JP6718782B2 - 対物レンズおよび透過電子顕微鏡 - Google Patents

対物レンズおよび透過電子顕微鏡 Download PDF

Info

Publication number
JP6718782B2
JP6718782B2 JP2016183961A JP2016183961A JP6718782B2 JP 6718782 B2 JP6718782 B2 JP 6718782B2 JP 2016183961 A JP2016183961 A JP 2016183961A JP 2016183961 A JP2016183961 A JP 2016183961A JP 6718782 B2 JP6718782 B2 JP 6718782B2
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic pole
field type
optical axis
type lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016183961A
Other languages
English (en)
Other versions
JP2018049728A (ja
Inventor
達雄 成瀬
達雄 成瀬
祐二 河野
祐二 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2016183961A priority Critical patent/JP6718782B2/ja
Priority to EP17191913.7A priority patent/EP3309814B1/en
Priority to US15/710,091 priority patent/US10224173B2/en
Publication of JP2018049728A publication Critical patent/JP2018049728A/ja
Application granted granted Critical
Publication of JP6718782B2 publication Critical patent/JP6718782B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/14Lenses magnetic
    • H01J37/141Electromagnetic lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/049Focusing means
    • H01J2237/0492Lens systems
    • H01J2237/04922Lens systems electromagnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/10Lenses
    • H01J2237/14Lenses magnetic
    • H01J2237/1405Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24564Measurements of electric or magnetic variables, e.g. voltage, current, frequency
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2802Transmission microscopes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Microscoopes, Condenser (AREA)
  • Electron Tubes For Measurement (AREA)

Description

本発明は、対物レンズおよび透過電子顕微鏡に関する。
透過電子顕微鏡において電子線を集束、結像するための対物レンズとして、磁界型対物レンズが知られている。磁界型対物レンズは、試料または試料近傍に強磁界を生成することによって、レンズの焦点距離が短縮されるように改良されてきた。
しかしながら、磁性体試料などの磁場に敏感な試料を透過電子顕微鏡で観察する場合、対物レンズが発生させる磁場によって試料の磁気特性が変化するという問題があった。試料に対する磁場の影響を防ぐために、試料から離れた位置に対物レンズの磁場を設けた場合、対物レンズの焦点距離が長くなり、電子顕微鏡の分解能は低下してしまう。したがって、磁界型対物レンズを用いて、磁性体試料を高い分解能で適正に観察することは困難であった。
また、対物レンズの磁場が及ぼすローレンツ力(マクスウェル応力)は、磁性体試料に対して、当該磁性体試料を対物レンズに引き寄せるように働く。そのため、磁性体試料を所定の観察位置に保持することが困難であった。
このような問題に対して、特許文献1に記載の対物レンズでは、試料配置領域において、第1磁界型レンズおよび第2磁界型レンズによる磁場が互いに打ち消されてゼロになるようにしている。より具体的には、第1磁界型レンズで発生させる磁場と第2磁界型レンズで発生させる磁場とを試料配置面に関して対称に発生させることで、試料原点位置における磁場を垂直方向(光軸に沿った方向)の成分が支配的になるようにし、かつ、試料原点位置において2つのレンズから発生する磁場の垂直方向の成分が互いに打ち消し合うようにしている。これにより、試料原点位置における磁場をほぼゼロにしている。
このような対物レンズでは、試料配置領域における磁場をほぼゼロにできるため、磁性体試料の磁気特性を変化させることなく観察することができる。また、このような対物レンズでは、磁性体試料がローレンツ力により対物レンズに引き寄せられることを防ぐことができる。
特開2005−32588号公報
特許文献1に開示された対物レンズでは、試料原点位置(すなわち光軸と試料配置面とが交わる位置)の磁場は、ほぼゼロにすることができる。しかしながら、試料原点位置から外れた位置では、第1磁界型レンズおよび第2磁界型レンズによる磁場の水平方向(光軸に垂直な方向)の成分が互いに打ち消されず、場所によっては強め合ってしまう。したがって、特許文献1に開示された対物レンズでは、試料は水平方向の磁場の影響を受けてしまうことがある。
本発明は、以上のような問題点に鑑みてなされたものであり、本発明のいくつかの態様に係る目的の1つは、試料に対する磁場の影響を低減でき、かつ、高い分解能での観察が
可能な対物レンズを提供することにある。また、本発明のいくつかの態様に係る目的の1つは、上記対物レンズを含む電子顕微鏡を提供することにある。
(1)本発明に係る透過電子顕微鏡は、
透過電子顕微鏡であって、
電子線を放出する電子源と、
前記電子源から放出された電子線を集束させる照射レンズと、
試料を透過した電子線で透過電子顕微鏡像を結像する結像系を構成する対物レンズ、中間レンズ、および投影レンズと、
前記結像系で結像された前記透過電子顕微鏡像を撮影する撮像装置と、
を含み、
前記対物レンズは、
試料が配置される試料配置面を挟んで、光軸に沿って配置された第1磁界型レンズおよび第2磁界型レンズを含み、
前記第1磁界型レンズは、第1内側磁極と、第1外側磁極と、を有し、
前記第1内側磁極および前記第1外側磁極は、前記光軸を取り囲む環状であり、前記試料配置面に向かって延出し、
前記第2磁界型レンズは、第2内側磁極と、第2外側磁極と、を有し、
前記第2内側磁極および前記第2外側磁極は、前記光軸を取り囲む環状であり、前記試料配置面に向かって延出し、
前記第1外側磁極の先端部と前記試料配置面との間の距離は、前記第1内側磁極の先端部と前記試料配置面との間の距離よりも小さく、
前記第2外側磁極の先端部と前記試料配置面との間の距離は、前記第2内側磁極の先端部と前記試料配置面との間の距離よりも小さく、
前記第1内側磁極の先端部は、前記光軸と交差する第1開口を形成し、
前記第1外側磁極の先端部は、前記光軸と交差する第2開口を形成し、
前記第1外側磁極の先端部は、前記光軸に向かって張り出しており、
前記第1外側磁極の先端部は、前記試料配置面に沿って張り出している第1底面を有し、
前記第2内側磁極の先端部は、前記光軸と交差する第3開口を形成し、
前記第2外側磁極の先端部は、前記光軸と交差する第4開口を形成し、
前記第2外側磁極の先端部は、前記光軸に向かって張り出しており、
前記第2外側磁極の先端部は、前記試料配置面に沿って張り出している第2底面を有し、
前記第1磁界型レンズは、前記第1開口と前記第2開口との間のギャップに第1磁場を発生させ、
前記第2磁界型レンズは、前記第3開口と前記第4開口との間のギャップに第2磁場を発生させ、
前記第1磁界型レンズおよび前記第2磁界型レンズは、前記第1磁場の前記光軸に沿った方向の成分および前記第2磁場の前記光軸に沿った方向の成分が、前記試料配置面において互いに打ち消し合うように設けられている
このような透過電子顕微鏡では、第1磁界型レンズが発生させる磁場の光軸に沿った方向の成分および第2磁界型レンズが発生させる磁場の光軸に沿った方向の成分が、試料配置面において互いに打ち消し合うように作用するため、試料配置面における光軸に沿った方向の磁場を小さくできる。
また、このような透過電子顕微鏡では、外側磁極の先端部と試料配置面との間の距離が内側磁極の先端部と試料配置面との間の距離よりも小さく、外側磁極の先端部は光軸に向かって張り出しているため、第1磁界型レンズおよび第2磁界型レンズで発生させた磁場が、試料近傍に漏れることを防ぐことができ、試料の近傍の広い範囲で光軸に垂直な方向の磁場を小さくできる。
したがって、このような透過電子顕微鏡では、試料に対する磁場の影響を低減でき、磁場に敏感な試料であっても、高い分解能での観察ができる。
(2)本発明に係る透過電子顕微鏡において、
前記第1磁界型レンズと前記第2磁界型レンズとは、前記試料配置面を含む仮想平面に関して対称に配置されていてもよい。
このような透過電子顕微鏡では、容易に、第1磁界型レンズが発生させる磁場の光軸に沿った方向の成分と第2磁界型レンズが発生させる磁場の光軸に沿った方向の成分とを、試料配置面において、互いに打ち消しあうように作用させることができる。
(3)本発明に係る透過電子顕微鏡において、
前記光軸に沿った方向から見て、前記第1外側磁極の先端部と試料移動可能領域とは、重なっていてもよい。
このような透過電子顕微鏡では、第1磁界型レンズおよび第2磁界型レンズで発生させた磁場が試料近傍に漏れることをより防ぐことができ、試料の近傍の広い範囲で光軸に垂直な方向の磁場を小さくできる。
(4)本発明に係る透過電子顕微鏡において、
前記光軸に沿った方向から見て、前記第1外側磁極の先端部と前記第1内側磁極の先端部とは、重なっていてもよい。
このような透過電子顕微鏡では、第1磁界型レンズおよび第2磁界型レンズで発生させた磁場が試料近傍に漏れることをより防ぐことができ、試料の近傍の広い範囲で光軸に垂直な方向の磁場を小さくできる。
(5)本発明に係る透過電子顕微鏡において、
前記第1外側磁極の先端部と前記第2外側磁極の先端部との間に磁場を印加するための磁場印加部を含んでいてもよい。
このような透過電子顕微鏡では、外側磁極の先端部を、効率よく消磁することができる。これにより、残留磁場の影響を低減できる。
(6)本発明に係る透過電子顕微鏡において、
前記磁場印加部は、前記試料配置面に前記光軸に沿った方向の磁場を発生させてもよい。
このような透過電子顕微鏡では、例えば、光軸に沿った方向の磁場によって試料の磁気特性が変化する過程などを観察することができる。
(7)本発明に係る透過電子顕微鏡において、
前記試料を導入するための経路を囲み、前記第1磁界型レンズおよび前記第2磁界型レンズで発生した磁場を遮蔽する防磁筒を含んでいてもよい。
このような透過電子顕微鏡では、対物レンズを励磁した状態で試料の導入や、試料の取り出しを行っても、試料の磁気特性に与える影響が小さい。
(8)本発明に係る透過電子顕微鏡において、
前記第1磁界型レンズおよび前記第2磁界型レンズの少なくとも一方の位置を調整するための位置調整部を含んでいてもよい。
このような透過電子顕微鏡では、第1磁界型レンズと第2磁界型レンズとを、精度よく、試料配置面を含む仮想平面に関して対称に配置することができる。
(9)本発明に係る透過電子顕微鏡において、
前記第1磁界型レンズおよび前記第2磁界型レンズの少なくとも一方を固定するための固定部を含んでいてもよい。
このような透過電子顕微鏡では、例えば、位置調整部による磁界型レンズの位置調整の後に、位置調整がなされた磁界型レンズを固定することができる。これにより、透過電子顕微鏡外から入力される振動や音などの外乱の影響を低減することができる。
(10)本発明に係る対物レンズは、
透過電子顕微鏡用の対物レンズであって、
試料が配置される試料配置面を挟んで、光軸に沿って配置された第1磁界型レンズおよび第2磁界型レンズを含み、
前記第1磁界型レンズおよび前記第2磁界型レンズは、前記第1磁界型レンズが発生させる磁場の前記光軸に沿った方向の成分および前記第2磁界型レンズが発生させる磁場の前記光軸に沿った方向の成分が、前記試料配置面において互いに打ち消し合うように設けられ、
前記第1磁界型レンズは、第1内側磁極と、第1外側磁極と、を有し、
前記第1外側磁極の先端部と前記試料配置面との間の距離は、前記第1内側磁極の先端部と前記試料配置面との間の距離よりも小さく、
前記第1外側磁極の先端部は、前記光軸に向かって張り出しており、
前記第2磁界型レンズは、第2内側磁極と、第2外側磁極と、を有し、
前記第2外側磁極の先端部と前記試料配置面との間の距離は、前記第2内側磁極の先端部と前記試料配置面との間の距離よりも小さく、
前記第2外側磁極の先端部は、前記光軸に向かって張り出しており、
前記第1外側磁極の先端部と前記第2外側磁極の先端部との間に磁場を印加するための磁場印加部が設けられている。
このような対物レンズでは、試料に対する磁場の影響を低減でき、磁場に敏感な試料であっても、高い分解能での観察ができる。さらに、このような対物レンズでは、磁場印加部を含むため、外側磁極の先端部を、効率よく消磁することができる。これにより、残留磁場の影響を低減できる。
本実施形態に係る対物レンズを模式的に示す断面図。 本実施形態に係る対物レンズを模式的に示す断面図。 第1磁界型レンズおよび第2磁界型レンズが発生させる磁場を説明するための図。 第1磁界型レンズおよび第2磁界型レンズが発生させる垂直磁場の分布を示す図。 磁場発生部の動作を説明するための図。 磁場発生部の動作を説明するための図。 本実施形態の変形例に係る対物レンズを模式的に示す断面図。 本実施形態に係る透過電子顕微鏡を模式的に示す図。
以下、本発明の好適な実施形態について図面を用いて詳細に説明する。なお、以下に説明する実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また、以下で説明される構成の全てが本発明の必須構成要件であるとは限らない。
1. 対物レンズ
1.1. 対物レンズの構成
まず、本実施形態に係る対物レンズの構成について、図面を参照しながら説明する。図1は、本実施形態に係る対物レンズ100を模式的に示す断面図である。なお、図1では、試料ステージ(ゴニオメータステージ)1006に試料ホルダー1008が挿入されている状態を図示している。図2は、本実施形態に係る対物レンズ100を模式的に示す断面図であり、図1の領域IIの拡大図である。
対物レンズ100は、透過電子顕微鏡用の対物レンズである。対物レンズ100は、磁界型のレンズである。
対物レンズ100は、図1に示すように、第1磁界型レンズ10と、第2磁界型レンズ20と、磁場印加部30と、位置調整部40と、固定部50と、防磁筒60と、を含む。なお、図2では、便宜上、第1磁界型レンズ10および第2磁界型レンズ20のみを図示している。
第1磁界型レンズ10および第2磁界型レンズ20は、対物レンズ100の光軸Lに沿って配置されている。対物レンズ100が透過電子顕微鏡に組み込まれた場合(例えば図8参照)、第1磁界型レンズ10は試料配置面2よりも上側(照射レンズ側)に位置し、第2磁界型レンズ20は試料配置面2よりも下側(中間レンズ側)に位置する。第1磁界型レンズ10および第2磁界型レンズ20は、試料配置面2を挟んで配置されている。
対物レンズ100では、試料Sは、第1磁界型レンズ10と第2磁界型レンズ20との間の試料配置面2に配置される。試料配置面2は、光軸Lと直交する面である。試料配置面2は、対物レンズ100において、試料Sが配置される面である。試料配置面2は、例えば、試料原点位置(すなわち光軸と試料配置面とが交わる位置)を中心として、試料Sを配置可能な大きさを持つ面である。試料ステージ1006は、試料Sを第1磁界型レンズ10および第2磁界型レンズ20に対して光軸Lに垂直な方向(水平方向)から試料ホルダー1008を挿入するサイドエントリー方式の試料ステージである。
第1磁界型レンズ10および第2磁界型レンズ20は、第1磁界型レンズ10が発生させる磁場の光軸Lに沿った方向(鉛直方向)の成分および第2磁界型レンズ20が発生させる磁場の光軸Lに沿った方向の成分が、試料配置面2において互いに打ち消し合うように設けられる。
第1磁界型レンズ10は、第1励磁コイル12と、第1ヨーク14と、を有している。第1励磁コイル12は、図示しない電源に接続されている。第1ヨーク14は、第1励磁コイル12を囲むように設けられている。第1ヨーク14は、内側磁極15と、外側磁極16と、を有している。
内側磁極15および外側磁極16は、環状である。内側磁極15は光軸L側に配置されており、外側磁極16は内側磁極15の外側に配置されている。内側磁極15は、第1励磁コイル12を囲んでいる部分から試料配置面2に向かって延出している。同様に、外側磁極16は、第1励磁コイル12を囲んでいる部分から試料配置面2に向かって延出している。
外側磁極16の先端部16aと試料配置面2との間の距離D2は、内側磁極15の先端部15aと試料配置面2との間の距離D1よりも小さい。すなわち、光軸Lに沿った方向において、外側磁極16の先端部16aは、内側磁極15の先端部15aと試料配置面2との間に位置している。
外側磁極16の先端部16aは、光軸Lに向かって張り出している。すなわち、外側磁極16の先端部16aは、外側磁極16の他の部分と比べて、光軸L側に位置している。
光軸Lに沿った方向から見て、外側磁極16の先端部16aは、試料移動可能領域6と重なっている。また、光軸Lに沿った方向から見て、外側磁極16の先端部16aは、内側磁極15の先端部15aと重なっている。光軸Lに垂直な方向において、内側磁極15の先端部15aと光軸Lとの間の距離と、外側磁極16の先端部16aと光軸Lとの間の距離とは、等しい。
ここで、試料移動可能領域6とは、試料ホルダー1008に支持されている試料Sが、試料ステージ1006の動作によって移動可能となる領域である。例えば、試料Sの直径が3mmの場合、試料配置面2を含む仮想平面4内において試料ステージ1006は、試料Sを、試料原点位置を中心として±1.2mm程度移動させることができる。この場合、試料移動可能領域6は、試料原点位置を中心として±2.7mmの領域である。
内側磁極15の先端部15aで規定される開口15bの中心は、光軸L上に位置している。同様に、外側磁極16の先端部16aで規定される開口16bの中心は、光軸L上に位置している。内側磁極15の開口15bの形状、および外側磁極16の開口16bの形状は、円である。内側磁極15の開口15bの径と外側磁極16の開口16bの径とは、等しい。
内側磁極15の先端部15aと外側磁極16の先端部16aとの間にはギャップ(空隙)18が設けられている。ギャップ18は、光軸Lを囲む環状であり、より具体的には、光軸Lを中心軸とする円筒面状である。対物レンズ100では、外側磁極16の先端部16aが光軸Lに向かって張り出しているため、ギャップ18は、試料配置面2の方向を向いていない。図示の例では、ギャップ18は、光軸Lに垂直な方向を向いている。
第2磁界型レンズ20は、第2励磁コイル22と、第2ヨーク24と、を有している。第2励磁コイル22は、図示しない電源に接続されている。第2ヨーク24は、第2励磁コイル22を囲むように設けられている。第2ヨーク24は、内側磁極25と、外側磁極26と、を有している。
内側磁極25および外側磁極26は、環状である。内側磁極25は光軸L側に配置されており、外側磁極26は内側磁極25の外側に配置されている。内側磁極25は、第2励
磁コイル22を囲んでいる部分から試料配置面2に向かって延出している。同様に、外側磁極26は、第2励磁コイル22を囲んでいる部分から試料配置面2に向かって延出している。
外側磁極26の先端部26aと試料配置面2との間の距離D4は、内側磁極25の先端部25aと試料配置面2との間の距離D3よりも小さい。すなわち、光軸Lに沿った方向において、外側磁極26の先端部26aは、内側磁極25の先端部25aと試料配置面2との間に位置している。
外側磁極26の先端部26aは、光軸Lに向かって張り出している。すなわち、外側磁極26の先端部26aは、外側磁極26の他の部分と比べて、光軸L側に位置している。
光軸Lに沿った方向から見て、外側磁極26の先端部26aは、試料移動可能領域6と重なっている。また、光軸Lに沿った方向から見て、外側磁極26の先端部26aは、内側磁極25の先端部25aと重なっている。光軸Lに垂直な方向において、内側磁極25の先端部25aと光軸Lとの間の距離と、外側磁極26の先端部26aと光軸Lとの間の距離とは、等しい。
内側磁極25の先端部25aで規定される開口25bの中心は、光軸L上に位置している。同様に、外側磁極26の先端部26aで規定される開口26bの中心は、光軸L上に位置している。内側磁極25の開口25bの形状、および外側磁極26の開口26bの形状は、円である。内側磁極25の開口25bの径、および外側磁極26の開口26bの径は、等しい。
内側磁極25の先端部25aと外側磁極26の先端部26aとの間にはギャップ(空隙)28が設けられている。ギャップ28は、光軸Lを囲む環状であり、より具体的には、光軸Lを中心軸とする円筒面状である。対物レンズ100では、外側磁極16の先端部16aが光軸Lに向かって張り出しているため、ギャップ28は、試料配置面2の方向を向いていない。図示の例では、ギャップ28は、光軸Lに垂直な方向を向いている。
第1磁界型レンズ10の構成と第2磁界型レンズ20の構成は、同じである。また、第1磁界型レンズ10と第2磁界型レンズ20とは、試料配置面2を含む仮想平面4に関して対称に配置される。
磁場印加部30は、第1磁場印加コイル32aと、第2磁場印加コイル32bと、磁場印加コイル用ヨーク34と、を有している。
第1磁場印加コイル32aは、第1励磁コイル12の外側に配置されている。第1磁場印加コイル32aと第1励磁コイル12とは、例えば、同心円状に配置されている。第2磁場印加コイル32bは、第2励磁コイル22の外側に配置されている。第2磁場印加コイル32bと第2励磁コイル22とは、例えば、同心円状に配置されている。
磁場印加コイル用ヨーク34は、第1磁場印加コイル32aおよび第2磁場印加コイル32bを囲むように設けられている。磁場印加コイル用ヨーク34は、上面および下面を備えた円柱状であり、上面および下面にはそれぞれ光軸Lを中心とする円形の開口が設けられている。磁場印加コイル用ヨーク34の内側の底面には第2磁界型レンズ20が載置されている。また、磁場印加コイル用ヨーク34の内側の上面には第1磁界型レンズ10が固定されている。
位置調整部40は、磁場印加コイル用ヨーク34上に載置された第2磁界型レンズ20
の位置を調整するためのものである。位置調整部40は、例えば第2磁界型レンズ20を光軸Lに垂直な方向(水平方向)に押すための位置調整用のネジである。図示はしないが、当該ネジは、複数設けられており、互いに異なる方向から第2磁界型レンズ20を押すことができる。位置調整部40によって、第1磁界型レンズ10に対する第2磁界型レンズ20の位置を調整することができる。これにより、容易に、第1磁界型レンズ10と第2磁界型レンズ20とを仮想平面4に関して対称に配置することができる。また、位置調整部40を用いることで、透過電子顕微鏡において、電子線を照射した状態で、第2磁界型レンズ20の位置合わせを行うことが可能である。
固定部50は、位置調整がなされた第2磁界型レンズ20を磁場印加コイル用ヨーク34に固定するためのものである。固定部50は例えばボルトであり、当該ボルトを磁場印加コイル用ヨーク34に設けられた雌ネジに螺合することで、第2磁界型レンズ20と磁場印加コイル用ヨーク34とを固定することができる。
なお、図示の例では、第1磁界型レンズ10を固定し、第2磁界型レンズ20を位置調整可能としたが、第1磁界型レンズ10を位置調整可能とし、第2磁界型レンズ20を固定してもよい。このとき、固定部50は、第1磁界型レンズ10を磁場印加コイル用ヨーク34に固定してもよい。また、第1磁界型レンズ10および第2磁界型レンズ20の両方を位置調整可能としてもよい。このとき、固定部50は、第1磁界型レンズ10および第2磁界型レンズ20の両方を磁場印加コイル用ヨーク34に固定してもよい。
防磁筒60は、第1磁界型レンズ10と第2磁界型レンズ20との間に配置されている。防磁筒60は、試料Sを外部から対物レンズ100内に導入するための経路を囲むように設けられている。なお、対物レンズ100において、試料Sを導入するための経路と、試料Sを対物レンズ100内から取り出すための経路は、同じである。
防磁筒60は、第1磁界型レンズ10と試料ステージ1006との間、第2磁界型レンズ20と試料ステージ1006との間に配置されている。防磁筒60は、筒状の部材であり、試料配置面2に近づくに従って径が小さくなる部分を有している。防磁筒60は、透磁率の高い材料で構成されている。防磁筒60の材質は、例えば、パーマロイである。
防磁筒60が試料Sを導入するための経路に設けられているため、例えば試料Sが磁性体試料などの磁場に敏感な試料であった場合に、対物レンズ100を励磁した状態で試料Sの導入、試料Sの取り出しを行っても、試料Sの磁気特性に与える影響が小さい。
1.2. 対物レンズの動作
(1)第1磁界型レンズおよび第2磁界型レンズの動作
図3は、第1磁界型レンズ10および第2磁界型レンズ20が発生させる磁場を説明するための図である。なお、図3には、互いに直交する3つの軸として、X軸、Y軸、およびZ軸を図示している。Z軸は光軸Lに沿った軸(光軸Lに平行な軸)であり、X軸およびY軸は光軸Lに垂直な軸である。図示の例では、Z方向は鉛直方向であり、X方向およびY方向は水平方向である。
図4は、第1磁界型レンズ10および第2磁界型レンズ20が発生させる垂直磁場の分布を示す図である。図4に示すグラフの横軸は光軸L上の位置であり、縦軸は垂直磁場(磁場の光軸Lに沿った方向の成分、磁場のZ成分)の大きさを示している。
第1磁界型レンズ10の第1励磁コイル12に電源から励磁電流が供給されると、第1磁界型レンズ10は、試料Sの前方(照射レンズ側、−Z方向側)に磁場B1を発生させる。具体的には、第1励磁コイル12に励磁電流が供給されると、第1ヨーク14内に磁
束(磁路)が生じる。この磁束は、内側磁極15の先端部15aと外側磁極16の先端部16aとの間のギャップ18から漏洩し、光軸Lを中心とする回転対称な磁場B1が発生する。第1磁界型レンズ10の外側磁極16の先端部16aが光軸Lに向かって張り出していることにより、ギャップ18は、試料Sの方向(試料配置面2の方向、Z方向)を向いていない。そのため、磁場B1の光軸Lに垂直な方向の成分(X,Y成分)は、試料Sの試料原点位置のみならず、試料Sの近傍の広い範囲で小さい。
同様に、第2磁界型レンズ20の第2励磁コイル22に電源から励磁電流が供給されると、第2磁界型レンズ20は、試料Sの後方(中間レンズ側、+Z方向側)に磁場B2を発生させる。具体的には、第2励磁コイル22に励磁電流が供給されると、第2ヨーク24内に磁束(磁路)が生じる。この磁束は、内側磁極25の先端部25aと外側磁極26の先端部26aとの間のギャップ28から漏洩し、光軸Lを中心とする回転対称な磁場B2が発生する。第2磁界型レンズ20の外側磁極26の先端部26aが光軸Lに向かって張り出していることにより、ギャップ28は、試料Sの方向(試料配置面2の方向、Z方向)を向いていない。そのため、磁場B2の光軸Lに垂直な方向の成分(X,Y成分)は、試料Sの試料原点位置のみならず、試料Sの近傍の広い範囲で小さい。
このように、第1磁界型レンズ10の外側磁極16の先端部16aが光軸Lに向かって張り出していることにより、磁場B1の光軸Lに垂直な方向の成分が試料Sの近傍に到達することを防いでいる。同様に、第2磁界型レンズ20の外側磁極26の先端部26aが光軸Lに向かって張り出していることにより、磁場B2の光軸Lに垂直な方向の成分が試料Sの近傍に到達することを防いでいる。
図4に示すように、第1磁界型レンズ10が発生させる磁場B1の光軸Lに沿った方向の成分(Z成分)および第2磁界型レンズ20が発生させる磁場B2の光軸Lに沿った方向の成分は、互いに逆方向である。そのため、磁場B1の光軸Lに沿った方向の成分と磁場B2の光軸Lに沿った方向の成分とは、試料配置面2において互いに打ち消しあうように作用する。これにより、試料配置面2における光軸Lに沿った方向の磁場を極めて小さくできる。
上述したように、第1磁界型レンズ10と第2磁界型レンズ20とは、その構成が同じであり、かつ、試料配置面2を含む仮想平面4に関して対称に配置される。したがって、第1磁界型レンズ10の第1励磁コイル12および第2磁界型レンズ20の第2励磁コイル22に等しい励磁電流を供給することにより、磁場B1の光軸Lに沿った方向の成分の大きさと磁場B2の光軸Lに沿った方向の成分の大きさとを等しくすることができる。これにより、磁場B1の光軸Lに沿った方向の成分と磁場B2の光軸Lに沿った方向の成分とを互いに打ち消しあうように作用させることができる。
対物レンズ100では、位置調整部40によって第2磁界型レンズ20の位置を調整して、第1磁界型レンズ10と第2磁界型レンズ20とを、精度よく、試料配置面2を含む仮想平面4に関して対称に配置することができる。位置調整部40によって位置の調整がなされた第2磁界型レンズ20は、固定部50によって磁場印加コイル用ヨーク34に固定される。
(2)磁場印加部の動作
図5は、磁場印加部30の動作を説明するための図である。図6は、磁場印加部30の動作を説明するための図であり、図5の領域VIの拡大図である。図5および図6に示す矢印は、磁場印加部30が発生させる磁束の経路(磁路)を表している。
対物レンズのポールピースでは、一般的に、それまでの試料の観察や分析時に励磁され
ていることによって、励磁を零にしても、残留磁場が生じてしまう場合がある。本実施形態に係る対物レンズ100では、第1磁界型レンズ10が発生させる磁場B1の光軸Lに沿った方向の成分と第2磁界型レンズ20が発生させる磁場B2の光軸Lに沿った方向の成分とを逆方向にして試料配置面2における光軸Lに沿った方向の磁場を小さくしている。
そのため、対物レンズ100において、第1磁界型レンズ10の磁極15,16、および第2磁界型レンズ20の磁極25,26に残留磁場が生じると、磁場B1の光軸Lに沿った方向の成分および磁場B2の光軸Lに沿った方向の成分による磁場の打ち消しあいが阻害され、試料配置面2において、光軸Lに沿った方向の磁場を小さくできない場合がある。
ここで、ポールピースとコイルとで構成された対物レンズのポールピースの消磁方法として、時間とともに減衰して最終的に所定のバイアス電流に収束する正弦波形の減衰交流電流をコイルに供給することにより、ポールピースに所定の交流磁場(磁束)を供給してポールピースの消磁を行う手法が知られている(例えば、特開2003−187732号公報参照)。
しかしながら、対物レンズ100において、消磁のために、第1磁界型レンズ10の第1励磁コイル12、および第2磁界型レンズ20の第2励磁コイル22に所定の減衰交流電流を供給したとしても、第1磁界型レンズ10の外側磁極16の先端部16a中での磁場変動、および第2磁界型レンズ20の外側磁極26の先端部26a中での磁場変動は、非常に小さいため、効率的に先端部16a,26aの消磁を行うことができない。
対物レンズ100では、図5および図6に示すように、磁場印加部30の磁場印加コイル用ヨーク34によって、第1磁界型レンズ10の外側磁極16の先端部16aおよび第2磁界型レンズ20の外側磁極26の先端部26aを通る磁束の経路(磁路)を形成することで、効率的に先端部16a,26aの消磁を行うことができる。
また、対物レンズ100では、試料Sの観察時に、磁場印加部30によって、試料Sに光軸Lに沿った方向の磁場(Z方向の磁場)を印加することができる。これにより、例えば、試料Sが磁性体材料である場合、光軸Lに沿った方向の磁場によって磁気特性が変化する過程などを観察することができる。
対物レンズ100は、例えば、以下の特徴を有する。
対物レンズ100では、第1磁界型レンズ10および第2磁界型レンズ20が、第1磁界型レンズ10が発生させる磁場B1の光軸Lに沿った方向の成分および第2磁界型レンズ20が発生させる磁場B2の光軸Lに沿った方向の成分が、試料配置面2において互いに打ち消し合うように設けられている。そのため、対物レンズ100では、試料配置面2における光軸Lに沿った方向の成分(Z成分)の磁場を極めて小さくできる。
また、対物レンズ100では、外側磁極16,26の先端部16a,26aと試料配置面2との間の距離D2,D4は、内側磁極15,25の先端部15a,25aと試料配置面2との間の距離D1,D3よりも小さく、外側磁極16,26の先端部16a,26aは、光軸Lに向かって張り出している。そのため、対物レンズ100では、第1磁界型レンズ10および第2磁界型レンズ20で発生させた磁場が、試料S近傍に漏れることを防ぐことができる。これにより、対物レンズ100では、試料Sの近傍の広い範囲で光軸Lに垂直な方向の磁場(X,Y成分)を小さくできる。
したがって、対物レンズ100では、試料Sに対する磁場の影響を低減でき、磁場に敏感な試料Sであっても、高い分解能での観察ができる。
対物レンズ100では、第1磁界型レンズ10と第2磁界型レンズ20とは、試料配置面2を含む仮想平面4に関して対称に配置されている。そのため、対物レンズ100では、容易に、第1磁界型レンズ10が発生させる磁場B1の光軸Lに沿った方向の成分と第2磁界型レンズ20が発生させる磁場B2の光軸Lに沿った方向の成分とを互いに打ち消しあうように作用させることができる。
対物レンズ100では、光軸Lに沿った方向から見て、外側磁極16,26の先端部16a,26aと試料移動可能領域6とは、重なっている。また、光軸Lに沿った方向から見て、外側磁極16,26の先端部16a,26aと内側磁極15,25の先端部15a,25aとは、重なっている。そのため、対物レンズ100では、第1磁界型レンズ10および第2磁界型レンズ20で発生させた磁場が、試料S近傍に漏れることをより防ぐことができ、試料Sの近傍の広い範囲で光軸Lに垂直な方向の磁場を小さくできる。
対物レンズ100は、外側磁極16,26の先端部16a,26aに磁場を印加するための磁場印加部30を含む。そのため、対物レンズ100では、外側磁極16,26の先端部16a,26aを効率よく消磁することができる。これにより、残留磁場の影響を低減できる。
また、対物レンズ100では、磁場印加部30が、試料配置面2に光軸Lに沿った方向の磁場を発生させる。そのため、対物レンズ100では、例えば、光軸Lに沿った方向の磁場によって試料Sの磁気特性が変化する過程などを観察することができる。
対物レンズ100は、試料Sを導入するための経路を囲み、第1磁界型レンズ10および第2磁界型レンズ20で発生した磁場を遮蔽する防磁筒60を含む。そのため、対物レンズ100では、対物レンズ100を励磁した状態で試料Sの導入や、試料Sの取り出しを行っても、試料Sの磁気特性に与える影響が小さい。
対物レンズ100は、第2磁界型レンズ20の位置を調整するための位置調整部40を含む。そのため、対物レンズ100では、第1磁界型レンズ10と第2磁界型レンズ20とを、精度よく、仮想平面4に関して対称に配置することができる。また、対物レンズ100は、第2磁界型レンズ20を固定するための固定部50を含むため、位置調整部40による第2磁界型レンズ20の位置調整の後に、第2磁界型レンズ20を固定することができる。これにより、透過電子顕微鏡外から入力される振動や音などの外乱の影響を低減することができる。
2. 対物レンズの変形例
次に、本実施形態に係る対物レンズ100の変形例について説明する。図7は、本実施形態の変形例に係る対物レンズ200を模式的に示す断面図であり、図2に対応している。以下、本実施形態の変形例に係る対物レンズ200において、上述した対物レンズ100の構成部材と同様の機能を有する部材については同一の符号を付し、その詳細な説明を省略する。
上述した対物レンズ100では、図2に示すように、光軸Lに沿った方向から見て、第1磁界型レンズ10の外側磁極16の先端部16aと内側磁極15の先端部15aとは、重なっていた。同様に、光軸Lに沿った方向から見て、第2磁界型レンズ20の外側磁極26の先端部26aと内側磁極25の先端部25aとは、重なっていた。
これに対して、対物レンズ200では、図7に示すように、光軸Lに沿った方向から見て、第1磁界型レンズ10の外側磁極16の先端部16aと内側磁極15の先端部15aとは、重なっていない。しかしながら、対物レンズ200では、光軸Lに沿った方向から見て、第1磁界型レンズ10の外側磁極16の先端部16aと試料移動可能領域6とは、重なっている。
第1磁界型レンズ10において、光軸Lに垂直な方向において外側磁極16の先端部16aと光軸Lとの間の距離は、内側磁極15の先端部15bと光軸Lとの間の距離よりも大きい。また、外側磁極16の開口16bの径は、内側磁極15の開口15bの径よりも大きい。また、光軸Lに沿った方向から見て、外側磁極16の開口16bは、試料移動可能領域6内に位置している。
同様に、対物レンズ200では、光軸Lに沿った方向から見て、第2磁界型レンズ20の外側磁極26の先端部26aと内側磁極25の先端部25aとは、重なっていない。しかしながら、対物レンズ200では、光軸Lに沿った方向から見て、第2磁界型レンズ20の外側磁極26の先端部26aと試料移動可能領域6とは、重なっている。
第2磁界型レンズ20において、光軸Lに垂直な方向において外側磁極26の先端部26aと光軸Lとの間の距離は、内側磁極25の先端部25bと光軸Lとの間の距離よりも大きい。また、外側磁極26の開口26bの径は、内側磁極25の開口25bの径よりも大きい。また、光軸Lに沿った方向から見て、外側磁極26の開口26bは、試料移動可能領域6内に位置している。
対物レンズ200では、対物レンズ100と同様に、第1磁界型レンズ10および第2磁界型レンズ20で発生させた磁場が、試料S近傍に漏れることを防ぐことができる。
なお、対物レンズ200では、第1磁界型レンズ10および第2磁界型レンズ20で発生させた磁場が試料S近傍に漏れることを防ぐ効果は、対物レンズ100と比べて、小さい。しかしながら、対物レンズ200では、対物レンズ100に比べて、試料Sが配置される空間の光軸Lに沿った方向の大きさを拡げることができる。したがって、対物レンズ200では、試料Sをより大きな角度で傾斜させることができる。
3. 透過電子顕微鏡
次に、本実施形態に係る透過電子顕微鏡について、図面を参照しながら説明する。図8は、本実施形態に係る透過電子顕微鏡1000を模式的に示す図である。
透過電子顕微鏡1000は、本発明に係る対物レンズを含んで構成されている。ここでは、透過電子顕微鏡1000が本発明に係る対物レンズとして、対物レンズ100を含む例について説明する。なお、図8では、便宜上、対物レンズ100、試料ステージ1006を簡略化して図示している。
透過電子顕微鏡1000は、図8に示すように、電子源1002と、照射レンズ1004と、対物レンズ100と、試料ステージ1006と、試料ホルダー1008と、中間レンズ1010と、投影レンズ1012と、撮像装置1014と、を含んで構成されている。
電子源1002は、電子を発生させる。電子源1002は、例えば、陰極から放出された電子を陽極で加速し電子線を放出する電子銃である。
照射レンズ1004は、電子源1002から放出された電子線を集束して試料Sに照射
する。照射レンズ1004は、図示はしないが、複数の電子レンズで構成されていてもよい。
対物レンズ100は、試料Sを透過した電子線で透過電子顕微鏡像を結像するための初段のレンズである。
試料ステージ1006は、試料Sを保持する。図示の例では、試料ステージ1006は、試料ホルダー1008を介して、試料Sを保持している。試料ステージ1006によって、試料Sの位置決めを行うことができる。試料ステージ1006は、例えば、試料Sを傾斜させることができるゴニオメータステージである。
中間レンズ1010および投影レンズ1012は、対物レンズ100によって結像された像を拡大し、撮像装置1014上に結像させる。対物レンズ100、中間レンズ1010、投影レンズ1012は、透過電子顕微鏡1000の結像系を構成している。
撮像装置1014は、結像系によって結像された透過電子顕微鏡像を撮影する。撮像装置1014は、例えば、CCDカメラ、CMOSカメラ等のデジタルカメラである。
透過電子顕微鏡1000では、電子源1002から放出された電子線は、照射レンズ1004によって集束されて試料Sに照射される。試料Sに照射された電子線は、試料Sを透過して対物レンズ100によって結像される。対物レンズ100によって結像された透過電子顕微鏡像は、中間レンズ1010および投影レンズ1012によってさらに拡大されて、撮像装置1014で撮影される。
本実施形態に係る透過電子顕微鏡1000は、試料Sに対する磁場の影響を低減でき、かつ、高い分解能での観察が可能な対物レンズ100を含むため、例えば、磁性体試料などの磁場に敏感な試料Sを、磁気特性を変化させることなく、高い分解能で観察することができる。
なお、本発明は上述した実施形態に限定されず、本発明の要旨の範囲内で種々の変形実施が可能である。
上述した実施形態では、第1磁界型レンズ10の構成と第2磁界型レンズ20の構成が同じであり、かつ、第1磁界型レンズ10と第2磁界型レンズ20とが、仮想平面4に関して対称に配置される例について説明したが、本発明に係る対物レンズはこれに限定されない。
例えば、第1磁界型レンズ10の構成と第2磁界型レンズ20の構成を異なる構成として、第1励磁コイル12および第2励磁コイル22に供給される励磁電流を調整することで、磁場B1の光軸Lに沿った方向の成分と磁場B2の光軸Lに沿った方向の成分とを互いに打ち消しあうように作用させてもよい。また、例えば、第1磁界型レンズ10と第2磁界型レンズ20とが、仮想平面4に関して対称に配置せずに、第1励磁コイル12および第2励磁コイル22に供給される励磁電流を調整することで、磁場B1の光軸Lに沿った方向の成分と磁場B2の光軸Lに沿った方向の成分とを互いに打ち消しあうように作用させてもよい。
なお、上述した実施形態及び変形例は一例であって、これらに限定されるわけではない。例えば各実施形態及び各変形例は、適宜組み合わせることが可能である。
本発明は、実施の形態で説明した構成と実質的に同一の構成(例えば、機能、方法およ
び結果が同一の構成、あるいは目的及び効果が同一の構成)を含む。また、本発明は、実施の形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施の形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施の形態で説明した構成に公知技術を付加した構成を含む。
2…試料配置面、4…仮想平面、6…試料移動可能領域、10…第1磁界型レンズ、12…第1励磁コイル、14…第1ヨーク、15…内側磁極、15a…先端部、15b…開口、16…外側磁極、16a…先端部、16b…開口、18…ギャップ、20…第2磁界型レンズ、22…第2励磁コイル、24…第2ヨーク、25…内側磁極、25a…先端部、25b…開口、26…外側磁極、26a…先端部、26b…開口、28…ギャップ、30…磁場印加部、32a…第1磁場印加コイル、32b…第2磁場印加コイル、34…磁場印加コイル用ヨーク、40…位置調整部、50…固定部、60…防磁筒、100…対物レンズ、200…対物レンズ、1000…透過電子顕微鏡、1002…電子源、1004…照射レンズ、1006…試料ステージ、1008…試料ホルダー、1010…中間レンズ、1012…投影レンズ、1014…撮像装置

Claims (10)

  1. 透過電子顕微鏡であって、
    電子線を放出する電子源と、
    前記電子源から放出された電子線を集束させる照射レンズと、
    試料を透過した電子線で透過電子顕微鏡像を結像する結像系を構成する対物レンズ、中間レンズ、および投影レンズと、
    前記結像系で結像された前記透過電子顕微鏡像を撮影する撮像装置と、
    を含み、
    前記対物レンズは、
    試料が配置される試料配置面を挟んで、光軸に沿って配置された第1磁界型レンズおよび第2磁界型レンズを含み、
    前記第1磁界型レンズは、第1内側磁極と、第1外側磁極と、を有し、
    前記第1内側磁極および前記第1外側磁極は、前記光軸を取り囲む環状であり、前記試料配置面に向かって延出し、
    前記第2磁界型レンズは、第2内側磁極と、第2外側磁極と、を有し、
    前記第2内側磁極および前記第2外側磁極は、前記光軸を取り囲む環状であり、前記試料配置面に向かって延出し、
    前記第1外側磁極の先端部と前記試料配置面との間の距離は、前記第1内側磁極の先端部と前記試料配置面との間の距離よりも小さく、
    前記第2外側磁極の先端部と前記試料配置面との間の距離は、前記第2内側磁極の先端部と前記試料配置面との間の距離よりも小さく、
    前記第1内側磁極の先端部は、前記光軸と交差する第1開口を形成し、
    前記第1外側磁極の先端部は、前記光軸と交差する第2開口を形成し、
    前記第1外側磁極の先端部は、前記光軸に向かって張り出しており、
    前記第1外側磁極の先端部は、前記試料配置面に沿って張り出している第1底面を有し、
    前記第2内側磁極の先端部は、前記光軸と交差する第3開口を形成し、
    前記第2外側磁極の先端部は、前記光軸と交差する第4開口を形成し、
    前記第2外側磁極の先端部は、前記光軸に向かって張り出しており、
    前記第2外側磁極の先端部は、前記試料配置面に沿って張り出している第2底面を有し、
    前記第1磁界型レンズは、前記第1開口と前記第2開口との間のギャップに第1磁場を発生させ、
    前記第2磁界型レンズは、前記第3開口と前記第4開口との間のギャップに第2磁場を発生させ、
    前記第1磁界型レンズおよび前記第2磁界型レンズは、前記第1磁場の前記光軸に沿った方向の成分および前記第2磁場の前記光軸に沿った方向の成分が、前記試料配置面において互いに打ち消し合うように設けられている、透過電子顕微鏡
  2. 請求項1において、
    前記第1磁界型レンズと前記第2磁界型レンズとは、前記試料配置面を含む仮想平面に関して対称に配置されている、透過電子顕微鏡
  3. 請求項1または2において、
    前記光軸に沿った方向から見て、前記第1外側磁極の先端部と試料移動可能領域とは、重なっている、透過電子顕微鏡
  4. 請求項1または2において、
    前記光軸に沿った方向から見て、前記第1外側磁極の先端部と前記第1内側磁極の先端部とは、重なっている、透過電子顕微鏡
  5. 請求項1ないし4のいずれか1項において、
    前記第1外側磁極の先端部と前記第2外側磁極の先端部との間に磁場を印加するための磁場印加部を含む、透過電子顕微鏡
  6. 請求項5において、
    前記磁場印加部は、前記試料配置面に前記光軸に沿った方向の磁場を発生させる、透過電子顕微鏡
  7. 請求項1ないし6のいずれか1項において、
    前記試料を導入するための経路を囲み、前記第1磁界型レンズおよび前記第2磁界型レンズで発生した磁場を遮蔽する防磁筒を含む、透過電子顕微鏡
  8. 請求項1ないし7のいずれか1項において、
    前記第1磁界型レンズおよび前記第2磁界型レンズの少なくとも一方の位置を調整するための位置調整部を含む、透過電子顕微鏡
  9. 請求項8において、
    前記第1磁界型レンズおよび前記第2磁界型レンズの少なくとも一方を固定するための固定部を含む、透過電子顕微鏡
  10. 透過電子顕微鏡用の対物レンズであって、
    試料が配置される試料配置面を挟んで、光軸に沿って配置された第1磁界型レンズおよび第2磁界型レンズを含み、
    前記第1磁界型レンズおよび前記第2磁界型レンズは、前記第1磁界型レンズが発生させる磁場の前記光軸に沿った方向の成分および前記第2磁界型レンズが発生させる磁場の前記光軸に沿った方向の成分が、前記試料配置面において互いに打ち消し合うように設けられ、
    前記第1磁界型レンズは、第1内側磁極と、第1外側磁極と、を有し、
    前記第1外側磁極の先端部と前記試料配置面との間の距離は、前記第1内側磁極の先端部と前記試料配置面との間の距離よりも小さく、
    前記第1外側磁極の先端部は、前記光軸に向かって張り出しており、
    前記第2磁界型レンズは、第2内側磁極と、第2外側磁極と、を有し、
    前記第2外側磁極の先端部と前記試料配置面との間の距離は、前記第2内側磁極の先端部と前記試料配置面との間の距離よりも小さく、
    前記第2外側磁極の先端部は、前記光軸に向かって張り出しており、
    前記第1外側磁極の先端部と前記第2外側磁極の先端部との間に磁場を印加するための磁場印加部が設けられている、対物レンズ。
JP2016183961A 2016-09-21 2016-09-21 対物レンズおよび透過電子顕微鏡 Active JP6718782B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016183961A JP6718782B2 (ja) 2016-09-21 2016-09-21 対物レンズおよび透過電子顕微鏡
EP17191913.7A EP3309814B1 (en) 2016-09-21 2017-09-19 Objective lens and transmission electron microscope
US15/710,091 US10224173B2 (en) 2016-09-21 2017-09-20 Objective lens and transmission electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016183961A JP6718782B2 (ja) 2016-09-21 2016-09-21 対物レンズおよび透過電子顕微鏡

Publications (2)

Publication Number Publication Date
JP2018049728A JP2018049728A (ja) 2018-03-29
JP6718782B2 true JP6718782B2 (ja) 2020-07-08

Family

ID=59914386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016183961A Active JP6718782B2 (ja) 2016-09-21 2016-09-21 対物レンズおよび透過電子顕微鏡

Country Status (3)

Country Link
US (1) US10224173B2 (ja)
EP (1) EP3309814B1 (ja)
JP (1) JP6718782B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6843913B2 (ja) 2019-03-28 2021-03-17 日本電子株式会社 透過電子顕微鏡の制御方法および透過電子顕微鏡
US11450505B2 (en) * 2020-12-22 2022-09-20 Fei Company Magnetic field free sample plane for charged particle microscope
KR20230130374A (ko) * 2022-03-03 2023-09-12 한국기초과학지원연구원 투과전자현미경 시스템

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3008044A (en) * 1960-02-25 1961-11-07 Gen Electric Application of superconductivity in guiding charged particles
GB1238889A (ja) * 1968-11-26 1971-07-14
DE2059781C3 (de) * 1970-12-04 1979-08-16 Siemens Ag, 1000 Berlin Und 8000 Muenchen Magnetische Linsenanordnung
DE2541245A1 (de) * 1975-09-12 1977-03-24 Siemens Ag Korpuskularstrahl-rastermikroskop
JPS57151159A (en) * 1981-03-13 1982-09-18 Internatl Precision Inc Objective lens of electron beam device
JPS60220541A (ja) * 1984-04-17 1985-11-05 Jeol Ltd 透過電子顕微鏡
JPH0614458B2 (ja) * 1987-05-28 1994-02-23 日本電子株式会社 磁区観察装置
JP2602287B2 (ja) * 1988-07-01 1997-04-23 株式会社日立製作所 X線マスクの欠陥検査方法及びその装置
JPH0668829A (ja) * 1992-06-19 1994-03-11 Hitachi Ltd 磁気シールド
JPH06283128A (ja) * 1993-03-29 1994-10-07 Hitachi Ltd 電子顕微鏡
JPH08321272A (ja) * 1995-05-24 1996-12-03 Jeol Ltd 走査電子顕微鏡用対物レンズ
US5981947A (en) * 1997-02-03 1999-11-09 Nikon Corporation Apparatus for detecting or collecting secondary electrons, charged-particle beam exposure apparatus comprising same, and related methods
US6452175B1 (en) * 1999-04-15 2002-09-17 Applied Materials, Inc. Column for charged particle beam device
JP2003187732A (ja) 2001-12-13 2003-07-04 Jeol Ltd 磁界型レンズの消磁方法及び消磁回路
JP2005032588A (ja) * 2003-07-07 2005-02-03 Jeol Ltd 電子顕微鏡用磁界型対物レンズ
NL1026006C2 (nl) * 2004-04-22 2005-10-25 Fei Co Deeltjes-optisch apparaat voorzien van lenzen met permanent magnetisch materiaal.
JP4323376B2 (ja) * 2004-05-21 2009-09-02 国立大学法人東北大学 磁性マイクロプローブを具備した電子顕微鏡
EP2267754B1 (en) * 2005-11-28 2012-11-21 Carl Zeiss SMT GmbH Particle-optical inspection system
EP2193360B1 (fr) * 2007-09-25 2014-11-05 Centre National De La Recherche Scientifique Procede et systeme de mesure de deformations a l'echelle nanometrique
JP5449679B2 (ja) * 2008-02-15 2014-03-19 株式会社日立製作所 電子線観察装置および試料観察方法
JP5606723B2 (ja) * 2008-12-25 2014-10-15 日本電子株式会社 シリコンドリフト型x線検出器
JP2011003533A (ja) * 2009-05-20 2011-01-06 Jeol Ltd 磁区観察装置
GB2484517B (en) * 2010-10-14 2016-03-30 Carl Zeiss Nts Ltd Improvements in and relating to charged particle beam devices
JP5860642B2 (ja) * 2011-09-07 2016-02-16 株式会社日立ハイテクノロジーズ 走査電子顕微鏡
JP5953314B2 (ja) * 2011-10-31 2016-07-20 株式会社日立ハイテクノロジーズ 走査電子顕微鏡
DE112014002951B4 (de) * 2013-08-02 2020-08-06 Hitachi High-Technologies Corporation Rasterelektronenmikroskop
JP6285753B2 (ja) * 2014-02-28 2018-02-28 日本電子株式会社 透過電子顕微鏡
JP6258474B2 (ja) * 2014-04-28 2018-01-10 株式会社日立ハイテクノロジーズ 電子線装置
TWI502616B (zh) * 2014-08-08 2015-10-01 Nat Univ Tsing Hua 桌上型電子顯微鏡以及其廣域可調式磁透鏡
CN104916516B (zh) * 2015-05-26 2017-03-22 兰州大学 一种可加电、磁场的透射电子显微镜样品杆

Also Published As

Publication number Publication date
EP3309814B1 (en) 2020-01-29
US20180130633A1 (en) 2018-05-10
EP3309814A3 (en) 2018-08-01
JP2018049728A (ja) 2018-03-29
EP3309814A2 (en) 2018-04-18
US10224173B2 (en) 2019-03-05

Similar Documents

Publication Publication Date Title
JP6173862B2 (ja) 電子顕微鏡
JP5601838B2 (ja) 粒子光学装置
JP5899033B2 (ja) 歪みのないtemの非点収差補正
JP6718782B2 (ja) 対物レンズおよび透過電子顕微鏡
US8772714B2 (en) Transmission electron microscope and method of observing TEM images
JP2012138339A (ja) 荷電粒子ビームの軸合わせ方法および荷電粒子ビーム装置
US11640897B2 (en) Charged particle beam device
JP6868480B2 (ja) 歪み補正方法および電子顕微鏡
JP6843913B2 (ja) 透過電子顕微鏡の制御方法および透過電子顕微鏡
US9595416B2 (en) Transmission electron microscope
JP5934513B2 (ja) 透過電子顕微鏡
US11430630B2 (en) Charged particle beam apparatus
US9543115B2 (en) Electron microscope
JP2005032588A (ja) 電子顕微鏡用磁界型対物レンズ
JP5582469B2 (ja) 電子光学機器
JP2011003533A (ja) 磁区観察装置
JP7161053B2 (ja) 荷電粒子線装置
JP6239260B2 (ja) 透過電子顕微鏡
JPH0234140B2 (ja)
JP2017010671A (ja) ライナーチューブ、および電子顕微鏡

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200615

R150 Certificate of patent or registration of utility model

Ref document number: 6718782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150