JP6770243B2 - イオン性錯体、非水電解液電池用電解液、非水電解液電池及びイオン性錯体の合成法 - Google Patents

イオン性錯体、非水電解液電池用電解液、非水電解液電池及びイオン性錯体の合成法 Download PDF

Info

Publication number
JP6770243B2
JP6770243B2 JP2019126750A JP2019126750A JP6770243B2 JP 6770243 B2 JP6770243 B2 JP 6770243B2 JP 2019126750 A JP2019126750 A JP 2019126750A JP 2019126750 A JP2019126750 A JP 2019126750A JP 6770243 B2 JP6770243 B2 JP 6770243B2
Authority
JP
Japan
Prior art keywords
group
aqueous electrolyte
carbon atoms
electrolyte battery
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019126750A
Other languages
English (en)
Other versions
JP2019204789A (ja
Inventor
幹弘 高橋
幹弘 高橋
孝敬 森中
孝敬 森中
益隆 新免
益隆 新免
建太 山本
建太 山本
渉 河端
渉 河端
誠 久保
誠 久保
雅隆 藤本
雅隆 藤本
寛樹 松崎
寛樹 松崎
辻岡 章一
辻岡  章一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Publication of JP2019204789A publication Critical patent/JP2019204789A/ja
Application granted granted Critical
Publication of JP6770243B2 publication Critical patent/JP6770243B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/6574Esters of oxyacids of phosphorus
    • C07F9/65742Esters of oxyacids of phosphorus non-condensed with carbocyclic rings or heterocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/04Esters of boric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/022Boron compounds without C-boron linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/22Amides of acids of phosphorus
    • C07F9/26Amides of acids of phosphorus containing P-halide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6581Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms
    • C07F9/6584Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms having one phosphorus atom as ring hetero atom
    • C07F9/65842Cyclic amide derivatives of acids of phosphorus, in which one nitrogen atom belongs to the ring
    • C07F9/65844Cyclic amide derivatives of acids of phosphorus, in which one nitrogen atom belongs to the ring the phosphorus atom being part of a five-membered ring which may be condensed with another ring system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/02Lithium compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Description

本発明は、イオン性錯体、非水電解液電池用電解液、非水電解液電池及びイオン性錯体の合成法に関する。
電気化学デバイスである電池において、近年、情報関連機器、通信機器、すなわち、パソコン、ビデオカメラ、デジタルカメラ、携帯電話、スマートフォン等の小型、高エネルギー密度用途向けの蓄電システムや、電気自動車、ハイブリッド車、燃料電池車補助電源、電力貯蔵等の大型、パワー用途向けの蓄電システムが注目を集めている。その一つの候補としてリチウムイオン電池、リチウム電池、リチウムイオンキャパシタ等の非水電解液電池が挙げられる。
電池がリチウムイオン電池である場合、初充電時に負極にリチウムカチオンが挿入される際に、負極とリチウムカチオン、又は負極と電解液溶媒が反応し、負極表面上に炭酸リチウムや酸化リチウムを主成分とする被膜を形成する。この電極表面上の皮膜はSolid Electrolyte Interface(SEI)と呼ばれ、その性質が電池の特性に大きな影響を与える。
耐久性を始めとする電池特性を向上させるためには、リチウムイオン伝導性が高く、かつ、電子伝導性が低い安定なSEIを形成させることが重要であり、添加剤と称される化合物を電解液中に少量(通常は0.01質量%以上10質量%以下)加えることで、積極的に良好なSEIを形成させる試みが広くなされている。
例えば、特許文献1ではビニレンカーボネートが、特許文献2では不飽和環状スルホン酸が、特許文献3では二酸化炭素が、特許文献4ではテトラフルオロオキサラトリン酸リチウムが有効なSEIを形成させる添加剤として用いられている。
特許第3573521号公報 特開2002−329528号公報 特開平7−176323号公報 特許第3722685号公報
しかしながら、特許文献1から4に記載の態様であっても、45℃以上で劣化しやすい場合があり、自動車用等、長期間、温度の高い場所で使用する場合において改良の余地がある。
本発明は、より優れた高温耐久性を有する非水電解液電池への使用に適した材料を提供することを目的とする。
本発明者は、上記課題を解決するために、鋭意研究を重ねたところ、所定の化学構造よりなるイオン性錯体が非水電解液電池の高温耐久性に寄与することを見出し、本発明を完成するに至った。具体的に、本発明では、以下のようなものを提供する。
(1) 下記一般式(3)で示される化学構造よりなるイオン性錯体を含有する非水電解液電池用電解液。
Figure 0006770243
(一般式(3)において、
Dはハロゲンイオン、ヘキサフルオロリン酸アニオン、テトラフルオロホウ酸アニオン、ビス(トリフルオロメタンスルホニル)イミドアニオン、ビス(フルオロスルホニル)イミドアニオン、(フルオロスルホニル)(トリフルオロメタンスルホニル)イミドアニオン、ビス(ジフルオロホスホニル)イミドアニオンから選ばれる少なくとも一つであり、
Fはフッ素であり、
Mは13族元素(Al、B)、14族元素(Si)及び15族元素(P、As、Sb)からなる群から選ばれるいずれか1つであり
Oは酸素であり、
Nは窒素である。
Yは炭素又は硫黄であり、Yが炭素である場合qは1であり、Yが硫黄である場合qは1又は2である。
Xは炭素又は硫黄であり、Xが炭素である場合rは1であり、Xが硫黄である場合rは1又は2である。
は炭素数1〜10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基(炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造のものも使用できる)、又は−N(R)−を表す。このとき、Rは水素、アルカリ金属、炭素数1〜10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基を表す。炭素数が3以上の場合にあっては、Rは分岐鎖あるいは環状構造をとることもできる。
、Rはそれぞれ独立で炭素数1〜10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基であり、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造のものも使用できる。また、下記一般式(4)の様にお互いを含む環状構造を有しても良い。
Figure 0006770243
cは0又は1であり、nが1の場合、cは0(cが0のときDは存在しない)であり、nが2の場合、cは1となる。
oは2又は4、nは1又は2、pは0又は1、qは1又は2、rは1又は2、sは0又は1である。pが0の場合、Y−X間に直接結合を形成する。
sが0の場合、N(R)(R)とRは直接結合し、その際は下記の(5)〜(8)のような構造をとることもできる。直接結合が二重結合となる(6)、(8)の場合、Rは存在しない。また(7)の様に二重結合が環の外に出た構造を取ることも出来る。この場合のR、Rはそれぞれ独立で水素、又は炭素数1〜10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基であり、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造のものも使用できる。)
Figure 0006770243
(2) 前記一般式(3)で表されるイオン性錯体が、下記(3Pa)、(3Pb)、(3Pd)、(3Pg)、(3Ba)、(3Bb)、(3Bf)、(3Bg)、及び(3Bi)からなる群から選ばれるいずれか1つである前記(1)に記載の非水電解液電池用電解液。
Figure 0006770243
(3) 前記Dが、ヘキサフルオロリン酸アニオン、テトラフルオロホウ酸アニオン、ビス(トリフルオロメタンスルホニル)イミドアニオン、ビス(フルオロスルホニル)イミドアニオン、(フルオロスルホニル)(トリフルオロメタンスルホニル)イミドアニオン、ビス(ジフルオロホスホニル)イミドアニオンからなる群から選ばれる少なくとも一つのアニオンである、前記(1)又は(2)に記載の非水電解液電池用電解液。
(4) 前記Mが、B又はPである前記(1)に記載の非水電解液電池用電解液。
(5) さらに、溶質と非水有機溶媒とを含有する、前記(1)から(4)のいずれかに記載の非水電解液電池用電解液。
(6) 前記溶質が、
アルカリ金属イオン、アルカリ土類金属イオン及び四級アンモニウムからなる群から選ばれる少なくとも1種のカチオンと、
ヘキサフルオロリン酸、テトラフルオロホウ酸、過塩素酸、ヘキサフルオロヒ酸、ヘキサフルオロアンチモン酸、トリフルオロメタンスルホン酸、ビス(トリフルオロメタンスルホニル)イミド、ビス(ペンタフルオロエタンスルホニル)イミド、(トリフルオロメタンスルホニル)(ペンタフルオロエタンスルホニル)イミド、ビス(フルオロスルホニル)イミド、(トリフルオロメタンスルホニル)(フルオロスルホニル)イミド、(ペンタフルオロエタンスルホニル)(フルオロスルホニル)イミド、トリス(トリフルオロメタンスルホニル)メチド、及びビス(ジフルオロホスホニル)イミドからなる群から選ばれる少なくとも1種のアニオンの対からなる塩である、前記(5)に記載の非水電解液電池用電解液。
(7) 前記非水有機溶媒が、カーボネート類、エステル類、エーテル類、ラクトン類、ニトリル類、イミド類、及びスルホン類からなる群から選ばれる少なくとも1種である、前記(5)又は(6)に記載の非水電解液電池用電解液。
(8) 前記非水有機溶媒が、エチルメチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルブチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、酢酸メチル、プロピオン酸メチル、プロピオン酸エチル、ジエチルエーテル、アセトニトリル、プロピオニトリル、テトラヒドロフラン、2−メチルテトラヒドロフラン、フラン、テトラヒドロピラン、1,3−ジオキサン、1,4−ジオキサン、ジブチルエーテル、ジイソプロピルエーテル、1,2−ジメトキシエタン、N,N−ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、γ−ブチロラクトン及びγ−バレロラクトンからなる群から選ばれる少なくとも1種である、前記(5)から(7)のいずれかに記載の非水電解液電池用電解液。
(9) 前記非水有機溶媒が、環状カーボネート及び鎖状カーボネートからなる群から選ばれる少なくとも1種を含有する、前記(5)又は(6)に記載の非水電解液電池用電解液。
(10) 前記環状カーボネートが、エチレンカーボネート、プロピレンカーボネート、及びブチレンカーボネートからなる群から選ばれる少なくとも1種であり、前記鎖状カーボネートが、エチルメチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート、及びメチルブチルカーボネートからなる群から選ばれる少なくとも1種である、前記(9)に記載の非水電解液電池用電解液。
(11) 前記イオン性錯体の添加濃度が、溶質、非水有機溶媒及びイオン性錯体の総量に対して0.001〜20質量%の範囲である、前記(1)から(10)のいずれかに記載の非水電解液電池用電解液。
(12) 下記一般式(9)〜(16)で示される含フッ素化合物からなる群から選ばれる少なくとも1種の第2の化合物をさらに含有する、前記(1)から(11)のいずれかに記載の非水電解液電池用電解液。
Figure 0006770243
[一般式(9)〜(11)及び(13)〜(15)中、R〜R11はそれぞれ互いに独立して、フッ素原子、炭素数が1〜10の直鎖あるいは分岐状のアルコキシ基、炭素数が2〜10のアルケニルオキシ基、炭素数が2〜10のアルキニルオキシ基、炭素数が3〜10の、シクロアルコキシ基、シクロアルケニルオキシ基、及び、炭素数が6〜10のアリールオキシ基から選ばれる有機基であり、その有機基中にフッ素原子、酸素原子、不飽和結合が存在することもできる。一般式(11)、(12)、(15)及び(16)中、X及びXはそれぞれ互いに独立して、フッ素原子、炭素数が1〜10の直鎖あるいは分岐状のアルキル基、炭素数が2〜10のアルケニル基、炭素数が2〜10のアルキニル基、炭素数が3〜10の、シクロアルキル基、シクロアルケニル基、炭素数が6〜10のアリール基、炭素数が1〜10の直鎖あるいは分岐状のアルコキシ基、炭素数が2〜10のアルケニルオキシ基、炭素数が2〜10のアルキニルオキシ基、炭素数が3〜10の、シクロアルコキシ基、シクロアルケニルオキシ基、及び、炭素数が6〜10のアリールオキシ基から選ばれる有機基であり、その有機基中にフッ素原子、酸素原子、不飽和結合が存在することもできる。また、一般式(9)〜(16)中には少なくとも一つのP−F結合及び/又はS−F結合を含む。M、Mはそれぞれ互いに独立して、プロトン、金属カチオン又はオニウムカチオンである。]
(13) 前記一般式(9)〜(11)及び(13)〜(15)のR〜R11が、フッ素原子、炭素数が1〜10のフッ素原子を有する直鎖あるいは分岐状のアルコキシ基、炭素数が2〜10のアルケニルオキシ基、及び炭素数が2〜10のアルキニルオキシ基からなる群から選ばれる有機基である、前記(12)に記載の非水電解液電池用電解液。
(14) 前記アルコキシ基が、2,2,2−トリフルオロエトキシ基、2,2,3,3−テトラフルオロプロポキシ基、1,1,1−トリフルオロイソプロポキシ基、及び1,1,1,3,3,3−ヘキサフルオロイソプロポキシ基からなる群から選択され、アルケニルオキシ基が、1−プロペニルオキシ基、2−プロペニルオキシ基、及び3−ブテニルオキシ基からなる群から選択され、前記アルキニルオキシ基が、2−プロピニルオキシ基、及び1,1−ジメチル−2−プロピニルオキシ基からなる群から選択される、前記(13)に記載の非水電解液電池用電解液。
(15) 前記一般式(11)、(12)、(15)及び(16)のX及びXが、フッ素原子、炭素数が1〜10の直鎖あるいは分岐状のアルコキシ基、炭素数が2〜10のアルケニルオキシ基、及び炭素数が2〜10のアルキニルオキシ基からなる群から選ばれる有機基である、前記(12)から(14)のいずれかに記載の非水電解液電池用電解液。
(16) 前記アルコキシ基が、メトキシ基、エトキシ基、及びプロポキシ基からなる群から選択され、前記アルケニルオキシ基が、1−プロペニルオキシ基、2−プロペニルオキシ基、及び3−ブテニルオキシ基からなる群から選択され、前記アルキニルオキシ基が、2−プロピニルオキシ基、及び1,1−ジメチル−2−プロピニルオキシ基からなる群から選択される、前記(15)に記載の非水電解液電池用電解液。
(17) 前記一般式(9)〜(16)のM及びMが、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラアルキルアンモニウムイオン、及びテトラアルキルホスホニウムイオンからなる群から選ばれる少なくとも一つのカチオンである、前記(12)から(16)のいずれかに記載の非水電解液電池用電解液。
(18) 前記第2の化合物の添加濃度が、溶質、非水有機溶媒、イオン性錯体及び第2の化合物の総量に対して0.001〜10.0質量%の範囲である、前記(12)から(17)のいずれかに記載の非水電解液電池用電解液。
(19) 下記一般式(17)で示される少なくとも1種の第3の化合物をさらに含有する、前記(1)から(18)のいずれかに記載の非水電解液電池用電解液。
Si(R12(R134−x (17)
[一般式(17)中、R12はそれぞれ互いに独立して炭素−炭素不飽和結合を有する基を表す。R13はそれぞれ互いに独立して、フッ素原子、アルキル基、アルコキシ基、アルケニル基、アルケニルオキシ基、アルキニル基、アルキニルオキシ基、アリール基、及びアリールオキシ基からなる群から選ばれる基を示し、これらの基はフッ素原子及び/又は酸素原子を有していても良い。xは2〜4である。]
(20) 前記一般式(17)のR12で表される基が、それぞれ互いに独立して、ビニル基、アリル基、1−プロペニル基、エチニル基、及び2−プロピニル基からなる群から選択される基である、前記(19)に記載の非水電解液電池用電解液。
(21) 前記一般式(17)のR13で表される基が、それぞれ互いに独立して、フッ素原子、メチル基、エチル基、プロピル基、2,2,2−トリフルオロエチル基、2,2,3,3−テトラフルオロプロピル基、1,1,1−トリフルオロイソプロピル基、1,1,1,3,3,3−ヘキサフルオロイソプロピル基、2,2,2−トリフルオロエトキシ基、2,2,3,3−テトラフルオロプロポキシ基、2,2,3,3,3−ペンタフルオロプロポキシ基、1,1,1−トリフルオロイソプロポキシ基、及び1,1,1,3,3,3−ヘキサフルオロイソプロポキシ基からなる群から選択される基である、前記(19)又は(20)に記載の非水電解液電池用電解液。
(22) 前記一般式(17)のxが2〜3である、前記(19)から(21)のいずれかに記載の非水電解液電池用電解液。
(23) 前記第3の化合物の添加濃度が、溶質、非水有機溶媒、イオン性錯体、及び第3の化合物の総量に対して0.005〜7.0質量%の範囲である、前記(19)から(22)のいずれかに記載の非水電解液電池用電解液。
(24) 下記一般式(18)、(19)、及び(20)で示される環状スルホン酸化合物、1,3−プロパンスルトン及び1,2−ペンタンジオール硫酸エステルからなる群から選ばれる少なくとも1種の第4の化合物をさらに含有する、前記(1)から(23)のいずれかに記載の非水電解液電池用電解液。
Figure 0006770243
(式(18)中、Oは酸素原子、Sは硫黄原子、nは1以上3以下の整数である。また、R14、R15、R16、R17は、それぞれ独立して水素原子、置換若しくは無置換の炭素数1以上5以下のアルキル基、又は置換若しくは無置換の炭素数1以上4以下のフルオロアルキル基である。)
Figure 0006770243
(式(19)中、Oは酸素原子、Sは硫黄原子、nは0以上4以下の整数であり、R18、R19は、それぞれ独立して水素原子、ハロゲン原子、又は置換若しくは無置換の炭素数1以上5以下のアルキル基であり、R20、R21は、それぞれ独立して水素原子、ハロゲン原子、置換若しくは無置換の炭素数1〜5のアルキル基、又は置換若しくは無置換の炭素数1以上4以下のフルオロアルキル基であり、nは0以上4以下の整数である。)
Figure 0006770243
(式(20)中、Oは酸素原子、Sは硫黄原子、nは0〜3の整数であり、R22、R23は、それぞれ独立して水素原子、ハロゲン原子、置換若しくは無置換の炭素数1以上5以下のアルキル基、又は置換若しくは無置換の炭素数1以上4以下のフルオロアルキル基である。)
(25) 前記第4の化合物の添加濃度が、溶質、非水有機溶媒、イオン性錯体、及び第4の化合物の総量に対して0.001〜10質量%の範囲である、前記(24)に記載の非水電解液電池用電解液。
(26) 下記一般式(21)で示される環状カーボネート化合物からなる群から選ばれる少なくとも1種の第5の化合物をさらに含有する、前記(1)から(25)のいずれかに記載の非水電解液電池用電解液。
Figure 0006770243
(式(21)中、Oは酸素原子、Aは炭素数10以下の、不飽和結合や環状構造やハロゲンを有してもよい炭化水素であり、Bは炭素数10以下の、不飽和結合や環状構造やハロゲンを有してもよい炭化水素である。なお、A−B間に二重結合を有してもよい。)
(27) 前記第5の化合物の添加濃度が、溶質、非水有機溶媒、イオン性錯体、及び第5の化合物の総量に対して0.001〜10質量%の範囲である、前記(26)に記載の非水電解液電池用電解液。
(28) 正極と、
リチウム又はリチウムの吸蔵放出の可能な負極材料からなる負極と、
前記(1)から(27)のいずれかに記載の非水電解液電池用電解液とを含む非水電解液電池。
(29) 正極と、
ナトリウム又はナトリウムの吸蔵放出の可能な負極材料からなる負極と、
前記(1)から(27)のいずれかに記載の非水電解液電池用電解液とを含む非水電解液電池。
本発明によると、より優れた高温耐久性を有する非水電解液電池への使用に適した材料を提供できる。
以下、本発明の具体的な実施形態について、詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。
<イオン性錯体>
本発明のイオン性錯体は、下記一般式(1)から(3)のいずれかで表される化合物からなる。
Figure 0006770243
Figure 0006770243
Figure 0006770243
〔一般式(1)〕
上記一般式(1)において、Aは金属イオン、プロトン及びオニウムイオンからなる群から選ばれる少なくとも1つである。中でも、イオン解離度が高い点で、Aは、Liイオン、Naイオン、Kイオン、又は4級アルキルアンモニウムイオンからなる群から選ばれるいずれか一つのカチオンであることが好ましい。
Fはフッ素であり、Mは13族元素(Al、B)、14族元素(Si)及び15族元素(P、As、Sb)からなる群から選ばれる少なくとも1つである。中でも、毒性や合成の容易さの点で、Mは、B又はPであることが好ましい。
Oは酸素であり、Sは硫黄である。
は炭素数1〜10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基(炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造のものも使用できる)、又は−N(R)−を表す。このとき、Rは水素、アルカリ金属、炭素数1〜10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基を表す。炭素数が3以上の場合にあっては、Rは分岐鎖あるいは環状構造をとることもできる。
Yは炭素又は硫黄である。Yが炭素である場合、rは1である。Yが硫黄である場合、rは1又は2である。
aは1又は2、oは2又は4、nは1又は2、pは0又は1、qは1又は2、rは0、1又は2である。pが0の場合、S−Y間に直接結合を形成する。
一般式(1)よりなるイオン性錯体の具体例として、下記化合物が挙げられる。
Figure 0006770243
中でも、非水電解液電池用電解液の成分として用いることで、非水電解液電池のサイクル特性が高まる点で、イオン性錯体は、上記(1Bb)及び上記(1Bd)からなる群から選ばれる少なくとも1つであることが好ましい。
〔一般式(2)〕
上記一般式(2)において、Aは金属イオン、プロトン及びオニウムイオンからなる群から選ばれる少なくとも1つである。中でも、イオン解離度が高い点で、Aは、Liイオン、Naイオン、Kイオン、又は4級アルキルアンモニウムイオンからなる群から選ばれるいずれか一つのカチオンであることが好ましい。
Fはフッ素であり、Mは13族元素(Al、B)、14族元素(Si)、及び15族元素(P、As、Sb)からなる群から選ばれる少なくとも1つである。中でも、毒性や合成の容易さの点で、Mは、B又はPであることが好ましい。
Oは酸素であり、Nは窒素である。
Yは炭素又は硫黄であり、Yが炭素である場合、qは1であり、Yが硫黄である場合、qは1又は2である。
は炭素数1〜10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基(炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造のものも使用できる)、又は−N(R)−を表す。このとき、Rは水素、アルカリ金属、炭素数1〜10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基を表す。炭素数が3以上の場合にあっては、Rは分岐鎖あるいは環状構造をとることもできる。
は水素、炭素数1〜10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基(炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造のものも使用できる)、又は−N(R)−を表す。このとき、Rは水素、アルカリ金属、炭素数1〜10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基を表す。炭素数が3以上の場合にあっては、Rは分岐鎖あるいは環状構造をとることもできる。
aは1又は2、oは2又は4、nは1又は2、pは0又は1、qは1又は2、rは0又は1である。pが0の場合、Rの両隣に位置する原子同士(すなわちYと炭素原子)が直接結合を形成する。rが0の場合M−N間に直接結合を形成する。
一般式(2)よりなるイオン性錯体の具体例として、下記化合物が挙げられる。
Figure 0006770243
中でも、非水電解液電池用電解液の成分として用いることで、非水電解液電池のサイクル特性が高まる点で、イオン性錯体は、上記(2Pa)、上記(2Pc)、上記(2Ba)及び上記(2Bc)からなる群から選ばれる少なくとも1つであることが好ましい。
〔一般式(3)〕
上記一般式(3)において、Dはハロゲンイオン、ヘキサフルオロリン酸アニオン、テトラフルオロホウ酸アニオン、ビス(トリフルオロメタンスルホニル)イミドアニオン、ビス(フルオロスルホニル)イミドアニオン、(トリフルオロメタンスルホニル)(フルオロスルホニル)イミドアニオン、ビス(ジフルオロホスホニル)イミドアニオンから選ばれる少なくとも一つである。中でも、電池特性に悪影響が無く入手が比較的容易である点で、Dは、ヘキサフルオロリン酸アニオン、テトラフルオロホウ酸アニオン、ビス(トリフルオロメタンスルホニル)イミドアニオン、ビス(フルオロスルホニル)イミドアニオン、ビス(ジフルオロホスホニル)イミドアニオンからなる群から選ばれる少なくとも一つのアニオンであることが好ましい。
Fはフッ素であり、Mは13族元素(Al、B)、14族元素(Si)及び15族元素(P、As、Sb)からなる群から選ばれるいずれか1つである。中でも、毒性や合成の容易さの点で、Mは、B又はPであることが好ましい。
Oは酸素であり、Nは窒素である。
Yは炭素又は硫黄であり、Yが炭素である場合qは1であり、Yが硫黄である場合qは1又は2である。
Xは炭素又は硫黄であり、Xが炭素である場合rは1であり、Xが硫黄である場合rは1又は2である。
は炭素数1〜10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基(炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造のものも使用できる)、又は−N(R)−を表す。このとき、Rは水素、アルカリ金属、炭素数1〜10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基を表す。炭素数が3以上の場合にあっては、Rは分岐鎖あるいは環状構造をとることもできる。
、Rはそれぞれ独立で炭素数1〜10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基であり、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造のものも使用できる。また、下記一般式(4)の様にお互いを含む環状構造を有しても良い。
Figure 0006770243
cは0又は1であり、nが1の場合、cは0(cが0のときDは存在しない)であり、nが2の場合、cは1となる。
oは2又は4、nは1又は2、pは0又は1、qは1又は2、rは1又は2、sは0又は1である。pが0の場合、Y−X間に直接結合を形成する。
sが0の場合、N(R)(R)とRは直接結合し、その際は下記の(5)〜(8)のような構造をとることもできる。直接結合が二重結合となる(6)、(8)の場合、Rは存在しない。また(7)の様に二重結合が環の外に出た構造を取ることも出来る。この場合のR、Rはそれぞれ独立で水素、又は炭素数1〜10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基であり、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造のものも使用できる。)
Figure 0006770243
一般式(3)よりなるイオン性錯体の具体例として、下記化合物が挙げられる。
Figure 0006770243
中でも、非水電解液電池用電解液の成分として用いることで、非水電解液電池のサイクル特性が高まる点で、イオン性錯体は、上記(3Pa)、上記(3Pb)、上記(3Pd)、上記(3Pg)、上記(3Ba)、上記(3Bb)、上記(3Bf)、上記(3Bg)及び上記(3Bi)からなる群から選ばれるいずれか1つであることが好ましい。
ところで、イオン性錯体の種類と、イオン性錯体を非水電解液電池用電解液の成分として用いたときのサイクル特性向上の効果の強さとの関係は、3Pa>1Bd−Li>>3Ba>3Bi、3Bf>>3Pdである。そのため、イオン性錯体は、3Pa又は1Bd−Liであることが特に好ましい。なお、上記「1Bd−Li」は、1BdのAがLiであるイオン性錯体を意味する。
<非水電解液電池用電解液>
本発明の非水電解液電池用電解液は、溶質と、上記イオン性錯体と、非水有機溶媒及び/又はポリマーとを含有する。
〔溶質〕
溶質は特に限定されず、任意のカチオンとアニオンの対からなる塩を用いることができる。具体例としては、カチオンとしてリチウムイオンやナトリウムイオンを始めとするアルカリ金属イオン、アルカリ土類金属イオン、四級アンモニウム等が挙げられ、アニオンとして、ヘキサフルオロリン酸、テトラフルオロホウ酸、過塩素酸、ヘキサフルオロヒ酸、ヘキサフルオロアンチモン酸、トリフルオロメタンスルホン酸、ビス(トリフルオロメタンスルホニル)イミド、ビス(ペンタフルオロエタンスルホニル)イミド、(トリフルオロメタンスルホニル)(ペンタフルオロエタンスルホニル)イミド、ビス(フルオロスルホニル)イミド(以下、「FSI」と表記する場合がある)、(トリフルオロメタンスルホニル)(フルオロスルホニル)イミド、(ペンタフルオロエタンスルホニル)(フルオロスルホニル)イミド、トリス(トリフルオロメタンスルホニル)メチド、ビス(ジフルオロホスホニル)イミド等が挙げられる。
これらの溶質は、一種類を単独で用いても良く、二種類以上を用途に合わせて任意の組合せ、比率で混合して用いても良い。中でも、電池としてのエネルギー密度、出力特性、寿命等から考えると、カチオンはリチウム、ナトリウム、マグネシウム、四級アンモニウムが、アニオンはヘキサフルオロリン酸、テトラフルオロホウ酸、ビス(トリフルオロメタンスルホニル)イミド、ビス(フルオロスルホニル)イミド、ビス(ジフルオロホスホニル)イミドが好ましい。
イオン性錯体が上記(3Pa)で表される化合物である場合、溶質は、LiPFである場合に比べ、LiBFやLiFSIである方が、非水電解液電池にしたときにサイクル特性向上効果の上昇幅(無添加と比べた場合)が大きい。
溶質濃度は、特に制限されるものでないが、非水電解液電池用電解液に対し、下限は0.5mol/L以上、好ましくは0.7mol/L以上、さらに好ましくは0.9mol/L以上であり、また、上限は5.0mol/L以下、好ましくは4.0mol/L以下、さらに好ましくは2.0mol/L以下の範囲である。0.5mol/Lを下回ると、イオン伝導度が低下することにより非水電解液電池のサイクル特性、出力特性が低下し、一方、4.0mol/Lを越えると非水電解液電池用電解液の粘度が上昇することによりやはりイオン伝導を低下させ、非水電解液電池のサイクル特性、出力特性を低下させる恐れがある。
一度に多量の該溶質を非水溶媒に溶解すると、溶質の溶解熱のため非水電解液の温度が上昇することがあり、該液温が著しく上昇すると、フッ素を含有したリチウム塩の分解が促進されてフッ化水素が生成する恐れがある。フッ化水素は電池性能の劣化の原因となるため好ましくない。このため、該溶質を非水溶媒に溶解する際の液温は特に限定されないが、−20〜50℃が好ましく、0〜40℃がより好ましい。
〔イオン性錯体〕
イオン性錯体濃度は、特に制限されるものでないが、溶質、非水有機溶媒及びイオン性錯体の総量に対して0.001〜20質量%の範囲にあることが好ましく、0.01〜10質量%の範囲にあることがより好ましく、0.1〜5質量%の範囲にあることがさらに好ましく、0.5〜2質量%の範囲にあることが特に好ましい。イオン性錯体濃度が低すぎると、非水電解液電池のサイクル特性等、高温での耐久性を向上させる効果が十分に得られない可能性があり、高すぎると、電解液の粘度が上昇し過ぎるために、非水電解液電池内でのカチオンの移動が妨げられることにより、電池性能の低下を引き起こす可能性がある。
〔非水有機溶媒〕
非水電解液電池用電解液は、非水有機溶媒を含むものであれば、一般に非水電解液と呼ばれる。非水有機溶媒は、本発明のイオン性錯体を溶解できる非プロトン性の溶媒であれば特に限定されるものではなく、例えば、カーボネート類、エステル類、エーテル類、ラクトン類、ニトリル類、アミド類、スルホン類等が使用できる。具体例としては、エチルメチルカーボネート(EMC)、ジメチルカーボネート、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、エチルプロピルカーボネート(EP)、メチルブチルカーボネート、エチレンカーボネート(EC)、フルオロエチレンカーボネート(FEC)、プロピレンカーボネート(PC)、ブチレンカーボネート、酢酸メチル、プロピオン酸メチル、プロピオン酸エチル、ジエチルエーテル、アセトニトリル、プロピオニトリル、テトラヒドロフラン、2−メチルテトラヒドロフラン、フラン、テトラヒドロピラン、1,3−ジオキサン、1,4−ジオキサン、ジブチルエーテル、ジイソプロピルエーテル、1,2−ジメトキシエタン、N,N−ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、γ−ブチロラクトン及びγ−バレロラクトンからなる群から選ばれる少なくとも1種が挙げられる。
イオン性錯体が上記(3Pa)で表される化合物である場合、非水有機溶媒は、EC/EMCの混合溶媒に比べ、PC/DECの混合溶媒である方が、非水電解液電池にしたときにサイクル特性向上効果の上昇幅(無添加と比べた場合)が若干ではあるが大きい傾向がある。
非水有機溶媒は、単一の溶媒だけでなく、二種類以上の混合溶媒でもよい。
なお、上記非水有機溶媒は、環状カーボネート及び鎖状カーボネートからなる群から選ばれる少なくとも1種を含有するものであると、耐酸化性を有しイオン伝導度も高いためより好ましい。上記環状カーボネートは、エチレンカーボネート、プロピレンカーボネート、及びブチレンカーボネートからなる群から選ばれる少なくとも1種が好ましく、上記鎖状カーボネートは、エチルメチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート、及びメチルブチルカーボネートからなる群から選ばれる少なくとも1種が好ましい。
〔ポリマー〕
非水電解液電池用電解液は、ポリマーを含むものであれば、一般にポリマー固体電解質と呼ばれる。ポリマー固体電解質には、可塑剤として非水系溶媒を含有するものも含まれる。
ポリマーは、上記溶質及び上記イオン性錯体を溶解できる非プロトン性のポリマーであれば特に限定されるものではない。例えば、ポリエチレンオキシドを主鎖又は側鎖に持つポリマー、ポリビニリデンフロライドのホモポリマー又はコポリマー、メタクリル酸エステルポリマー、ポリアクリロニトリルなどが挙げられる。これらのポリマーに可塑剤を加える場合は、上記の非プロトン性非水有機溶媒が挙げられる。
〔第2の化合物〕
必須の態様ではないが、本発明の非水電解液電池用電解液は、下記一般式(9)〜(16)で示される含フッ素化合物からなる群から選ばれる少なくとも1種の第2の化合物をさらに含有することが好ましい。第2の化合物を含有することで、低温での出力特性をさらに向上できる。
Figure 0006770243
第2の化合物の一部が正極、及び負極上で分解し、イオン伝導性の良い皮膜を正極、及び負極表面に形成する。この皮膜は、非水溶媒や溶質と電極活物質との間の直接の接触を抑制して非水溶媒や溶質の分解を防ぎ、電池性能の劣化を抑制する。
本発明の非水電解液電池用電解液において、イオン性錯体と第2の化合物を併用することにより、イオン性錯体を単独で添加した場合に比べて50℃以上の高温での高温サイクル特性及び高温貯蔵特性、低温特性を向上することができる。そのメカニズムの詳細は明らかでないが、イオン性錯体と第2の化合物が共存することで、イオン性錯体と共に第2の化合物が積極的に正極、負極上で分解し、よりイオン伝導性が高く、より耐久性に優れた皮膜が形成されると考えられる。このことから、高温での溶媒や溶質の分解が抑制され、かつ低温での抵抗増加を抑制していると考えられる。特に、皮膜中に多くのフルオロホスホリル構造及び/又はフルオロスルホニル構造が取り込まれることで、形成した皮膜の電荷に偏りが生じ、リチウム導電性の高い、すなわち抵抗の小さい皮膜(出力特性が良好な皮膜)となっていると考えられる。さらに、イオン性錯体及び第2の化合物中に不飽和結合を含む部位が多く含まれるほど、より正極、負極上で分解されやすくなり、耐久性に優れた皮膜が形成されやすいため、上記の効果はより良好なものとなると思われる。また、第2の化合物中に電子吸引性の高い部位(例えばフッ素原子や含フッ素アルコキシ基)が含まれることで電荷の偏りがより大きくなり、より抵抗の小さい皮膜(出力特性がより良好な皮膜)が形成されると考えられる。
以上の理由から、イオン性錯体と第2の化合物を併用すると、それぞれを単独で用いる場合に比べて、−30℃以下での平均放電電圧(出力特性)、及び50℃以上の高温でのサイクル特性や貯蔵特性が向上すると推測される。
上記一般式(9)〜(16)において、P−F結合及び/又はS−F結合を少なくとも一つ含むことが上述のような向上効果を達成する上で重要である。P−F結合やS−F結合を含まない場合、低温特性を向上することができない。P−F結合やS−F結合の数が多いほど、より優れた低温特性が得られるため好ましい。
上記一般式(9)〜(16)において、M及びMで表されるカチオンとしては、プロトン、金属カチオンやオニウムカチオンが挙げられる。本発明の非水電解液電池用電解液及び非水電解液電池の性能を損なうものでなければその種類に特に制限はなく上記の中から様々なものを選択することができる。具体例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、バリウム、銀、銅、鉄、等の金属カチオン、テトラアルキルアンモニウム、テトラアルキルホスホニウム、イミダゾリウム誘導体等のオニウムカチオンが挙げられるが、特に非水電解液電池中でのイオン伝導を助ける役割をするという観点から、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラメチルアンモニウムイオン、テトラエチルアンモニウムイオン、テトラブチルホスホニウムイオン等が好ましい。
上記一般式(9)〜(11)及び(13)〜(15)のR〜R11で表される、アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、第二ブトキシ基、第三ブトキシ基、ペンチルオキシ基、トリフルオロメトキシ基、2,2−ジフルオロエトキシ基、2,2,2−トリフルオロエトキシ基、2,2,3,3−テトラフルオロプロポキシ基、及び1,1,1,3,3,3−ヘキサフルオロイソプロポキシ基等の炭素原子数1〜10のアルコキシ基や含フッ素アルコキシ基が挙げられ、アルケニルオキシ基としては、例えば、ビニルオキシ基、1−プロペニルオキシ基、2−プロペニルオキシ基、イソプロペニルオキシ基、2−ブテニルオキシ基、3−ブテニルオキシ基、及び1,3−ブタジエニルオキシ基等の炭素原子数2〜10のアルケニルオキシ基や含フッ素アルケニルオキシ基が挙げられ、アルキニルオキシ基としては、例えば、エチニルオキシ基、2−プロピニルオキシ基、及び1,1−ジメチル−2−プロピニルオキシ基等の炭素原子数2〜10のアルキニルオキシ基や含フッ素アルキニルオキシ基が挙げられ、シクロアルコキシ基としては、例えば、シクロペンチルオキシ基、及びシクロヘキシルオキシ基等の炭素数が3〜10のシクロアルコキシ基や含フッ素シクロアルコキシ基が挙げられ、シクロアルケニルオキシ基としては、例えば、シクロペンテニルオキシ基、及びシクロヘキセニルオキシ基等の炭素数が3〜10のシクロアルケニルオキシ基や含フッ素シクロアルケニルオキシ基が挙げられ、アリールオキシ基としては、例えば、フェニルオキシ基、トリルオキシ基、及びキシリルオキシ基等の炭素原子数6〜10のアリールオキシ基や含フッ素アリールオキシ基が挙げられる。
上記一般式(9)〜(11)及び(13)〜(15)のR〜R11が、フッ素原子又はフッ素原子を有するアルコキシ基であると、その強い電子吸引性によるイオン解離度の向上により、溶液中や組成物中でのイオン伝導度が高くなるため好ましい。さらに、上記一般式(9)〜(11)及び(13)〜(15)のR〜R11がフッ素原子であると、アニオンサイズが小さくなることによる移動度の向上の効果により、溶液中や組成物中でのイオン伝導度が非常に高くなるためより好ましい。これにより、上記一般式(9)〜(16)におけるP−F結合の数が多いほど低温特性がさらに向上されると考えられる。また、上記R〜R11が、アルケニルオキシ基、及びアルキニルオキシ基からなる群から選ばれる有機基であることが好ましい。上記のアルケニルオキシ基、及びアルキニルオキシ基とは異なり、酸素原子を介在しない炭化水素基であると、電子吸引性が小さくイオン解離度が低下し、溶液中や組成物中でのイオン伝導度が低下してしまうため好ましくない。また、上記のアルケニルオキシ基、及びアルキニルオキシ基のように、不飽和結合を有する基であると、正極、負極上で積極的に分解し、より耐久性に優れた皮膜を形成できるため好ましい。また、炭素数が多いとアニオンサイズが大きくなり、溶液中や組成物中でのイオン伝導度が低下する傾向があるため、上記R〜R11の炭素数が6以下であることが好ましい。炭素数が6以下であると、上記イオン伝導度が比較的高い傾向があるため好ましく、特に、1−プロペニルオキシ基、2−プロペニルオキシ基、3−ブテニルオキシ基、2−プロピニルオキシ基、1,1−ジメチル−2−プロピニルオキシ基からなる群から選択される基であると、比較的アニオンサイズが小さいため、好ましい。
上記一般式(11)、(12)、(15)及び(16)において、X及びXで表される、アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、第二ブチル基、第三ブチル基、ペンチル基、トリフルオロメチル基、2,2−ジフルオロエチル基、2,2,2−トリフルオロエチル基、2,2,3,3−テトラフルオロプロピル基、及び1,1,1,3,3,3−ヘキサフルオロイソプロピル基等の炭素原子数1〜10のアルキル基や含フッ素アルキル基が挙げられ、アルケニル基としては、例えば、ビニル基、1−プロペニル基、2−プロペニル基、イソプロペニル基、2−ブテニル基、3−ブテニル基、及び1,3−ブタジエニル基等の炭素原子数2〜10のアルケニル基や含フッ素アルケニル基が挙げられ、アルキニル基としては、例えば、エチニル基、2−プロピニル基、及び1,1−ジメチル−2−プロピニル基等の炭素原子数2〜10のアルキニル基や含フッ素アルキニル基が挙げられ、シクロアルキル基としては、例えば、シクロペンチル基、及びシクロヘキシル基等の炭素数が3〜10のシクロアルキル基や含フッ素シクロアルキル基が挙げられ、シクロアルケニル基としては、例えば、シクロペンテニル基、及びシクロヘキセニル基等の炭素数が3〜10のシクロアルケニル基や含フッ素シクロアルケニル基が挙げられ、アリール基としては、例えば、フェニル基、トリル基、及びキシリル基等の炭素原子数6〜10のアリール基や含フッ素アリール基が挙げられる。
また、アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、第二ブトキシ基、第三ブトキシ基、ペンチルオキシ基、トリフルオロメトキシ基、2,2−ジフルオロエトキシ基、2,2,2−トリフルオロエトキシ基、2,2,3,3−テトラフルオロプロポキシ基、及び1,1,1,3,3,3−ヘキサフルオロイソプロポキシ基等の炭素原子数1〜10のアルコキシ基や含フッ素アルコキシ基が挙げられ、アルケニルオキシ基としては、例えば、ビニルオキシ基、1−プロペニルオキシ基、2−プロペニルオキシ基、イソプロペニルオキシ基、2−ブテニルオキシ基、3−ブテニルオキシ基、及び1,3−ブタジエニルオキシ基等の炭素原子数2〜10のアルケニルオキシ基や含フッ素アルケニルオキシ基が挙げられ、アルキニルオキシ基としては、例えば、エチニルオキシ基、2−プロピニルオキシ基、及び1,1−ジメチル−2−プロピニルオキシ基等の炭素原子数2〜10のアルキニルオキシ基や含フッ素アルキニルオキシ基が挙げられ、シクロアルコキシ基としては、例えば、シクロペンチルオキシ基、及びシクロヘキシルオキシ基等の炭素数が3〜10のシクロアルコキシ基や含フッ素シクロアルコキシ基が挙げられ、シクロアルケニルオキシ基としては、例えば、シクロペンテニルオキシ基、及びシクロヘキセニルオキシ基等の炭素数が3〜10のシクロアルケニルオキシ基や含フッ素シクロアルケニルオキシ基が挙げられ、アリールオキシ基としては、例えば、フェニルオキシ基、トリルオキシ基、及びキシリルオキシ基等の炭素原子数6〜10のアリールオキシ基や含フッ素アリールオキシ基が挙げられる。
上記一般式(11)、(12)、(15)及び(16)のX及びXが、フッ素原子であると、その強い電子吸引性によるイオン解離度の向上と、アニオンサイズが小さくなることによる移動度の向上の効果により、溶液中や組成物中でのイオン伝導度が非常に高くなるため好ましい。また、上記X及びXが、アルコキシ基、アルケニルオキシ基、及びアルキニルオキシ基からなる群から選ばれる有機基であることが好ましい。上記のアルコキシ基、アルケニルオキシ基、及びアルキニルオキシ基とは異なり、酸素原子を介在しない炭化水素基であると、電子吸引性が小さくイオン解離度が低下し、溶液中や組成物中でのイオン伝導度が低下してしまうため好ましくない。また、炭素数が多いとアニオンサイズが大きくなり、溶液中や組成物中でのイオン伝導度が低下する傾向があるため、上記X及びXの炭素数が6以下であることが好ましい。炭素数が6以下であると、上記イオン伝導度が比較的高い傾向があるため好ましく、特に、メトキシ基、エトキシ基、プロポキシ基、1−プロペニルオキシ基、2−プロペニルオキシ基、3−ブテニルオキシ基、2−プロピニルオキシ基、1,1−ジメチル−2−プロピニルオキシ基からなる群から選択される基であると、比較的アニオンサイズが小さいため、好ましい。
なお、上記一般式(9)、(13)、(14)及び(15)のR〜R10及びXがすべて酸素原子を介在する炭化水素基(アルコキシ基、アルケニルオキシ基、アルキニルオキシ基、シクロアルコキシ基、シクロアルケニルオキシ基、アリールオキシ基)であるような構造の化合物、即ち、P−F結合やS−F結合を全く含まない化合物は、非水電解液中の溶解度が極めて低い(例えば、0.001質量%未満)ため、非水電解液に添加し、上述のような向上効果を達成することは困難である。
第2の化合物の好適添加濃度は、溶質、非水有機溶媒、イオン性錯体及び第2の化合物の総量に対して下限は、0.001質量%以上、より好ましくは0.01質量%以上、さらに好ましくは0.1質量%以上であり、また、上限は10.0質量%以下、より好ましくは5.0質量%以下、さらに好ましくは2.0質量%以下の範囲である。0.001質量%未満であると非水電解液電池の低温での出力特性を向上させる効果が十分に得られない恐れがある。一方、10.0質量%を越えると、それ以上の効果は得られずに無駄であるだけでなく、電解液の粘度が上昇しイオン伝導度が低下する傾向があり、抵抗が増加し電池性能の劣化を引き起こし易いため好ましくない。なお、第2の化合物を1種類添加してもよいし、複数種類添加してもよい。
上記一般式(9)で表されるリン酸塩の陰イオンとしては、より具体的には、例えば以下の化合物No.9−1等が挙げられる。但し、本発明で用いられるリン酸塩は、以下の例示により何ら制限を受けるものではない。
Figure 0006770243
上記一般式(10)〜(16)で表されるイミド塩の陰イオンとしては、より具体的には、例えば以下の化合物が挙げられる。但し、本発明で用いられるイミド塩は、以下の例示により何ら制限を受けるものではない。
Figure 0006770243
Figure 0006770243
Figure 0006770243
上記一般式(9)で示されるリン酸塩の陰イオンを有する塩は、例えば、下記文献に記載のように、フッ化物以外のハロゲン化物とLiPFと水とを非水溶媒中で反応させる方法や、対応するアルコキシ基を有するピロリン酸エステルとフッ化水素を反応させる方法により製造できる。
特許文献5:特開2008−222484号公報
非特許文献1:Journal of the American Chemical Society,72,4956−4958,(1950)
非特許文献2:Faraday Discussion,145,281−299,(2010)
上記一般式(10)で示されるイミドアニオンを有する塩は種々の方法により製造できる。製造法としては、限定されることはないが、例えば、対応するホスホリルクロリド(P(=O)RCl)とリン酸アミド(HNP(=O)R1011)を有機塩基又は無機塩基の存在下で反応させることで得ることができる。
上記一般式(11)で示されるイミドアニオンを有する塩は種々の方法により製造できる。製造法としては、限定されることはないが、例えば、対応するホスホリルクロリド(P(=O)RCl)とスルホンアミド(HNSO)を有機塩基又は無機塩基の存在下で反応させることで得ることができる。
上記一般式(12)で示されるイミドアニオンを有する塩は種々の方法により製造できる。製造法としては、限定されることはないが、例えば、対応するスルホニルクロリド(XSOCl)と、対応するスルホンアミド(HNSO)を有機塩基又は無機塩基の存在下で反応させることで得ることができる。
上記一般式(13)で示されるイミドアニオンを有する塩は種々の方法により製造できる。製造法としては、限定されることはないが、例えば、対応するホスホリルクロリド(P(=O)RCl)と、対応するリン酸アミド(HNP(=O)R10)を有機塩基又は無機塩基の存在下で反応させることで得ることができる。
上記一般式(14)で示されるイミドアニオンを有する塩は種々の方法により製造できる。製造法としては、限定されることはないが、例えば、対応するホスホリルクロリド(P(=O)RCl)と、スルファミン酸(HNSO )を有機塩基又は無機塩基の存在下で反応させることで得ることができる。
上記一般式(15)で示されるイミドアニオンを有する塩は種々の方法により製造できる。製造法としては、限定されることはないが、例えば、対応するスルホニルクロリド(XSOCl)と、対応するリン酸アミド(HNP(=O)R)を有機塩基又は無機塩基の存在下で反応させることで得ることができる。
上記一般式(16)で示されるイミドアニオンを有する塩は種々の方法により製造できる。製造法としては、限定されることはないが、例えば、対応するスルホニルクロリド(XSOCl)と、対応するスルファミン酸(HNSO )を有機塩基又は無機塩基の存在下で反応させることで得ることができる。
また、上述のような、一般式(9)〜(16)の塩の製法において、適宜カチオン交換を行ってもよい。
〔第3の化合物〕
必須の態様ではないが、本発明の非水電解液電池用電解液は、下記一般式(17)で示される少なくとも1種の第3の化合物をさらに含有することが好ましい。第3の化合物を含有することで、ガス発生量の低減、サイクル特性の向上の少なくとも1つを実現できる。
Si(R12(R134−x (17)
第3の化合物の好適な添加濃度は、溶質、非水有機溶媒、イオン性錯体及び第3の化合物の総量に対して0.005質量%以上、好ましくは0.03質量%以上、さらに好ましくは0.7質量%以上であり、また、上限は7.0質量%以下、好ましくは5.5質量%以下、さらに好ましくは2.5質量%以下である。上記濃度が0.005質量%を下回ると該非水電解液を用いた非水電解液電池の高温サイクル特性や高温貯蔵特性を向上させる効果が十分に得られ難いため好ましくない。一方、上記濃度が7.0質量%を超えると、該非水電解液を用いた非水電解液電池の高温サイクル特性や高温貯蔵特性を向上させる効果が十分に得られ難いため好ましくない。これらの第3の化合物は、7.0質量%を超えない範囲であれば一種類を単独で用いても良く、二種類以上を用途に合わせて任意の組み合わせ、比率で混合して用いても良い。
上記一般式(17)において、R12で表される炭素−炭素不飽和結合を有する基としては、ビニル基、アリル基、1−プロペニル基、イソプロペニル基、2−ブテニル基、1,3−ブタジエニル基等の炭素原子数2〜8のアルケニル基又はこれらの基から誘導されるアルケニルオキシ基、エチニル基、2−プロピニル基、1,1ジメチル−2−プロピニル基等の炭素原子数2〜8のアルキニル基又はこれらの基から誘導されるアルキニルオキシ基、フェニル基、トリル基、キシリル基等の炭素原子数6〜12のアリール基又はこれらの基から誘導されるアリールオキシ基が挙げられる。また、上記の基はフッ素原子及び酸素原子を有していても良い。それらの中でも、炭素数が6以下の炭素−炭素不飽和結合を含有する基が好ましい。上記炭素数が6より多いと、電極上に皮膜を形成した際の抵抗が比較的大きい傾向がある。具体的には、ビニル基、アリル基、1−プロペニル基、エチニル基、及び2−プロピニル基からなる群から選択される基が好ましい。
また、上記一般式(17)において、R13で表されるアルキル基及びアルコキシ基としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、イソブチル基、tert−ブチル基、ペンチル基等の炭素原子数1〜12のアルキル基又はこれらの基から誘導されるアルコキシ基が挙げられる。アルケニル基及びアルケニルオキシ基としては、ビニル基、アリル基、1−プロペニル基、イソプロペニル基、2−ブテニル基、1,3−ブタジエニル基等の炭素原子数2〜8のアルケニル基又はこれらの基から誘導されるアルケニルオキシ基が挙げられる。アルキニル基及びアルキニルオキシ基としては、エチニル基、2−プロピニル基、1,1ジメチル−2−プロピニル基等の炭素原子数2〜8のアルキニル基又はこれらの基から誘導されるアルキニルオキシ基が挙げられる。アリール基及びアリールオキシ基としては、フェニル基、トリル基、キシリル基等の炭素原子数6〜12のアリール基又はこれらの基から誘導されるアリールオキシ基が挙げられる。また、上記の基はフッ素原子及び酸素原子を有していても良い。また、上記以外のR13で表される基としてフッ素原子が挙げられる。それらの中でも、フッ素原子、アルキル基及びアルコキシ基から選択される基であると電極上に皮膜を形成した際の抵抗がより小さい傾向があり、その結果出力特性の観点で好ましい。特にフッ素原子、メチル基、エチル基、プロピル基、2,2,2−トリフルオロエチル基、2,2,3,3−テトラフルオロプロピル基、1,1,1−トリフルオロイソプロピル基、1,1,1,3,3,3−ヘキサフルオロイソプロピル基、2,2,2−トリフルオロエトキシ基、2,2,3,3−テトラフルオロプロポキシ基、2,2,3,3,3−ペンタフルオロプロポキシ基、1,1,1−トリフルオロイソプロポキシ基、及び1,1,1,3,3,3−ヘキサフルオロイソプロポキシ基からなる群から選択される基であると、上記の抵抗を大きくすることなく高温サイクル特性及び高温貯蔵特性に、より優れた非水電解液電池を得られるため好ましい。
上記一般式(17)で表される第3の化合物としては、より具体的には、例えば以下の化合物No.17−1〜No.17−25等が挙げられる。但し、本発明で用いられる第3の化合物は、以下の例示により何ら制限を受けるものではない。
Figure 0006770243
Figure 0006770243
Figure 0006770243
Figure 0006770243
〔第4の化合物〕
必須の態様ではないが、本発明の非水電解液電池用電解液は、下記一般式(18)、(19)、及び(20)で示される環状スルホン酸化合物、1,3−プロパンスルトン(PS)、及び、1,2−ペンタンジオール硫酸エステル(PEGLST)からなる群から選ばれる少なくとも1種の第4の化合物をさらに含有することが好ましい。第4の化合物を含有することで、ガス発生量の低減、サイクル特性の向上、低温での出力特性の向上の少なくとも1つを実現できる。
Figure 0006770243
Figure 0006770243
Figure 0006770243
第4の化合物の好適添加濃度は、溶質、非水有機溶媒、イオン性錯体及び第4の化合物の総量に対して下限は、0.001質量%以上、より好ましくは0.01質量%以上、さらに好ましくは0.1質量%以上であり、また、上限は10.0質量%以下、より好ましくは5.0質量%以下、さらに好ましくは2.0質量%以下の範囲である。上記濃度が0.001質量%を下回ると該非水電解液を用いた非水電解液電池の高温サイクル特性や高温貯蔵特性を向上させる効果が十分に得られ難いため好ましくない。一方、上記濃度が10.0質量%を超えると、該非水電解液を用いた非水電解液電池の高温サイクル特性や高温貯蔵特性を向上させる効果が十分に得られ難いため好ましくない。これらの第4の化合物は、10.0質量%を超えない範囲であれば一種類を単独で用いても良く、二種類以上を用途に合わせて任意の組み合わせ、比率で混合して用いても良い。
一般式(18)で示される不飽和結合を有する環状スルホン酸エステルとして、例えば、1,3−プロペンスルトン、1,4−ブテンスルトン、2,4−ペンテンスルトン、3,5−ペンテンスルトン、1−フルオロ−1,3−プロペンスルトン、1−トリフルオロメチル−1,3−プロペンスルトン、1,1,1−トリフルオロ−2,4−ブテンスルトン、1,4−ブテンスルトン及び1,5−ペンテンスルトン等が挙げられる。中でも電池系内での反応性を考慮すると、1,3−プロペンスルトン(1,3−PRS)や1,4−ブテンスルトンを用いることがより好ましい。
不飽和結合を有する環状スルホン酸エステルは、1種のみを単独で用いてもよく、2種以上を組合せて用いても良い。上述の不飽和結合を有する環状スルホン酸エステルを含有した非水系電解液を電池に用いた場合、正極及び負極に被膜が形成される。
一般式(19)で示される環状ジスルホン酸エステルとして、例えば、式(19−1)〜(19−29)で表される化合物等が挙げられる。中でも、式(19−1)、式(19−2)、式(19−10)、式(19−15)又は式(19−16)に示した化合物がより好ましい。なお、一般式(19)で示される環状ジスルホン酸エステルは、式(19−1)〜(19−29)に示した化合物に限定されず、他の化合物でも良い。
Figure 0006770243
Figure 0006770243
一般式(20)で示される環状ジスルホン酸エステルとしては、式(20−1)〜(20−5)で表される化合物等が挙げられる。中でも式(20−1)、式(20−2)又は式(20−5)に示した化合物がより好ましい。なお、一般式(20)で示される環状ジスルホン酸エステルは、式(20−1)〜(20−5)に示した化合物に限定されず、他の化合物でも良い。
Figure 0006770243
一般式(18)〜(20)で示される環状ジスルホン酸エステル、PS及びPEGLSTは、1種のみを単独で用いてもよく、2種以上を組合せて用いても良い。
〔第5の化合物〕
必須の態様ではないが、本発明の非水電解液電池用電解液は、下記一般式(21)で示される環状カーボネート化合物からなる群から選ばれる少なくとも1種の第5の化合物をさらに含有することが好ましい。第5の化合物を含有することで、サイクル特性を向上できる。
Figure 0006770243
第5の化合物の好適添加濃度は、溶質、非水有機溶媒、イオン性錯体及び第5の化合物の総量に対して下限は、0.001質量%以上、より好ましくは0.01質量%以上、さらに好ましくは0.1質量%以上であり、また、上限は10.0質量%以下、より好ましくは5.0質量%以下、さらに好ましくは2.0質量%以下の範囲である。上記濃度が0.001質量%を下回ると、該非水電解液を用いた非水電解液電池の高温サイクル特性を向上させる効果が十分に得られ難いため好ましくない。一方、上記濃度が10.0質量%を超えても、該非水電解液を用いた非水電解液電池の高温サイクル特性を向上させる効果が十分に得られ難いため好ましくない。これらの第5の化合物は、10.0質量%を超えない範囲であれば一種類を単独で用いても良く、二種類以上を用途に合わせて任意の組み合わせ、比率で混合して用いても良い。
一般式(21)で示される第5の化合物は、式(21−1)〜(21−6)で表される環状カーボネート化合物が挙げられる。中でも、耐久性向上効果が高い点で、式(21−1)に示した化合物がより好ましい。なお、一般式(21)で示される環状カーボネート化合物は、式(21−1)〜(21−6)に示した化合物に限定されず、他の化合物でも良い。
Figure 0006770243
〔添加剤〕
さらには、本発明の要旨を損なわない限りにおいて、本発明の非水電解液電池用電解液に一般に用いられる添加剤を任意の比率で添加しても良い。具体例としては、シクロヘキシルベンゼン、ビフェニル、t−ブチルベンゼン、ジフルオロアニソール、ジメチルビニレンカーボネート等の過充電防止効果、負極皮膜形成効果や正極保護効果を有する化合物が挙げられる。また、ポリマー電池と呼ばれる非水電解液電池に使用される場合のように非水電解液電池用電解液をゲル化剤や架橋ポリマーにより擬固体化して使用することも可能である。
<非水電解液電池>
本発明の非水電解液電池は、正極と、リチウム又はリチウムの吸蔵放出の可能な負極材料からなる負極と、上記非水電解液電池用電解液とを含む。あるいは、本発明の電池は、正極と、ナトリウム又はナトリウムの吸蔵放出の可能な負極材料からなる負極と、上記非水電解液電池用電解液とを含む。
〔正極〕
正極の種類は特に限定されるものでないが、リチウムイオンやナトリウムイオンを始めとするアルカリ金属イオン、又はアルカリ土類金属イオンが可逆的に挿入−脱離可能な材料が用いられる。
カチオンがリチウムの場合、正極材料として、LiCoO、LiNiO、LiMnO、LiMn等のリチウム含有遷移金属複合酸化物、それらのリチウム含有遷移金属複合酸化物のCo、Mn、Ni等の遷移金属が複数混合したもの、それらのリチウム含有遷移金属複合酸化物の遷移金属の一部が他の遷移金属以外の金属に置換されたもの、オリビンと呼ばれるLiFePO、LiCoPO、LiMnPO等の遷移金属のリン酸化合物、TiO、V、MoO等の酸化物、TiS、FeS等の硫化物、あるいはポリアセチレン、ポリパラフェニレン、ポリアニリン、及びポリピロール等の導電性高分子、活性炭、ラジカルを発生するポリマー、カーボン材料等が用いられる。
ところで、本発明では、正極の種類にかかわらず、正極がコバルト酸リチウム(LCO)、ニッケル・コバルト・マンガン(NCM)、リン酸鉄リチウム(LFP)、ニッケル酸リチウム(NCA)、マンガン酸リチウム(LMO)のいずれであっても、サイクル特性向上の効果の大小に違いはあるものの、何れの組み合わせにおいても良好な効果が見られる。
〔負極〕
負極の種類は特に限定されるものでないが、リチウムイオンやナトリウムイオンをはじめとするアルカリ金属イオン、又はアルカリ土類金属イオンが可逆的に挿入−脱離可能な材料が用いられる。
カチオンがリチウムの場合、負極材料としてリチウム金属、リチウムと他の金属との合金及び金属間化合物やリチウムを吸蔵および放出することが可能な種々の炭素材料、金属酸化物、金属窒化物、活性炭、導電性ポリマー等が用いられる。上記の炭素材料としては、例えば、易黒鉛化性炭素や(002)面の面間隔が0.37nm以上の難黒鉛化性炭素(ハードカーボンとも呼ばれる)や、(002)面の面間隔が0.37nm以下の黒鉛などが挙げられ、後者は、人造黒鉛、天然黒鉛などが用いられる。
ところで、本発明では、負極の種類にかかわらず、負極が黒鉛、ハードカーボン、シリコン、LTOのいずれであっても、サイクル特性向上の効果の大小に違いはあるものの、何れの組み合わせにおいても良好な効果が見られる。中でも、特に負極にシリコンを用いる場合、高いサイクル特性向上効果がみられる。これは、シリコン負極の最大の課題である充放電による大きな体積変化を、本発明に係るイオン性錯体からなる保護被膜がある程度抑制するためであると推測される。
〔その他〕
正極や負極には、導電材としてアセチレンブラック、ケッチェンブラック、炭素繊維、又は黒鉛、結着剤としてポリテトラフルオロエチレン、ポリフッ化ビニリデン、又はSBR樹脂等が加えられ、さらにシート状に成型された電極シートを用いることができる。
正極と負極の接触を防ぐためのセパレータとしては、ポリプロピレン、ポリエチレン、紙、又はガラス繊維等で作られた不織布や多孔質シートが使用される。
以上の各要素からコイン状、円筒状、角形、又はアルミラミネートシート型等の形状の電気化学デバイスが組み立てられる。
<イオン性錯体の合成法>
本発明に係るイオン性錯体の合成法は、五フッ化リン及び/又は三フッ化ホウ素と、カルボスルホン酸又はその塩、ジスルホン酸又はその塩、アミノ酸又はその塩、アミドカルボン酸又はその塩、ジアミド又はその塩、アミノスルホン酸又はその塩、イミン酸又はその塩、及びイミンスルホン酸又はその塩(酸アニオンの対カチオンは、プロトンイオン、アルカリ金属イオン、アルカリ土類金属イオン及び四級アンモニウムからなる群から選ばれる少なくとも1種のカチオン)からなる群から選ばれる少なくとも1種とを溶媒中で反応させる反応工程を有する。なお、この合成法の後に、さらにカチオンを交換する操作を行ってもよい。
〔反応工程〕
反応工程で用いる溶媒の種類は特に限定されるものでないが、原料塩を適度に溶解させることから、溶媒は、エチルメチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート、酢酸メチル、プロピオン酸メチル、ジエチルエーテル、アセトニトリル、テトラヒドロフラン、2−メチルテトラヒドロフラン、フラン、テトラヒドロピラン、1,3−ジオキサン、1,4−ジオキサン、ジイソプロピルエーテル、及び1,2−ジメトキシエタンからなる群から選ばれる少なくとも1種であることが好ましい。
反応工程の際の内温は特に限定されるものでないが、−40℃以上120℃以下又は−40℃以上溶媒の沸点以下であることが好ましく、−20℃以上80℃以下であることがより好ましく、−10℃以上50℃以下であることがさらに好ましい。内温が低すぎると、イオン性錯体の合成に多くの時間を要し得る。内温が高すぎると、溶媒が揮発し、イオン性錯体を適切に合成できない可能性がある。
〔精製工程〕
また、必須ではないが、イオン性錯体の純度を高めるため、反応工程の後に精製工程を行うことが好ましい。
精製工程の一態様として、イオン性錯体及び1質量%以上のテトラフルオロホウ酸リチウムが含まれる溶液に対して、ヘキサフルオロリン酸ナトリウムを添加することで、テトラフルオロホウ酸アニオンをテトラフルオロホウ酸ナトリウムとして析出させた後にろ別することが挙げられる。
ヘキサフルオロリン酸ナトリウムの添加量は特に限定されるものでないが、テトラフルオロホウ酸リチウムに対して0.8モル当量以上1.2モル当量以下であることが好ましく、0.9モル当量以上1.1モル当量以下であることがより好ましく、0.98モル当量以上1.02モル当量以下であることがさらに好ましい。添加量が少なすぎると、テトラフルオロホウ酸リチウムの残量が多くなる可能性があり、多すぎると、未反応のヘキサフルオロリン酸ナトリウムの残量が多くなる可能性がある。
以下、実施例、比較例および参考例により、本発明をさらに詳細に説明するが、本発明はこれらの記載に何ら制限を受けるものではない。
<<第1実施例>> 特定のイオン性錯体を含有する非水電解液電池用電解液
<実施例・参考例1〜8> イオン性錯体の合成
Figure 0006770243
以下の手法にて、実施例および参考例1〜8に係るイオン性錯体を合成した。いずれも原料や、生成物の取り扱いは露点−50℃以下の窒素雰囲気下にて行った。また、使用する硝子製反応器は150℃で12時間以上乾燥させた後に、露点−50℃以下の窒素気流下で室温まで冷却させたものを用いた。
〔参考例1〕1Bb−Liの合成
500mLの硝子製反応器にメチレンジスルホン酸リチウム(18.8g,100.0mmol)と水分100質量ppm以下のジメチルカーボネート(以下、「DMC」という。)(150g)を加えた。撹拌を行いつつ10℃にて20分かけて三フッ化ホウ素(以下、「BF」という。)(13.2g、200.0mmol)の導入を行うと、反応器の底に沈殿している固体の性状が変化した。室温まで昇温させた後、24時間撹拌を継続させた。F−NMRにて反応液の組成を分析すると、(1Bb−Li)が3モル%、テトラフルオロホウ酸リチウム(以下LiBF)が97モル%であった。(1Bb−Li)のDMCへの溶解度が低く、大部分が析出していた。
減圧濾過にて固体を回収し、EMC20gで洗浄し、更に40℃3時間の減圧乾燥後に、純度98モル%(F−NMR)の(1Bb−Li)が18.6g得られた。残りの2モル%はLiBFであった。
〔参考例2〕1Bd−Liの合成
500mLの硝子製反応器にスルホ酢酸リチウム(15.2g 100.0mmol)と水分100質量ppm以下のDMC(150g)を加えた。撹拌を行いつつ10℃にて20分かけてBF(13.2g、200.0mmol)の導入を行うと、難溶であるスルホ酢酸リチウムの相当量が消失し、反応の進行が確認された。室温まで昇温させた後、24時間撹拌を継続させた。F−NMRにて反応液の組成を分析すると、(1Bd−Li)が49モル%、LiBFが51モル%であった。
そこにヘキサフルオロリン酸ナトリウム(16.8g 100.0mmol)を添加し、室温にて4時間撹拌を行った後に、ろ過にて不溶解物を除去した。F−NMRにて回収したろ液の組成を分析すると、(1Bd−Li)が47モル%、ヘキサフルオロリン酸リチウム(以下LiPF)が51モル%、LiBFが2モル%であった。大量に含まれていたLiBFはNaPFとのカチオン交換によって難溶性のテトラフルオロホウ酸リチウム(以下NaBF)に変換されて析出し、ろ過によりその大部分が取り除かれた。ろ液を減圧濃縮し、濃度約30質量%となるまでDMCを留去した後、5℃まで冷却すると結晶が析出した。この結晶を減圧濾過にて回収し、40℃にて3時間減圧下で乾燥させることで、純度97モル%(F−NMR)の(1Bd−Li)が17.1g得られた。残りの3モル%はLiPFであった。
〔参考例3〕1Bd−Naの合成
500mLの硝子製反応器にスルホ酢酸ナトリウム(18.4g 100.0mmol)と水分100質量ppm以下のDMC(150g)を加えた。撹拌を行いつつ10℃にて20分かけてBF(13.2g、200.0mmol)の導入を行うと、反応器の底に沈殿している固体の性状が変化した。室温まで昇温させた後、24時間撹拌を継続させた。F−NMRにて反応液の組成を分析すると、ほぼ全て(1Bd−Na)であったがその濃度は薄く、相当量が析出沈殿していた。
減圧濾過にてろ液と固形分に分離し、固形分をDMC150gにて2回洗浄を行った。回収した洗浄液と先のろ液を混合し、減圧加熱下にてDMCを留去することで純度98モル%(F−NMR)の(1Bd−Na)が得られた。残りの2モル%はNaBFであった。
〔実施例4〕3Paの合成
500mLの硝子製反応器にピコリン酸リチウム(12.9g 100.0mmol)と水分100質量ppm以下のエチルメチルカーボネート(以下、「EMC」という。)(150g)を加えた。撹拌を行いつつ室温にて20分かけて五フッ化リン(以下PF)(25.2g、200.0mmol)の導入を行うと、難溶であるピコリン酸リチウムの相当量が消失し、反応の進行が確認された。そのまま室温にて24時間撹拌を継続させた。ろ過にて不溶解物を除去した後にF−NMRにて反応液の組成を分析すると、(3Pa)が49モル%、LiPFが51モル%であった。
〔実施例5〕3Pdの合成
500mLの硝子製反応器にN,N−ジメチルグリシンリチウム(10.9g 100.0mmol)と水分100質量ppm以下のEMC(150g)を加えた。撹拌を行いつつ室温にて20分かけてPF(25.2g、200.0mmol)の導入を行うと、難溶であるN,N−ジメチルグリシンリチウムの大部分が消失し、反応の進行が確認された。そのまま室温にて24時間撹拌を継続させた。ろ過にて不溶解物を除去した後にF−NMRにて反応液の組成を分析すると、(3Pd)が48モル%、LiPFが52モル%であった。
〔実施例6〕3Baの合成
500mLの硝子製反応器にピコリン酸リチウム(12.9g 100.0mmol)と水分100質量ppm以下のDMC(150g)を加えた。撹拌を行いつつ10℃にて20分かけてBF(13.2g、200.0mmol)の導入を行うと、難溶であるピコリン酸リチウムの相当量が消失し、反応の進行が確認された。室温まで昇温させた後、24時間撹拌を継続させた。F−NMRにて反応液の組成を分析すると、(3Ba)が49モル%、LiBFが51モル%であった。ろ過にて不溶解物を取り除き、減圧濃縮を行うと白色の固体が析出した。析出した固体を減圧濾過にて回収し、更に40℃にて3時間減圧下で乾燥させることで、純度>99モル%(F−NMR)の(3Ba)が得られた。
〔実施例7〕3Biの合成
500mLの硝子製反応器にN,N−ジメチルアミノメタンスルホン酸リチウム(14.5g 100.0mmol)と水分100質量ppm以下のEMC(150g)を加えた。撹拌を行いつつ10℃にて20分かけてBF(13.2g、200.0mmol)の導入を行った。室温まで昇温させた後、24時間撹拌を継続させた。ろ過にて析出物を回収し、更に40℃にて3時間減圧下で乾燥させることで、純度>99モル%(F−NMR)の(3Bi)が得られた。
〔実施例8〕3Bfの合成
500mLの硝子製反応器にピリジン−2−スルホン酸リチウム(16.5g 100.0mmol)と水分100質量ppm以下のDMC(150g)を加えた。撹拌を行いつつ10℃にて20分かけてBF(13.2g、200.0mmol)の導入を行うと、難溶であるピリジン−2−スルホン酸リチウムの相当量が消失し、反応の進行が確認された。室温まで昇温させた後、24時間撹拌を継続させた。F−NMRにて反応液の組成を分析すると、(3Bf)が50モル%、LiBFが50モル%であった。ろ過にて不溶解物を取り除き、減圧濃縮を行うと白色の固体が析出した。析出した固体を減圧濾過にて回収し、EMC100gに溶解させた。再度不溶解物をろ過にて除いた後に減圧濃縮を行うと白色の固体が析出し、これをろ過にて回収した。更に40℃にて3時間減圧下で乾燥させることで、純度99モル%(F−NMR)の(3Bf)が得られた。
〔実施例9〕
原料として、ピコリン酸リチウムの代わりにピコリン酸(12.3g,100.0mmol)を用いた以外は実施例4と同様の手順にて合成を行った後、F−NMRを測定すると、反応液の組成は(3Pa)が49モル%、ヘキサフルオロリン酸(HPF)が51モル%であった。この反応液にLiCl(4.3g,102mmol)を添加し、室温にて3時間攪拌を行った後に、減圧にて生成した塩酸を除去すると、副生したHPFがLiPFに変換された。
<実施例・参考例11〜77及び比較例11〜18> 非水電解液電池用電解液の調製
Figure 0006770243
Figure 0006770243
Figure 0006770243
表2〜4において、イオン性錯体(4Pa−Li)は、テトラフルオロオキサラトリン酸リチウムである。
また、表2〜4において、EMCはエチルメチルカーボネートであり、ECはエチレンカーボネートであり、DECはジエチルカーボネートであり、PCはプロピレンカーボネートである。
そして、表2〜4において、空欄は同上であることを示す。
表2〜4に記載の溶質及び表2〜4に記載のイオン性錯体を、表2〜4に記載の割合で、表2〜4に記載の非水有機溶媒に、溶質、イオン性錯体の順に混合し、1時間撹拌することで、実施例・参考例及び比較例に係る非水電解液電池用電解液を得た。なお、表2〜4に記載の非水電解液電池用電解液の調製は、液温を40℃以下に維持しながら行った。
<実施例・参考例101〜109及び比較例101、102>
非水電解液電池の作製及び評価 その1A
Figure 0006770243
表5において、空欄は同上であることを示す。
〔LCO正極の作製〕
LiCoO粉末90質量%に、バインダーとしてポリフッ化ビニリデン(以下PVDF)を5質量%、導電材としてアセチレンブラックを5質量%混合し、さらにN−メチルピロリドン(以下NMP)を添加し、正極合材ペーストを作製した。このペーストをアルミニウム箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに打ち抜くことで試験用LCO正極を得た。
〔黒鉛負極の作製〕
黒鉛粉末90質量%に、バインダーとして10質量%のPVDFを混合し、さらにNMPを添加し、負極合材ペーストを作製した。このペーストを銅箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに打ち抜くことで試験用黒鉛負極を得た。
〔非水電解液電池の作製〕
上記の試験用LCO正極と、試験用黒鉛負極と、表5に記載の電解液を浸み込ませたポリエチレン製セパレータとを備えるアルミラミネート外装セル(容量300mAh)を組み立てることで、実施例・参考例及び比較例に係る非水電解液電池を得た。
〔評価〕
実施例、参考例及び比較例に係る非水電解液電池のそれぞれについて、60℃の環境温度での充放電試験を実施し、高温でのサイクル特性を評価した。充電、放電ともに電流密度0.3mA/cmで行い、充電は4.2Vに達した後に1時間4.2Vを維持、放電は3.0Vまで行い、充放電サイクルを繰り返した。そして、500サイクル後の放電容量維持率でセルの劣化の具合を評価した(サイクル特性評価)。放電容量維持率は下記式で求めた。
[500サイクル後の放電容量維持率]
放電容量維持率(%)=(500サイクル後の放電容量/初放電容量)×100
実施例・参考例101〜109及び比較例102に係る非水電解液電池の放電容量維持率を、比較例101に係る非水電解液電池の放電容量維持率を100としたときの相対値として表6に示す。
Figure 0006770243
実施例に係るイオン性錯体を含有する電解液を含む非水電解液電池は、該イオン性錯体を含まない非水電解液電池に比べて高いサイクル特性を得られることが確認された。
<実施例110、111及び比較例103、104>
非水電解液電池の作製及び評価 その1B
Figure 0006770243
表7において、空欄は同上であることを示す。
〔非水電解液電池の作製〕
電解液が表7に示すとおりであること以外は、参考例101と同じ手法にてアルミラミネート外装セル(容量300mAh)を組み立て、実施例・参考例及び比較例に係る非水電解液電池を得た。
〔評価〕
参考例101と同様の手法にて放電容量維持率を求めた。実施例110に係る非水電解液電池の放電容量維持率を、比較例103に係る非水電解液電池の放電容量維持率を100としたときの相対値として表8に示す。また、実施例111に係る非水電解液電池の放電容量維持率を、比較例104に係る非水電解液電池の放電容量維持率を100としたときの相対値として表8に示す。
Figure 0006770243
実施例に係るイオン性錯体を含有する電解液を含む非水電解液電池は、該イオン性錯体を含まない非水電解液電池に比べて高いサイクル特性を得られることが確認された。
<実施例・参考例201〜235及び比較例201、202>
非水電解液電池の作製及び評価 その2A
Figure 0006770243
表9において、空欄は同上であることを示す。
〔NCM正極の作製〕
LiNi1/3Mn1/3Co1/3粉末90質量%に、PVDF(バインダー)を5質量%、アセチレンブラック(導電材)を5質量%混合し、さらにNMPを添加し、正極合材ペーストを作製した。このペーストをアルミニウム箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに打ち抜くことで試験用NCM正極を得た。
〔非水電解液電池の作製〕
正極がNCM正極であり、電解液が表9に示すとおりであること以外は、参考例101と同じ手法にてアルミラミネート外装セル(容量300mAh)を組み立て、実施例・参考例及び比較例に係る非水電解液電池を得た。
〔評価〕
参考例101と同様の手法にて放電容量維持率を求めた。なお、充電は4.3Vに達した後1時間4.3Vを維持した。実施例・参考例201〜235及び比較例202に係る非水電解液電池の放電容量維持率を、比較例201に係る非水電解液電池の放電容量維持率を100としたときの相対値として表10に示す。
Figure 0006770243
実施例に係るイオン性錯体を含有する電解液を含む非水電解液電池は、該イオン性錯体を含まない非水電解液電池に比べて高いサイクル特性を得られることが確認された。その効果は、イオン性錯体の含有量が0.01質量%である場合においても、僅かながら確認でき、イオン性錯体の含有量が0.01質量%から0.1、1質量%へと増えるにつれて高まることが確認された。イオン性錯体の含有量が3質量%であると、含有量が1質量%である場合に比べて高いサイクル特性が得られるもの(参考例207他)だけでなく、含有量が1質量%である場合とほとんど違いがみられないもの(実施例215)、含有量が1質量%である場合に比べてサイクル特性が低下するもの(実施例211)も見られた。これは、イオン性錯体の含有量が3質量%に達すると、電解液の粘度が高まり、非水電解液電池内でのカチオンの移動が妨げられ、電池性能が低下し得るためと予想される。
イオン性錯体の種類と、サイクル特性向上の効果の強さとの関係は、3Pa>1Bd−Li>>3Ba>3Bi、3Bf>>3Pdであり、イオン性錯体が3Paである場合や、1Bd−Liである場合、高いサイクル特性を得られた。
なお、イオン性錯体が1Bb−Liである場合も有利な効果を奏するが(参考例201〜203)、非水有機溶媒への溶解度が低く、最適濃度付近だと思われる1質量%での比較を行うことができなかった。
<実施例236〜243及び比較例203、204>
非水電解液電池の作製及び評価 その2B
Figure 0006770243
表11において、空欄は同上であることを示す。
〔非水電解液電池の作製〕
正極がNCM正極であり、電解液が表11に示すとおりであること以外は、参考例101と同じ手法にてアルミラミネート外装セル(容量300mAh)を組み立て、実施例及び比較例に係る非水電解液電池を得た。
〔評価〕
参考例101と同様の手法にて放電容量維持率を求めた。なお、充電は4.3Vに達した後1時間4.3Vを維持した。実施例236〜239に係る非水電解液電池の放電容量維持率を、比較例203に係る非水電解液電池の放電容量維持率を100としたときの相対値として表12に示す。また、実施例240〜243に係る非水電解液電池の放電容量維持率を、比較例204に係る非水電解液電池の放電容量維持率を100としたときの相対値として表12に示す。
Figure 0006770243
実施例に係るイオン性錯体を含有する電解液を含む非水電解液電池は、該イオン性錯体を含まない非水電解液電池に比べて高いサイクル特性を得られることが確認された。
特に、イオン性錯体3Paにて、溶質LiPFの濃度を1Mから1.2Mに変えた場合(実施例210、234)、溶質をLiPFからLiBFに変えた場合(実施例210、238)、溶質をLiPFからLiFSIに変えた場合(実施例210、242)のいずれにおいても、本発明のイオン性錯体を添加しなかった場合と比較して大きなサイクル特性向上効果が見られた。
<実施例・参考例301〜313及び比較例301〜305>
非水電解液電池の作製及び評価 その3
Figure 0006770243
表13において、空欄は同上であることを示す。
〔ハードカーボン負極の作製〕
難黒鉛化性炭素(以下、ハードカーボン)粉末90質量%に、バインダーとして10質量%のPVDFを混合し、さらにNMPを添加し、負極合材ペーストを作製した。このペーストを銅箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに打ち抜くことで試験用ハードカーボン負極を得た。
〔非水電解液電池の作製〕
正極がNCM正極であり、負極がハードカーボン負極であり、電解液が表13に示すとおりであること以外は、参考例101と同じ手法にてアルミラミネート外装セル(容量300mAh)を組み立て、実施例・参考例及び比較例に係る非水電解液電池を得た。
〔評価〕
参考例101と同様の手法にて放電容量維持率を求めた。なお、放電は2.2Vまで行った。実施例・参考例301〜309及び比較例302に係る非水電解液電池の放電容量維持率を、比較例301に係る非水電解液電池の放電容量維持率を100としたときの相対値として表14に示す。実施例310に係る非水電解液電池の放電容量維持率を、比較例303に係る非水電解液電池の放電容量維持率を100としたときの相対値として表14に示す。実施例311に係る非水電解液電池の放電容量維持率を、比較例304に係る非水電解液電池の放電容量維持率を100としたときの相対値として表14に示す。参考例312及び実施例313に係る非水電解液電池の放電容量維持率を、比較例305に係る非水電解液電池の放電容量維持率を100としたときの相対値として表14に示す。
Figure 0006770243
実施例に係るイオン性錯体を含有する電解液を含む非水電解液電池は、該イオン性錯体を含まない非水電解液電池に比べて高いサイクル特性を得られることが確認された。
また、非水有機溶媒をEC/EMCからPC/DECに変えた場合(実施例303、313)、本発明のイオン性錯体を添加しなかった場合と比較して大きなサイクル特性向上効果が見られた。
<実施例・参考例401〜404及び比較例401〜403>
非水電解液電池の作製及び評価 その4
Figure 0006770243
表15において、空欄は同上であることを示す。
〔シリコン負極の作製〕
単体ケイ素粉末75質量%に、バインダーとして10質量%のポリフッ化ビニリデン(PVDF)、導電材として15質量%のアセチレンブラックを混合し、さらにN−メチル−2−ピロリドン(NMP)を添加し、負極合材ペーストを作製した。このペーストを銅箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに打ち抜く事で試験用シリコン負極を得た。
〔非水電解液電池の作製〕
正極がNCM正極であり、負極がシリコン負極であり、電解液が表15に示すとおりであること以外は、参考例101と同じ手法にてアルミラミネート外装セル(容量300mAh)を組み立て、実施例・参考例及び比較例に係る非水電解液電池を得た。
〔評価〕
参考例101と同様の手法にて放電容量維持率を求めた。なお、100サイクル後の放電容量維持率でセルの劣化の具合を評価した。参考例401及び実施例402に係る非水電解液電池の放電容量維持率を、比較例401に係る非水電解液電池の放電容量維持率を100としたときの相対値として表16に示す。実施例403に係る非水電解液電池の放電容量維持率を、比較例402に係る非水電解液電池の放電容量維持率を100としたときの相対値として表16に示す。実施例404に係る非水電解液電池の放電容量維持率を、比較例403に係る非水電解液電池の放電容量維持率を100としたときの相対値として表16に示す。
Figure 0006770243
実施例に係るイオン性錯体を含有する電解液を含む非水電解液電池は、該イオン性錯体を含まない非水電解液電池に比べて高いサイクル特性を得られることが確認された。
<実施例・参考例501〜506及び比較例501〜504>
非水電解液電池の作製及び評価 その5
Figure 0006770243
表17において、空欄は同上であることを示す。
〔LTO負極の作製〕
LiTi12粉末90質量%に、バインダーとして5質量%のPVDF、導電剤として5質量%のアセチレンブラックを混合し、さらにNMPを添加し、負極合材ペーストを作製した。このペーストを銅箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに打ち抜くことで試験用LTO負極を得た。
〔非水電解液電池の作製〕
正極がNCM正極であり、負極がLTO負極であり、電解液が表17に示すとおりであること以外は、参考例101と同じ手法にてアルミラミネート外装セル(容量300mAh)を組み立て、実施例・参考例及び比較例に係る非水電解液電池を得た。
〔評価〕
参考例101と同様の手法にて放電容量維持率を求めた。なお、充電は2.8Vに達した後1時間2.8Vを維持、放電は1.5Vまで行った。参考例501及び実施例502に係る非水電解液電池の放電容量維持率を、比較例501に係る非水電解液電池の放電容量維持率を100としたときの相対値として表18に示す。実施例503に係る非水電解液電池の放電容量維持率を、比較例502に係る非水電解液電池の放電容量維持率を100としたときの相対値として表18に示す。実施例504に係る非水電解液電池の放電容量維持率を、比較例503に係る非水電解液電池の放電容量維持率を100としたときの相対値として表18に示す。参考例505及び実施例506に係る非水電解液電池の放電容量維持率を、比較例504に係る非水電解液電池の放電容量維持率を100としたときの相対値として表18に示す。
Figure 0006770243
実施例に係るイオン性錯体を含有する電解液を含む非水電解液電池は、該イオン性錯体を含まない非水電解液電池に比べて高いサイクル特性を得られることが確認された。
ここで、イオン性錯体を1Bd−Li又は3Paに固定、正極をNCMに固定したうえで負極を変化させた場合の結果をまとめる。負極を黒鉛、ハードカーボン、シリコン、LTOと変化させたところ、サイクル特性向上の効果の強弱はあるものの、何れの組み合わせにおいても良好な効果が見られた。特に負極にシリコンを用いた場合の効果が大きかった。これはシリコン負極の最大の課題である充放電による大きな体積変化を、イオン性錯体(1Bd−Li又は3Pa)からなる保護被膜がある程度抑制したためだと推測される。また、充放電による体積変化が殆どないとされるLTO負極を用いた場合、イオン性錯体(1Bd−Li又は3Pa)添加によるサイクル特性向上効果は他の負極に比べて少ない値となった。
<実施例・参考例601〜604及び比較例601〜603>
非水電解液電池の作製及び評価 その6
Figure 0006770243
表19において、空欄は同上であることを示す。
〔LFP正極の作製〕
非晶質炭素でコーティングされたLiFePO粉末90質量%に、PVDF(バインダー)を5質量%、アセチレンブラック(導電材)を5質量%混合し、さらにNMPを添加し、正極合材ペーストを作製した。このペーストをアルミニウム箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに打ち抜くことで試験用LFP正極を得た。
〔非水電解液電池の作製〕
正極がLPF正極であり、電解液が表19に示すとおりであること以外は、参考例101と同じ手法にてアルミラミネート外装セル(容量300mAh)を組み立て、実施例・参考例及び比較例に係る非水電解液電池を得た。
〔評価〕
参考例101と同様の手法にて放電容量維持率を求めた。なお、充電は4.1Vに達した後1時間4.1Vを維持、放電は2.5Vまで行った。参考例601及び実施例602に係る非水電解液電池の放電容量維持率を、比較例601に係る非水電解液電池の放電容量維持率を100としたときの相対値として表20に示す。実施例603に係る非水電解液電池の放電容量維持率を、比較例602に係る非水電解液電池の放電容量維持率を100としたときの相対値として表20に示す。実施例604に係る非水電解液電池の放電容量維持率を、比較例603に係る非水電解液電池の放電容量維持率を100としたときの相対値として表20に示す。
Figure 0006770243
実施例に係るイオン性錯体を含有する電解液を含む非水電解液電池は、該イオン性錯体を含まない非水電解液電池に比べて高いサイクル特性を得られることが確認された。
<実施例・参考例701〜704及び比較例701〜703>
非水電解液電池の作製及び評価 その7
Figure 0006770243
表21において、空欄は同上であることを示す。
〔NCA正極の作製〕
LiNi0.8Co0.15Al0.05粉末90質量%に、PVDF(バインダー)を5質量%、アセチレンブラック(導電材)を5質量%混合し、さらにNMPを添加し、正極合材ペーストを作製した。このペーストをアルミニウム箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに打ち抜くことで試験用NCA正極を得た。
〔非水電解液電池の作製〕
正極がNCA正極であり、電解液が表21に示すとおりであること以外は、参考例101と同じ手法にてアルミラミネート外装セル(容量300mAh)を組み立て、実施例・参考例及び比較例に係る非水電解液電池を得た。
〔評価〕
参考例101と同様の手法にて放電容量維持率を求めた。なお、充電は4.3Vに達した後1時間4.3Vを維持した。参考例701及び実施例702に係る非水電解液電池の放電容量維持率を、比較例701に係る非水電解液電池の放電容量維持率を100としたときの相対値として表22に示す。実施例703に係る非水電解液電池の放電容量維持率を、比較例702に係る非水電解液電池の放電容量維持率を100としたときの相対値として表22に示す。実施例704に係る非水電解液電池の放電容量維持率を、比較例703に係る非水電解液電池の放電容量維持率を100としたときの相対値として表22に示す。
Figure 0006770243
実施例に係るイオン性錯体を含有する電解液を含む非水電解液電池は、該イオン性錯体を含まない非水電解液電池に比べて高いサイクル特性を得られることが確認された。
<実施例・参考例801〜804及び比較例801〜803>
非水電解液電池の作製及び評価 その8
Figure 0006770243
表23において、空欄は同上であることを示す。
〔LMO正極の作製〕
LiMn粉末90質量%に、PVDF(バインダー)を5質量%、アセチレンブラック(導電材)を5質量%混合し、さらにNMPを添加し、正極合材ペーストを作製した。このペーストをアルミニウム箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに打ち抜くことで試験用LMO正極を得た。
〔非水電解液電池の作製〕
正極がLMO正極であり、電解液が表23に示すとおりであること以外は、参考例101と同じ手法にてアルミラミネート外装セル(容量300mAh)を組み立て、実施例・参考例及び比較例に係る非水電解液電池を得た。
〔評価〕
参考例101と同様の手法にて放電容量維持率を求めた。参考例801及び実施例802に係る非水電解液電池の放電容量維持率を、比較例801に係る非水電解液電池の放電容量維持率を100としたときの相対値として表24に示す。実施例803に係る非水電解液電池の放電容量維持率を、比較例802に係る非水電解液電池の放電容量維持率を100としたときの相対値として表24に示す。実施例804に係る非水電解液電池の放電容量維持率を、比較例803に係る非水電解液電池の放電容量維持率を100としたときの相対値として表24に示す。
Figure 0006770243
実施例に係るイオン性錯体を含有する電解液を含む非水電解液電池は、該イオン性錯体を含まない非水電解液電池に比べて高いサイクル特性を得られることが確認された。
<実施例・参考例901〜904及び比較例901〜902>
非水電解液電池の作製及び評価 その9
Figure 0006770243
表25において、空欄は同上であることを示す。
〔NaFe0.5Co0.5正極の作製〕
NaFe0.5Co0.5粉末85質量%に、PVDF(バインダー)を5質量%、アセチレンブラック(導電材)を10質量%混合し、さらにNMPを添加し、正極合材ペーストを作製した。このペーストをアルミニウム箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに打ち抜くことで試験用NaFe0.5Co0.5正極を得た。
〔非水電解液電池の作製〕
正極がNaFe0.5Co0.5正極であり、負極がハードカーボン負極であり、電解液が表25に示すとおりであること以外は、参考例101と同じ手法にてアルミラミネート外装セル(容量300mAh)を組み立て、実施例・参考例及び比較例に係る非水電解液電池を得た。
〔評価〕
参考例101と同様の手法にて放電容量維持率を求めた。なお、充電は3.8Vに達した後1時間3.8Vを維持、放電は1.5Vまで行い、200サイクル後の放電容量維持率でセルの劣化の具合を評価した。参考例901及び実施例902に係る非水電解液電池の放電容量維持率を、比較例901に係る非水電解液電池の放電容量維持率を100としたときの相対値として表26に示す。参考例903及び実施例904に係る非水電解液電池の放電容量維持率を、比較例902に係る非水電解液電池の放電容量維持率を100としたときの相対値として表26に示す。
Figure 0006770243
実施例に係るイオン性錯体を含有する電解液を含む非水電解液電池は、該イオン性錯体を含まない非水電解液電池に比べて高いサイクル特性を得られることが確認された。
ここで、イオン性錯体を1Bd−Li又は3Paに固定、負極を黒鉛に固定したうえで正極を変化させた場合の結果をまとめる。正極をLCO、NCM、LFP、NCA、LMOと変化させたところ、サイクル特性向上の効果の多少の強弱はあるものの、何れの組み合わせにおいても良好な効果が見られた。
また、溶質のカチオンをリチウムからナトリウムに替えたナトリウムイオン電池の場合でも、イオン性錯体1Bd−Na又は3Paを含有する電解液を用いることで高いサイクル特性向上効果が見られた。(参考例901、903、実施例902、904)
<参考例206、実施例210、比較例201、205>
Figure 0006770243
表27において、空欄は同上であることを示す。
〔非水電解液電池の作製〕
正極がNCM正極であり、電解液が表27に示すとおりであること以外は、参考例101と同じ手法にてアルミラミネート外装セル(容量300mAh)を組み立て、実施例・参考例及び比較例に係る非水電解液電池を得た。
〔評価〕
実施例、参考例及び比較例に係る非水電解液電池を用いて60℃の環境温度での充放電試験を実施し、高温サイクル特性と電池内部でのガス発生量を評価した。充電、放電ともに電流密度0.3mA/cmで行い、充電は、4.3Vに達した後、1時間4.3Vを維持、放電は3.0Vまで行い、充放電サイクルを繰り返した。そして、10サイクル後のガス発生量と、500サイクル後の放電容量維持率でセルの劣化の具合を評価した(ガス発生量、サイクル特性評価)。
ガス発生量(mL)は、ラミネートセルを充放電装置から取り外し、シリコンオイルに完全に浸漬させたときの浮力から算出した。それぞれ、比較例201の放電容量維持率、ガス発生量を100としたときの相対値を表28に示す。
Figure 0006770243
表28に示すとおり、本発明に係るイオン性錯体は、高いサイクル特性向上効果を有する既知のイオン性錯体(4Pa−Li)(比較例205)と同等以上のサイクル特性を有するだけでなく、サイクル初期のガス発生量を大幅に抑制できることが分かる。
<実施例・参考例1001〜1008及び比較例1001〜1004>
Figure 0006770243
非水有機溶媒をEMC:FEC=2:1(体積比)の混合溶媒とした以外は参考例16、実施例20及び比較例11と同様に、それぞれ、参考例1001、実施例1005及び比較例1001に係る非水電解液電池用電解液を調製した。これらの電解液について、参考例206と同様に高温でのサイクル特性を評価した。結果を表30に示す。
非水有機溶媒をEMC:PC=2:1(体積比)の混合溶媒とした以外は参考例16、実施例20及び比較例11と同様に、それぞれ、参考例1002、実施例1006及び比較例1002に係る非水電解液電池用電解液を調製した。これらの電解液について、参考例206と同様に高温でのサイクル特性を評価した。結果を表30に示す。
非水有機溶媒をEP:EC=2:1(体積比)の混合溶媒とした以外は参考例16、実施例20及び比較例11と同様に、それぞれ、参考例1003、実施例1007及び比較例1003に係る非水電解液電池用電解液を調製した。これらの電解液について、参考例206と同様に高温でのサイクル特性を評価した。結果を表30に示す。
非水有機溶媒をEP:EMC:EC:=1:1:1(体積比)の混合溶媒とした以外は参考例16、実施例20及び比較例11と同様に、それぞれ、参考例1004、実施例1008及び比較例1004に係る非水電解液電池用電解液を調製した。これらの電解液について、参考例206と同様に高温でのサイクル特性を評価した。結果を表30に示す。
Figure 0006770243
まず、参考例1001、実施例1005及び比較例1001を対比する。比較例1001の電解液を用いた場合の放電容量維持率を100としたときに、参考例1001の電解液を用いた場合の放電容量維持率の相対値は120であり、実施例1005の電解液を用いた場合の放電容量維持率の相対値は126である。
続いて、参考例1002、実施例1006及び比較例1002を対比する。比較例1002の電解液を用いた場合の放電容量維持率を100としたときに、参考例1002の電解液を用いた場合の放電容量維持率の相対値は127であり、実施例1006の電解液を用いた場合の放電容量維持率の相対値は133である。
続いて、参考例1003、実施例1007及び比較例1003を対比する。比較例1003の電解液を用いた場合の放電容量維持率を100としたときに、参考例1003の電解液を用いた場合の放電容量維持率の相対値は128であり、実施例1007の電解液を用いた場合の放電容量維持率の相対値は136である。
最後に、参考例1004、実施例1008及び比較例1004を対比する。比較例1004の電解液を用いた場合の放電容量維持率を100としたときに、参考例1004の電解液を用いた場合の放電容量維持率の相対値は130であり、実施例1008の電解液を用いた場合の放電容量維持率の相対値は135である。
これらより、溶媒系が異なる場合でも、実施例に係るイオン性錯体を含有する電解液を含む非水電解液電池は、該イオン性錯体を含まない非水電解液電池に比べて高いサイクル特性を得られるといえる。
以上の結果をまとめる。
実施例に係るイオン性錯体を含有する電解液を含む非水電解液電池は、該イオン性錯体を含まない非水電解液電池に比べて高いサイクル特性を得られることが確認された。その効果は、イオン性錯体の含有量が0.01質量%である場合においても、僅かながら確認でき、イオン性錯体の含有量が0.01質量%から0.1、1質量%へと増えるにつれて高まることが確認された。イオン性錯体の含有量が3質量%であると、含有量が1質量%である場合に比べて高いサイクル特性が得られるもの(参考例207他)だけでなく、含有量が1質量%である場合とほとんど違いがみられないもの(実施例215)、含有量が1質量%である場合に比べてサイクル特性が低下するもの(実施例211)も見られた。
イオン性錯体の種類と、サイクル特性向上の効果の強さとの関係は、3Pa>1Bd−Li>>3Ba>3Bi、3Bf>>3Pdであり、イオン性錯体が3Paである場合や、1Bd−Liである場合、高いサイクル特性を得られた。
なお、イオン性錯体が1Bb−Liである場合も有利な効果を奏するが(参考例201〜203)、非水有機溶媒への溶解度が低く、最適濃度付近だと思われる1質量%での比較を行うことができなかった。
次に、イオン性錯体を1Bd−Li又は3Paに固定、正極をNCMに固定したうえで負極を変化させた場合の結果をまとめる。負極を黒鉛、ハードカーボン、シリコン、LTOと変化させたところ、サイクル特性向上の効果の強弱はあるものの、何れの組み合わせにおいても良好な効果が見られた。特に負極にシリコンを用いた場合の効果が大きかった。これはシリコン負極の最大の課題である充放電による大きな体積変化を、イオン性錯体(1Bd−Li又は3Pa)からなる保護被膜がある程度抑制したためだと推測される。また、充放電による体積変化が殆どないとされるLTO負極を用いた場合、イオン性錯体(1Bd−Li又は3Pa)添加によるサイクル特性向上効果は他の負極に比べて少ない値となった。
イオン性錯体を1Bd−Li又は3Paに固定、負極を黒鉛に固定したうえで正極を変化させた場合の結果をまとめる。正極をLCO、NCM、LFP、NCA、LMOと変化させたところ、サイクル特性向上の効果の多少の強弱はあるものの、何れの組み合わせにおいても良好な効果が見られた。
イオン性錯体3Paにて、溶質LiPFの濃度を1Mから1.2Mに変えた場合(実施例210、234)、非水有機溶媒をEC/EMCからPC/DECに変えた場合(実施例303、313)、溶質をLiPFからLiBFに変えた場合(実施例210、238)、溶質をLiPFからLiFSIに変えた場合(実施例210、242)のいずれにおいても、本発明のイオン性錯体を添加しなかった場合と比較して大きなサイクル特性向上効果が見られた。さらには、カチオンをLiからNaに変えた二次電池系においても(実施例・参考例901〜904)、本発明のイオン性錯体を添加しなかった場合と比較して大きなサイクル特性向上効果が見られた。
また、溶媒系が異なる場合でも、実施例に係るイオン性錯体を含有する電解液を含む非水電解液電池は、該イオン性錯体を含まない非水電解液電池に比べて高いサイクル特性を得られる(実施例・参考例1001〜1008)。
以上より、本発明のイオン性錯体を添加すると、特定の正極、負極、溶質、非水有機溶媒に依らず、非水電解液電池の高温での耐久性(サイクル特性)を向上することができる。
<<第2実施例>> 特定のイオン性錯体に加え、第2の化合物(含フッ素化合物)をさらに含有する非水電解液電池用電解液
<その1> 電解液No.A(1)〜A(68)
〔電解液No.A(1)〜A(68)の調製〕
体積比でEMC:EC=2:1である非水有機溶媒に、溶質としてLiPFを1mol/Lの濃度となるように、イオン性錯体として参考例2で合成した(1Bd−Li)を1質量%の濃度となるように、第2の化合物として表31に記載の化合物を表31に記載の濃度となるように、溶質、イオン性錯体、第2の化合物の順に混合し、1時間撹拌することで、電解液No.A(1)〜A(68)に係る非水電解液電池用電解液を得た。表31において、第2の化合物は、表32に記載の各種陰イオンの金属塩である。例えば、電解液No.A(1)では、第2の化合物の種類は、9−1−Liである。これは、表32に記載の陰イオン9−1のリチウム塩であることを意味する。
なお、表31の参考例A1−(10)の第2の化合物はカチオンがテトラエチルアンモニウムである9−2−N1であり、参考例A1−(11)の第2の化合物はカチオンがテトラエチルホスホニウムである9−2−P1である。また、これ以降の電解液の調製においてもすべて液温を40℃以下に維持しながら行った。
〔評価〕
電解液として、電解液No.A(1)〜A(68)を用いたこと以外は、参考例206と同様の方法でアルミラミネート外装セル(容量300mAh)を組み立て、同様に10サイクル後のガス発生量と、500サイクル後の放電容量維持率でセルの劣化の具合を評価した(ガス発生量、サイクル特性評価)。それぞれの値を、比較例201のガス発生量、放電容量維持率を100としたときの相対値として表31に示す。
また、ガス発生量の評価と同様に10サイクル後のセルを用いて低温での出力特性を評価した。すなわち、10サイクル後、25℃まで冷却し3.0Vまで放電させた後に、−20℃、0.2Cレートにて4.3Vまで充電を行いそのまま1時間4.3Vを維持した。更に−20℃のまま5Cレートでの放電を3.0Vに達するまで行い、−20℃での放電容量を測定した。結果を表31に示す。なお、表31に記載の放電容量(−20℃)の数値は、比較例201の放電容量(−20℃)を100とした場合の相対値であり、値が大きいほど低温での出力特性に優れることを示唆している。
表31の結果から、特定のイオン性錯体に加え、さらに第2の化合物を含む電解液No.A(1)〜A(68)を用いた参考例A1−(1)〜A1−(68)は、参考例206と同等のガス発生量と、参考例206と同等又はそれ以上のサイクル特性を示すだけでなく、低温での出力特性が向上することが分かった。
Figure 0006770243
Figure 0006770243
<その2> 電解液No.A(69)〜A(80)
〔電解液No.A(69)〜A(80)の調製〕
体積比でDEC:PC=2:1である非水有機溶媒に、溶質としてNaPFを1mol/Lの濃度となるように、イオン性錯体として参考例3で合成した(1Bd−Na)を1質量%の濃度となるように、第2の化合物として表33に記載の化合物を表33に記載の濃度となるように、溶質、イオン性錯体、第2の化合物の順に混合し、1時間撹拌することで、電解液No.A(69)〜A(80)に係る非水電解液電池用電解液を得た。表33において、第2の化合物は、表32に記載の各種陰イオンの金属塩である。
〔評価〕
電解液として、電解液No.A(69)〜A(80)を用いたこと以外は、参考例901と同様の方法でアルミラミネート外装セル(容量300mAh)を組み立て、同様に10サイクル後のガス発生量と、200サイクル後の放電容量維持率でセルの劣化の具合を評価した(ガス発生量、サイクル特性評価)。なお、充電は3.8Vに達した後に1時間3.8Vを維持、放電は1.5Vまで行い、充放電サイクルを繰り返した。それぞれの値を、比較例901のガス発生量、放電容量維持率を100としたときの相対値として表33に示す。
また、ガス発生量の評価と同様に10サイクル後のセルを用いて低温での出力特性を評価した。すなわち、10サイクル後、25℃まで冷却し3.0Vまで放電させた後に、−20℃、0.2Cレートにて3.8Vまで充電を行いそのまま1時間3.8Vを維持した。更に−20℃のまま5Cレートでの放電を1.5Vに達するまで行い、−20℃での放電容量を測定した。なお、表33に記載の放電容量(−20℃)の数値は、比較例901の放電容量(−20℃)を100とした場合の相対値である。
表33の結果から、ナトリウムイオン電池の場合であっても、特定のイオン性錯体に加え、さらに第2の化合物を含む電解液No.A(69)〜A(80)を用いた参考例A1−(69)〜A1−(80)は、参考例901と同等のガス発生量と、参考例901と同等又はそれ以上のサイクル特性を示すだけでなく、低温での出力特性が向上することが分かった。
Figure 0006770243
<その3> 電解液No.A(81)〜A(148)
〔電解液No.A(81)〜A(148)の調製〕
体積比でEMC:EC=2:1である非水有機溶媒に、溶質としてLiPFを1mol/Lの濃度となるように、イオン性錯体として実施例4で合成した(3Pa)を1質量%の濃度となるように、第2の化合物として表34に記載の化合物を表34に記載の濃度となるように、溶質、イオン性錯体、第2の化合物の順に混合し、1時間撹拌することで、電解液No.A(81)〜A(148)に係る非水電解液電池用電解液を得た。表34において、第2の化合物は、表32に記載の各種陰イオンの金属塩である。
〔評価〕
電解液として、電解液No.A(81)〜A(148)を用いたこと以外は、実施例210と同様の方法でアルミラミネート外装セル(容量300mAh)を組み立て、同様に10サイクル後のガス発生量と、500サイクル後の放電容量維持率でセルの劣化の具合を評価した(ガス発生量、サイクル特性評価)。それぞれの値を、比較例201のガス発生量、放電容量維持率を100としたときの相対値として表34に示す。
また、ガス発生量の評価と同様に10サイクル後のセルを用いて低温での出力特性を評価した。すなわち、10サイクル後、25℃まで冷却し3.0Vまで放電させた後に、−20℃、0.2Cレートにて4.3Vまで充電を行いそのまま1時間4.3Vを維持した。更に−20℃のまま5Cレートでの放電を3.0Vに達するまで行い、−20℃での放電容量を測定した。なお、表34に記載の放電容量(−20℃)の数値は、比較例201の放電容量(−20℃)を100とした場合の相対値である。
表34の結果から、特定のイオン性錯体の種類を変えた場合であっても、特定のイオン性錯体に加え、さらに第2の化合物を含む電解液No.A(81)〜A(148)を用いた実施例A1−(81)〜A1−(148)は、実施例210と同等のガス発生量と、実施例210と同等又はそれ以上のサイクル特性を示すだけでなく、低温での出力特性が向上することが分かった。
Figure 0006770243
<その4> 電解液No.A(149)〜A(154)
〔電解液No.A(149)〜A(154)の調製〕
体積比でDEC:PC=2:1である非水有機溶媒に、溶質としてNaPFを1mol/Lの濃度となるように、イオン性錯体として実施例4で合成した(3Pa)を1質量%の濃度となるように、第2の化合物として表35に記載の化合物を表35に記載の濃度となるように、溶質、イオン性錯体、第2の化合物の順に混合し、1時間撹拌することで、電解液No.A(149)〜A(154)に係る非水電解液電池用電解液を得た。表35において、第2の化合物は、表32に記載の各種陰イオンの金属塩である。
〔評価〕
電解液として、電解液No.A(149)〜A(154)を用いたこと以外は、実施例902と同様の方法でアルミラミネート外装セル(容量300mAh)を組み立て、同様に10サイクル後のガス発生量と、200サイクル後の放電容量維持率でセルの劣化の具合を評価した(ガス発生量、サイクル特性評価)。なお、充電は3.8Vに達した後に1時間3.8Vを維持、放電は1.5Vまで行い、充放電サイクルを繰り返した。それぞれの値を、比較例901のガス発生量、放電容量維持率を100としたときの相対値として表35に示す。
また、ガス発生量の評価と同様に10サイクル後のセルを用いて低温での出力特性を評価した。すなわち、10サイクル後、25℃まで冷却し3.0Vまで放電させた後に、−20℃、0.2Cレートにて3.8Vまで充電を行いそのまま1時間3.8Vを維持した。更に−20℃のまま5Cレートでの放電を1.5Vに達するまで行い、−20℃での放電容量を測定した。なお、表35に記載の放電容量(−20℃)の数値は、比較例901の放電容量(−20℃)を100とした場合の相対値である。
表35の結果から、ナトリウムイオン電池の場合においては、イオン性錯体に加え、さらに第2の化合物を含む電解液No.A(149)〜A(154)を用いた実施例A1−(149)〜A1−(154)は、実施例902と同等のガス発生量を示したうえで、サイクル特性と低温での出力特性が向上することが分かった。
Figure 0006770243
<その5> 特定のイオン性錯体と第2の化合物の種々の組合せ
以降、イオン性錯体と第2の化合物について代表的な組合せ及び濃度の電解液を用い、正極の種類、負極の種類等を変えて評価を行った。参考までに、本発明の全ての実施例、参考例及び比較例で用いた正極及び負極の組合せと、評価条件の一覧を表36に示す。
Figure 0006770243
上記の評価結果を表37及び表38に示す。なお、以降で記載するイオン性錯体と第2の化合物の組合せ及び濃度以外の電解液についても、上述と同様の傾向を示すことが確認されている。
表37中、それぞれの電池構成において、電解液No.A(3)、A(7)、A(24)、A(27)、A(36)、A(45)を用いた参考例のガス発生量、放電容量維持率、放電容量(−20℃)の値は、対応する電池構成で比較例11の電解液を用いた比較例のガス発生量、放電容量維持率、放電容量(−20℃)を100としたときの相対値である。
以上の結果から、正極及び負極の種類を変えた場合であっても、イオン性錯体に加え、さらに第2の化合物を含む電解液No.A(3)、A(7)、A(24)、A(27)、A(36)、A(45)を用いた参考例は、参考例16の電解液を用いた参考例と同等のガス発生量と、参考例16の電解液を用いた参考例と同等又はそれ以上のサイクル特性を示すだけでなく、低温での出力特性が向上することが分かった。
表38中、それぞれの電池構成において、電解液No.A(83)、A(87)、A(104)、A(107)、A(116)、A(125)を用いた実施例のガス発生量、放電容量維持率、放電容量(−20℃)の値は、対応する電池構成で比較例11の電解液を用いた比較例のガス発生量、放電容量維持率、放電容量(−20℃)を100としたときの相対値である。
以上の結果から、正極及び負極の種類を変えた場合であっても、イオン性錯体に加え、さらに第2の化合物を含む電解液No.A(83)、A(87)、A(104)、A(107)、A(116)、A(125)を用いた実施例は、実施例20の電解液を用いた実施例と同等のガス発生量と、実施例20の電解液を用いた実施例と同等又はそれ以上のサイクル特性を示すだけでなく、低温での出力特性が向上することが分かった。
Figure 0006770243
Figure 0006770243
<<第3実施例>> 特定のイオン性錯体に加え、第3の化合物(Si(R12(R134−x)をさらに含有する非水電解液電池用電解液
<その1> 電解液No.B(1)〜B(21)
〔電解液No.B(1)〜B(21)の調製〕
体積比でEMC:EC=2:1である非水有機溶媒に、溶質としてLiPFを1mol/Lの濃度となるように、イオン性錯体として参考例2で合成した(1Bd−Li)を1質量%の濃度となるように、第3の化合物として表39に記載の化合物を表39に記載の濃度となるように、溶質、イオン性錯体、第3の化合物の順に混合し、1時間撹拌することで、電解液No.B(1)〜B(21)に係る非水電解液電池用電解液を得た。表39において、第3の化合物は、表40に記載の化合物である。なお、これ以降の電解液の調製においてもすべて液温を40℃以下に維持しながら行った。
〔評価〕
電解液として、電解液No.B(1)〜B(21)を用いたこと以外は、参考例206と同様の方法でアルミラミネート外装セル(容量300mAh)を組み立て、同様に10サイクル後のガス発生量と、500サイクル後の放電容量維持率でセルの劣化の具合を評価した(ガス発生量、サイクル特性評価)。それぞれの値を、比較例201のガス発生量、放電容量維持率を100としたときの相対値として表39に示す。
表39の結果から、イオン性錯体に加え、さらに第3の化合物を含む電解液No.B(1)〜B(21)を用いた参考例B1−(1)〜B1−(21)は、参考例206よりも、ガス発生量低減とサイクル特性をさらに向上できることが分かった。
Figure 0006770243
Figure 0006770243
<その2> 電解液No.B(22)〜B(24)
〔電解液No.B(22)〜B(24)の調製〕
体積比でDEC:PC=2:1である非水有機溶媒に、溶質としてNaPFを1mol/Lの濃度となるように、イオン性錯体として参考例3で合成した(1Bd−Na)を1質量%の濃度となるように、第3の化合物として表41に記載の化合物を表41に記載の濃度となるように、溶質、イオン性錯体、第3の化合物の順に混合し、1時間撹拌することで、非水電解液電池用電解液を得た。表41において、第3の化合物は、表40に記載の化合物である。
〔評価〕
電解液として、電解液No.B(22)〜B(24)を用いたこと以外は、参考例901と同様の方法でアルミラミネート外装セル(容量300mAh)を組み立て、同様に10サイクル後のガス発生量と、200サイクル後の放電容量維持率でセルの劣化の具合を評価した(ガス発生量、サイクル特性評価)。なお、充電は3.8Vに達した後に1時間3.8Vを維持、放電は1.5Vまで行い、充放電サイクルを繰り返した。それぞれの値を、比較例901のガス発生量、放電容量維持率を100としたときの相対値として表41に示す。
表41の結果から、ナトリウムイオン電池の場合であっても、イオン性錯体に加え、さらに第3の化合物を含む電解液No.B(22)〜B(24)を用いた参考例B1−(22)〜B1−(24)は、参考例901よりも、ガス発生量低減とサイクル特性をさらに向上できることが分かった。
Figure 0006770243
<その3> 電解液No.B(25)〜B(45)
〔電解液No.B(25)〜B(45)の調製〕
体積比でEMC:EC=2:1である非水有機溶媒に、溶質としてLiPFを1mol/Lの濃度となるように、イオン性錯体として実施例4で合成した(3Pa)を1質量%の濃度となるように、第3の化合物として表42に記載の化合物を表42に記載の濃度となるように、溶質、イオン性錯体、第3の化合物の順に混合し、1時間撹拌することで、非水電解液電池用電解液を得た。
〔評価〕
電解液として、電解液No.B(25)〜B(45)を用いたこと以外は、実施例210と同様の方法でアルミラミネート外装セル(容量300mAh)を組み立て、同様に10サイクル後のガス発生量と、500サイクル後の放電容量維持率でセルの劣化の具合を評価した(ガス発生量、サイクル特性評価)。それぞれの値を、比較例201のガス発生量、放電容量維持率を100としたときの相対値として表42に示す。
表42の結果から、イオン性錯体の種類を変えた場合であっても、該イオン性錯体に加え、さらに第3の化合物を含む電解液No.B(25)〜B(45)を用いた実施例B1−(25)〜B1−(45)は、実施例210よりも、ガス発生量低減とサイクル特性をさらに向上できることが分かった。
Figure 0006770243
<その4> 電解液No.B(46)〜B(48)
〔電解液No.B(46)〜B(48)の調製〕
体積比でDEC:PC=2:1である非水有機溶媒に、溶質としてNaPFを1mol/Lの濃度となるように、イオン性錯体として実施例4で合成した(3Pa)を1質量%の濃度となるように、第3の化合物として表43に記載の化合物を表43に記載の濃度となるように、溶質、イオン性錯体、第3の化合物の順に混合し、1時間撹拌することで、非水電解液電池用電解液を得た。
〔評価〕
電解液として、電解液No.B(46)〜B(48)を用いたこと以外は、実施例902と同様の方法でアルミラミネート外装セル(容量300mAh)を組み立て、同様に10サイクル後のガス発生量と、200サイクル後の放電容量維持率でセルの劣化の具合を評価した(ガス発生量、サイクル特性評価)。なお、充電は3.8Vに達した後に1時間3.8Vを維持、放電は1.5Vまで行い、充放電サイクルを繰り返した。それぞれの値を、比較例901のガス発生量、放電容量維持率を100としたときの相対値として表43に示す。
表43の結果から、ナトリウムイオン電池の場合であっても、イオン性錯体に加え、さらに第3の化合物を含む電解液No.B(46)〜B(48)を用いた実施例B1−(46)〜B1−(48)は、実施例902よりも、ガス発生量低減とサイクル特性をさらに向上できることが分かった。
Figure 0006770243
<その5> 特定のイオン性錯体と第3の化合物の種々の組合せ
以降、特定のイオン性錯体と第3の化合物について代表的な組合せ及び濃度の電解液を用い、正極の種類、負極の種類等を変えて評価を行った。正極及び負極の組合せと、評価条件は上述の表36の通りである。
上記の評価結果を表44及び表45に示す。なお、以降で記載するイオン性錯体と第3の化合物の組合せ及び濃度以外の電解液についても、上述と同様の傾向を示すことが確認されている。
表44中、それぞれの電池構成において、電解液No.B(3)、B(10)、B(20)を用いた参考例のガス発生量、放電容量維持率の値は、対応する電池構成で比較例11の電解液を用いた比較例のガス発生量、放電容量維持率を100としたときの相対値である。
以上の結果から、正極及び負極の種類を変えた場合であっても、イオン性錯体に加え、さらに第3の化合物を含む電解液No.B(3)、B(10)、B(20)を用いた参考例は、参考例16の電解液を用いた参考例よりも、ガス発生量低減とサイクル特性をさらに向上できることが分かった。
表45中、それぞれの電池構成において、電解液No.B(27)、B(34)、B(44)を用いた実施例のガス発生量、放電容量維持率の値は、対応する電池構成で比較例11の電解液を用いた比較例のガス発生量、放電容量維持率を100としたときの相対値である。
以上の結果から、正極及び負極の種類を変えた場合であっても、イオン性錯体に加え、さらに第3の化合物を含む電解液No.B(27)、B(34)、B(44)を用いた実施例は、実施例20の電解液を用いた実施例よりも、ガス発生量低減とサイクル特性をさらに向上できることが分かった。
Figure 0006770243
Figure 0006770243
<<第4実施例>> 特定のイオン性錯体に加え、第4の化合物(環状スルホン酸化合物)をさらに含有する非水電解液電池用電解液
<その1> 電解液No.C(1)〜C(18)
〔電解液No.C(1)〜C(18)の調製〕
体積比でEMC:EC=2:1である非水有機溶媒に、溶質としてLiPFを1mol/Lの濃度となるように、イオン性錯体として参考例2で合成した(1Bd−Li)を1質量%の濃度となるように、第4の化合物として表46に記載の化合物を表46に記載の濃度となるように、溶質、イオン性錯体、第4の化合物の順に混合し、1時間撹拌することで、非水電解液電池用電解液を得た。表46において、第4の化合物は、表47に記載の化合物である。なお、これ以降の電解液の調製においてもすべて液温を40℃以下に維持しながら行った。
〔評価〕
電解液として、電解液No.C(1)〜C(18)を用いたこと以外は、参考例206と同様の方法でアルミラミネート外装セル(容量300mAh)を組み立て、同様に10サイクル後のガス発生量と、500サイクル後の放電容量維持率でセルの劣化の具合を評価した(ガス発生量、サイクル特性評価)。それぞれの値を、比較例201のガス発生量、放電容量維持率を100としたときの相対値として表46に示す。
また、ガス発生量の評価と同様に10サイクル後のセルを用いて低温での出力特性を評価した。すなわち、10サイクル後、25℃まで冷却し3.0Vまで放電させた後に、−20℃、0.2Cレートにて4.3Vまで充電を行いそのまま1時間4.3Vを維持した。更に−20℃のまま5Cレートでの放電を3.0Vに達するまで行い、−20℃での放電容量を測定した。該放電容量が大きいほど低温での出力特性が優れている。なお、表46に記載の放電容量(−20℃)の数値は、比較例201の放電容量(−20℃)を100とした場合の相対値である。
表46の結果から、イオン性錯体に加え、さらに第4の化合物を含む電解液No.C(1)〜C(18)を用いた参考例C1−(1)〜C1−(18)は、参考例206よりも、ガス発生量低減、サイクル特性、低温での出力特性のうち少なくとも1つをさらに向上できることが分かった。
Figure 0006770243
Figure 0006770243
<その2> 電解液No.C(19)〜C(24)
〔電解液No.C(19)〜C(24)の調製〕
体積比でDEC:PC=2:1である非水有機溶媒に、溶質としてNaPFを1mol/Lの濃度となるように、イオン性錯体として参考例3で合成した(1Bd−Na)を1質量%の濃度となるように、第4の化合物として表48に記載の化合物を表48に記載の濃度となるように、溶質、イオン性錯体、第4の化合物の順に混合し、1時間撹拌することで、非水電解液電池用電解液を得た。
〔評価〕
電解液として、電解液No.C(19)〜C(24)を用いたこと以外は、参考例901と同様の方法でアルミラミネート外装セル(容量300mAh)を組み立て、同様に10サイクル後のガス発生量と、200サイクル後の放電容量維持率でセルの劣化の具合を評価した(ガス発生量、サイクル特性評価)。なお、充電は3.8Vに達した後に1時間3.8Vを維持、放電は1.5Vまで行い、充放電サイクルを繰り返した。それぞれの値を、比較例901のガス発生量、放電容量維持率を100としたときの相対値として表48に示す。
また、ガス発生量の評価と同様に10サイクル後のセルを用いて低温での出力特性を評価した。すなわち、10サイクル後、25℃まで冷却し3.0Vまで放電させた後に、−20℃、0.2Cレートにて3.8Vまで充電を行いそのまま1時間3.8Vを維持した。更に−20℃のまま5Cレートでの放電を1.5Vに達するまで行い、−20℃での放電容量を測定した。なお、表48に記載の放電容量(−20℃)の数値は、比較例901の放電容量(−20℃)を100とした場合の相対値である。
表48の結果から、ナトリウムイオン電池の場合であっても、イオン性錯体に加え、さらに第4の化合物を含む電解液No.C(19)〜C(24)を用いた参考例C1−(19)〜C1−(24)は、参考例901よりも、ガス発生量低減、サイクル特性、低温での出力特性のうち少なくとも1つをさらに向上できることが分かった。
Figure 0006770243
<その3> 電解液No.C(25)〜C(42)
〔電解液No.C(25)〜C(42)の調製〕
体積比でEMC:EC=2:1である非水有機溶媒に、溶質としてLiPFを1mol/Lの濃度となるように、イオン性錯体として、実施例4で合成した(3Pa)を1質量%の濃度となるように、第4の化合物として表49に記載の化合物を表49に記載の濃度となるように、溶質、イオン性錯体、第4の化合物の順に混合し、1時間撹拌することで、非水電解液電池用電解液を得た。
〔評価〕
電解液として、電解液No.C(25)〜C(42)を用いたこと以外は、実施例210と同様の方法でアルミラミネート外装セル(容量300mAh)を組み立て、同様に10サイクル後のガス発生量と、500サイクル後の放電容量維持率でセルの劣化の具合を評価した(ガス発生量、サイクル特性評価)。それぞれの値を、比較例201のガス発生量、放電容量維持率を100としたときの相対値として表49に示す。
また、ガス発生量の評価と同様に10サイクル後のセルを用いて低温での出力特性を評価した。すなわち、10サイクル後、25℃まで冷却し3.0Vまで放電させた後に、−20℃、0.2Cレートにて4.3Vまで充電を行いそのまま1時間4.3Vを維持した。更に−20℃のまま5Cレートでの放電を3.0Vに達するまで行い、−20℃での放電容量を測定した。なお、表49に記載の放電容量(−20℃)の数値は、比較例201の放電容量(−20℃)を100とした場合の相対値である。
表49の結果から、イオン性錯体の種類を変えた場合であっても、該イオン性錯体に加え、さらに第4の化合物を含む電解液No.C(25)〜C(42)を用いた実施例C1−(25)〜C1−(42)は、実施例210よりも、ガス発生量低減、サイクル特性、低温での出力特性のうち少なくとも1つをさらに向上できることが分かった。
Figure 0006770243
<その4> 電解液No.C(43)〜C(48)
〔電解液No.C(43)〜C(48)の調製〕
体積比でDEC:PC=2:1である非水有機溶媒に、溶質としてNaPFを1mol/Lの濃度となるように、イオン性錯体として実施例4で合成した(3Pa)を1質量%の濃度となるように、第4の化合物として表50に記載の化合物を表50に記載の濃度となるように、溶質、イオン性錯体、第4の化合物の順に混合し、1時間撹拌することで、非水電解液電池用電解液を得た。
〔評価〕
電解液として、電解液No.C(43)〜C(48)を用いたこと以外は、実施例902と同様の方法でアルミラミネート外装セル(容量300mAh)を組み立て、同様に10サイクル後のガス発生量と、200サイクル後の放電容量維持率でセルの劣化の具合を評価した(ガス発生量、サイクル特性評価)。なお、充電は3.8Vに達した後に1時間3.8Vを維持、放電は1.5Vまで行い、充放電サイクルを繰り返した。それぞれの値を、比較例901のガス発生量、放電容量維持率を100としたときの相対値として表50に示す。
また、ガス発生量の評価と同様に10サイクル後のセルを用いて低温での出力特性を評価した。すなわち、10サイクル後、25℃まで冷却し3.0Vまで放電させた後に、−20℃、0.2Cレートにて3.8Vまで充電を行いそのまま1時間3.8Vを維持した。更に−20℃のまま5Cレートでの放電を1.5Vに達するまで行い、−20℃での放電容量を測定した。なお、表50に記載の放電容量(−20℃)の数値は、比較例901の放電容量(−20℃)を100とした場合の相対値である。
表50の結果から、ナトリウムイオン電池の場合であっても、イオン性錯体に加え、さらに第4の化合物を含む電解液No.C(43)〜C(48)を用いた実施例C1−(43)〜C1−(48)は、実施例902よりも、ガス発生量低減、サイクル特性、低温での出力特性のうち少なくとも1つをさらに向上できることが分かった。
Figure 0006770243
<その5> 特定のイオン性錯体と第4の化合物の種々の組合せ
以降、特定のイオン性錯体と第4の化合物について代表的な組合せ及び濃度の電解液を用い、正極の種類、負極の種類等を変えて評価を行った。正極及び負極の組合せと、評価条件は上述の表36の通りである。
上記の評価結果を表51及び表52に示す。なお、以降で記載するイオン性錯体と第4の化合物の組合せ及び濃度以外の電解液についても、上述と同様の傾向を示すことが確認されている。
表51中、それぞれの電池構成において、電解液No.C(3)、C(6)、C(9)、C(12)、C(15)、C(18)を用いた参考例のガス発生量、放電容量維持率、放電容量(−20℃)の値は、対応する電池構成で比較例11の電解液を用いた比較例のガス発生量、放電容量維持率、放電容量(−20℃)を100としたときの相対値である。
以上の結果から、正極及び負極の種類を変えた場合であっても、イオン性錯体に加え、さらに第4の化合物を含む電解液No.C(3)、C(6)、C(9)、C(12)、C(15)、C(18)を用いた参考例は、参考例16の電解液を用いた参考例よりも、ガス発生量低減、サイクル特性、低温での出力特性のうち少なくとも1つをさらに向上できることが分かった。
表52中、それぞれの電池構成において、電解液No.C(27)、C(30)、C(33)、C(36)、C(39)、C(42)を用いた実施例のガス発生量、放電容量維持率、放電容量(−20℃)の値は、対応する電池構成で比較例11の電解液を用いた比較例のガス発生量、放電容量維持率、放電容量(−20℃)を100としたときの相対値である。
以上の結果から、正極及び負極の種類を変えた場合であっても、イオン性錯体に加え、さらに第4の化合物を含む電解液No.C(27)、C(30)、C(33)、C(36)、C(39)、C(42)を用いた実施例は、実施例20の電解液を用いた実施例よりも、ガス発生量低減、サイクル特性、低温での出力特性のうち少なくとも1つをさらに向上できることが分かった。
Figure 0006770243
Figure 0006770243
<<第5実施例>> 特定のイオン性錯体に加え、第5の化合物(環状カーボネート化合物)をさらに含有する非水電解液電池用電解液
<その1> 電解液No.D(1)〜D(12)
〔電解液No.D(1)〜D(12)の調製〕
体積比でEMC:EC=2:1である非水有機溶媒に、溶質としてLiPFを1mol/Lの濃度となるように、イオン性錯体として参考例2で合成した(1Bd−Li)を1質量%の濃度となるように、第5の化合物として表53に記載の化合物を表53に記載の濃度となるように、溶質、イオン性錯体、第5の化合物の順に混合し、1時間撹拌することで、非水電解液電池用電解液を得た。表53において、第5の化合物は、表54に記載の化合物である。なお、これ以降の電解液の調製においてもすべて液温を40℃以下に維持しながら行った。
〔評価〕
電解液として、電解液No.D(1)〜D(12)を用いたこと以外は、参考例206と同様の方法でアルミラミネート外装セル(容量300mAh)を組み立て、同様に10サイクル後のガス発生量と、500サイクル後の放電容量維持率でセルの劣化の具合を評価した(ガス発生量、サイクル特性評価)。それぞれの値を、比較例201のガス発生量、放電容量維持率を100としたときの相対値として表53に示す。
表53の結果から、イオン性錯体に加え、さらに第5の化合物を含む電解液No.D(1)〜D(12)を用いた参考例D1−(1)〜D1−(12)は、参考例206と同等のガス発生量を示すとともに、サイクル特性がさらに向上することが分かった。
Figure 0006770243
Figure 0006770243
表54において、
Oは酸素であり、
Aは炭素数10以下の、不飽和結合や環状構造やハロゲンを有しても良い炭化水素であり、
Bは炭素数10以下の、不飽和結合や環状構造やハロゲンを有しても良い炭化水素、
である。
また、A−B間に二重結合を有しても良い。
<その2> 電解液No.D(13)〜D(16)
〔電解液No.D(13)〜D(16)の調製〕
体積比でDEC:PC=2:1である非水有機溶媒に、溶質としてNaPFを1mol/Lの濃度となるように、イオン性錯体として参考例3で合成した(1Bd−Na)を1質量%の濃度となるように、第5の化合物として表55に記載の化合物を表55に記載の濃度となるように、溶質、イオン性錯体、第5の化合物の順に混合し、1時間撹拌することで、非水電解液電池用電解液を得た。
〔評価〕
電解液として、電解液No.D(13)〜D(16)を用いたこと以外は、参考例901と同様の方法でアルミラミネート外装セル(容量300mAh)を組み立て、同様に10サイクル後のガス発生量と、200サイクル後の放電容量維持率でセルの劣化の具合を評価した(ガス発生量、サイクル特性評価)。なお、充電は3.8Vに達した後に1時間3.8Vを維持、放電は1.5Vまで行い、充放電サイクルを繰り返した。それぞれの値を、比較例901のガス発生量、放電容量維持率を100としたときの相対値として表55に示す。
表55の結果から、ナトリウムイオン電池の場合においては、イオン性錯体に加え、さらに第5の化合物を含む電解液No.D(13)〜D(16)を用いた参考例D1−(13)〜D1−(16)は、参考例901と同等かそれ以下のガス発生量を示すとともに、サイクル特性がさらに向上することが分かった。
Figure 0006770243
<その3> 電解液No.D(17)〜D(28)
〔電解液No.D(17)〜D(28)の調製〕
体積比でEMC:EC=2:1である非水有機溶媒に、溶質としてLiPFを1mol/Lの濃度となるように、イオン性錯体として実施例4で合成した(3Pa)を1質量%の濃度となるように、第5の化合物として表56に記載の化合物を表56に記載の濃度となるように、溶質、イオン性錯体、第5の化合物の順に混合し、1時間撹拌することで、非水電解液電池用電解液を得た。
〔評価〕
電解液として、電解液No.D(17)〜D(28)を用いたこと以外は、実施例210と同様の方法でアルミラミネート外装セル(容量300mAh)を組み立て、同様に10サイクル後のガス発生量と、500サイクル後の放電容量維持率でセルの劣化の具合を評価した(ガス発生量、サイクル特性評価)。それぞれの値を、比較例201のガス発生量、放電容量維持率を100としたときの相対値として表56に示す。
表56の結果から、イオン性錯体の種類を変えた場合であっても、該イオン性錯体に加え、さらに第5の化合物を含む電解液No.D(17)〜D(28)を用いた実施例D1−(17)〜D1−(28)は、実施例210と同等のガス発生量を示すとともに、サイクル特性がさらに向上することが分かった。
Figure 0006770243
<その4> 電解液No.D(29)〜D(32)
〔電解液No.D(29)〜D(32)の調製〕
体積比でDEC:PC=2:1である非水有機溶媒に、溶質としてNaPFを1mol/Lの濃度となるように、イオン性錯体として実施例4で合成した(3Pa)を1質量%の濃度となるように、第5の化合物として表57に記載の化合物を表57に記載の濃度となるように、溶質、イオン性錯体、第5の化合物の順に混合し、1時間撹拌することで、非水電解液電池用電解液を得た。
〔評価〕
電解液として、電解液No.D(29)〜D(32)を用いたこと以外は、実施例902と同様の方法でアルミラミネート外装セル(容量300mAh)を組み立て、同様に10サイクル後のガス発生量と、200サイクル後の放電容量維持率でセルの劣化の具合を評価した(ガス発生量、サイクル特性評価)。なお、充電は3.8Vに達した後に1時間3.8Vを維持、放電は1.5Vまで行い、充放電サイクルを繰り返した。それぞれの値を、比較例901のガス発生量、放電容量維持率を100としたときの相対値として表57に示す。
表57の結果から、ナトリウムイオン電池の場合においては、イオン性錯体に加え、さらに第5の化合物を含む電解液No.D(29)〜D(32)を用いた実施例D1−(29)〜D1−(32)は、実施例902と同等かそれ以下のガス発生量を示すとともに、サイクル特性がさらに向上することが分かった。
Figure 0006770243
<その5> 特定のイオン性錯体と第5の化合物の種々の組合せ
以降、特定のイオン性錯体と第5の化合物について代表的な組合せ及び濃度の電解液を用い、正極の種類、負極の種類等を変えて評価を行った。正極及び負極の組合せと、評価条件は上述の表36の通りである。
上記の評価結果を表58及び表59に示す。なお、以降で記載するイオン性錯体と第5の化合物の組合せ及び濃度以外の電解液についても、上述と同様の傾向を示すことが確認されている。
表58中、それぞれの電池構成において、電解液No.D(3)、D(6)、D(9)、D(12)を用いた参考例のガス発生量、放電容量維持率の値は、対応する電池構成で比較例11の電解液を用いた比較例のガス発生量、放電容量維持率を100としたときの相対値である。
以上の結果から、正極及び負極の種類を変えた場合であっても、イオン性錯体に加え、さらに第5の化合物を含む電解液No.D(3)、D(6)、D(9)、D(12)を用いた参考例は、参考例16の電解液を用いた参考例と同等又はそれ以下のガス発生量を示すとともに、サイクル特性がさらに向上することが分かった。
表59中、それぞれの電池構成において、電解液No.C(19)、C(22)、C(25)、C(28)を用いた実施例のガス発生量、放電容量維持率の値は、対応する電池構成で比較例11の電解液を用いた比較例のガス発生量、放電容量維持率を100としたときの相対値である。
以上の結果から、正極及び負極の種類を変えた場合であっても、イオン性錯体に加え、さらに第5の化合物を含む電解液No.C(19)、C(22)、C(25)、C(28)を用いた実施例は、実施例20の電解液を用いた実施例と同等又はそれ以下のガス発生量を示すとともに、サイクル特性がさらに向上することが分かった。
Figure 0006770243
Figure 0006770243

Claims (29)

  1. 下記一般式(3)で示される化学構造よりなるイオン性錯体を含有する非水電解液電池用電解液。
    Figure 0006770243
    (一般式(3)において、
    Dはハロゲンイオン、ヘキサフルオロリン酸アニオン、テトラフルオロホウ酸アニオン、ビス(トリフルオロメタンスルホニル)イミドアニオン、ビス(フルオロスルホニル)イミドアニオン、(フルオロスルホニル)(トリフルオロメタンスルホニル)イミドアニオン、ビス(ジフルオロホスホニル)イミドアニオンから選ばれる少なくとも一つであり、
    Fはフッ素であり、
    Mは13族元素(Al、B)、14族元素(Si)及び15族元素(P、As、Sb)からなる群から選ばれるいずれか1つであり
    Oは酸素であり、
    Nは窒素である。
    Yは炭素又は硫黄であり、Yが炭素である場合qは1であり、Yが硫黄である場合qは1又は2である。
    Xは炭素又は硫黄であり、Xが炭素である場合rは1であり、Xが硫黄である場合rは1又は2である。
    は炭素数1〜10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基(炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造のものも使用できる)、又は−N(R)−を表す。このとき、Rは水素、アルカリ金属、炭素数1〜10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基を表す。炭素数が3以上の場合にあっては、Rは分岐鎖あるいは環状構造をとることもできる。
    、Rはそれぞれ独立で炭素数1〜10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基であり、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造のものも使用できる。また、下記一般式(4)の様にお互いを含む環状構造を有しても良い。
    Figure 0006770243
    cは0又は1であり、nが1の場合、cは0(cが0のときDは存在しない)であり、nが2の場合、cは1となる。
    oは2又は4、nは1又は2、pは0又は1、qは1又は2、rは1又は2、sは0又は1である。pが0の場合、Y−X間に直接結合を形成する。
    sが0の場合、N(R)(R)とRは直接結合し、その際は下記の(5)〜(8)のような構造をとることもできる。直接結合が二重結合となる(6)、(8)の場合、Rは存在しない。また(7)の様に二重結合が環の外に出た構造を取ることも出来る。この場合のR、Rはそれぞれ独立で水素、又は炭素数1〜10の環やヘテロ原子やハロゲン原子を有していてもよい炭化水素基であり、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造のものも使用できる。)
    Figure 0006770243
  2. 前記一般式(3)で表されるイオン性錯体が、下記(3Pa)、(3Pb)、(3Pd)、(3Pg)、(3Ba)、(3Bb)、(3Bf)、(3Bg)、及び(3Bi)からなる群から選ばれるいずれか1つである請求項1に記載の非水電解液電池用電解液。
    Figure 0006770243
  3. 前記Dが、ヘキサフルオロリン酸アニオン、テトラフルオロホウ酸アニオン、ビス(トリフルオロメタンスルホニル)イミドアニオン、ビス(フルオロスルホニル)イミドアニオン、(フルオロスルホニル)(トリフルオロメタンスルホニル)イミドアニオン、ビス(ジフルオロホスホニル)イミドアニオンからなる群から選ばれる少なくとも一つのアニオンである、請求項1又は2に記載の非水電解液電池用電解液。
  4. 前記Mが、B又はPである請求項1に記載の非水電解液電池用電解液。
  5. さらに、溶質と非水有機溶媒とを含有する、請求項1から4のいずれかに記載の非水電解液電池用電解液。
  6. 前記溶質が、
    アルカリ金属イオン、アルカリ土類金属イオン及び四級アンモニウムからなる群から選ばれる少なくとも1種のカチオンと、
    ヘキサフルオロリン酸、テトラフルオロホウ酸、過塩素酸、ヘキサフルオロヒ酸、ヘキサフルオロアンチモン酸、トリフルオロメタンスルホン酸、ビス(トリフルオロメタンスルホニル)イミド、ビス(ペンタフルオロエタンスルホニル)イミド、(トリフルオロメタンスルホニル)(ペンタフルオロエタンスルホニル)イミド、ビス(フルオロスルホニル)イミド、(トリフルオロメタンスルホニル)(フルオロスルホニル)イミド、(ペンタフルオロエタンスルホニル)(フルオロスルホニル)イミド、トリス(トリフルオロメタンスルホニル)メチド、及びビス(ジフルオロホスホニル)イミドからなる群から選ばれる少なくとも1種のアニオンの対からなる塩である、請求項5に記載の非水電解液電池用電解液。
  7. 前記非水有機溶媒が、カーボネート類、エステル類、エーテル類、ラクトン類、ニトリル類、イミド類、及びスルホン類からなる群から選ばれる少なくとも1種である、請求項5又は6に記載の非水電解液電池用電解液。
  8. 前記非水有機溶媒が、エチルメチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルブチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、酢酸メチル、プロピオン酸メチル、プロピオン酸エチル、ジエチルエーテル、アセトニトリル、プロピオニトリル、テトラヒドロフラン、2−メチルテトラヒドロフラン、フラン、テトラヒドロピラン、1,3−ジオキサン、1,4−ジオキサン、ジブチルエーテル、ジイソプロピルエーテル、1,2−ジメトキシエタン、N,N−ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、γ−ブチロラクトン及びγ−バレロラクトンからなる群から選ばれる少なくとも1種である、請求項5から7のいずれかに記載の非水電解液電池用電解液。
  9. 前記非水有機溶媒が、環状カーボネート及び鎖状カーボネートからなる群から選ばれる少なくとも1種を含有する、請求項5又は6に記載の非水電解液電池用電解液。
  10. 前記環状カーボネートが、エチレンカーボネート、プロピレンカーボネート、及びブチレンカーボネートからなる群から選ばれる少なくとも1種であり、前記鎖状カーボネートが、エチルメチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート、及びメチルブチルカーボネートからなる群から選ばれる少なくとも1種である、請求項9に記載の非水電解液電池用電解液。
  11. 前記イオン性錯体の添加濃度が、溶質、非水有機溶媒及びイオン性錯体の総量に対して0.001〜20質量%の範囲である、請求項1から10のいずれかに記載の非水電解液電池用電解液。
  12. 下記一般式(9)〜(16)で示される含フッ素化合物からなる群から選ばれる少なくとも1種の第2の化合物をさらに含有する、請求項1から11のいずれかに記載の非水電解液電池用電解液。
    Figure 0006770243
    [一般式(9)〜(11)及び(13)〜(15)中、R〜R11はそれぞれ互いに独立して、フッ素原子、炭素数が1〜10の直鎖あるいは分岐状のアルコキシ基、炭素数が2〜10のアルケニルオキシ基、炭素数が2〜10のアルキニルオキシ基、炭素数が3〜10の、シクロアルコキシ基、シクロアルケニルオキシ基、及び、炭素数が6〜10のアリールオキシ基から選ばれる有機基であり、その有機基中にフッ素原子、酸素原子、不飽和結合が存在することもできる。一般式(11)、(12)、(15)及び(16)中、X及びXはそれぞれ互いに独立して、フッ素原子、炭素数が1〜10の直鎖あるいは分岐状のアルキル基、炭素数が2〜10のアルケニル基、炭素数が2〜10のアルキニル基、炭素数が3〜10の、シクロアルキル基、シクロアルケニル基、炭素数が6〜10のアリール基、炭素数が1〜10の直鎖あるいは分岐状のアルコキシ基、炭素数が2〜10のアルケニルオキシ基、炭素数が2〜10のアルキニルオキシ基、炭素数が3〜10の、シクロアルコキシ基、シクロアルケニルオキシ基、及び、炭素数が6〜10のアリールオキシ基から選ばれる有機基であり、その有機基中にフッ素原子、酸素原子、不飽和結合が存在することもできる。また、一般式(9)〜(16)中には少なくとも一つのP−F結合及び/又はS−F結合を含む。M、Mはそれぞれ互いに独立して、プロトン、金属カチオン又はオニウムカチオンである。]
  13. 前記一般式(9)〜(11)及び(13)〜(15)のR〜R11が、フッ素原子、炭素数が1〜10のフッ素原子を有する直鎖あるいは分岐状のアルコキシ基、炭素数が2〜10のアルケニルオキシ基、及び炭素数が2〜10のアルキニルオキシ基からなる群から選ばれる有機基である、請求項12に記載の非水電解液電池用電解液。
  14. 前記アルコキシ基が、2,2,2−トリフルオロエトキシ基、2,2,3,3−テトラフルオロプロポキシ基、1,1,1−トリフルオロイソプロポキシ基、及び1,1,1,3,3,3−ヘキサフルオロイソプロポキシ基からなる群から選択され、アルケニルオキシ基が、1−プロペニルオキシ基、2−プロペニルオキシ基、及び3−ブテニルオキシ基からなる群から選択され、前記アルキニルオキシ基が、2−プロピニルオキシ基、及び1,1−ジメチル−2−プロピニルオキシ基からなる群から選択される、請求項13に記載の非水電解液電池用電解液。
  15. 前記一般式(11)、(12)、(15)及び(16)のX及びXが、フッ素原子、炭素数が1〜10の直鎖あるいは分岐状のアルコキシ基、炭素数が2〜10のアルケニルオキシ基、及び炭素数が2〜10のアルキニルオキシ基からなる群から選ばれる有機基である、請求項12から14のいずれかに記載の非水電解液電池用電解液。
  16. 前記アルコキシ基が、メトキシ基、エトキシ基、及びプロポキシ基からなる群から選択され、前記アルケニルオキシ基が、1−プロペニルオキシ基、2−プロペニルオキシ基、及び3−ブテニルオキシ基からなる群から選択され、前記アルキニルオキシ基が、2−プロピニルオキシ基、及び1,1−ジメチル−2−プロピニルオキシ基からなる群から選択される、請求項15に記載の非水電解液電池用電解液。
  17. 前記一般式(9)〜(16)のM及びMが、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラアルキルアンモニウムイオン、及びテトラアルキルホスホニウムイオンからなる群から選ばれる少なくとも一つのカチオンである、請求項12から16のいずれかに記載の非水電解液電池用電解液。
  18. 前記第2の化合物の添加濃度が、溶質、非水有機溶媒、イオン性錯体及び第2の化合物の総量に対して0.001〜10.0質量%の範囲である、請求項12から17のいずれかに記載の非水電解液電池用電解液。
  19. 下記一般式(17)で示される少なくとも1種の第3の化合物をさらに含有する、請求項1から18のいずれかに記載の非水電解液電池用電解液。
    Si(R12(R134−x (17)
    [一般式(17)中、R12はそれぞれ互いに独立して炭素−炭素不飽和結合を有する基を表す。R13はそれぞれ互いに独立して、フッ素原子、アルキル基、アルコキシ基、アルケニル基、アルケニルオキシ基、アルキニル基、アルキニルオキシ基、アリール基、及びアリールオキシ基からなる群から選ばれる基を示し、これらの基はフッ素原子及び/又は酸素原子を有していても良い。xは2〜4である。]
  20. 前記一般式(17)のR12で表される基が、それぞれ互いに独立して、ビニル基、アリル基、1−プロペニル基、エチニル基、及び2−プロピニル基からなる群から選択される基である、請求項19に記載の非水電解液電池用電解液。
  21. 前記一般式(17)のR13で表される基が、それぞれ互いに独立して、フッ素原子、メチル基、エチル基、プロピル基、2,2,2−トリフルオロエチル基、2,2,3,3−テトラフルオロプロピル基、1,1,1−トリフルオロイソプロピル基、1,1,1,3,3,3−ヘキサフルオロイソプロピル基、2,2,2−トリフルオロエトキシ基、2,2,3,3−テトラフルオロプロポキシ基、2,2,3,3,3−ペンタフルオロプロポキシ基、1,1,1−トリフルオロイソプロポキシ基、及び1,1,1,3,3,3−ヘキサフルオロイソプロポキシ基からなる群から選択される基である、請求項19又は20に記載の非水電解液電池用電解液。
  22. 前記一般式(17)のxが2〜3である、請求項19から21のいずれかに記載の非水電解液電池用電解液。
  23. 前記第3の化合物の添加濃度が、溶質、非水有機溶媒、イオン性錯体、及び第3の化合物の総量に対して0.005〜7.0質量%の範囲である、請求項19から22のいずれかに記載の非水電解液電池用電解液。
  24. 下記一般式(18)、(19)、及び(20)で示される環状スルホン酸化合物、1,3−プロパンスルトン及び1,2−ペンタンジオール硫酸エステルからなる群から選ばれる少なくとも1種の第4の化合物をさらに含有する、請求項1から23のいずれかに記載の非水電解液電池用電解液。
    Figure 0006770243
    (式(18)中、Oは酸素原子、Sは硫黄原子、nは1以上3以下の整数である。また、R14、R15、R16、R17は、それぞれ独立して水素原子、置換若しくは無置換の炭素数1以上5以下のアルキル基、又は置換若しくは無置換の炭素数1以上4以下のフルオロアルキル基である。)
    Figure 0006770243
    (式(19)中、Oは酸素原子、Sは硫黄原子、nは0以上4以下の整数であり、R18、R19は、それぞれ独立して水素原子、ハロゲン原子、又は置換若しくは無置換の炭素数1以上5以下のアルキル基であり、R20、R21は、それぞれ独立して水素原子、ハロゲン原子、置換若しくは無置換の炭素数1〜5のアルキル基、又は置換若しくは無置換の炭素数1以上4以下のフルオロアルキル基であり、nは0以上4以下の整数である。)
    Figure 0006770243
    (式(20)中、Oは酸素原子、Sは硫黄原子、nは0〜3の整数であり、R22、R23は、それぞれ独立して水素原子、ハロゲン原子、置換若しくは無置換の炭素数1以上5以下のアルキル基、又は置換若しくは無置換の炭素数1以上4以下のフルオロアルキル基である。)
  25. 前記第4の化合物の添加濃度が、溶質、非水有機溶媒、イオン性錯体、及び第4の化合物の総量に対して0.001〜10質量%の範囲である、請求項24に記載の非水電解液電池用電解液。
  26. 下記一般式(21)で示される環状カーボネート化合物からなる群から選ばれる少なくとも1種の第5の化合物をさらに含有する、請求項1から25のいずれかに記載の非水電解液電池用電解液。
    Figure 0006770243
    (式(21)中、Oは酸素原子、Aは炭素数10以下の、不飽和結合や環状構造やハロゲンを有してもよい炭化水素であり、Bは炭素数10以下の、不飽和結合や環状構造やハロゲンを有してもよい炭化水素である。なお、A−B間に二重結合を有してもよい。)
  27. 前記第5の化合物の添加濃度が、溶質、非水有機溶媒、イオン性錯体、及び第5の化合物の総量に対して0.001〜10質量%の範囲である、請求項26に記載の非水電解液電池用電解液。
  28. 正極と、
    リチウム又はリチウムの吸蔵放出の可能な負極材料からなる負極と、
    請求項1から27のいずれかに記載の非水電解液電池用電解液とを含む非水電解液電池。
  29. 正極と、
    ナトリウム又はナトリウムの吸蔵放出の可能な負極材料からなる負極と、
    請求項1から27のいずれかに記載の非水電解液電池用電解液とを含む非水電解液電池。
JP2019126750A 2014-07-02 2019-07-08 イオン性錯体、非水電解液電池用電解液、非水電解液電池及びイオン性錯体の合成法 Active JP6770243B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014136867 2014-07-02
JP2014136867 2014-07-02

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015130613A Division JP2016027028A (ja) 2014-07-02 2015-06-30 イオン性錯体、非水電解液電池用電解液、非水電解液電池及びイオン性錯体の合成法

Publications (2)

Publication Number Publication Date
JP2019204789A JP2019204789A (ja) 2019-11-28
JP6770243B2 true JP6770243B2 (ja) 2020-10-14

Family

ID=58230385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019126750A Active JP6770243B2 (ja) 2014-07-02 2019-07-08 イオン性錯体、非水電解液電池用電解液、非水電解液電池及びイオン性錯体の合成法

Country Status (3)

Country Link
EP (1) EP3165528B1 (ja)
JP (1) JP6770243B2 (ja)
CN (1) CN106471000B (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6582880B2 (ja) 2014-12-01 2019-10-02 セントラル硝子株式会社 2価のアニオンを有するイミド酸化合物及びその製造方法
JP6665396B2 (ja) * 2015-02-19 2020-03-13 セントラル硝子株式会社 非水電解液電池用電解液、及びこれを用いた非水電解液電池
JP6570858B2 (ja) 2015-03-25 2019-09-04 住友化学株式会社 ナトリウム二次電池用非水電解液およびナトリウム二次電池
KR101992124B1 (ko) * 2015-09-30 2019-06-25 주식회사 엘지화학 비수성 전해액 및 이를 포함하는 리튬 이차전지
PL3416229T3 (pl) 2016-02-08 2020-11-16 Central Glass Co., Ltd. Roztwór elektrolityczny dla akumulatora z niewodnym elektrolitem, i zawierający go akumulator z niewodnym roztworem elektrolitycznym
US10851124B2 (en) * 2017-04-10 2020-12-01 Central Glass Co., Ltd. Method for producing phosphoryl imide salt, method for producing nonaqueous electrolyte solution containing said salt, and method for producing nonaqueous secondary battery
JP7223221B2 (ja) * 2017-09-12 2023-02-16 セントラル硝子株式会社 非水電解液用添加剤、非水電解液、及び非水電解液電池
HUE061383T2 (hu) 2018-03-27 2023-06-28 Daikin Ind Ltd Elektrolit oldat, elektrokémiai eszköz, lítium-ion másodlagos akkumulátor, modul és vegyület
HUE060860T2 (hu) 2018-03-27 2023-04-28 Daikin Ind Ltd Elektrolit oldat, elektrokémiai eszköz, lítium-ion másodlagos akkumulátor és modul
EP3778565A4 (en) * 2018-03-27 2022-03-23 Daikin Industries, Ltd. PROCESS FOR THE PRODUCTION OF LITHIUM SULFAMATE, AND NEW LITHIUM SULFAMATE
CN108615942A (zh) * 2018-03-30 2018-10-02 惠州市大道新材料科技有限公司 含(氟代)亚甲基二磺酸锂盐及其制备方法和在非水电解液中的应用
CN108503670A (zh) * 2018-04-11 2018-09-07 惠州市大道新材料科技有限公司 一种氟磷酰亚胺及其碱金属盐的制备方法
KR102539887B1 (ko) * 2019-03-28 2023-06-08 동우 화인켐 주식회사 화합물, 이를 포함하는 리튬 이차전지용 전해질 및 리튬 이차전지
US12100808B2 (en) 2019-03-28 2024-09-24 Dongwoo Fine-Chem Co., Ltd. Compound, and lithium secondary battery electrolyte and lithium secondary battery which comprise same
KR20210026500A (ko) 2019-08-30 2021-03-10 주식회사 엘지화학 비수 전해질 및 이를 포함하는 리튬 이차전지
CN112531207B (zh) * 2019-09-17 2022-06-03 杉杉新材料(衢州)有限公司 高电压锂离子电池用电解液及含该电解液的锂离子电池
US12107224B2 (en) 2019-11-27 2024-10-01 Contemporary Amperex Technology Co., Limited Electrolyte for lithium-ion battery, lithium-ion battery, battery module, battery pack, and apparatus
CN112635835B (zh) * 2020-12-22 2024-03-29 远景动力技术(江苏)有限公司 高低温兼顾的非水电解液及锂离子电池
CN113506913B (zh) * 2021-06-17 2022-10-21 山东玉皇新能源科技有限公司 一种钠离子电池电解液及其在钠离子电池中的应用
CN114552019A (zh) * 2022-03-18 2022-05-27 杭州怡莱珂科技有限公司 一种络阴离子钠盐及其制备方法与使用方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4810867B2 (ja) * 2005-04-19 2011-11-09 セントラル硝子株式会社 リチウムイオン電池用電解液の製造方法
FR2928925B1 (fr) * 2008-03-19 2011-01-07 Centre Nat Rech Scient Complexes de bore ou d'aluminium, et leurs utilisations.
JP5212037B2 (ja) * 2008-11-17 2013-06-19 ソニー株式会社 二次電池
WO2017057968A1 (ko) * 2015-09-30 2017-04-06 주식회사 엘지화학 비수성 전해액 및 이를 포함하는 리튬 이차전지

Also Published As

Publication number Publication date
EP3165528A1 (en) 2017-05-10
EP3165528A4 (en) 2018-05-09
EP3165528B1 (en) 2021-08-18
CN106471000B (zh) 2019-04-19
JP2019204789A (ja) 2019-11-28
CN106471000A (zh) 2017-03-01

Similar Documents

Publication Publication Date Title
JP6770243B2 (ja) イオン性錯体、非水電解液電池用電解液、非水電解液電池及びイオン性錯体の合成法
KR101947068B1 (ko) 이온성 착체, 비수전해액 전지용 전해액, 비수전해액 전지 및 이온성 착체의 합성법
US11177507B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery including the same
US11230564B2 (en) Method for producing phosphoryl imide salt, method for producing nonaqueous electrolyte solution containing said salt, and method for producing nonaqueous secondary battery
KR102156865B1 (ko) 비수계 전해액 및 그것을 이용한 비수계 전해액 전지
JP2020109760A (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
JP5796417B2 (ja) 非水電解液電池用電解液及び非水電解液電池
CN114175340B (zh) 非水电解液、非水电解液电池及化合物
JP6004124B2 (ja) 非水電解液二次電池用電解液及び非水電解液二次電池
KR20200090223A (ko) 비수전해액 전지용 전해액 및 그것을 이용한 비수전해액 전지
KR20200094782A (ko) 비수 전해액 전지용 전해액 및 그것을 이용한 비수 전해액 전지
JP2019057356A (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
CN104380518A (zh) 非水电解液电池用电解液及使用其的非水电解液电池
KR20150033445A (ko) 리튬전지 전해질용 첨가제, 이를 포함하는 유기전해액 및 상기 전해액을 채용한 리튬 전지
WO2016117280A1 (ja) 非水系電解液及びそれを用いた非水系電解液電池
CN111801833B (zh) 非水电解液及使用该非水电解液的能量设备
WO2019111983A1 (ja) 非水電解液電池用電解液及びそれを用いた非水電解液電池
WO2016208738A1 (ja) 非水系電解液用添加剤及びその製法、非水系電解液、非水系電解液二次電池
WO2016133169A1 (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
CN116918123A (zh) 非水电解液、非水电解液电池、及化合物
JP2022042755A (ja) 非水電解液、及びこれを用いた非水電解液電池
WO2022158399A1 (ja) 非水電解液、非水電解液電池、及び化合物
US20220231337A1 (en) Nonaqueous Electrolytic Solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200907

R150 Certificate of patent or registration of utility model

Ref document number: 6770243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250