JP6729451B2 - 電力変換器制御装置 - Google Patents
電力変換器制御装置 Download PDFInfo
- Publication number
- JP6729451B2 JP6729451B2 JP2017041496A JP2017041496A JP6729451B2 JP 6729451 B2 JP6729451 B2 JP 6729451B2 JP 2017041496 A JP2017041496 A JP 2017041496A JP 2017041496 A JP2017041496 A JP 2017041496A JP 6729451 B2 JP6729451 B2 JP 6729451B2
- Authority
- JP
- Japan
- Prior art keywords
- potential difference
- gate
- power
- current
- emitter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 claims description 31
- 230000001133 acceleration Effects 0.000 claims description 3
- 230000005611 electricity Effects 0.000 claims description 2
- 238000011084 recovery Methods 0.000 description 21
- 230000006866 deterioration Effects 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 9
- 238000009966 trimming Methods 0.000 description 7
- WKVZMKDXJFCMMD-UVWUDEKDSA-L (5ar,8ar,9r)-5-[[(2r,4ar,6r,7r,8r,8as)-7,8-dihydroxy-2-methyl-4,4a,6,7,8,8a-hexahydropyrano[3,2-d][1,3]dioxin-6-yl]oxy]-9-(4-hydroxy-3,5-dimethoxyphenyl)-5a,6,8a,9-tetrahydro-5h-[2]benzofuro[6,5-f][1,3]benzodioxol-8-one;azanide;n,3-bis(2-chloroethyl)-2-ox Chemical compound [NH2-].[NH2-].Cl[Pt+2]Cl.ClCCNP1(=O)OCCCN1CCCl.COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3C(O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 WKVZMKDXJFCMMD-UVWUDEKDSA-L 0.000 description 6
- 238000012545 processing Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000009194 climbing Effects 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Landscapes
- Power Conversion In General (AREA)
- Inverter Devices (AREA)
Description
例えば特許文献1に開示された装置は、パワー素子(IGBT)のセンスエミッタ電流を電圧変換し演算した結果に基づいて駆動信号を調整することで、パワー素子毎の電流アンバランスを緩和する。
本発明は、このような点に鑑みて創作されたものであり、その目的は、複数のパワー素子が並列接続された構成において、エミッタ電位のアンバランスにより発生する共振による素子劣化を抑制する電力変換器制御装置を提供することにある。
電力変換器の各電流経路においてパワー電流の通電又は遮断を切り替え可能な1つ以上のスイッチ機能部(101−106)は、複数のパワー素子(11−16、21−26)が並列接続されて構成されている。複数のパワー素子は、エミッタ側からコレクタ側への通電を許容するダイオード(18、28)が付随している。
電位差検出回路は、並列接続された複数のパワー素子のうちから選択された2個の制御対象素子について、エミッタ電位差(ΔVke)を検出する。
駆動回路は、電位差検出回路が検出したエミッタ電位差に基づき、2個の制御対象素子のエミッタ電位を互いに近づける方向に、少なくとも1個の制御対象素子へ出力するゲート信号に係るゲート指令値を制御する。
本発明の第2の態様の電力変換器制御装置は、負荷として、車両の動力源であるモータジェネレータに通電する電力変換器の制御に用いられる。電位差検出回路は、モータジェネレータに通電されるパワー素子の出力電流の情報を取得し、パワー素子の出力電流が車両の加速時に通電される電流値より低いとき、エミッタ電位差を検出する。
第1実施形態について、図1〜図9を参照して説明する。
[システム構成]
まず、第1実施形態の電力変換器制御装置が適用されるMG駆動システムの全体構成について図1を参照して説明する。図1には、一つのMGを備えるMG駆動システム90を例示するが、二つ以上のMGを備えたMG駆動システムにも同様に適用可能である。
MG80は、例えば永久磁石式同期型の三相交流モータである。MG80は、車両の駆動輪を駆動するトルクを発生する電動機としての機能、及び、駆動輪やハイブリッド自動車のエンジンから伝達されるトルクにより発電する発電機としての機能を兼ね備える。
なお、本明細書では、ロータ電気角の検出に関する説明を省略する。
図1の例では、U相上アームのスイッチ機能部101は、並列接続された2個のパワー素子11、21で構成されている。同様に、他の5つのスイッチ機能部102−106は、符号の末尾数字を共通とするパワー素子12−16とパワー素子22−26とが並列接続されて構成されている。
各パワー素子11−16、21−26には、低電位側のエミッタ側から高電位側のコレクタ側への通電を許容するダイオードとして、フライホイールダイオード(又は、還流ダイオード)が付随している。このフライホイールダイオードに関しては、図2を参照して後述する。
また、エミッタ端子は、特許文献1(特開2013−17092号公報)等の従来技術で電流検出に用いられるセンスエミッタ端子と明確に区別するため、「ケルビンエミッタ端子」と記す。センスエミッタ端子には、パワー素子の出力電流であるコレクタ−エミッタ電流に比例し、且つ出力電流より小さい電流が流れる。そして、センスエミッタ端子に接続されたセンス抵抗の両端電圧がセンス電圧として検出される。
一方、コレクタ端子とケルビンエミッタ端子との間には、コレクタ−エミッタ電流が流れる。ここで、基準電位(0V)に対して直接検出されるケルビンエミッタ端子の電位を「エミッタ電位」と定義する。なお、図1には、エミッタ電位の検出に関する構成の図示を省略する。
マイコン50には、図1に示す電流センサ87、88からの相電流Iv、Iwの情報の他、MG80の電気角の情報や、上位ECUからのトルク指令等が入力される。
本実施形態では、マイコン50と各駆動回路51−56とを合わせた一群の制御回路が「電力変換器制御装置」を構成する。
正閾値Vref+及び負閾値Vref−は、互いに絶対値の等しい正負の値である。エミッタ電位差ΔVkeが正のとき、コンパレータ77による正閾値Vref+との比較に意義があり、エミッタ電位差ΔVkeが負のとき、コンパレータ78による負閾値Vref−との比較に意義がある。駆動回路561に関するその他の説明は後述する。
ここで、図3を参照し、フライホイールダイオード18、28に流れるリカバリ電流について説明する。図3の縦軸は、パワー素子電流Iceを示す。
図4には、一相の上下アームのスイッチ機能部について、回路各部の電流経路が有するインダクタンス成分をモデル的に示す。図4中の符号として、図1のW相上下アームのスイッチ機能部103、106のパワー素子13、23、16、26、及び駆動回路53、56を例示する。上アームのパワー素子13、23のコレクタは、高電位ラインPに接続され、下アームのパワー素子16、26のエミッタは、低電位ラインNに接続される。
図2と同様に、図4において、二点鎖線の丸枠、菱形枠、四角枠は、それぞれ、パワーカード、バスバー、基板パターンで構成される箇所を示す。これらのパワーカード、バスバー、基板パターンは、インダクタンス成分を有している。このインダクタンス成分は、共振現象の要因となる可能性がある。
図5のタイミング1及び図6のタイミング3、5の実線矢印は、パワー素子16又は26に流れる電流を示す。図5のタイミング2及び図6のタイミング4のブロック矢印は、パワー素子16、26のエミッタ間に発生した電位差により低電位側のバスバーに流れる電流を示す。
(2)フライホイールダイオード18、28の特性ばらつき等により、リカバリに至るタイミングは、第2のフライホイールダイオード28が第1のフライホイールダイオード18よりも早いと仮定すると、このとき、リカバリに至るタイミングが早い第2のフライホイールダイオード28に電流が集中する(図5のタイミング1)。
(3)(2)のリカバリ完了時に、第2の素子26のエミッタ電位Vke_2が第1の素子16のエミッタ電位Vke_1よりも低くなり(Vke_1>Vke_2)、エミッタ間に電位差ΔVkeが発生する(図5のタイミング2)。
(5)(4)のリカバリ完了時に、第1の素子16のエミッタ電位Vke_1が第2の素子26のエミッタ電位Vke_2よりも低くなり(Vke_1<Vke_2)、エミッタ間に電位差ΔVkeが発生する(図6のタイミング4)。
(6)エミッタ電位差ΔVkeの発生により、バスバー、基板のエミッタに電流が流れる。すると、パワー素子に蓄積された電荷による容量成分(C)と、インバータの電流経路を構成するパワーカード、バスバー、基板等のインダクタンス成分(L)とによる共振が発生する。この共振により、パワー素子の耐久性低下に至る(図6のタイミング5)。
その解決手段として、電位差検出回路70は、並列接続された2個のパワー素子16、26間のエミッタ電位差ΔVkeを、リカバリ電流が流れるタイミングに検出する。そして、コンパレータ77、78により、エミッタ電位差ΔVkeが正閾値Vref+を上回るか、負閾値Vref−を下回ったことが検出されると、駆動回路561は、常時、2個のパワー素子16、26のバランスを調整するように制御する。
そこで、並列接続された2個のパワー素子16、26を、適宜、「制御対象素子16、26」という。また、2個の制御対象素子16、26を区別して説明するとき、「第1対象素子16」及び「第2対象素子26」という。
駆動回路561は、制御対象素子16、26のエミッタ電位Vke_1、Vke_2を互いに近づけるように、制御対象素子16、26に出力されるゲート信号に係る「ゲート指令値」を制御する。
ところで、バランス調整において最も好ましい処理は、制御対象素子16、26のエミッタ電位Vke_1、Vke_2を均等とすることである。しかし、厳密な均等化を実現することは、部品点数や制御演算量の制約により限界がある。そこで、駆動回路561は、バランス調整前に対し、少なくとも制御対象素子16、26のエミッタ電位Vke_1、Vke_2を互いに近づけるようにゲート指令値を制御すればよい。
また、電流調整回路601は、エミッタ電位差ΔVkeを取得し、制御対象素子16、26のエミッタ電位Vke_1、Vke_2のどちらがどれだけ大きいかを把握する。なお、取得されたエミッタ電位差ΔVkeは、バランス調整の他に異常判定等に用いられてもよい。
図7に示す例は、すぐ次回のスイッチング周期にゲート指令値を変更することで、迅速なバランス調整を実現する。ただし、駆動回路561は、例えばアンバランス信号Subが出力されたスイッチング周期の数周期後のスイッチング周期にゲート指令値を変更してもよい。
その結果、第2対象素子26の素子電流Ice_2は、二点鎖線で示すように、立ち上がりの傾きが急になる。すなわち、第2対象素子26のターンオン時スイッチング速度が相対的に速くなる。一方、第1対象素子16の素子電流Ice_1は、一点鎖線で示すように、立ち上がりの傾きが緩やかになる。すなわち、第1対象素子16のターンオン時スイッチング速度が相対的に遅くなる。また、エミッタ電位差ΔVkeは、0に近づく。なお、次回スイッチング周期における細実線及び細破線は、今回スイッチング周期の素子電流Ice_1、Ice_2を参照として示すものである。
複数のパワー素子が並列接続された構成において、パワー素子のセンスエミッタ電流を電圧変換し演算した結果に基づいて駆動信号を調整する特許文献1の従来技術では、ケルビンエミッタ端子間の電位差を検出することができない。したがって、複数のパワー素子間のエミッタ電位がばらつくことによって発生する共振による素子劣化を防ぐことができない。それに対し、本実施形態では、並列接続された2個の制御対象素子16、26のエミッタ電位差ΔVkeを検出し、エミッタ電位Vkeを互いに近づける方向にゲート指令値を制御する。これにより、エミッタ電位Vkeのアンバランスにより発生する共振による制御対象素子16、26の劣化を抑制することができる。
さらに第1実施形態では、エミッタ電位差ΔVkeを正負閾値Vref+、vref−と比較し、その大小関係によって、ゲート指令値を段階的に切り替える。有限個の指令値を切り替える処理とすることで、制御演算の負荷を低減することができる。
(エミッタ電位差の検出結果に基づくゲート指令値の変更)
エミッタ電位Vkeの検出周期の一周期毎にエミッタ電位差ΔVkeに基づいて都度ゲート指令値を変更する他、複数回のエミッタ電位差ΔVkeの検出結果を記憶しておき、複数回の情報に基づいてゲート指令値を変更するようにしてもよい。例えば複数回のエミッタ電位差ΔVkeの平均値や最大値等の情報を用いることが考えられる。複数回の情報に基づくことで、制御演算量を低減し、効率的なバランス調整を実現することができる。
図8(a)に示すように、リカバリ電流とリカバリ完了後の電流差ΔIrcは、大電流時よりも低電流時の方が大きくなる。また、図6(b)に示すように、パワー素子電流Iceとエミッタ電位差ΔVkeとの間には比例関係がある。したがって、リカバリ電流が流れるタイミングでのエミッタ電位Vke_1、Vke_2の検出は、パワー素子16、26の出力電流Ice_1、Ice_2が比較的小さいときに実行することが好ましい。そして、パワー素子電流Iceの低電流時にエミッタ電位差ΔVkeを検出した後の所定期間は、素子電流Iceの大きさに関係なくその判定結果を維持するようにしてもよい。
このうち、エミッタ電位差ΔVkeの検出に適した時期は、加速時、登坂時よりもパワー素子電流Iceが低いときである。
エミッタ電位差ΔVkeの正負閾値Vref+、Vref−は、絶対値がパワー素子の破壊点以下の電位差となるように設定される。また、電圧、電流、温度等の環境条件に応じて、正負閾値Vref+、Vref−を調整してもよい。
さらに、複数の正閾値及び複数の負閾値を設定し、条件に応じて切り替えてもよい。この場合、複数の正閾値及び複数の負閾値は、互いに絶対値の等しい値の複数の組であることが好ましい。例えば素子の劣化に関わる絶対値が相対的に大きい第1レベルの閾値と、損失悪化に関わる絶対値が相対的に小さい第2レベルの閾値とを設定する。第1レベルの閾値による判定は常時実施し、第2レベルの閾値による判定は、通常走行時にのみ実施するようにしてもよい。
(1)日本の法令で定められたJC08モードの規定
(2)国際的に定められた排出ガス試験方法であるWLTPの規定
(3)パワー素子、モータ、パワー素子制御用基板等、モータ駆動に関連する部品が故障無く正常に動作している状態。「故障無く正常に動作している」とは、パワー素子の過電流、短絡やモータの短絡等の故障により大電流が流れている状態ではないことを意味する。
(第2実施形態)
図10に示す第2実施形態の駆動回路562は、図2に示す定電流駆動方式の駆動回路561に対し、定電圧駆動方式の駆動回路である。
駆動回路562は、駆動電源621、622、及び、電圧調整回路602を含む。駆動電源621、622は、それぞれゲート抵抗17、27を介して制御対象素子16、26のゲートG1、G2に接続されている。駆動電源621、622の電圧であるゲート電圧Vg_1、Vg_2は、それぞれゲートG1、G2に印加される。
図7の例に準ずると、電圧調整回路602は、エミッタ電位Vke_2が相対的に高い第2対象素子26に印加されるゲート電圧Vg_2を相対的に大きくすることにより、第2対象素子26のターンオン時スイッチング速度を相対的に速くする。言い換えれば、電圧調整回路602は、エミッタ電位Vke_1が相対的に低い第1対象素子16に印加されるゲート電圧Vg_1を相対的に小さくすることにより、第1対象素子16のターンオン時スイッチング速度を相対的に遅くする。これによる作用効果は、第1実施形態と同様である。
駆動回路の詳細構成に係る第3、第4実施形態を図11、図12に示す。第3、第4実施形態は、それぞれ、定電流駆動方式及び定電圧駆動方式の構成において、制御対象素子16、26に接続されるゲート抵抗を可変としたものである。
第3実施形態の定電流駆動方式の駆動回路は、図2に示す駆動回路561の破線枠XAの部分に、図11に示す破線枠XBの部分を置き換えたものである。
駆動回路が生成したゲート信号は、第1対象素子16のゲートG1、及び、第2対象素子26のゲートG2へ出力される。以下の図12〜図14で同様とする。
ここで、ゲート抵抗Rg_nの「n」は、サブ回路の符号3桁目の数字と同じ1〜4の数字を意味する。サブ回路651のゲート抵抗Rg_1の抵抗値とサブ回路652のRg_2の抵抗値とは互いに異なる。サブ回路653のゲート抵抗Rg_3の抵抗値とサブ回路654のRg_4の抵抗値とは互いに異なる。
電圧調整回路603は、エミッタ電位Vkeが相対的に高い制御対象素子に接続されるゲート抵抗Rg_nを相対的に小さくし、エミッタ電位Vkeが相対的に低い制御対象素子に接続されるゲート抵抗Rg_nを相対的に大きくする。
電圧調整回路604とゲートG1との間には、互いに抵抗値の異なる複数のゲート抵抗Rg_1、Rg_2が並列に接続される。電圧調整回路604とゲートG2との間には、互いに抵抗値の異なる複数のゲート抵抗Rg_3、Rg_4が並列に接続される。
具体的なゲート抵抗Rg_nの変更方法は、第3実施形態と同様である。
駆動回路の詳細構成に係る第5、第6実施形態を図13、図14に示す。第5、第6実施形態は、それぞれ定電流駆動及び定電圧駆動の構成において、制御対象素子16、26に接続されるゲート抵抗としてトリミング抵抗を用いたものである。この第5、第6実施形態は、製造段階での初期調整に適している。
第5実施形態の定電流駆動方式の駆動回路は、図2に示す駆動回路561の破線枠XAの部分に、図13に示す破線枠XCの部分を置き換えたものである。
サブ回路655、656は、ゲート抵抗がトリミング抵抗で構成される点を除き、第3実施形態と同様である。FET68がオンしたとき、ゲートG1、G2に流れる電流は、トリミング抵抗Rg_5、Rg_6によって可変に調整される。
これにより第5実施形態では、並列接続された複数のパワー素子のターンオン時の出力電流のバランスが良好な状態で製品を出荷することができ、製品の信頼性を向上させることができる。
電圧調整回路606とゲートG1との間には、抵抗値を可変に調整可能なトリミング抵抗Rg_5が接続される。電圧調整回路606とゲートG2との間には、トリミング抵抗Rg_6が接続される。
第6実施形態の作用効果は、第5実施形態と同様である。
次に、3個のパワー素子16、26、36が並列接続されて一つのスイッチ機能部を構成する電力変換器に用いられる駆動回路の例を、第7実施形態として図15に示す。
第3のパワー素子36についてのフライホイールダイオード38、ゲートG3、ケルビンエミッタ端子KE3、エミッタ電位Vke_3等の符号や記号は、パワー素子16、26に準ずる。
なお、特許請求の範囲における括弧内の参照符号には、第7実施形態にのみ用いられる符号の記載を省略する。
なお、駆動回路の方式として第2実施形態に準ずる定電圧駆動方式を採用してもよい。
第1組の制御対象素子:パワー素子16、26
第2組の制御対象素子:パワー素子16、36
第3組の制御対象素子:パワー素子26、36
コンパレータ771、772、773は、それぞれ、第1組、第2組、第3組の制御対象素子のエミッタ電位差ΔVke1-2、ΔVke1-3、ΔVke2-3が正閾値Vref+を上回ったとき、アンバランス信号Subを出力する。
コンパレータ781、782、783は、それぞれ、第1組、第2組、第3組の制御対象素子のエミッタ電位差ΔVke1-2、ΔVke1-3、ΔVke2-3が負閾値Vref−を下回ったとき、アンバランス信号Subを出力する。
電流調整回路607は、各組の制御対象素子について、アンバランス信号Subが出力されたときゲート指令値を変更する。
このように、一つのスイッチ機能部が3個以上のパワー素子が並列接続されて構成される電力変換器に対しても、上記各実施形態のバランス調整を同様に実行可能である。
第8実施形態について図16を参照して説明する。
上記第1〜第7実施形態は、電位差検出回路70が検出したエミッタ電位差ΔVkeを正負閾値Vref+、Vref−と比較し、エミッタ電位差ΔVkeが正閾値Vref+を上回るか、負閾値Vref−を下回ったとき、ゲート指令値を段階的に切り替える。
これに対し、第8実施形態の駆動回路は、エミッタ電位差ΔVkeとゲート指令値との関係を規定した数式やマップ等の情報を予め記憶しており、電位差検出回路70から取得したエミッタ電位差ΔVkeに応じて、ゲート指令値を設定する。
図16(b)に示す、ゲート指令値がゲート電圧Vgである場合、駆動回路は、エミッタ電位差ΔVkeが大きいほど第1対象素子16に印加されるゲート電圧Vg_1を減少させ、第2対象素子26に印加されるゲート電圧Vg_2を増加させるように設定する。
図16(c)に示す、ゲート指令値がゲート抵抗Rgである場合、駆動回路は、エミッタ電位差ΔVkeが大きいほど第1対象素子16に接続されるゲート抵抗Rg_1を増加させ、第2対象素子26に接続されるゲート抵抗Rg_2を減少させるように設定する。
このように第8実施形態では、エミッタ電位差ΔVkeに応じて、ゲート指令値を細かく設定することができる。
(a)並列接続される複数のパワー素子は、上記実施形態で例示したIGBT以外に、SiC素子やGaN素子等でもよい。パワー素子に付随するダイオードは、フライホイールダイオードに限らず、ショットキーバリアダイオードやMOSFETの内蔵ダイオード等、リカバリ電流が流れるダイオードであればよい。
(b)本発明が適用される電力変換器は、インバータに限らず、バッテリとインバータとの間に接続されバッテリの直流電圧を昇圧する昇圧コンバータや、低電圧側と高電圧側との間で双方向に昇圧及び降圧可能な昇降圧コンバータ等でもよい。また、交流インバータの場合、三相に限らず、四相以上の多相交流インバータにも同様に適用可能である。
以上、本発明は、上記実施形態になんら限定されるものではなく、発明の趣旨を逸脱しない範囲において種々の形態で実施可能である。
101−106・・・スイッチ機能部、
11−16、21−26・・・パワー素子、
18、28・・・フライホイールダイオード、
561、562・・・駆動回路、
70・・・電位差検出回路、
80・・・モータジェネレータ(負荷)。
Claims (14)
- 複数のパワー素子のスイッチング動作により電力を変換し負荷(80)に通電する電力変換器(100)の制御装置であって、
前記電力変換器の各電流経路においてパワー電流の通電又は遮断を切り替え可能な1つ以上のスイッチ機能部(101−106)は、エミッタ側からコレクタ側への通電を許容するダイオード(18、28)が付随する複数のパワー素子(11−16、21−26)が並列接続されて構成されており、
並列接続された前記複数のパワー素子のうちから選択された2個の制御対象素子について、エミッタ電位の差分であるエミッタ電位差(ΔVke)を検出する電位差検出回路(70)と、
前記電位差検出回路が検出した前記エミッタ電位差に基づき、2個の前記制御対象素子のエミッタ電位を互いに近づける方向に、少なくとも1個の前記制御対象素子へ出力するゲート信号に係るゲート指令値を制御する駆動回路(561、562)と、
を備え、
前記駆動回路は、前記エミッタ電位差に対する一つ以上の正閾値(Vref+)、及び一つ以上の負閾値(Vref−)を有しており、
前記エミッタ電位差がいずれかの前記正閾値を上回るか、いずれかの前記負閾値を下回ったとき、少なくとも1個の前記制御対象素子に対する前記ゲート指令値を変更する電力変換器制御装置。 - 前記一つ以上の正閾値、及び、前記一つ以上の負閾値は、互いに絶対値の等しい正負の値の一つ以上の組である請求項1に記載の電力変換器制御装置。
- 前記駆動回路は、前記エミッタ電位差がいずれかの前記正閾値を上回るか、いずれかの前記負閾値を下回ったことが検出されたスイッチング周期の次回以降のスイッチング周期における前記制御対象素子のターンオン時に、前記ゲート指令値を変更する請求項1または2に記載の電力変換器制御装置。
- 前記駆動回路は、前記エミッタ電位差がいずれかの前記正閾値を上回るか、いずれかの前記負閾値を下回ったとき、
エミッタ電位が相対的に高い前記制御対象素子のターンオン時スイッチング速度を相対的に速くするように前記ゲート指令値を変更する請求項1〜3のいずれか一項に記載の電力変換器制御装置。 - 前記ゲート指令値はゲート電流であり、
前記駆動回路は、前記エミッタ電位差がいずれかの前記正閾値を上回るか、いずれかの前記負閾値を下回ったとき、
エミッタ電位が相対的に高い前記制御対象素子に通電されるゲート電流を相対的に大きくするようにゲート電流を変更する請求項4に記載の電力変換器制御装置。 - 前記ゲート指令値はゲート電圧であり、
前記駆動回路は、前記エミッタ電位差がいずれかの前記正閾値を上回るか、いずれかの前記負閾値を下回ったとき、
エミッタ電位が相対的に高い前記制御対象素子に印加されるゲート電圧を相対的に大きくするようにゲート電圧を変更する請求項4に記載の電力変換器制御装置。 - 前記ゲート指令値はゲート抵抗であり、
前記駆動回路は、前記エミッタ電位差がいずれかの前記正閾値を上回るか、いずれかの前記負閾値を下回ったとき、
エミッタ電位が相対的に高い前記制御対象素子に接続されるゲート抵抗を相対的に小さくするようにゲート抵抗を変更する請求項4に記載の電力変換器制御装置。 - 前記負荷として、車両の動力源であるモータジェネレータに通電する電力変換器の制御に用いられ、
前記電位差検出回路は、
前記モータジェネレータに通電される前記パワー素子の出力電流の情報を取得し、前記パワー素子の出力電流が車両の加速時に通電される電流値より低いとき、前記エミッタ電位差を検出する請求項1〜7のいずれか一項に記載の電力変換器制御装置。 - 複数のパワー素子のスイッチング動作により電力を変換し負荷(80)として、車両の動力源であるモータジェネレータに通電する電力変換器(100)の制御装置であって、
前記電力変換器の各電流経路においてパワー電流の通電又は遮断を切り替え可能な1つ以上のスイッチ機能部(101−106)は、エミッタ側からコレクタ側への通電を許容するダイオード(18、28)が付随する複数のパワー素子(11−16、21−26)が並列接続されて構成されており、
並列接続された前記複数のパワー素子のうちから選択された2個の制御対象素子について、エミッタ電位の差分であるエミッタ電位差(ΔVke)を検出する電位差検出回路(70)と、
前記電位差検出回路が検出した前記エミッタ電位差に基づき、2個の前記制御対象素子のエミッタ電位を互いに近づける方向に、少なくとも1個の前記制御対象素子へ出力するゲート信号に係るゲート指令値を制御する駆動回路(561、562)と、
を備え、
前記電位差検出回路は、
前記モータジェネレータに通電される前記パワー素子の出力電流の情報を取得し、前記パワー素子の出力電流が車両の加速時に通電される電流値より低いとき、前記エミッタ電位差を検出する電力変換器制御装置。 - 前記駆動回路は、
前記エミッタ電位差と、前記制御対象素子に対する前記ゲート指令値との関係を予め規定した情報を有しており、検出された前記エミッタ電位差に応じて前記ゲート指令値を設定する請求項9に記載の電力変換器制御装置。 - 前記ゲート指令値は、前記制御対象素子に通電されるゲート電流である請求項10に記載の電力変換器制御装置。
- 前記ゲート指令値は、前記制御対象素子に印加されるゲート電圧である請求項10に記載の電力変換器制御装置。
- 前記ゲート指令値は、前記制御対象素子に接続されるゲート抵抗である請求項10に記載の電力変換器制御装置。
- 前記電位差検出回路は、
前記パワー素子の出力電流が、車両始動時又は通常走行時に通電される電流値の範囲にあるとき、前記エミッタ電位差を検出する請求項8〜13のいずれか一項に記載の電力変換器制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017041496A JP6729451B2 (ja) | 2017-03-06 | 2017-03-06 | 電力変換器制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017041496A JP6729451B2 (ja) | 2017-03-06 | 2017-03-06 | 電力変換器制御装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018148689A JP2018148689A (ja) | 2018-09-20 |
JP6729451B2 true JP6729451B2 (ja) | 2020-07-22 |
Family
ID=63591761
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017041496A Active JP6729451B2 (ja) | 2017-03-06 | 2017-03-06 | 電力変換器制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6729451B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7156118B2 (ja) * | 2019-03-20 | 2022-10-19 | 株式会社デンソー | モータシステム |
JP6807983B2 (ja) * | 2019-06-06 | 2021-01-06 | 三菱電機株式会社 | 電力変換装置 |
JP2023044249A (ja) * | 2021-09-17 | 2023-03-30 | 株式会社 日立パワーデバイス | 半導体モジュールの過電流検出装置及びそれを用いた半導体モジュール、半導体モジュールの過電流検出方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3580025B2 (ja) * | 1996-02-20 | 2004-10-20 | 富士電機デバイステクノロジー株式会社 | 並列接続・可制御半導体素子の電流バランス回路 |
JP3267189B2 (ja) * | 1997-05-14 | 2002-03-18 | 富士電機株式会社 | 電力変換装置のデバイス定常電流バランス制御回路 |
JPH11235015A (ja) * | 1998-02-13 | 1999-08-27 | Toshiba Corp | 電圧駆動型電力用半導体装置およびそのゲート制御方法 |
-
2017
- 2017-03-06 JP JP2017041496A patent/JP6729451B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018148689A (ja) | 2018-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6673186B2 (ja) | 電力変換器制御装置 | |
US10892698B2 (en) | Current detection apparatus and control apparatus of rotary electric machine | |
US7944161B2 (en) | DC bus discharge in an electric motor system | |
JP5157372B2 (ja) | 多相回転電機の制御装置及び多相回転電機装置 | |
JP5630474B2 (ja) | インバータ | |
US10090832B2 (en) | Controller for power converter having a delaying unit | |
US20160211767A1 (en) | Inverter controller and control method of inverter device | |
JP6217369B2 (ja) | モータ制御装置及びモータ制御方法 | |
JP6217554B2 (ja) | インバータ装置 | |
JP6889018B2 (ja) | モータの回生管理 | |
JP6475594B2 (ja) | パワー半導体素子の駆動回路、電力変換ユニットおよび電力変換装置 | |
KR20150122069A (ko) | 전동기 구동 장치 | |
JP6729451B2 (ja) | 電力変換器制御装置 | |
JP2019033556A (ja) | ゲート駆動装置および電力変換装置 | |
JP2017534240A (ja) | コンバータおよびコンバータを作動する方法 | |
US20220103061A1 (en) | Drive circuit for power converter | |
US11218143B2 (en) | Drive circuit for switch | |
JP7051008B2 (ja) | 並列駆動装置及び電力変換装置 | |
US20220109438A1 (en) | Drive circuit for switch | |
JP6543872B2 (ja) | 制御装置、制御方法及びプログラム | |
JP2017093073A (ja) | 電力変換装置 | |
JP2017158319A (ja) | パワー半導体素子の制御回路、パワー半導体素子の制御方法および電力変換装置 | |
JP7221726B2 (ja) | インバータ装置 | |
JP6376049B2 (ja) | 回転機の制御装置 | |
CN111615783B (zh) | 半导体元件的驱动电路、半导体元件的驱动方法以及马达控制装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190423 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200310 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200422 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200602 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200615 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6729451 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |