領域3007及び第2の封止領域3009は、基板3001及び基板3003と接して設けられる。ただし、これに限定されず、例えば、第1の封止領域3007及び第2の封止領域3009の一方または双方は、基板3001の上方に形成される絶縁膜、あるいは導電膜と接して設けられる構成としてもよい。または、第1の封止領域3007及び第2の封止領域3009の一方または双方は、基板3003の下方に形成される絶縁膜、あるいは導電膜と接して設けられる構成としてもよい。
基板3001及び基板3003としては、それぞれ先の実施の形態3に記載の基板200と、基板220と同様の構成とすればよい。発光素子3005としては、先の実施の形態に記載の発光素子と同様の構成とすればよい。
第1の封止領域3007としては、ガラスを含む材料(例えば、ガラスフリット、ガラスリボン等)を用いればよい。また、第2の封止領域3009としては、樹脂を含む材料を用いればよい。第1の封止領域3007として、ガラスを含む材料を用いることで、生産性や封止性を高めることができる。また、第2の封止領域3009として、樹脂を含む材料を用いることで、耐衝撃性や耐熱性を高めることができる。ただし、第1の封止領域3007と、第2の封止領域3009とは、これに限定されず、第1の封止領域3007が樹脂を含む材料で形成され、第2の封止領域3009がガラスを含む材料で形成されてもよい。
また、上述のガラスフリットとしては、例えば、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化セシウム、酸化ナトリウム、酸化カリウム、酸化ホウ素、酸化バナジウム、酸化亜鉛、酸化テルル、酸化アルミニウム、二酸化珪素、酸化鉛、酸化スズ、酸化リン、酸化ルテニウム、酸化ロジウム、酸化鉄、酸化銅、二酸化マンガン、酸化モリブデン、酸化ニオブ、酸化チタン、酸化タングステン、酸化ビスマス、酸化ジルコニウム、酸化リチウム、酸化アンチモン、ホウ酸鉛ガラス、リン酸スズガラス、バナジン酸塩ガラス又はホウケイ酸ガラス等を含む。赤外光を吸収させるため、少なくとも一種類以上の遷移金属を含むことが好ましい。
また、上述のガラスフリットとしては、例えば、基板上にフリットペーストを塗布し、これに加熱処理、またはレーザ照射などを行う。フリットペーストには、上記ガラスフリットと、有機溶媒で希釈した樹脂(バインダとも呼ぶ)とが含まれる。また、ガラスフリットにレーザ光の波長の光を吸収する吸収剤を添加したものを用いても良い。また、レーザとして、例えば、Nd:YAGレーザや半導体レーザなどを用いることが好ましい。また、レーザ照射の際のレーザの照射形状は、円形でも四角形でもよい。
また、上述の樹脂を含む材料としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミド等)、ポリイミド、ポリカーボネートまたはアクリル、ウレタン、エポキシを用いることができる。また、シロキサン結合を有する樹脂を含む材料を用いることができる。
なお、第1の封止領域3007及び第2の封止領域3009のいずれか一方または双方にガラスを含む材料を用いる場合、当該ガラスを含む材料と、基板3001との熱膨張率が近いことが好ましい。上記構成とすることで、熱応力によりガラスを含む材料または基板3001にクラックが入るのを抑制することができる。
例えば、第1の封止領域3007にガラスを含む材料を用い、第2の封止領域3009に樹脂を含む材料を用いる場合、以下の優れた効果を有する。
第2の封止領域3009は、第1の封止領域3007よりも、発光装置3000の外周部に近い側に設けられる。発光装置3000は、外周部に向かうにつれ、外力等による歪みが大きくなる。よって、歪みが大きくなる発光装置3000の外周部側、すなわち第2の封止領域3009に、樹脂を含む材料によって封止し、第2の封止領域3009よりも内側に設けられる第1の封止領域3007にガラスを含む材料を用いて封止することで、外力等の歪みが生じても発光装置3000が壊れにくくなる。
また、図29(B)に示すように、基板3001、基板3003、第1の封止領域3007、及び第2の封止領域3009に囲まれた領域には、第1の領域3011が形成される。また、基板3001、基板3003、発光素子3005、及び第1の封止領域3007に囲まれた領域には、第2の領域3013が形成される。
第1の領域3011及び第2の領域3013としては、例えば、希ガスまたは窒素ガス等の不活性ガスが充填されていると好ましい。なお、第1の領域3011及び第2の領域3013としては、大気圧状態よりも減圧状態であると好ましい。
また、図29(B)に示す構成の変形例を図29(C)に示す。図29(C)は、発光装置3000の変形例を示す断面図である。
図29(C)は、基板3003の一部に凹部を設け、該凹部に乾燥剤3018を設ける構成である。それ以外の構成については、図29(B)に示す構成と同じである。
乾燥剤3018としては、化学吸着によって水分等を吸着する物質、または物理吸着によって水分等を吸着する物質を用いることができる。例えば、乾燥剤3018として用いることができる物質としては、アルカリ金属の酸化物、アルカリ土類金属の酸化物(酸化カルシウムや酸化バリウム等)、硫酸塩、金属ハロゲン化物、過塩素酸塩、ゼオライト、シリカゲル等が挙げられる。
次に、図29(B)に示す発光装置3000の変形例について、図30(A)(B)(C)(D)を用いて説明する。なお、図30(A)(B)(C)(D)は、図29(B)に示す発光装置3000の変形例を説明する断面図である。
図30(A)(B)(C)(D)に示す発光装置は、第2の封止領域3009を設けずに、第1の封止領域3007とした構成である。また、図30(A)(B)(C)(D)に示す発光装置は、図29(B)に示す第2の領域3013の代わりに領域3014を有する。
領域3014としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミド等)、ポリイミド、ポリカーボネートまたはアクリル、ウレタン、エポキシを用いることができる。また、シロキサン結合を有する樹脂を含む材料を用いることができる。
領域3014として、上述の材料を用いることで、いわゆる固体封止の発光装置とすることができる。
また、図30(B)に示す発光装置は、図30(A)に示す発光装置の基板3001側に、基板3015を設ける構成である。
基板3015は、図30(B)に示すように凹凸を有する。凹凸を有する基板3015を、発光素子3005の光を取り出す側に設ける構成とすることで、発光素子3005からの光の取出し効率を向上させることができる。なお、図30(B)に示すような凹凸を有する構造の代わりに、拡散板として機能する基板を設けてもよい。
また、図30(C)に示す発光装置は、図30(A)に示す発光装置が基板3001側から光を取り出す構造であったのに対し、基板3003側から光を取り出す構造である。
図30(C)に示す発光装置は、基板3003側に基板3015を有する。それ以外の構成は、図30(B)に示す発光装置と同様である。
また、図30(D)に示す発光装置は、図30(C)に示す発光装置の基板3003、3015を設けずに、基板3016を設ける構成である。
基板3016は、発光素子3005の近い側に位置する第1の凹凸と、発光素子3005の遠い側に位置する第2の凹凸と、を有する。図30(D)に示す構成とすることで、発光素子3005からの光の取出し効率をさらに、向上させることができる。
したがって、本実施の形態に示す構成を実施することにより、水分や酸素などの不純物による発光素子の劣化が抑制された発光装置を実現することができる。または、本実施の形態に示す構成を実施することにより、光取出し効率の高い発光装置を実現することができる。
なお、本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせることができる。
(実施の形態9)
本実施の形態では、本発明の一態様の発光素子を様々な照明装置及び電子機器に適用する一例について、図31及び図32を用いて説明する。
本発明の一態様の発光素子を、可撓性を有する基板上に作製することで、曲面を有する発光領域を有する電子機器、照明装置を実現することができる。
また、本発明の一態様を適用した発光装置は、自動車の照明にも適用することができ、例えば、ダッシュボードや、フロントガラス、天井等に照明を設置することもできる。
図31(A)は、多機能端末3500の一方の面の斜視図を示し、図31(B)は、多機能端末3500の他方の面の斜視図を示している。多機能端末3500は、筐体3502に表示部3504、カメラ3506、照明3508等が組み込まれている。本発明の一態様の発光装置を照明3508に用いることができる。
照明3508は、本発明の一態様の発光装置を用いることで、面光源として機能する。したがって、LEDに代表される点光源と異なり、指向性が少ない発光が得られる。例えば、照明3508とカメラ3506とを組み合わせて用いる場合、照明3508を点灯または点滅させて、カメラ3506により撮像することができる。照明3508としては、面光源としての機能を有するため、自然光の下で撮影したような写真を撮影することができる。
なお、図31(A)、(B)に示す多機能端末3500は、図28(A)乃至図28(G)に示す電子機器と同様に、様々な機能を有することができる。
また、筐体3502の内部に、スピーカ、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい又は赤外線を測定する機能を含むもの)、マイクロフォン等を有することができる。また、多機能端末3500の内部に、ジャイロ、加速度センサ等の傾きを検出するセンサを有する検出装置を設けることで、多機能端末3500の向き(縦か横か)を判断して、表示部3504の画面表示を自動的に切り替えるようにすることができる。
表示部3504は、イメージセンサとして機能させることもできる。例えば、表示部3504に掌や指で触れ、掌紋、指紋等を撮像することで、本人認証を行うことができる。また、表示部3504に近赤外光を発光するバックライト又は近赤外光を発光するセンシング用光源を用いれば、指静脈、掌静脈などを撮像することもできる。なお、表示部3504に本発明の一態様の発光装置を適用してもよい。
図31(C)は、防犯用のライト3600の斜視図を示している。ライト3600は、筐体3602の外側に照明3608を有し、筐体3602には、スピーカ3610等が組み込まれている。本発明の一態様の発光装置を照明3608に用いることができる。
ライト3600としては、例えば、照明3608を握持する、掴持する、または保持することで発光することができる。また、筐体3602の内部には、ライト3600からの発光方法を制御できる電子回路を備えていてもよい。該電子回路としては、例えば、1回または間欠的に複数回、発光が可能なような回路としてもよいし、発光の電流値を制御することで発光の光量が調整可能なような回路としてもよい。また、照明3608の発光と同時に、スピーカ3610から大音量の警報音が出力されるような回路を組み込んでもよい。
ライト3600としては、あらゆる方向に発光することが可能なため、例えば、暴漢等に向けて光、または光と音で威嚇することができる。また、ライト3600にデジタルスチルカメラ等のカメラ、撮影機能を有する機能を備えてもよい。
図32は、発光素子を室内の照明装置8501として用いた例である。なお、発光素子は大面積化も可能であるため、大面積の照明装置を形成することもできる。その他、曲面を有する筐体を用いることで、発光領域が曲面を有する照明装置8502を形成することもできる。本実施の形態で示す発光素子は薄膜状であり、筐体のデザインの自由度が高い。したがって、様々な意匠を凝らした照明装置を形成することができる。さらに、室内の壁面に大型の照明装置8503を備えても良い。また、照明装置8501、8502、8503に、タッチセンサを設けて、電源のオンまたはオフを行ってもよい。
また、発光素子をテーブルの表面側に用いることによりテーブルとしての機能を備えた照明装置8504とすることができる。なお、その他の家具の一部に発光素子を用いることにより、家具としての機能を備えた照明装置とすることができる。
以上のようにして、本発明の一態様の発光装置を適用して照明装置及び電子機器を得ることができる。なお、適用できる照明装置及び電子機器は、本実施の形態に示したものに限らず、あらゆる分野の照明装置及び電子機器に適用することが可能である。
また、本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用いることができる。
本実施例では、本発明の一態様である発光素子1、及び発光素子2の作製例を示す。また、比較発光素子1、及び比較発光素子2の作製例を示す。本実施例で作製した発光素子の断面模式図は、図1(A)に示す発光素子250と同様である。素子構造の詳細を表2に示す。また、本実施例で使用した化合物の構造と略称を以下に示す。なお、その他の化合物については、先の実施の形態1を参酌すればよい。
<発光素子1の作製>
基板上に電極101として、ITSO膜を、厚さが70nmになるように形成した。なお、電極101の電極面積は、4mm(2mm×2mm)とした。
次に、電極101上にEL層100を形成した。正孔注入層111としては、1,3,5−トリ(ジベンゾチオフェン−4−イル)ベンゼン(略称:DBT3P−II)と酸化モリブデン(MoO)とを重量比(DBT3P−II:MoO)が1:0.5になるように、且つ厚さが60nmになるように共蒸着した。また、正孔輸送層112としては、4−フェニル−4’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:BPAFLP)を厚さが20nmになるように蒸着した。
次に、発光層130としては、4,6−ビス[3−(9H−カルバゾール−9−イル)フェニル]ピリミジン(略称:4,6mCzP2Pm)、3−[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA1)および2,8−ジ−tert−ブチル−5,11−ビス(4−tert−ブチルフェニル)−6,12−ジフェニルテトラセン(略称:TBRb)を重量比(4,6mCzP2Pm:PCzPCA1:TBRb)が0.8:0.2:0.01になるように、且つ厚さが40nmになるように共蒸着した。なお、発光層130において、4,6mCzP2PmおよびPCzPCA1がホスト材料131であり、TBRbがゲスト材料132(蛍光材料)である。
また、発光層130上に、電子輸送層118として、4,6mCzP2Pmを厚さが20nmになるよう、及びBPhenを厚さが10nmになるよう順次蒸着した。次に、電子注入層119として、フッ化リチウム(LiF)を厚さが1nmになるように蒸着した。
また、電極102としては、アルミニウム(Al)を厚さが200nmになるように形成した。
次に、窒素雰囲気のグローブボックス内において、有機EL用シール材を用いて、EL層100を形成した基板に封止基板を固定することで、発光素子1を封止した。具体的には、基板に形成したEL層100の周囲にシール材を塗布し、該基板と封止基板とを貼り合わせ、波長が365nmの紫外光を6J/cm照射し、80℃にて1時間熱処理した。以上の工程により発光素子1を得た。
<発光素子2の作製>
発光素子2は、先に示す発光素子1の作製と、発光層130のホスト材料と電子輸送層118の材料のみ異なり、それ以外の工程は、発光素子1と同様の作製方法とした。
発光素子2の発光層130としては、4−{3−[3’−(9H−カルバゾール−9−イル)]ビフェニル−3−イル}ベンゾフロ[3,2−d]ピリミジン(略称:4mCzBPBfpm)、PCzPCA1およびTBRbを重量比(4mCzBPBfpm:PCzPCA1:TBRb)が0.8:0.2:0.01になるように、且つ厚さが40nmになるように共蒸着した。なお、発光層130において、4mCzBPBfpmおよびPCzPCA1がホスト材料131であり、TBRbがゲスト材料132(蛍光材料)である。
また、発光層130上に、電子輸送層118として、4mCzBPBfpmを厚さが20nmになるよう、及びBPhenを厚さが10nmになるよう順次蒸着した。
<比較発光素子1の作製>
比較発光素子1は、先に示す発光素子1の作製と、電極101及び正孔注入層111の膜厚、及び発光層130のゲスト材料が異なり、それ以外の工程は、発光素子1と同様の作製方法とした。
比較発光素子1の電極101として、ITSO膜を、厚さが110nmになるように形成した。なお、電極101の電極面積は、4mm(2mm×2mm)とした。
次に、電極101上の正孔注入層111としては、DBT3P−IIとMoOとを重量比(DBT3P−II:MoO)が1:0.5になるように、且つ厚さが20nmになるように共蒸着した。
比較発光素子1の発光層130としては、4,6mCzP2Pm、PCzPCA1およびRubrene(ルブレンともいう)を重量比(4,6mCzP2Pm:PCzPCA1:Rubrene)が0.8:0.2:0.01になるように、且つ厚さが40nmになるように共蒸着した。なお、発光層130において、4,6mCzP2PmおよびPCzPCA1がホスト材料131であり、Rubreneがゲスト材料132(蛍光材料)である。
<比較発光素子2の作製>
比較発光素子2は、先に示す発光素子2の作製と、発光層130のゲスト材料のみ異なり、それ以外の工程は、発光素子2と同様の作製方法とした。
比較発光素子2の発光層130としては、4mCzBPBfpm、PCzPCA1およびRubreneを重量比(4mCzBPBfpm:PCzPCA1:Rubrene)が0.8:0.2:0.01になるように、且つ厚さが40nmになるように共蒸着した。なお、発光層130において、4mCzBPBfpmおよびPCzPCA1がホスト材料131であり、Rubreneがゲスト材料132(蛍光材料)である。
<発光素子の動作特性>
次に、作製した発光素子1、発光素子2、比較発光素子1、及び比較発光素子2の発光特性について測定した。なお、測定は室温(23℃に保たれた雰囲気)で行った。
ここで、1000cd/m付近における発光素子の発光特性を以下の表3に示す。また、発光素子の電流効率−輝度特性を図33に、外部量子効率−輝度特性を図34に、輝度−電圧特性を図35に示す。また、発光素子に2.5mA/cmの電流密度で電流を流したときの電界発光スペクトルを図36に示す。
図36に示すように、発光素子1、発光素子2、比較発光素子1、及び比較発光素子2の電界発光スペクトルピークからは、蛍光材料であるTBRb、及びRubreneが呈する黄色発光のみを観測した。
また、図33、図34、及び表3に示すように、発光素子1及び発光素子2は高い電流効率、及び外部量子効率を示す結果が得られた。なお、一対の電極から注入されたキャリア(正孔及び電子)の再結合によって生成する一重項励起子の生成確率が最大で25%であるため、外部への光取り出し効率を30%とした場合の外部量子効率は、最大で7.5%となる。発光素子1、発光素子2、比較発光素子1及び比較発光素子2においては、外部量子効率が7.5%より高い効率が得られている。これは、発光素子1、発光素子2、比較発光素子1、及び比較発光素子2においては、一対の電極から注入されたキャリア(正孔及び電子)の再結合によって生成した一重項励起子に由来する発光に加えて、ExEFによって、三重項励起子から生成した一重項励起子に由来する発光が得られているためである。
また、特に発光素子1及び発光素子2は、1000cd/m付近において、外部量子効率が15%以上の高い効率を示す結果が得られた。なお、絶対蛍光量子収率測定によって求められたRubreneの蛍光量子収率は61%であり、TBRbの蛍光量子収率は90%であることから、TBRbはRubreneの1.5倍ほど高い蛍光量子収率を有する。一方、TBRbをゲスト材料として有する発光素子1及び発光素子2は、Rubreneをゲスト材料として有する比較発光素子1及び比較発光素子2と比較して、1000cd/m付近において、それぞれ1.7倍、及び1.9倍の外部量子効率を示している。すなわち、発光素子1及び発光素子2は、ゲスト材料の蛍光量子収率の差より大きく外部量子効率が向上する結果となっている。
先の実施の形態1で示したように、発光素子1及び発光素子2にゲスト材料として用いたTBRbは、tert−ブチル基を2つ以上有するため、Rubreneよりもゲスト材料とホスト材料との重心間距離の最小値が大きい。そのため、デクスター機構に基づくホスト材料からゲスト材料へのエネルギー移動が抑制される。したがって、ホスト材料の三重項励起状態からゲスト材料の三重項励起状態へのエネルギー移動効率が低減し、発光層130において、一重項励起状態の生成効率が向上したため、発光素子1及び発光素子2は高い発光効率を示したと結論づけられる。
また、発光素子1と発光素子2とで、同程度の高い発光効率を示していることから、ホスト材料が異なっていても、先の実施の形態1で示したゲスト材料を有することで、高い発光効率を呈する発光素子を作製できることが分かった。
また、図35及び表3に示すように、発光素子1及び発光素子2は低い電圧で駆動している。すなわち、ExEFを用いた発光層を有することで、低い電圧で駆動する発光素子を作製することができる結果が得られた。また、消費電力の低減された発光素子を作製することができる結果が得られた。
<発光素子の時間分解蛍光測定>
次に、発光素子1、発光素子2、比較発光素子1、及び比較発光素子2がExEFにより発光しているか調査するため、時間分解蛍光測定により蛍光寿命の算出を行った。
測定にはピコ秒蛍光寿命測定システム(浜松ホトニクス社製)を用いた。本測定では、発光素子における蛍光発光の寿命を測定するため、発光素子に矩形パルス電圧を印加し、その電圧の立下りから減衰していく発光をストリークカメラにより時間分解測定した。パルス電圧は10Hzの周期で印加し、繰り返し測定したデータを積算することにより、S/N比の高いデータを得た。また、測定は室温(300K)で、発光素子の輝度が1000cd/m付近になるよう印加パルス電圧を3Vから4V付近で印加し、印加パルス時間幅が100μsec、負バイアス電圧が−5V(素子駆動のOFF時)、測定時間範囲が50μsecの条件で行った。測定結果を図37に示す。なお、図37において、縦軸は、定常的にキャリアが注入されている状態(パルス電圧のON時)における発光強度で規格化した強度で示す。また、横軸は、パルス電圧の立下りからの経過時間を示す。
また、図37に示す減衰曲線について、以下の数式(6)を用いてフィッティングを行った。
数式(6)において、Lは規格化した発光強度を表し、tは経過時間を表す。減衰曲線のフィッティングを行った結果、nが1乃至3でフィッティングを行うことができた。減衰曲線のフィッティング結果から、蛍光の初期成分の割合及びその蛍光寿命をそれぞれA、aとし、遅延蛍光成分のうち最も寿命が短い成分の割合及びその蛍光寿命をそれぞれA、aとしたところ、発光素子1、発光素子2、比較発光素子1、及び比較発光素子2の発光成分には、それぞれ蛍光寿命が0.3μsの初期蛍光成分(prompt成分ともいう)と、3.0μsの遅延蛍光成分(delayed成分ともいう)が含まれていることが分かった。また、該遅延蛍光成分が発光に占める割合は、発光素子1、発光素子2、比較発光素子1、及び比較発光素子2でそれぞれ、19%、13%、18%、及び10%と算出された。したがって、発光素子1は比較発光素子1より高い割合で遅延蛍光成分を有し、発光素子2は比較発光素子2より高い割合で遅延蛍光成分を有することが分かった。
すなわち、ゲスト材料にTBRbを用いることで、高い割合で遅延蛍光成分を有する発光素子を作製することができ、高い発光効率を有する発光素子を作製することができる結果が得られた。
また、発光素子1、発光素子2、比較発光素子1、及び比較発光素子2の時間分解蛍光測定によって得られた過渡電界発光スペクトルの初期蛍光成分及び遅延蛍光成分を、図38(A)(B)、図39(A)(B)にそれぞれ示す。図38及び図39に示すように、初期蛍光成分と遅延蛍光成分とで、ゲスト材料(TBRb及びRubrene)の発光スペクトルは概ね一致していた。したがって、一対の電極から注入されたキャリアが再結合して生成した一重項励起子と、励起錯体において逆項間交差により生成した一重項励起子と、の双方の一重項励起エネルギーがゲスト材料(TBRb及びRubrene)の一重項励起エネルギー準位に移動していると示唆された。
以上、本実施例に示す構成は、他の実施の形態及び他の実施例と適宜組み合わせて用いることができる。
本実施例では、本発明の一態様である発光素子3、及び発光素子4の作製例を示す。また、比較発光素子3、及び比較発光素子4の作製例を示す。本実施例で作製した発光素子の断面模式図は、図1(A)に示す発光素子250と同様である。素子構造の詳細を表4に示す。また、本実施例で使用した化合物の構造と略称を以下に示す。なお、その他の化合物については、先の実施の形態1及び実施例1を参酌すればよい。
<発光素子3の作製>
発光素子3は、先に示す発光素子1の作製と、発光層130のホスト材料のみ異なり、それ以外の工程は、発光素子1と同様の作製方法とした。
発光素子3の発光層130としては、4,6mCzP2Pm、N−(4−ビフェニル)−N−(9,9−ジメチル−9H−フルオレン−2−イル)−9−フェニル−9H−カルバゾール−3−アミン(略称:PCBiF)およびTBRbを重量比(4,6mCzP2Pm:PCBiF:TBRb)が0.8:0.2:0.01になるように、且つ厚さが40nmになるように共蒸着した。なお、発光層130において、4,6mCzP2PmおよびPCBiFがホスト材料131であり、TBRbがゲスト材料132(蛍光材料)である。
<発光素子4の作製>
発光素子4は、先に示す発光素子1の作製と、発光層130のホスト材料のみ異なり、それ以外の工程は、発光素子1と同様の作製方法とした。
発光素子4の発光層130としては、4,6mCzP2Pm、N−(3−ビフェニル)−N−(9,9−ジメチル−9H−フルオレン−2−イル)−9−フェニル−9H−カルバゾール−3−アミン(略称:mPCBiF)およびTBRbを重量比(4,6mCzP2Pm:mPCBiF:TBRb)が0.8:0.2:0.01になるように、且つ厚さが40nmになるように共蒸着した。なお、発光層130において、4,6mCzP2PmおよびmPCBiFがホスト材料131であり、TBRbがゲスト材料132(蛍光材料)である。
<比較発光素子3の作製>
比較発光素子3は、先に示す比較発光素子1の作製と、発光層130のホスト材料のみ異なり、それ以外の工程は、比較発光素子1と同様の作製方法とした。
比較発光素子3の発光層130としては、4,6mCzP2Pm、PCBiFおよびRubreneを重量比(4,6mCzP2Pm:PCBiF:Rubrene)が0.8:0.2:0.01になるように、且つ厚さが40nmになるように共蒸着した。なお、発光層130において、4,6mCzP2PmおよびPCBiFがホスト材料131であり、Rubreneがゲスト材料132(蛍光材料)である。
<比較発光素子4の作製>
比較発光素子4は、先に示す比較発光素子3の作製と、発光層130の構成のみ異なり、それ以外の工程は、比較発光素子3と同様の作製方法とした。なお、比較発光素子4の発光層130は、発光素子4の発光層130とゲスト材料のみ異なる構成である。
比較発光素子4の発光層130としては、4,6mCzP2Pm、mPCBiFおよびRubreneを重量比(4,6mCzP2Pm:mPCBiF:Rubrene)が0.8:0.2:0.01になるように、且つ厚さが40nmになるように共蒸着した。なお、発光層130において、4,6mCzP2PmおよびmPCBiFがホスト材料131であり、Rubreneがゲスト材料132(蛍光材料)である。
<発光素子の動作特性>
次に、作製した発光素子3、発光素子4、比較発光素子3、及び比較発光素子4の発光特性について測定した。なお、測定は室温(23℃に保たれた雰囲気)で行った。
ここで、1000cd/m付近における発光素子の発光特性を以下の表5に示す。また、発光素子の電流効率−輝度特性を図40に、外部量子効率−輝度特性を図41に、輝度−電圧特性を図42に示す。また、発光素子に2.5mA/cmの電流密度で電流を流したときの電界発光スペクトルを図43に示す。
図43に示すように、発光素子3、発光素子4、比較発光素子3、及び比較発光素子4の電界発光スペクトルピークからは、蛍光材料であるTBRb、及びRubreneが呈する黄色発光のみを観測した。
また、図40、図41、及び表5に示すように、発光素子3及び発光素子4は高い電流効率、及び外部量子効率を示す結果が得られた。発光素子3、発光素子4、比較発光素子3及び比較発光素子4においては、外部量子効率が7.5%より高い効率が得られている。これは、発光素子3、発光素子4、比較発光素子3、及び比較発光素子4においては、一対の電極から注入されたキャリア(正孔及び電子)の再結合によって生成した一重項励起子に由来する発光に加えて、ExEFによって、三重項励起子から生成した一重項励起子に由来する発光が得られているためである。
また、特に発光素子3及び発光素子4は、1000cd/m付近において、外部量子効率が14%以上の高い効率を示す結果が得られた。また、発光素子3及び発光素子4は、比較発光素子3及び比較発光素子4と比較して、1000cd/m付近において、それぞれ1.6倍、及び1.7倍の外部量子効率を示している。すなわち、発光素子3及び発光素子4は、先の実施例1で示したゲスト材料の蛍光量子収率の差より大きく外部量子効率が向上する結果となっている。
先の実施の形態1で示したように、発光素子3及び発光素子4が有するゲスト材料であるTBRbは、tert−ブチル基を2つ以上有するため、Rubreneよりもゲスト材料とホスト材料との重心間距離の最小値が大きい。そのため、発光層130において、一重項励起状態の生成効率が向上し、発光素子3及び発光素子4は高い発光効率を示したと結論づけられる。
また、発光素子3と発光素子4とで、同程度の高い発光効率を示していることから、ホスト材料が異なっていても、先の実施の形態1で示したゲスト材料を有することで、高い発光効率を呈する発光素子を作製できることが分かった。
また、図42及び表5に示すように、発光素子3及び発光素子4は低い電圧で駆動している。すなわち、ExEFを用いた発光層を有することで、低い電圧で駆動する発光素子を作製することができる結果が得られた。あるいは消費電力の低減された発光素子を作製することができる結果が得られた。
<発光素子の時間分解蛍光測定>
次に、発光素子3、発光素子4、比較発光素子3、及び比較発光素子4がExEFにより発光しているか調査するため、時間分解蛍光測定により蛍光寿命の算出を行った。
測定方法は、先の実施例1を参酌すればよい。測定結果を図44に示す。また、図44に示す減衰曲線について、数式(6)を用いてフィッティングを行った結果、nが1乃至3でフィッティングを行うことができた。
減衰曲線のフィッティングを行った結果から、蛍光の初期成分の割合及びその蛍光寿命をそれぞれA、aとし、遅延蛍光成分のうち最も寿命が短い成分の割合及びその蛍光寿命をそれぞれA、aとしたところ、発光素子3、発光素子4、比較発光素子3、及び比較発光素子4の発光成分には、それぞれ蛍光寿命が0.3μsの初期蛍光成分(prompt成分ともいう)と、3.0μsの遅延蛍光成分(delayed成分ともいう)が含まれていることが分かった。また、該遅延蛍光成分が発光に占める割合は、発光素子3、発光素子4、比較発光素子3、及び比較発光素子4でそれぞれ、38%、38%、28%、28%と算出された。したがって、発光素子3は比較発光素子3より高い割合で遅延蛍光成分を有し、発光素子4は比較発光素子4より高い割合で遅延蛍光成分を有することが分かった。
すなわち、ゲスト材料にTBRbを用いることで、高い割合で遅延蛍光成分を有する発光素子を作製することができ、高い発光効率を有する発光素子を作製することができる結果が得られた。
また、発光素子3、発光素子4、比較発光素子3、及び比較発光素子4の時間分解蛍光測定によって得られた過渡電界発光スペクトルの初期蛍光成分及び遅延蛍光成分を、図45(A)(B)、図46(A)(B)にそれぞれ示す。図45及び図46に示すように、初期蛍光成分と遅延蛍光成分とで、ゲスト材料(TBRb及びRubrene)の発光スペクトルは概ね一致していた。したがって、一対の電極から注入されたキャリアが再結合して生成した一重項励起子と、励起錯体において逆項間交差により生成した一重項励起子と、の双方の一重項励起エネルギーがゲスト材料(TBRb及びRubrene)の一重項励起エネルギー準位に移動していると示唆された。
以上、本実施例に示す構成は、他の実施の形態及び他の実施例と適宜組み合わせて用いることができる。
本実施例では、本発明の一態様である発光素子5の作製例と、比較発光素子5の作製例を示す。本実施例で作製した発光素子の断面模式図は、図1(A)に示す発光素子250と同様である。素子構造の詳細を表6に示す。また、本実施例で使用した化合物の構造と略称を以下に示す。なお、その他の化合物については、先の実施の形態1及び実施例1を参酌すればよい。
<発光素子5の作製>
発光素子5は、先に示す発光素子2の作製と、発光層130のホスト材料のみ異なり、それ以外の工程は、発光素子2と同様の作製方法とした。
発光素子5の発光層130としては、4mCzBPBfpm、2−[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]スピロ−9,9’−ビフルオレン(略称:PCASF)およびTBRbを重量比(4mCzBPBfpm:PCASF:TBRb)が0.8:0.2:0.01になるように、且つ厚さが40nmになるように共蒸着した。なお、発光層130において、4mCzBPBfpmおよびPCASFがホスト材料131であり、TBRbがゲスト材料132(蛍光材料)である。
<比較発光素子5の作製>
比較発光素子5は、先に示す発光素子5の作製と、発光層130のゲスト材料のみ異なり、それ以外の工程は、発光素子5と同様の作製方法とした。
比較発光素子5の発光層130としては、4mCzBPBfpm、PCASFおよびRubreneを重量比(4mCzBPBfpm:PCASF:Rubrene)が0.8:0.2:0.01になるように、且つ厚さが40nmになるように共蒸着した。なお、発光層130において、4mCzBPBfpmおよびPCASFがホスト材料131であり、Rubreneがゲスト材料132(蛍光材料)である。
<発光素子の動作特性>
次に、作製した発光素子5、及び比較発光素子5の発光特性について測定した。なお、測定は室温(23℃に保たれた雰囲気)で行った。
ここで、1000cd/m付近における発光素子の発光特性を以下の表7に示す。また、発光素子の電流効率−輝度特性を図47に、外部量子効率−輝度特性を図48に、輝度−電圧特性を図49に示す。また、発光素子に2.5mA/cmの電流密度で電流を流したときの電界発光スペクトルを図50に示す。
図50に示すように、発光素子5、及び比較発光素子5の電界発光スペクトルピークからは、蛍光材料であるTBRb、及びRubreneが呈する黄色発光のみを観測した。
また、図47、図48、及び表7に示すように、発光素子5は高い電流効率、及び外部量子効率を示す結果が得られた。発光素子5、及び比較発光素子5においては、外部量子効率が7.5%より高い効率が得られている。これは、発光素子5、及び比較発光素子5においては、一対の電極から注入されたキャリア(正孔及び電子)の再結合によって生成した一重項励起子に由来する発光に加えて、ExEFによって、三重項励起子から生成した一重項励起子に由来する発光が得られているためである。
また、特に発光素子5は、1000cd/m付近において、外部量子効率が16%と高い効率を示す結果が得られた。また、発光素子5は、比較発光素子5と比較して、1000cd/m付近において、1.7倍の外部量子効率を示している。すなわち、発光素子5は、実施例1で示したゲスト材料の蛍光量子収率の差より大きく効率が向上する結果となっている。
先の実施の形態1で示したように、発光素子5が有するゲスト材料であるTBRbは、tert−ブチル基を2つ以上有するため、Rubreneよりもゲスト材料とホスト材料との重心間距離の最小値が大きい。そのため、発光層130において、一重項励起状態の生成効率が向上し、発光素子5は高い発光効率を示したと結論づけられる。
また、図49及び表7に示すように、発光素子5は低い電圧で駆動している。すなわち、ExEFを用いた発光層を有することで、低い電圧で駆動する発光素子を作製することができる結果が得られた。あるいは消費電力の低減された発光素子を作製することができる結果が得られた。
以上、本実施例に示す構成は、他の実施の形態及び他の実施例と適宜組み合わせて用いることができる。
本実施例では、本発明の一態様である発光素子の発光層の時間分解蛍光測定を行った結果を示す。本実施例で用いた化合物の構造と略称を以下に示す。なお、その他の化合物については、実施の形態1を参酌すればよい。
<薄膜サンプルの作製>
発光素子の発光層の時間分解蛍光測定を行うため、石英基板上に真空蒸着法により薄膜サンプルを作製した。
薄膜1としては、4,6mCzP2Pm、N−(1,1’−ビフェニル−4−イル)−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]−9,9−ジメチル−9H−フルオレン−2−アミン(略称:PCBBiF)、及びTBRbを重量比(4,6mCzP2Pm:PCBBiF:TBRb)が0.8:0.2:0.01になるように、且つ厚さが50nmになるように共蒸着した。なお、薄膜1において、4,6mCzP2PmおよびPCBBiFがホスト材料131であり、TBRbがゲスト材料132(蛍光材料)である。
薄膜2としては、4,6mCzP2Pm、PCBBiF、及びRubreneを重量比(4,6mCzP2Pm:PCBBiF:Rubrene)が0.8:0.2:0.01になるように、且つ厚さが50nmになるように共蒸着した。なお、薄膜2において、4,6mCzP2PmおよびPCBBiFがホスト材料131であり、Rubreneがゲスト材料132(蛍光材料)である。
薄膜3としては、4,6mCzP2Pm、及びPCBBiFを重量比(4,6mCzP2Pm:PCBBiF)が0.8:0.2になるように、且つ厚さが50nmになるように共蒸着した。なお、薄膜3において、4,6mCzP2PmおよびPCBBiFがホスト材料131に相当し、ゲスト材料132(蛍光材料)を有さない薄膜である。
薄膜4としては、4,6mCzP2Pm、及びPCASFを重量比(4,6mCzP2Pm:PCASF)が0.8:0.2になるように、且つ厚さが50nmになるように共蒸着した。なお、薄膜4において、4,6mCzP2PmおよびPCASFがホスト材料131に相当し、ゲスト材料132(蛍光材料)を有さない薄膜である。
薄膜5としては、4mCzBPBfpm、及びPCBBiFを重量比(4mCzBPBfpm:PCBBiF)が0.8:0.2になるように、且つ厚さが50nmになるように共蒸着した。なお、薄膜5において、4mCzBPBfpmおよびPCBBiFがホスト材料131に相当し、ゲスト材料132(蛍光材料)を有さない薄膜である。
薄膜6としては、4mCzBPBfpm、及びPCASFを重量比(4mCzBPBfpm:PCASF)が0.8:0.2になるように、且つ厚さが50nmになるように共蒸着した。なお、薄膜6において、4mCzBPBfpmおよびPCASFがホスト材料131に相当し、ゲスト材料132(蛍光材料)を有さない薄膜である。
また、窒素雰囲気のグローブボックス内において、有機EL用シール材を用いて、薄膜サンプルを成膜した石英基板上に封止基板を固定することで、薄膜1乃至薄膜6をそれぞれ封止した。具体的には、石英基板に形成した薄膜の周囲にシール材を塗布し、該石英基板と封止基板とを貼り合せ、波長が365nmの紫外光を6J/cm照射し、80℃にて1時間熱処理した。
<薄膜サンプルの時間分解蛍光測定>
測定にはピコ秒蛍光寿命測定システム(浜松ホトニクス社製)を用いた。本測定では、薄膜が呈する蛍光発光の寿命を測定するため、薄膜にパルスレーザを照射し、レーザ照射後から減衰していく発光をストリークカメラにより時間分解測定した。パルスレーザには波長が337nmの窒素ガスレーザーを用い、500psのパルスレーザを10Hzの周期で薄膜に照射し、繰り返し測定したデータを積算することにより、S/N比の高いデータを得た。また、測定は室温(23℃に保たれた雰囲気)で行った。また、測定範囲は、1msとした。
薄膜1および薄膜2からは、それぞれゲスト材料であるTBRbおよびRubreneが呈する黄色発光を観測した。また、薄膜3からは、4,6mCzP2Pm、及びPCBBiFが形成する励起錯体が呈する、510nm付近を最大値とする発光スペクトルが得られ、薄膜4からは、4,6mCzP2Pm、及びPCASFが形成する励起錯体が呈する、545nm付近を最大値とする発光スペクトルが得られ、薄膜5からは、4mCzBPBfpm、及びPCBBiFが形成する励起錯体が呈する、549nm付近を最大値とする発光スペクトルが得られ、薄膜6からは、4mCzBPBfpm、及びPCASFが形成する励起錯体が呈する、551nm付近を最大値とする発光スペクトルが得られた。測定によって得られた減衰曲線を図51、及び図52に示す。
図51に示すように、薄膜1および薄膜2の減衰曲線は、概ね一致する結果が得られた。本実施例においては、光励起によってホスト材料を励起し、薄膜1および薄膜2が有するゲスト材料からの発光を観測している。すなわち、薄膜1および薄膜2で一重項励起状態のみ生成する条件である。薄膜1と薄膜2とで、蛍光寿命が概ね一致していることから、ゲスト材料が異なっていても、ホスト材料の一重項励起状態からゲスト材料の一重項励起状態へのエネルギー移動については、概ね変化がないと示唆される。
したがって、先の実施例1乃至実施例3で示した発光素子において、実施の形態1で示したゲスト材料を用いることで、遅延蛍光成分の割合が増加し、発光効率が向上する結果が得られた原因は、ホスト材料の三重項励起状態からゲスト材料の三重項励起状態へのエネルギー移動が抑制され、励起錯体における逆項間交差によって一重項励起子の生成効率が向上したためであると結論づけられる。
また、図52に示す薄膜3乃至薄膜6の減衰曲線について、数式(6)を用いてフィッティングを行った結果、nが1から3でフィッティングを行うことができた。フィッティングの結果、薄膜3、薄膜4、薄膜5、及び薄膜6の発光成分には、蛍光寿命が3.9μsの早い蛍光成分に加えて、それぞれ58μs、30μs、27μs、及び16μsの遅延蛍光成分が含まれていることが分かった。また、該遅延蛍光成分が発光に占める割合は、それぞれ10%、24%、33%、及び31%と算出された。
励起錯体は、一重項励起状態のエネルギー準位と三重項励起状態のエネルギー準位が近接する性質を有する。したがって、薄膜3乃至薄膜6が示した遅延蛍光成分は、該励起錯体の一重項励起状態および三重項励起状態間の項間交差および逆項間交差に由来する熱活性化遅延蛍光である。したがって、薄膜3乃至薄膜6はいずれも本発明の一態様に好適な励起錯体である。また、薄膜4乃至薄膜6の遅延蛍光は、50μs以下の比較的早い遅延蛍光成分を有していることから、これらの励起錯体における逆項間交差の速度定数は比較的早いことが示唆される。そのため、薄膜4乃至薄膜6の励起錯体は、ゲスト材料へのエネルギー移動の媒体として、さらに好適なホスト材料であると言える。
以上、本実施例に示す構成は、他の実施の形態及び他の実施例と適宜組み合わせて用いることができる。
100 EL層
101 電極
101a 導電層
101b 導電層
101c 導電層
102 電極
103 電極
103a 導電層
103b 導電層
104 電極
104a 導電層
104b 導電層
106 発光ユニット
108 発光ユニット
111 正孔注入層
112 正孔輸送層
113 電子輸送層
114 電子注入層
115 電荷発生層
116 正孔注入層
117 正孔輸送層
118 電子輸送層
119 電子注入層
120 発光層
121 ホスト材料
122 ゲスト材料
123B 発光層
123G 発光層
123R 発光層
130 発光層
131 ホスト材料
131_1 有機化合物
131_2 有機化合物
132 ゲスト材料
140 発光層
141 ホスト材料
141_1 有機化合物
141_2 有機化合物
142 ゲスト材料
145 隔壁
150 発光層
150a 発光層
150b 発光層
200 基板
220 基板
221B 領域
221G 領域
221R 領域
222B 領域
222G 領域
222R 領域
223 遮光層
224B 光学素子
224G 光学素子
224R 光学素子
250 発光素子
260 発光素子
262 発光素子
270a 発光素子
270b 発光素子
272a 発光素子
272b 発光素子
301_1 配線
301_5 配線
301_6 配線
301_7 配線
302_1 配線
302_2 配線
303_1 トランジスタ
303_6 トランジスタ
303_7 トランジスタ
304 容量素子
304_1 容量素子
304_2 容量素子
305 発光素子
306_1 配線
306_3 配線
307_1 配線
307_3 配線
308_1 トランジスタ
308_6 トランジスタ
309_1 トランジスタ
309_2 トランジスタ
311_1 配線
311_3 配線
312_1 配線
312_2 配線
600 表示装置
601 信号線駆動回路部
602 画素部
603 走査線駆動回路部
604 封止基板
605 シール材
607 領域
608 配線
609 FPC
610 素子基板
611 トランジスタ
612 トランジスタ
613 下部電極
614 隔壁
616 EL層
617 上部電極
618 発光素子
621 光学素子
622 遮光層
623 トランジスタ
624 トランジスタ
801 画素回路
802 画素部
804 駆動回路部
804a 走査線駆動回路
804b 信号線駆動回路
806 保護回路
807 端子部
852 トランジスタ
854 トランジスタ
862 容量素子
872 発光素子
1001 基板
1002 下地絶縁膜
1003 ゲート絶縁膜
1006 ゲート電極
1007 ゲート電極
1008 ゲート電極
1020 層間絶縁膜
1021 層間絶縁膜
1022 電極
1024B 下部電極
1024G 下部電極
1024R 下部電極
1024Y 下部電極
1025 隔壁
1026 上部電極
1028 EL層
1029 封止層
1031 封止基板
1032 シール材
1033 基材
1034B 着色層
1034G 着色層
1034R 着色層
1034Y 着色層
1035 遮光層
1036 オーバーコート層
1037 層間絶縁膜
1040 画素部
1041 駆動回路部
1042 周辺部
2000 タッチパネル
2001 タッチパネル
2501 表示装置
2502R 画素
2502t トランジスタ
2503c 容量素子
2503g 走査線駆動回路
2503s 信号線駆動回路
2503t トランジスタ
2509 FPC
2510 基板
2510a 絶縁層
2510b 可撓性基板
2510c 接着層
2511 配線
2519 端子
2521 絶縁層
2528 隔壁
2550R 発光素子
2560 封止層
2567BM 遮光層
2567p 反射防止層
2567R 着色層
2570 基板
2570a 絶縁層
2570b 可撓性基板
2570c 接着層
2580R 発光モジュール
2590 基板
2591 電極
2592 電極
2593 絶縁層
2594 配線
2595 タッチセンサ
2597 接着層
2598 配線
2599 接続層
2601 パルス電圧出力回路
2602 電流検出回路
2603 容量
2611 トランジスタ
2612 トランジスタ
2613 トランジスタ
2621 電極
2622 電極
3000 発光装置
3001 基板
3003 基板
3005 発光素子
3007 封止領域
3009 封止領域
3011 領域
3013 領域
3014 領域
3015 基板
3016 基板
3018 乾燥剤
3500 多機能端末
3502 筐体
3504 表示部
3506 カメラ
3508 照明
3600 ライト
3602 筐体
3608 照明
3610 スピーカ
8000 表示モジュール
8001 上部カバー
8002 下部カバー
8003 FPC
8004 タッチセンサ
8005 FPC
8006 表示装置
8009 フレーム
8010 プリント基板
8011 バッテリ
8501 照明装置
8502 照明装置
8503 照明装置
8504 照明装置
9000 筐体
9001 表示部
9003 スピーカ
9005 操作キー
9006 接続端子
9007 センサ
9008 マイクロフォン
9050 操作ボタン
9051 情報
9052 情報
9053 情報
9054 情報
9055 ヒンジ
9100 携帯情報端末
9101 携帯情報端末
9102 携帯情報端末
9200 携帯情報端末
9201 携帯情報端末

Claims (9)

  1. 一対の電極間に発光層を有し、
    前記発光層は、蛍光発光材料と、ホスト材料と、を有し、
    前記ホスト材料は、第1の有機化合物と、第2の有機化合物と、を有し、
    前記第1の有機化合物、及び前記第2の有機化合物は、前記第1の有機化合物と、前記第2の有機化合物と、が励起錯体を形成する機能を有し、
    前記第1の有機化合物と、前記蛍光発光材料と、の重心間距離の最小値が0.7nm以上5nm以下であ
    前記重心間距離の最小値は、古典分子動力学法によって算出される、前記蛍光発光材料を中心とする、半径rの球内に存在する前記第1の有機化合物の個数が0を超えるときの半径rであり、
    前記蛍光発光材料は、炭素数3以上10以下の環式炭化水素基を少なくとも2つ以上、または炭素数3以上10以下の架橋環式炭化水素基を少なくとも2つ以上、有する、発光素子。
  2. 請求項1において、
    前記励起錯体は、前記蛍光発光材料へ励起エネルギーを供与する機能を有する、発光素子。
  3. 請求項1または2において、
    前記励起錯体が呈する発光は、前記蛍光発光材料の最も低いエネルギー側の吸収帯と重なる領域を有する、発光素子。
  4. 請求項1乃至請求項3のいずれか一項において、
    前記励起錯体が呈する発光は、遅延蛍光成分の占める割合が10%以上であり、
    前記遅延蛍光成分は、蛍光寿命が10ns以上50μs以下の遅延蛍光成分を有する、発光素子。
  5. 請求項1乃至請求項4のいずれか一項において、
    前記第1の有機化合物は、電子を輸送する機能を有し、
    記第2の有機化合物は、正孔を輸送する機能を有する、発光素子。
  6. 請求項1乃至請求項5のいずれか一項において、
    前記第1の有機化合物は、π電子不足型複素芳香環骨格を有し、
    記第2の有機化合物は、π電子過剰型複素芳香環骨格または芳香族アミン骨格を有する、発光素子。
  7. 請求項1乃至請求項のいずれか一項に記載の発光素子と、
    カラーフィルタまたはトランジスタの少なくとも一方と、を有する表示装置。
  8. 請求項に記載の表示装置と、
    筐体またはタッチセンサの少なくとも一方と、を有する電子機器。
  9. 請求項1乃至請求項のいずれか一項に記載の発光素子と、
    筐体またはタッチセンサの少なくとも一方と、を有する照明装置。
JP2016043530A 2015-03-09 2016-03-07 発光素子、表示装置、電子機器、及び照明装置 Active JP6803667B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015046409 2015-03-09
JP2015046409 2015-03-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020199398A Division JP7066811B2 (ja) 2015-03-09 2020-12-01 発光素子、表示装置、電子機器および照明装置

Publications (2)

Publication Number Publication Date
JP2016171318A JP2016171318A (ja) 2016-09-23
JP6803667B2 true JP6803667B2 (ja) 2020-12-23

Family

ID=56888728

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016043530A Active JP6803667B2 (ja) 2015-03-09 2016-03-07 発光素子、表示装置、電子機器、及び照明装置
JP2020199398A Active JP7066811B2 (ja) 2015-03-09 2020-12-01 発光素子、表示装置、電子機器および照明装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020199398A Active JP7066811B2 (ja) 2015-03-09 2020-12-01 発光素子、表示装置、電子機器および照明装置

Country Status (5)

Country Link
US (4) US9941481B2 (ja)
JP (2) JP6803667B2 (ja)
KR (3) KR102544603B1 (ja)
CN (2) CN106057846B (ja)
TW (3) TWI836636B (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6312960B2 (ja) * 2012-08-03 2018-04-18 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、照明装置及び複素環化合物
TWI836636B (zh) 2015-03-09 2024-03-21 日商半導體能源研究所股份有限公司 發光元件,顯示裝置,電子裝置,與照明裝置
TW202404148A (zh) * 2015-03-09 2024-01-16 日商半導體能源研究所股份有限公司 發光元件、顯示裝置、電子裝置及照明設備
CN109076674B (zh) * 2016-05-02 2020-06-23 夏普株式会社 显示装置及其制造方法
KR102349892B1 (ko) 2016-05-06 2022-01-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 장치, 전자 기기, 및 조명 장치
US10270039B2 (en) * 2016-11-17 2019-04-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
CN106856227B (zh) * 2016-12-19 2020-03-31 Tcl集团股份有限公司 一种柔性透气可穿戴量子点发光二极管及其制备方法
KR102228290B1 (ko) * 2017-03-09 2021-03-17 이스메카 세미컨덕터 홀딩 에스.아. 전기부품을 테스트하기 위한 테스트 어셈블리 및 방법
CN108346750B (zh) * 2017-08-08 2019-07-19 广东聚华印刷显示技术有限公司 电致发光器件及其发光层和应用
US10600981B2 (en) * 2017-08-24 2020-03-24 Universal Display Corporation Exciplex-sensitized fluorescence light emitting system
CN111279505B (zh) * 2017-10-27 2024-04-09 株式会社半导体能源研究所 发光元件、显示装置、电子设备及照明装置
CN111656549A (zh) * 2017-11-02 2020-09-11 株式会社半导体能源研究所 发光元件、显示装置、电子设备及照明装置
KR102444611B1 (ko) 2017-12-07 2022-09-19 삼성디스플레이 주식회사 표시 장치
JP7218348B2 (ja) 2018-03-07 2023-02-06 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器および照明装置
WO2019215535A1 (ja) * 2018-05-11 2019-11-14 株式会社半導体エネルギー研究所 発光素子、表示装置、電子機器、有機化合物及び照明装置
KR102597673B1 (ko) * 2018-05-16 2023-11-02 삼성디스플레이 주식회사 표시 장치
KR20210126000A (ko) 2019-02-06 2021-10-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 디바이스, 발광 기기, 표시 장치, 전자 기기, 및 조명 장치

Family Cites Families (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS618689Y2 (ja) 1979-10-26 1986-03-18
DE60111473T3 (de) 2000-10-30 2012-09-06 Kabushiki Kaisha Toyota Chuo Kenkyusho Organische lichtemittierende Bauelemente
TW519770B (en) 2001-01-18 2003-02-01 Semiconductor Energy Lab Light emitting device and manufacturing method thereof
JP4015816B2 (ja) * 2001-03-21 2007-11-28 独立行政法人科学技術振興機構 発光材料及びel発光層
EP1399514B1 (en) * 2001-06-29 2012-01-11 Basf Se Fluorescent diketopyrrolopyrroles
ITTO20010692A1 (it) 2001-07-13 2003-01-13 Consiglio Nazionale Ricerche Dispositivo elettroluminescente organico basato sull'emissione di ecciplessi od elettroplessi e sua realizzazione.
US6863997B2 (en) 2001-12-28 2005-03-08 The Trustees Of Princeton University White light emitting OLEDs from combined monomer and aggregate emission
ITBO20020165A1 (it) 2002-03-29 2003-09-29 Consiglio Nazionale Ricerche Dispositivo elettroluminescente organico con droganti cromofori
TWI314947B (en) 2002-04-24 2009-09-21 Eastman Kodak Compan Organic light emitting diode devices with improved operational stability
KR101114899B1 (ko) 2002-12-26 2012-03-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치
US7575846B2 (en) * 2003-01-31 2009-08-18 Mitsubishi Rayon Co., Ltd. Resist polymer and resist composition
US7175922B2 (en) 2003-10-22 2007-02-13 Eastman Kodak Company Aggregate organic light emitting diode devices with improved operational stability
US7052785B2 (en) * 2003-11-04 2006-05-30 Eastman Kodak Company Organic element for electroluminescent devices
US7597967B2 (en) 2004-12-17 2009-10-06 Eastman Kodak Company Phosphorescent OLEDs with exciton blocking layer
US20060134464A1 (en) 2004-12-22 2006-06-22 Fuji Photo Film Co. Ltd Organic electroluminescent element
JP4559922B2 (ja) * 2005-06-21 2010-10-13 株式会社東芝 蛍光性錯体及びそれを用いた照明装置
US20070090756A1 (en) 2005-10-11 2007-04-26 Fujifilm Corporation Organic electroluminescent element
KR101082258B1 (ko) 2005-12-01 2011-11-09 신닛테츠가가쿠 가부시키가이샤 유기 전계 발광소자용 화합물 및 유기 전계 발광소자
US7718277B2 (en) 2006-07-28 2010-05-18 General Electric Company Electronic devices comprising organic iridium compositions
US7691292B2 (en) 2006-07-28 2010-04-06 General Electric Company Organic iridium compositions and their use in electronic devices
US7652151B2 (en) 2006-07-28 2010-01-26 General Electric Company Ketopyrroles useful as ligands in organic iridium compositions
US7691494B2 (en) 2006-07-28 2010-04-06 General Electric Company Electronic devices comprising organic iridium compositions
US7718087B2 (en) 2006-07-28 2010-05-18 General Electric Company Organic iridium compositions and their use in electronic devices
US7704610B2 (en) 2006-07-28 2010-04-27 General Electric Company Electronic devices comprising organic iridium compositions
US7695640B2 (en) 2006-07-28 2010-04-13 General Electric Company Organic iridium compositions and their use in electronic devices
US7910386B2 (en) 2006-07-28 2011-03-22 General Electric Company Method of making organic light emitting devices
US7608677B2 (en) 2006-07-28 2009-10-27 General Electric Company Method for preparing polymeric organic iridium compositions
EP1973386B8 (en) * 2007-03-23 2016-01-13 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and electronic device
JP2008288344A (ja) 2007-05-16 2008-11-27 Nippon Hoso Kyokai <Nhk> 有機el素子
US8034465B2 (en) 2007-06-20 2011-10-11 Global Oled Technology Llc Phosphorescent oled having double exciton-blocking layers
JP5325707B2 (ja) 2008-09-01 2013-10-23 株式会社半導体エネルギー研究所 発光素子
CN102217419A (zh) 2008-09-05 2011-10-12 株式会社半导体能源研究所 发光元件、发光器件和电子器件
WO2010148085A1 (en) * 2009-06-16 2010-12-23 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Rna nanoparticles and methods of use
JP5732463B2 (ja) 2009-10-05 2015-06-10 トルン ライティング リミテッドThorn Lighting Limited 多層有機素子
JP2011091099A (ja) * 2009-10-20 2011-05-06 Sumitomo Electric Ind Ltd 蛍光ガラス体およびそれを導光部として有する増幅用光導波体
KR101352116B1 (ko) 2009-11-24 2014-01-14 엘지디스플레이 주식회사 백색 유기 발광 소자
JP5124785B2 (ja) 2009-12-07 2013-01-23 新日鉄住金化学株式会社 有機発光材料及び有機発光素子
EP2530759B1 (en) * 2010-01-29 2018-10-17 Sumitomo Chemical Company, Limited Light-emitting material, ink composition, thin film, light-emitting element, and method for manufacturing a light-emitting element
KR20110093113A (ko) 2010-02-11 2011-08-18 삼성전자주식회사 박막 트랜지스터 기판 및 이의 제조 방법
EP2428512B1 (en) * 2010-09-08 2014-10-22 Semiconductor Energy Laboratory Co., Ltd. Fluorene compound, light-emitting element, light-emitting device, electronic device and lighting device
JP5815341B2 (ja) 2010-09-09 2015-11-17 株式会社半導体エネルギー研究所 複素環化合物
KR20240090978A (ko) 2011-02-16 2024-06-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자
DE112012000828B4 (de) 2011-02-16 2017-09-07 Semiconductor Energy Laboratory Co., Ltd. Lichtemittierendes Element
TWI680600B (zh) 2011-02-28 2019-12-21 日商半導體能源研究所股份有限公司 發光元件
CN103282387A (zh) * 2011-03-14 2013-09-04 旭化成化学株式会社 有机无机复合物及其制造方法、有机无机复合膜及其制造方法、光子晶体、涂布材料、热塑性组合物、微细结构体、光学材料、防反射部件和光学透镜
CN105789468B (zh) 2011-03-23 2018-06-08 株式会社半导体能源研究所 发光元件、发光装置、照明装置及电子设备
CN105702873B (zh) 2011-03-30 2017-11-24 株式会社半导体能源研究所 发光元件
TWI532822B (zh) * 2011-04-29 2016-05-11 半導體能源研究所股份有限公司 利用磷光之發光裝置,電子裝置及照明裝置
JP2012238544A (ja) * 2011-05-13 2012-12-06 Sony Corp 表示素子および表示装置ならびに電子機器
US9273079B2 (en) * 2011-06-29 2016-03-01 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
WO2013024872A1 (ja) * 2011-08-18 2013-02-21 出光興産株式会社 ビスカルバゾール誘導体およびこれを用いた有機エレクトロルミネッセンス素子
JP2013147490A (ja) * 2011-12-23 2013-08-01 Semiconductor Energy Lab Co Ltd イリジウム錯体、発光素子、発光装置、電子機器、及び照明装置
KR101803537B1 (ko) 2012-02-09 2017-11-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자
DE112013001439B4 (de) * 2012-03-14 2022-01-20 Semiconductor Energy Laboratory Co., Ltd. Licht emittierende Vorrichtung, elektronisches Gerät und Beleuchtungsvorrichtung
JP2013232629A (ja) 2012-04-06 2013-11-14 Semiconductor Energy Lab Co Ltd 発光素子、発光装置、電子機器、および照明装置
KR101419810B1 (ko) 2012-04-10 2014-07-15 서울대학교산학협력단 엑시플렉스를 형성하는 공동 호스트를 포함하는 유기 발광 소자
JP6158543B2 (ja) 2012-04-13 2017-07-05 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、および照明装置
JP6158542B2 (ja) * 2012-04-13 2017-07-05 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、および照明装置
JP5606567B2 (ja) * 2012-04-19 2014-10-15 富士フイルム株式会社 活性光線硬化型インク組成物、インクジェット記録方法、加飾シート、加飾シート成形物、インモールド成形品の製造方法及びインモールド成形品
JP6076153B2 (ja) * 2012-04-20 2017-02-08 株式会社半導体エネルギー研究所 発光素子、発光装置、表示装置、電子機器及び照明装置
CN107039593B (zh) 2012-04-20 2019-06-04 株式会社半导体能源研究所 发光元件、发光装置、电子设备以及照明装置
KR20220044854A (ko) * 2012-04-20 2022-04-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
KR102198635B1 (ko) * 2012-04-20 2021-01-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기 화합물, 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
US8994013B2 (en) 2012-05-18 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
US8916897B2 (en) * 2012-05-31 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
JP6187917B2 (ja) * 2012-06-01 2017-08-30 パナソニックIpマネジメント株式会社 有機エレクトロルミネッセンス素子及び照明装置
US20140014930A1 (en) * 2012-07-13 2014-01-16 Semiconductor Energy Laboratory Co., Ltd. Organic Compound, Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device
TWI792181B (zh) 2012-08-03 2023-02-11 日商半導體能源研究所股份有限公司 發光元件
JP6312960B2 (ja) * 2012-08-03 2018-04-18 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、照明装置及び複素環化合物
KR102438674B1 (ko) 2012-08-03 2022-08-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 표시 장치, 전자 기기, 및 조명 장치
DE102013214661B4 (de) 2012-08-03 2023-01-05 Semiconductor Energy Laboratory Co., Ltd. Licht emittierendes Element, Licht emittierende Vorrichtung und Beleuchtungsvorrichtung
TWI651878B (zh) 2012-08-03 2019-02-21 日商半導體能源研究所股份有限公司 發光元件、發光裝置、顯示裝置、電子裝置及照明設備
WO2014021441A1 (en) 2012-08-03 2014-02-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US9142710B2 (en) 2012-08-10 2015-09-22 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
KR20140038886A (ko) 2012-09-21 2014-03-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자
JP6256349B2 (ja) * 2012-11-28 2018-01-10 コニカミノルタ株式会社 透明電極、及び、電子デバイス
US9653691B2 (en) * 2012-12-12 2017-05-16 Universal Display Corporation Phosphorescence-sensitizing fluorescence material system
KR102151394B1 (ko) 2013-01-10 2020-09-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자 기기 및 조명 장치
US9496503B2 (en) 2013-03-25 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
WO2014157433A1 (en) 2013-03-26 2014-10-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
KR102178256B1 (ko) * 2013-03-27 2020-11-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
US10043982B2 (en) 2013-04-26 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
US9130182B2 (en) 2013-06-28 2015-09-08 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, lighting device, light-emitting device, and electronic device
US10862047B2 (en) 2013-08-14 2020-12-08 Kyushu University, National University Corporation Organic electroluminescent device
WO2015022987A1 (ja) * 2013-08-16 2015-02-19 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、電子デバイス、発光装置及び発光材料
KR102403208B1 (ko) 2013-08-26 2022-05-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 표시 장치, 조명 장치, 및 전자 기기
KR102074031B1 (ko) * 2013-09-17 2020-02-05 가부시키가이샤 큐럭스 유기 일렉트로루미네선스 소자
TWI729686B (zh) * 2013-10-16 2021-06-01 日商半導體能源研究所股份有限公司 發光元件、發光裝置、電子裝置及照明裝置
DE112014005471B4 (de) 2013-12-02 2022-10-06 Semiconductor Energy Laboratory Co., Ltd. Licht emittierendes Element, Licht emittierende Vorrichtung und Beleuchtungsvorrichtung
CN108598272B (zh) 2013-12-02 2020-10-16 株式会社半导体能源研究所 发光元件、显示模块、照明模块、发光装置、显示装置、电子设备以及照明装置
KR102089271B1 (ko) * 2013-12-31 2020-03-16 엘지디스플레이 주식회사 유기 발광 장치
WO2015125044A1 (en) 2014-02-21 2015-08-27 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
KR20150130224A (ko) 2014-05-13 2015-11-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 표시 장치, 전자 기기, 및 조명 장치
TWI682563B (zh) 2014-05-30 2020-01-11 日商半導體能源研究所股份有限公司 發光元件,發光裝置,電子裝置以及照明裝置
DE102015213426B4 (de) 2014-07-25 2022-05-05 Semiconductor Energy Laboratory Co.,Ltd. Licht emittierendes Element, Licht emittierende Vorrichtung, elekronisches Gerät, Beleuchtungsvorrichtung und organische Verbindung
KR102424714B1 (ko) * 2014-08-08 2022-07-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치, 전자 기기, 및 조명 장치
KR102377360B1 (ko) 2014-08-08 2022-03-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 조명 장치, 표시 장치, 디스플레이 패널, 전자 기기
US9991471B2 (en) * 2014-12-26 2018-06-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, and electronic device
US10062861B2 (en) * 2015-02-24 2018-08-28 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
TWI836636B (zh) * 2015-03-09 2024-03-21 日商半導體能源研究所股份有限公司 發光元件,顯示裝置,電子裝置,與照明裝置
TW202404148A (zh) * 2015-03-09 2024-01-16 日商半導體能源研究所股份有限公司 發光元件、顯示裝置、電子裝置及照明設備
WO2016203350A1 (en) * 2015-06-17 2016-12-22 Semiconductor Energy Laboratory Co., Ltd. Iridium complex, light-emitting element, display device, electronic device, and lighting device
CN107710444A (zh) * 2015-07-08 2018-02-16 株式会社半导体能源研究所 发光元件、显示装置、电子设备以及照明装置
KR102655709B1 (ko) * 2015-07-21 2024-04-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 장치, 전자 기기, 및 조명 장치
KR102616411B1 (ko) * 2015-07-23 2023-12-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 장치, 전자 기기, 및 조명 장치
JP6831660B2 (ja) * 2015-08-31 2021-02-17 株式会社半導体エネルギー研究所 ベンゾトリフェニレン化合物、発光素子、発光装置、電子機器、及び照明装置
WO2017055971A1 (en) * 2015-10-01 2017-04-06 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
KR102349892B1 (ko) * 2016-05-06 2022-01-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 장치, 전자 기기, 및 조명 장치

Also Published As

Publication number Publication date
JP2016171318A (ja) 2016-09-23
US11038134B2 (en) 2021-06-15
US20210288280A1 (en) 2021-09-16
CN106057846B (zh) 2021-11-16
TW202322434A (zh) 2023-06-01
KR20160110173A (ko) 2016-09-21
KR20230093397A (ko) 2023-06-27
US20180226598A1 (en) 2018-08-09
US9941481B2 (en) 2018-04-10
CN106057846A (zh) 2016-10-26
TWI836636B (zh) 2024-03-21
KR102663473B1 (ko) 2024-05-08
JP7066811B2 (ja) 2022-05-13
KR102544603B1 (ko) 2023-06-19
KR20240070471A (ko) 2024-05-21
US11903227B2 (en) 2024-02-13
JP2021044576A (ja) 2021-03-18
TWI737594B (zh) 2021-09-01
TW202111981A (zh) 2021-03-16
CN114156418A (zh) 2022-03-08
US20200035939A1 (en) 2020-01-30
TW201705573A (zh) 2017-02-01
TWI779405B (zh) 2022-10-01
US20160268534A1 (en) 2016-09-15
US10454052B2 (en) 2019-10-22

Similar Documents

Publication Publication Date Title
JP7174116B2 (ja) 発光素子、発光装置、表示装置、電子機器および照明装置
JP6902148B2 (ja) 発光素子、表示装置、電子機器および照明装置
JP7066811B2 (ja) 発光素子、表示装置、電子機器および照明装置
JP7154347B2 (ja) 発光素子、表示装置、電子機器、及び照明装置
JP7179117B2 (ja) 発光素子、表示装置、電子機器及び照明装置
JP6770827B2 (ja) 発光素子、発光装置、電子機器および照明装置
JP7055856B2 (ja) 発光装置
KR102682709B1 (ko) 발광 소자, 표시 장치, 전자 기기, 및 조명 장치
KR20240109963A (ko) 발광 소자, 표시 장치, 전자 기기, 및 조명 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201201

R150 Certificate of patent or registration of utility model

Ref document number: 6803667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250