JP6790725B2 - タイヤ用ゴム組成物の製造方法 - Google Patents

タイヤ用ゴム組成物の製造方法 Download PDF

Info

Publication number
JP6790725B2
JP6790725B2 JP2016211721A JP2016211721A JP6790725B2 JP 6790725 B2 JP6790725 B2 JP 6790725B2 JP 2016211721 A JP2016211721 A JP 2016211721A JP 2016211721 A JP2016211721 A JP 2016211721A JP 6790725 B2 JP6790725 B2 JP 6790725B2
Authority
JP
Japan
Prior art keywords
group
branched
carbon atoms
kneaded product
kneading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016211721A
Other languages
English (en)
Other versions
JP2018070752A (ja
Inventor
剛史 土田
剛史 土田
由佳理 富崎
由佳理 富崎
良治 児島
良治 児島
優 出雲
優 出雲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2016211721A priority Critical patent/JP6790725B2/ja
Publication of JP2018070752A publication Critical patent/JP2018070752A/ja
Application granted granted Critical
Publication of JP6790725B2 publication Critical patent/JP6790725B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、タイヤ用ゴム組成物の製造方法に関する。
近年、環境意識の高まりを受けて、自動車の燃費向上のため、タイヤの転がり抵抗低減が求められている。
一般的に、転がり抵抗を低減するためには、トレッドゴムにシリカを配合する手法が使用されるが、シリカを配合すると、混練後のムーニー粘度が高くなり、加工性が低下するという課題がある。シリカは、表面がシラノール基に覆われた親水性の素材であり、タイヤ用ゴム組成物に使用されるジエン系ゴムには混ざりにくいが、シランカップリング剤と併用することにより、シリカとシランカップリング剤が重縮合によって結合し、シリカの表面が疎水化されるため、ジエン系ゴムにも容易に分散させることができる(例えば、特許文献1参照)。
また、最近では、各国でのタイヤラベリング制度の施行により、低燃費性のみならず、低燃費性と背反する性能である破壊特性などを高次元で両立させることがトレッドゴムに求められているが、現在の技術ではこの要求の達成は不充分である。
特開2002−363346号公報
本発明は、前記課題を解決し、低燃費性、破壊特性及び加工性がバランスよく改善されたタイヤ用ゴム組成物の製造方法を提供することを目的とする。
本発明は、ゴム成分、シリカ及びシランカップリング剤を投入して混練し、第一混練物を得る第一工程と、前記第一混練物を更に混練し、第二混練物を得る第二工程と、前記第二混練物及び加硫薬品を投入して混練し、未加硫ゴム組成物を得る第三工程とを含み、前記第一工程において、140〜155℃の範囲内で設定された反応温度を維持しながら、前記ゴム成分、前記シリカ及び前記シランカップリング剤を混練する反応処理を、下記式(1)及び(2)を満たすまで実施するタイヤ用ゴム組成物の製造方法に関する。
式(1) ΔG*t/ΔG*0×100<80
(式中、ΔG*0は、反応温度に到達した時点で混練を終了して得られた未反応処理混練物の100℃、0.5%歪みのG*と100℃、64%歪みのG*との差であり、ΔG*tは、ΔG*0と同じ反応温度に到達後、所定の時間混練して得られた第一混練物の100℃、0.5%歪みのG*と100℃、64%歪みのG*との差である。)
式(2) Vt/V0×100<80
(式中、V0は、反応温度に到達した時点で混練を終了して得られた未反応処理混練物の130℃におけるムーニー粘度であり、Vtは、V0と同じ反応温度に到達後、所定の時間混練して得られた第一混練物の130℃におけるムーニー粘度である。)
前記シランカップリング剤が下記式(I)で表されるメルカプト系シランカップリング剤であることが好ましい。
Figure 0006790725
(式中、R101〜R103は、分岐若しくは非分岐の炭素数1〜12のアルキル基、分岐若しくは非分岐の炭素数1〜12のアルコキシ基、又は−O−(R111−O)−R112(b個のR111は、分岐若しくは非分岐の炭素数1〜30の2価の炭化水素基を表す。b個のR111はそれぞれ同一でも異なっていてもよい。R112は、分岐若しくは非分岐の炭素数1〜30のアルキル基、分岐若しくは非分岐の炭素数2〜30のアルケニル基、炭素数6〜30のアリール基、又は炭素数7〜30のアラルキル基を表す。bは1〜30の整数を表す。)で表される基を表す。R101〜R103はそれぞれ同一でも異なっていてもよい。R104は、分岐若しくは非分岐の炭素数1〜6のアルキレン基を表す。)
前記タイヤ用ゴム組成物の製造方法は、前記第一工程において、脱気処理を実施することが好ましい。
前記タイヤ用ゴム組成物の製造方法は、前記第二工程において、前記第一混練物及び変性ゴムを投入して混練することが好ましい。
前記変性ゴムは、変性スチレンブタジエンゴムであることが好ましい。
前記タイヤ用ゴム組成物の製造方法は、キャップトレッド用ゴム組成物を製造することが好ましい。
本発明によれば、所定の温度でゴム成分、シリカ及びシランカップリング剤を混練する反応処理を、式(1)、(2)を満たすまで実施することにより、低燃費性、破壊特性及び加工性がバランスよく改善されたタイヤ用ゴム組成物を製造することができる。
本発明は、ゴム成分、シリカ及びシランカップリング剤を投入して混練し、第一混練物を得る第一工程と、前記第一混練物を更に混練し、第二混練物を得る第二工程と、前記第二混練物及び加硫薬品を投入して混練し、未加硫ゴム組成物を得る第三工程とを含み、前記第一工程において、140〜155℃の範囲内で設定された反応温度を維持しながら、前記ゴム成分、前記シリカ及び前記シランカップリング剤を混練する反応処理を、下記式(1)及び(2)を満たすまで実施するタイヤ用ゴム組成物の製造方法に関する。
式(1) ΔG*t/ΔG*0×100<80
(式中、ΔG*0は、反応温度に到達した時点で混練を終了して得られた未反応処理混練物の100℃、0.5%歪みのG*と100℃、64%歪みのG*との差であり、ΔG*tは、ΔG*0と同じ反応温度に到達後、所定の時間混練して得られた第一混練物の100℃、0.5%歪みのG*と100℃、64%歪みのG*との差である。)
式(2) Vt/V0×100<80
(式中、V0は、反応温度に到達した時点で混練を終了して得られた未反応処理混練物の130℃におけるムーニー粘度であり、Vtは、V0と同じ反応温度に到達後、所定の時間混練して得られた第一混練物の130℃におけるムーニー粘度である。)
シリカとシランカップリング剤との重縮合反応が促進され、シリカの分散性が向上すると、低歪み領域のG*と高歪み領域のG*との差で定義されるΔG*(ペイン効果)や、ムーニー粘度が低下する。式(1)のΔG*t/ΔG*0×100は、反応処理を実施しなかった例のΔG*を基準として、反応処理を実施した例のΔG*がどれだけ低下したかを示す指標であり、式(2)のVt/V0×100は、反応処理を実施しなかった例のムーニー粘度を基準として、反応処理を実施した例のムーニー粘度がどれだけ低下したかを示す指標である。よって、これらの指標から、シリカの分散度合を判断することができる。これを利用して、本発明では、第一工程において、ゴム成分、シリカ及びシランカップリング剤を混練する反応処理を、式(1)、(2)を満たすまで実施することにより、シリカが良好に分散し、低燃費性、破壊特性及び加工性がバランスよく改善されたタイヤ用ゴム組成物を製造することが可能となる。
また、G*(せん断モードの複素弾性率)の測定は、通常、ゴムが加硫された状態で実施するが、本発明では、ゴムが未加硫の状態である第一混練物に対して実施する。これにより、純粋なシリカの分散の影響を抽出することができるため、シリカの分散性を精度よく見積もることが可能となる。
まず、本発明で使用する各成分について説明する。
(ゴム成分)
ゴム成分としては、ジエン系ゴムを用いることが好ましい。ジエン系ゴムは、天然ゴム(NR)、ジエン系合成ゴムを使用でき、ジエン系合成ゴムとしては、例えば、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)などが挙げられる。これらは、単独で用いてもよく、2種以上を組み合わせてもよい。なかでも、低燃費性、破壊特性及び加工性をバランス良く示すことから、NR、BR、SBRが好ましく、BR、SBRがより好ましい。
ゴム成分は、変性剤によって変性された変性ゴムであってもよい。変性ゴムとしては、例えば、変性SBR、変性BRなどが挙げられ、変性SBRが好ましい。また、変性剤としては、例えば、3−アミノプロピルジメチルメトキシシラン、3−アミノプロピルメチルジメトキシシラン、3−アミノプロピルエチルジメトキシシラン、3−アミノプロピルトリメトキシシラン、3−(2−アミノエチルアミノ)プロピルトリメトキシシラン、四塩化スズ、ブチルスズトリクロライド、N−メチルピロリドンなどが挙げられ、N−メチルピロリドンが好ましい。
低燃費性、破壊特性及び加工性がバランス良く得られるという理由から、本発明の製造方法により得られるゴム組成物において、ゴム成分100質量%中のBRの含有量は、好ましくは5質量%以上、より好ましくは15質量%以上であり、また、好ましくは70質量%以下、より好ましくは50質量%以下である。
低燃費性、破壊特性及び加工性がバランス良く得られるという理由から、本発明の製造方法により得られるゴム組成物において、ゴム成分100質量%中のSBRの含有量は、好ましくは30質量%以上、より好ましくは50質量%以上であり、また、好ましくは95質量%以下、より好ましくは85質量%以下である。
また、変性SBRを使用する場合、その含有量は、SBRの全量の30〜60質量%、ゴム成分100質量%中の15〜45質量%が好ましい。
(シリカ)
シリカとしては、とくに制限されるわけではないが、乾式法により調製されたシリカ(無水シリカ)や湿式法により調製されたシリカ(含水シリカ)などがあげられ、表面のシラノール基が多く、シランカップリング剤との反応点が多いという理由から、湿式法により調製されたシリカが好ましい。シリカは、1種のみを用いてもよいし、2種以上を組み合わせて用いてもよい。シリカの市販品としては、エボニック社製のウルトラシルVN3などが挙げられる。
シリカの窒素吸着比表面積(NSA)は、好ましくは90m/g以上、より好ましくは95m/g以上、更に好ましくは100m/g以上である。90m/g未満では、充分な破壊特性が得られないおそれがある。また、シリカのNSAは、好ましくは300m/g以下、より好ましくは240m/g以下である。300m/gを超えると、ゴムへの分散が困難となり、分散不良を起こすおそれがある。
なお、シリカの窒素吸着比表面積は、ASTM D3037−81に準じてBET法で測定される値である。
本発明の製造方法により得られるゴム組成物において、シリカの含有量は、ゴム成分100質量部に対して、好ましくは5質量部以上、より好ましくは10質量部以上、更に好ましくは50質量部以上である。5質量部未満では、タイヤに必要な補強性を得ることができないおそれがある。また、シリカの含有量は、好ましくは200質量部以下、より好ましくは180質量部以下、更に好ましくは100質量部以下である。200質量部を超えると、加工性が悪化し、加工が困難になるおそれがある。
(シランカップリング剤)
シランカップリング剤としては、ゴム組成物の補強性改善効果に優れるなどの点から、下記式(I)で表されるメルカプト系シランカップリング剤を好適に使用できる。なお、上記メルカプト系シランカップリング剤は、シリカやゴム成分との反応性に優れるという利点がある一方で、加工性が悪化する傾向がある。これに対し、本発明では、式(1)、(2)を満たすまで反応処理を実施することで、加工性の悪化を抑制することができる。
Figure 0006790725
(式中、R101〜R103は、分岐若しくは非分岐の炭素数1〜12のアルキル基、分岐若しくは非分岐の炭素数1〜12のアルコキシ基、又は−O−(R111−O)−R112(b個のR111は、分岐若しくは非分岐の炭素数1〜30の2価の炭化水素基を表す。b個のR111はそれぞれ同一でも異なっていてもよい。R112は、分岐若しくは非分岐の炭素数1〜30のアルキル基、分岐若しくは非分岐の炭素数2〜30のアルケニル基、炭素数6〜30のアリール基、又は炭素数7〜30のアラルキル基を表す。bは1〜30の整数を表す。)で表される基を表す。R101〜R103はそれぞれ同一でも異なっていてもよい。R104は、分岐若しくは非分岐の炭素数1〜6のアルキレン基を表す。)
101〜R103は、分岐若しくは非分岐の炭素数1〜12のアルキル基、分岐若しくは非分岐の炭素数1〜12のアルコキシ基、又は−O−(R111−O)−R112で表される基を表す。本発明の効果が良好に得られるという点から、R101〜R103は、少なくとも1つが−O−(R111−O)−R112で表される基であることが好ましく、2つが−O−(R111−O)−R112で表される基であり、かつ、1つが分岐若しくは非分岐の炭素数1〜12のアルコキシ基であることがより好ましい。
101〜R103の分岐若しくは非分岐の炭素数1〜12(好ましくは炭素数1〜5)のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、iso−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、へキシル基、へプチル基、2−エチルヘキシル基、オクチル基、ノニル基などがあげられる。
101〜R103の分岐若しくは非分岐の炭素数1〜12(好ましくは炭素数1〜5)のアルコキシ基としては、例えば、メトキシ基、エトシキ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、iso−ブトキシ基、sec−ブトシキ基、tert−ブトシキ基、ペンチルオキシ基、へキシルオキシ基、へプチルオキシ基、2−エチルヘキシルオキシ基、オクチルオキシ基、ノニルオキシ基などがあげられる。
101〜R103の−O−(R111−O)−R112において、R111は、分岐若しくは非分岐の炭素数1〜30(好ましくは炭素数1〜15、より好ましくは炭素数1〜3)の2価の炭化水素基を表す。
該炭化水素基としては、例えば、分岐若しくは非分岐の炭素数1〜30のアルキレン基、分岐若しくは非分岐の炭素数2〜30のアルケニレン基、分岐若しくは非分岐の炭素数2〜30のアルキニレン基、炭素数6〜30のアリーレン基などがあげられる。中でも、分岐若しくは非分岐の炭素数1〜30のアルキレン基が好ましい。
111の分岐若しくは非分岐の炭素数1〜30(好ましくは炭素数1〜15、より好ましくは炭素数1〜3)のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基、ヘキサデシレン基、ヘプタデシレン基、オクタデシレン基などがあげられる。
111の分岐若しくは非分岐の炭素数2〜30(好ましくは炭素数2〜15、より好ましくは炭素数2〜3)のアルケニレン基としては、例えば、ビニレン基、1−プロペニレン基、2−プロペニレン基、1−ブテニレン基、2−ブテニレン基、1−ペンテニレン基、2−ペンテニレン基、1−ヘキセニレン基、2−ヘキセニレン基、1−オクテニレン基などがあげられる。
111の分岐若しくは非分岐の炭素数2〜30(好ましくは炭素数2〜15、より好ましくは炭素数2〜3)のアルキニレン基としては、例えば、エチニレン基、プロピニレン基、ブチニレン基、ペンチニレン基、ヘキシニレン基、へプチニレン基、オクチニレン基、ノニニレン基、デシニレン基、ウンデシニレン基、ドデシニレン基などがあげられる。
111の炭素数6〜30(好ましくは炭素数6〜15)のアリーレン基としては、例えば、フェニレン基、トリレン基、キシリレン基、ナフチレン基などがあげられる。
bは1〜30(好ましくは2〜20、より好ましくは3〜7、更に好ましくは5〜6)の整数を表す。
112は、分岐若しくは非分岐の炭素数1〜30のアルキル基、分岐若しくは非分岐の炭素数2〜30のアルケニル基、炭素数6〜30のアリール基又は炭素数7〜30のアラルキル基を表す。中でも、分岐若しくは非分岐の炭素数1〜30のアルキル基が好ましい。
112の分岐若しくは非分岐の炭素数1〜30(好ましくは炭素数3〜25、より好ましくは炭素数10〜15)のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、iso−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、へキシル基、へプチル基、2−エチルヘキシル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、オクタデシル基などがあげられる。
112の分岐若しくは非分岐の炭素数2〜30(好ましくは炭素数3〜25、より好ましくは炭素数10〜15)のアルケニル基としては、例えば、ビニル基、1−プロペニル基、2−プロペニル基、1−ブテニル基、2−ブテニル基、1−ペンテニル基、2−ペンテニル基、1−ヘキセニル基、2−ヘキセニル基、1−オクテニル基、デセニル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、オクタデセニル基などがあげられる。
112の炭素数6〜30(好ましくは炭素数10〜20)のアリール基としては、例えば、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニル基などがあげられる。
112の炭素数7〜30(好ましくは炭素数10〜20)のアラルキル基としては、ベンジル基、フェネチル基などがあげられる。
−O−(R111−O)−R112で表される基の具体例としては、例えば、−O−(C−O)−C1123、−O−(C−O)−C1225、−O−(C−O)−C1327、−O−(C−O)−C1429、−O−(C−O)−C1531、−O−(C−O)−C1327、−O−(C−O)−C1327、−O−(C−O)−C1327、−O−(C−O)−C1327などがあげられる。中でも、−O−(C−O)−C1123、−O−(C−O)−C1327、−O−(C−O)−C1531、−O−(C−O)−C1327が好ましい。
104の分岐若しくは非分岐の炭素数1〜6(好ましくは炭素数1〜5)のアルキレン基としては、例えば、R111の分岐若しくは非分岐の炭素数1〜30のアルキレン基と同様の基をあげることができる。
式(I)で表されるメルカプト系シランカップリング剤としては、例えば、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、2−メルカプトエチルトリメトキシシラン、2−メルカプトエチルトリエトキシシランや、下記式で表される化合物(エボニック社製のSi363)などがあげられ、下記式で表される化合物を好適に使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。
Figure 0006790725
本発明の製造方法により得られるゴム組成物において、シランカップリング剤の含有量は、シリカ100質量部に対して、好ましくは1質量部以上、より好ましくは2質量部以上である。1質量部未満では、良好な加工性が得られないおそれがある。また、シランカップリング剤の含有量は、好ましくは20質量部以下、より好ましくは15質量部以下である。20質量部を超えると、コストの増加に見合った効果が得られない傾向がある。
(加硫薬品)
加硫薬品としては、例えば、加硫剤、加硫促進剤などが挙げられ、加硫剤、加硫促進剤を併用することが好ましい。
加硫剤としては、有機過酸化物、硫黄系加硫剤などを使用することができる。有機過酸化物としては、例えば、ベンゾイルパーオキサイド、ジクミルパーオキサイド、ジ−t−ブチルパーオキサイド、t−ブチルクミルパーオキサイド、メチルエチルケトンパーオキサイド、クメンハイドロパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3、1,3−ビス(t−ブチルパーオキシプロピル)ベンゼンなどが挙げられる。また、硫黄系加硫剤としては、例えば、硫黄、モルホリンジスルフィドなどが挙げられる。これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、本発明の効果が良好に得られるという理由から、硫黄系加硫剤が好ましく、硫黄がより好ましい。
低燃費性、破壊特性及び加工性がバランス良く得られるという理由から、本発明の製造方法により得られるゴム組成物において、加硫剤の含有量は、ゴム成分100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.5質量部以上であり、また、好ましくは8質量部以下、より好ましくは5質量部以下である。
加硫促進剤としては、例えば、スルフェンアミド系、チアゾール系、チウラム系、チオウレア系、グアニジン系、ジチオカルバミン酸系、アルデヒド−アミン系、アルデヒド−アンモニア系、イミダゾリン系、キサンテート系加硫促進剤などが挙げられる。これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、本発明の効果が良好に得られるという理由から、スルフェンアミド系、グアニジン系が好ましく、スルフェンアミド系、グアニジン系の併用がより好ましい。
低燃費性、破壊特性及び加工性がバランス良く得られるという理由から、本発明の製造方法により得られるゴム組成物において、加硫促進剤の含有量は、ゴム成分100質量部に対して、好ましくは0.5質量部以上、より好ましくは1.5質量部以上であり、また、好ましくは10質量部以下、より好ましくは8質量部以下である。
(その他の成分)
本発明の製造方法により得られるゴム組成物には、前記成分以外にも、ゴム組成物の製造に一般に使用される配合剤、例えば、カーボンブラック;老化防止剤;オイルなどの軟化剤;ステアリン酸、酸化亜鉛などの加硫助剤;などを配合することができる。
次に、本発明の製造方法における各混練工程について説明する。
(第一工程)
第一工程は、ゴム成分、シリカ及びシランカップリング剤を投入して混練し、第一混練物を得る工程である。
この工程では、140〜155℃の範囲内で設定された反応温度を維持しながら、ゴム成分、シリカ及びシランカップリング剤を混練する反応処理を、下記式(1)及び(2)を満たすまで実施する。これにより、シリカとシランカップリング剤の反応を充分に促進させることができる。
式(1) ΔG*t/ΔG*0×100<80
(式中、ΔG*0は、反応温度に到達した時点で混練を終了して得られた未反応処理混練物の100℃、0.5%歪みのG*と100℃、64%歪みのG*との差であり、ΔG*tは、ΔG*0と同じ反応温度に到達後、所定の時間混練して得られた第一混練物の100℃、0.5%歪みのG*と100℃、64%歪みのG*との差である。)
式(2) Vt/V0×100<80
(式中、V0は、反応温度に到達した時点で混練を終了して得られた未反応処理混練物の130℃におけるムーニー粘度であり、Vtは、V0と同じ反応温度に到達後、所定の時間混練して得られた第一混練物の130℃におけるムーニー粘度である。)
反応温度が140℃未満の場合、シリカとシランカップリング剤の反応速度が遅く、シリカを充分に疎水化できないため、必要なシリカの分散やシリカとポリマーとの結合を確保できなくなり、低燃費性や破壊強度が向上しない又は悪化するおそれがある。また、反応温度が155℃を超えると、シリカとシランカップリング剤の反応速度が速くなり過ぎて、混練中にカップリング剤とポリマーとの反応が起こることで、シリカの分散性はかえって悪化し、低燃費性や破壊強度が向上しない又は悪化するおそれがある。
以下、第一工程の手順を説明する。例えば、反応温度を150℃に設定した場合、混練中にゴム温度が150℃に到達したら、150℃を維持するように、ミキサーの回転数、ラムの降下圧力、チャンバー内の温度などを調整しながら混練を行う(反応処理)。この反応処理を、第一混練物が式(1)、(2)を満たすまで、所定の時間実施する。そして、第一混練物が式(1)、(2)を満たすために必要な時間が経過すると、混練を終了し、第一混練物を混練機から排出する。このようにして得られた第一混練物のG*、ムーニー粘度を測定し、ΔG*t、Vtを算出する。
なお、この例において、ΔG*0、V0は、ゴム温度が150℃に到達した時点で混練を終了して得られた未反応処理混練物(反応処理を実施せずに第一工程を終了して得られた混練物)の測定結果に基いて決定する。ΔG*0、V0は反応温度毎に異なるため、反応温度を変更する場合、変更した反応温度におけるΔG*0、V0を決定する必要がある。
第一混練物が式(1)、(2)を満たすために必要な反応処理の時間は、混練に用いる混練機の種類、第一混練物の配合内容、設定された反応温度などに応じて異なるが、通常、80〜800秒が好ましい。
反応処理中のゴム温度(混練物の温度)は、シリカとシランカップリング剤との反応や、シランカップリング剤とゴム成分との反応に影響する。よって、得られるゴム組成物の品質安定化の観点から、反応処理中のゴム温度は、できる限り一定であることが好ましく、具体的には、設定された反応温度の±3℃の範囲であることが好ましい。
第一工程で使用する混練機としては、密閉型のバンバリーミキサーが好ましい。バンバリーミキサーのローターの形状は、接線式、噛合式のいずれであってもよい。
シリカとシランカップリング剤との反応は、エタノールなどの副生成物の発生を伴うが、反応系中の副生成物量が増加すると、平衡状態となり、反応が進行しなくなる。そこで、第一工程において、脱気処理を実施することで、シリカとシランカップリング剤との反応で生じた副生成物が除去されるため、反応を更に促進することができる。
脱気処理は、混練によってシリカとシランカップリング剤との反応が生じた後に実施すればよいが、エタノールなどの副生成物を効率よく除去できるという理由から、反応処理と並行して同時に実施するか、反応処理と交互に実施することが好ましく、反応処理と交互に実施することがより好ましい。
なお、反応処理と脱気処理を交互に実施する場合、反応処理、脱気処理の処理時間は特に限定されないが、通常、それぞれ40〜80秒が好ましい。
脱気処理としては、エタノールなどの副生成物を除去できる処理であれば特に限定されないが、短時間で副生成物を除去できるという理由から、エアーブロー処理が好ましい。
第一工程で投入するゴム成分、シリカ及びシランカップリング剤は、全量であっても一部であってもよいが、全量であることが好ましい。ただし、ゴム成分として変性ゴムを使用する場合、第一工程で変性ゴム以外のゴム成分を投入し、第二工程で変性ゴムを投入することが好ましい。
第一工程では、ゴム成分、シリカ及びシランカップリング剤以外に、他の成分を投入して混練してもよい。他の成分としては、加硫薬品以外の成分であれば特に限定されないが、例えば、カーボンブラック、オイル、老化防止剤、ワックス、ステアリン酸、酸化亜鉛などが挙げられる。
(第二工程)
第二工程は、第一工程で得られた第一混練物を更に混練し、第二混練物を得る工程である。第二工程を設けることで、シリカの分散が更に促進される。
なお、第二工程では、第一混練物のみを混練してもよいし、第一混練物とともに、他の成分を投入して混練してもよい。
第二工程の混練は、第一工程と同様の条件で実施することが好ましい。すなわち、第二工程においても、第一工程と同様の反応処理を実施することが好ましい。また、脱気処理も、第一工程と同様の条件で実施することが好ましい。さらに、使用する混練機も、第一工程と同様、密閉型のバンバリーミキサーが好ましい。
(第三工程)
第三工程は、第二工程で得られた第二混練物及び加硫薬品を投入して混練し、未加硫ゴム組成物を得る工程である。
第三工程では、混練中のゴム温度の上昇によってスコーチが発生することを防止するため、ゴム温度が所定の温度(好ましくは60〜120℃)に達した時点で混練を終了し、未加硫ゴム組成物を混練機から排出することが好ましい。また、第三工程の混練時間は特に限定されないが、1〜15分程度が好ましい。
第三工程で使用する混練機は、第一工程と同様、密閉型のバンバリーミキサーであってもよいし、オープンロールであってもよい。
(その他の工程)
第三工程で得られた未加硫ゴム組成物を、タイヤ部材(好ましくはキャップトレッド)の形状に合わせて押し出し加工し、タイヤ成型機上にて通常の方法にて成形し、他のタイヤ部材とともに貼り合わせ、未加硫タイヤを形成した後、加硫機中で加熱加圧することで、タイヤを製造することができる。
実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。
以下、実施例及び比較例で使用した各種薬品について、まとめて説明する。
SBR:日本ゼオン(株)製のNS616
変性SBR:日本ゼオン(株)製のNS116R(N−メチルピロリドンにより片末端を変性したS−SBR)
BR:日本ゼオン(株)製のBR1220(シス1、4含有率:96質量%)
カーボンブラック:三菱化学(株)製のシーストN220
シリカ:エボニック社製のウルトラシルVN3(平均一次粒子径:15nm、NSA:175m/g)
オイル:(株)ジャパンエナジー製のプロセスX−140
シランカップリング剤:エボニック社製のSi363(下記式で表されるシランカップリング剤(上記式(I)のR101=−O−(C−O)−C1327、R102=C−O−、R103=−O−(C−O)−C1327、R104=−C−))
Figure 0006790725
老化防止剤:住友化学(株)製のアンチゲン6C(N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン)
ワックス:大内新興化学工業(株)製のサンノックN
ステアリン酸:日油(株)製のステアリン酸「椿」
酸化亜鉛:三井金属鉱業(株)製の亜鉛華1号
硫黄:軽井沢硫黄(株)製の粉末硫黄
加硫促進剤(1):大内新興化学工業(株)製のノクセラーCZ(N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド)
加硫促進剤(2):大内新興化学工業(株)製のノクセラーD(N,N’−ジフェニルグアニジン)
(実施例A1〜A12及び比較例A1〜A18)
(第一工程)
表1に示す配合内容に従い、硫黄及び加硫促進剤以外の材料をバンバリーミキサーに投入して混練し、第一混練物又は未反応処理混練物を得た。混練は、設定された反応温度にゴム温度が到達してから、ゴム温度が反応温度の±3℃となるように調整しながら実施し、所定の時間(反応時間)が経過した時点で終了した。各例の反応温度、反応時間は表2〜6に示したとおりである。
(第二工程)
得られた第一混練物又は未反応処理混練物をバンバリーミキサーに投入して更に混練し、第二混練物を得た。混練の条件は第一工程と同様である。
(第三工程)
得られた第二混練物、硫黄及び加硫促進剤をオープンロールに投入して混練し、未加硫ゴム組成物を得た。混練は、ゴム温度が110℃になった時点で終了した。混練時間は2分であった。
(加硫工程)
得られた未加硫ゴム組成物を170℃で12分間加硫し、加硫ゴム組成物を得た。
(実施例B1〜B12及び比較例B1〜B18)
(第一工程)
表1に示す配合内容に従い、硫黄及び加硫促進剤以外の材料をバンバリーミキサーに投入して混練し、第一混練物又は未反応処理混練物を得た。混練は、設定された反応温度にゴム温度が到達してから、ゴム温度が反応温度の±3℃となるように調整しながら実施し、所定の時間(反応時間)が経過した時点で終了した。各例の反応温度、反応時間は表7〜11に示したとおりである。
また、第一工程では、反応時間が60秒経過する毎に、バンバリーミキサーのラムを開け、内部に向かってエアーを吹き付けるエアーブロー処理を60秒実施した。例えば、反応時間が240秒の例では、60秒の反応処理、60秒のエアーブロー処理を、この順に交互に4回ずつ実施した。
(第二工程)
得られた第一混練物又は未反応処理混練物をバンバリーミキサーに投入して更に混練し、第二混練物を得た。混練やエアーブロー処理の条件は第一工程と同様である。
(第三工程)
得られた第二混練物、硫黄及び加硫促進剤をオープンロールに投入して混練し、未加硫ゴム組成物を得た。混練は、ゴム温度が110℃になった時点で終了した。混練時間は2分であった。
(加硫工程)
得られた未加硫ゴム組成物を170℃で12分間加硫し、加硫ゴム組成物を得た。
(実施例C1〜C12及び比較例C1〜C24)
(第一工程)
表12に示す配合内容に従い、変性SBR、硫黄及び加硫促進剤以外の材料をバンバリーミキサーに投入して混練し、第一混練物又は未反応処理混練物を得た。混練は、設定された反応温度にゴム温度が到達してから、ゴム温度が反応温度の±3℃となるように調整しながら実施し、所定の時間(反応時間)が経過した時点で終了した。各例の反応温度、反応時間は表12〜18に示したとおりである。
(第二工程)
得られた第一混練物又は未反応処理混練物をバンバリーミキサーに投入して更に混練し、第二混練物を得た。混練の条件は第一工程と同様である。
(第三工程)
得られた第二混練物、硫黄及び加硫促進剤をオープンロールに投入して混練し、未加硫ゴム組成物を得た。混練は、ゴム温度が110℃になった時点で終了した。混練時間は2分であった。
(加硫工程)
得られた未加硫ゴム組成物を170℃で12分間加硫し、加硫ゴム組成物を得た。
上記で得られた第一混練物、未反応処理混練物、未加硫ゴム組成物、加硫ゴム組成物について、下記の評価を行った。結果を表2〜11、13〜18に示す。
なお、下記評価において、表2〜6の基準比較例は比較例A1、表7〜11の基準比較例は比較例B1、表13〜18の基準比較例は比較例C1とした。
(ムーニー粘度)
JIS K6300に従い、130℃で、上記第一混練物又は未反応処理混練物のムーニー粘度を測定した。結果は、基準比較例を100として指数表示した(第一工程後のVIS指数)。指数が小さいほど加工性に優れることを示す。
また、設定された反応温度ごとに、式(2)のVt/V0×100を算出した(VIS低下率)。
(ペイン効果)
RPA2000(アルファテクノロジーズ社製)を使用し、上記第一混練物又は未反応処理混練物の100℃、0.5%歪みのG*と100℃、64%歪みのG*とを測定し、ΔG*を算出した。結果は、基準比較例を100として指数表示した(第一工程後のΔG*指数)。
また、設定された反応温度ごとに、式(1)のΔG*t/ΔG*0×100を算出した(ΔG*低下率)。
(tanδ)
(株)上島製作所製のスペクトロメーターを用いて、動的歪振幅1%、周波数10Hz、温度50℃で、上記加硫ゴム組成物のtanδを測定した。結果は、基準比較例を100として指数表示した(tanδ指数)。指数が小さいほど転がり抵抗が低く、低燃費性に優れることを示す。
(破壊エネルギー)
JIS K 6251「加硫ゴム及び熱可塑性ゴム―引張特性の求め方」に従い、上記加硫ゴム組成物から形成した厚さ2mmの3号ダンベルを用いて引張り試験を実施し、破断強度(TB)及び破断伸び(EB)をそれぞれ測定した。そして、TBとEBの積で定義される破壊エネルギーについて、基準比較例を100として指数表示した(破壊エネルギー指数)。指数が大きいほど破壊特性に優れることを示す。
(性能指標)
各例の性能を総合的に評価するため、下記計算式により性能指標を算出した。
性能指標=((100/第一工程後のVIS指数)×100+(100/tanδ指数)×100+破壊エネルギー指数)/3
Figure 0006790725
Figure 0006790725
Figure 0006790725
Figure 0006790725
Figure 0006790725
Figure 0006790725
表2〜6で示されているように、第一工程において、反応温度を140〜155℃の範囲内で設定し、式(1)、(2)を満たすまで反応処理を実施した実施例A1〜A12は、反応温度は同一であるが、式(1)、(2)を満たすまで反応処理を実施しなかった比較例A1〜A6と比較して、低燃費性、破壊特性及び加工性が顕著に改善された。
反応温度を140〜155℃の範囲外で設定した比較例A7〜A18では、反応時間を長くしても式(1)、(2)を満たすことはできず、充分な性能の改善は見られなかった。
これらの結果から、配合薬品の種類を変更しなくても、式(1)、(2)を指標として混練方法を調整するという簡便な手法により、シリカの分散性を向上できることが明らかとなった。
Figure 0006790725
Figure 0006790725
Figure 0006790725
Figure 0006790725
Figure 0006790725
表7〜11で示されているように、第一工程において、反応温度を140〜155℃の範囲内で設定し、式(1)、(2)を満たすまで反応処理を実施した実施例B1〜B12は、反応温度は同一であるが、式(1)、(2)を満たすまで反応処理を実施しなかった比較例B1〜B6と比較して、低燃費性、破壊特性及び加工性が顕著に改善された。
反応温度を140〜155℃の範囲外で設定した比較例B7〜B18では、反応時間を長くしても式(1)、(2)を満たすことはできず、充分な性能の改善は見られなかった。
これらの結果から、配合薬品の種類を変更しなくても、式(1)、(2)を指標として混練方法を調整するという簡便な手法により、シリカの分散性を向上できることが明らかとなった。
また、実施例B1〜B12と実施例A1〜A12との比較から、脱気処理を実施することで、性能が更に向上することが明らかとなった。
Figure 0006790725
Figure 0006790725
Figure 0006790725
Figure 0006790725
Figure 0006790725
Figure 0006790725
Figure 0006790725
表13〜18で示されているように、第一工程において、反応温度を140〜155℃の範囲内で設定し、式(1)、(2)を満たすまで反応処理を実施した実施例C1〜C12は、反応温度は同一であるが、式(1)、(2)を満たすまで反応処理を実施しなかった比較例C1〜C6と比較して、低燃費性、破壊特性及び加工性が顕著に改善された。
反応温度を140〜155℃の範囲外で設定した比較例C7〜C18では、反応時間を長くしても式(1)、(2)を満たすことはできず、充分な性能の改善は見られなかった。変性ゴムを第一工程で投入した比較例C19〜C24も、同様の傾向であった。
これらの結果から、配合薬品の種類を変更しなくても、式(1)、(2)を指標として混練方法を調整するという簡便な手法により、シリカの分散性を向上できることが明らかとなった。

Claims (5)

  1. ゴム成分、シリカ及びシランカップリング剤を投入して混練し、第一混練物を得る第一工程と、
    前記第一混練物を更に混練し、第二混練物を得る第二工程と、
    前記第二混練物及び加硫薬品を投入して混練し、未加硫ゴム組成物を得る第三工程とを含み、
    前記第一工程において、140〜155℃の範囲内で設定された反応温度を維持しながら、前記ゴム成分、前記シリカ及び前記シランカップリング剤を混練する反応処理を、下記式(1)及び(2)を満たすまで実施し、
    前記シランカップリング剤が下記式(I)で表されるメルカプト系シランカップリング剤であるタイヤ用ゴム組成物の製造方法。
    式(1) ΔG*t/ΔG*0×100<80
    (式中、ΔG*0は、反応温度に到達した時点で混練を終了して得られた未反応処理混練物の100℃、0.5%歪みのG*と100℃、64%歪みのG*との差であり、ΔG*tは、ΔG*0と同じ反応温度に到達後、所定の時間混練して得られた第一混練物の100℃、0.5%歪みのG*と100℃、64%歪みのG*との差である。)
    式(2) Vt/V0×100<80
    (式中、V0は、反応温度に到達した時点で混練を終了して得られた未反応処理混練物の130℃におけるムーニー粘度であり、Vtは、V0と同じ反応温度に到達後、所定の時間混練して得られた第一混練物の130℃におけるムーニー粘度である。)
    Figure 0006790725
    (式中、R 101 〜R 103 は、分岐若しくは非分岐の炭素数1〜12のアルキル基、分岐若しくは非分岐の炭素数1〜12のアルコキシ基、又は−O−(R 111 −O) −R 112 (b個のR 111 は、分岐若しくは非分岐の炭素数1〜30の2価の炭化水素基を表す。b個のR 111 はそれぞれ同一でも異なっていてもよい。R 112 は、分岐若しくは非分岐の炭素数1〜30のアルキル基、分岐若しくは非分岐の炭素数2〜30のアルケニル基、炭素数6〜30のアリール基、又は炭素数7〜30のアラルキル基を表す。bは1〜30の整数を表す。)で表される基を表す。R 101 〜R 103 はそれぞれ同一でも異なっていてもよい。R 104 は、分岐若しくは非分岐の炭素数1〜6のアルキレン基を表す。)
  2. 前記第一工程において、脱気処理を実施する請求項1記載のタイヤ用ゴム組成物の製造方法。
  3. 前記第二工程において、前記第一混練物及び変性ゴムを投入して混練する請求項1又は2記載のタイヤ用ゴム組成物の製造方法。
  4. 前記変性ゴムが変性スチレンブタジエンゴムである請求項記載のタイヤ用ゴム組成物の製造方法。
  5. キャップトレッド用ゴム組成物を製造する請求項1〜のいずれかに記載のタイヤ用ゴム組成物の製造方法。
JP2016211721A 2016-10-28 2016-10-28 タイヤ用ゴム組成物の製造方法 Active JP6790725B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016211721A JP6790725B2 (ja) 2016-10-28 2016-10-28 タイヤ用ゴム組成物の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016211721A JP6790725B2 (ja) 2016-10-28 2016-10-28 タイヤ用ゴム組成物の製造方法

Publications (2)

Publication Number Publication Date
JP2018070752A JP2018070752A (ja) 2018-05-10
JP6790725B2 true JP6790725B2 (ja) 2020-11-25

Family

ID=62113549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016211721A Active JP6790725B2 (ja) 2016-10-28 2016-10-28 タイヤ用ゴム組成物の製造方法

Country Status (1)

Country Link
JP (1) JP6790725B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6790726B2 (ja) * 2016-10-28 2020-11-25 住友ゴム工業株式会社 タイヤ用ゴム組成物の製造方法
JP7180353B2 (ja) * 2018-12-14 2022-11-30 住友ゴム工業株式会社 タイヤ用ゴム組成物の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2933500B2 (ja) * 1994-12-16 1999-08-16 横浜ゴム株式会社 ゴム組成物及びその製造方法
JP5311956B2 (ja) * 2008-10-02 2013-10-09 住友ゴム工業株式会社 ゴム組成物の製造方法およびそれにより得られたゴム組成物、ならびに該ゴム組成物を用いたタイヤ
JP5945497B2 (ja) * 2012-11-14 2016-07-05 東洋ゴム工業株式会社 密閉式混合機、混練方法およびゴム組成物
JP2015168787A (ja) * 2014-03-10 2015-09-28 横浜ゴム株式会社 タイヤ用ゴム組成物およびその製造方法
JP6790726B2 (ja) * 2016-10-28 2020-11-25 住友ゴム工業株式会社 タイヤ用ゴム組成物の製造方法

Also Published As

Publication number Publication date
JP2018070752A (ja) 2018-05-10

Similar Documents

Publication Publication Date Title
JP5503685B2 (ja) サイドウォール又はベーストレッド用ゴム組成物、並びに空気入りタイヤ
JP2011219541A (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP7009812B2 (ja) タイヤ用ゴム組成物の製造方法およびタイヤの製造方法
JP5476741B2 (ja) ジエン系ゴム組成物
JP6855735B2 (ja) タイヤ用ゴム組成物の製造方法およびタイヤ製造方法
JP6840976B2 (ja) タイヤ用ゴム組成物の製造方法およびタイヤ製造方法
JP6790725B2 (ja) タイヤ用ゴム組成物の製造方法
JP5426349B2 (ja) インナーライナー用ゴム組成物及び空気入りタイヤ
JP2021143235A (ja) タイヤトレッド用ゴム組成物、タイヤトレッドおよび乗用車用タイヤ
JP2018109126A (ja) サイドウォール用ゴム組成物及び空気入りタイヤ
JP5643081B2 (ja) タイヤ用ゴム組成物、その製造方法及び空気入りタイヤ
JP2011148904A (ja) クリンチエイペックス又はチェーファー用ゴム組成物及び空気入りタイヤ
JP2010159392A (ja) サイドウォール用ゴム組成物およびそれを用いた空気入りタイヤ
JP6790726B2 (ja) タイヤ用ゴム組成物の製造方法
JP6915284B2 (ja) タイヤ用ゴム組成物の製造方法
JP2018070755A (ja) タイヤ用ゴム組成物の製造方法
JP5829541B2 (ja) タイヤ用ゴム組成物
JP2018070756A (ja) タイヤ用ゴム組成物の製造方法
US9976013B2 (en) Rubber-silica composite and method for producing same, and rubber composition and pneumatic tire
JP5503684B2 (ja) サイドウォール又はベーストレッド用ゴム組成物、並びに空気入りタイヤ
JP6208415B2 (ja) トレッド用ゴム組成物及び空気入りタイヤ
JP6958056B2 (ja) タイヤ用ゴム組成物の製造方法およびタイヤの製造方法
JP7031127B2 (ja) タイヤ用ゴム組成物の製造方法及び空気入りタイヤの製造方法
JP5082571B2 (ja) タイヤトレッド用ゴム組成物
JP2018070754A (ja) タイヤ用ゴム組成物の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201019

R150 Certificate of patent or registration of utility model

Ref document number: 6790725

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250