JP6708462B2 - 画像処理装置及び画像処理方法 - Google Patents

画像処理装置及び画像処理方法 Download PDF

Info

Publication number
JP6708462B2
JP6708462B2 JP2016072600A JP2016072600A JP6708462B2 JP 6708462 B2 JP6708462 B2 JP 6708462B2 JP 2016072600 A JP2016072600 A JP 2016072600A JP 2016072600 A JP2016072600 A JP 2016072600A JP 6708462 B2 JP6708462 B2 JP 6708462B2
Authority
JP
Japan
Prior art keywords
color
image
image data
pixel
interest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016072600A
Other languages
English (en)
Other versions
JP2017182674A5 (ja
JP2017182674A (ja
Inventor
篤史 戸塚
篤史 戸塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2016072600A priority Critical patent/JP6708462B2/ja
Priority to EP17773825.9A priority patent/EP3438811B1/en
Priority to CN201780022003.7A priority patent/CN108885541B/zh
Priority to PCT/JP2017/006142 priority patent/WO2017169277A1/ja
Publication of JP2017182674A publication Critical patent/JP2017182674A/ja
Priority to US16/143,069 priority patent/US10867411B2/en
Publication of JP2017182674A5 publication Critical patent/JP2017182674A5/ja
Application granted granted Critical
Publication of JP6708462B2 publication Critical patent/JP6708462B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/21Ink jet for multi-colour printing
    • B41J2/2107Ink jet for multi-colour printing characterised by the ink properties
    • B41J2/2114Ejecting specialized liquids, e.g. transparent or processing liquids
    • B41J2/2117Ejecting white liquids
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/12Digital output to print unit, e.g. line printer, chain printer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/54Conversion of colour picture signals to a plurality of signals some of which represent particular mixed colours, e.g. for textile printing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/387Composing, repositioning or otherwise geometrically modifying originals
    • H04N1/3871Composing, repositioning or otherwise geometrically modifying originals the composed originals being of different kinds, e.g. low- and high-resolution originals

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Textile Engineering (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)
  • Ink Jet (AREA)

Description

本発明は、記録物における拡散反射光の色と正反射光の色とを制御するための処理に関する。
金や銅などの金属面やメタリック塗装面、あるいは構造色を有するタマムシやモルフォ蝶は、入射光の正反射方向で強く発色する特性を有する。この特性は、金属の表面などの質感を認知する際の要素となっている。この特性を再現するため、従来のカラーマッチングで用いられる0/45度又は45/0度といった幾何条件下にて測定される拡散反射光の色に加えて、正反射光を制御するプリント技術が求められる。
特許文献1には、金属調を再現する領域と金属調を再現しない領域とで異なる性質の色変換テーブルを用いる技術が開示されている。具体的には、金属調を再現する領域にはメタリックインクの上に少ない量の濃インクを載せることで、金属光沢の維持及び色の再現を両立させる技術が開示されている。特許文献2では、薄膜干渉を利用した正反射光の色を制御する技術が開示されている。具体的には、吐出するクリアインク量を制御して、透明な膜を最表面に形成することで、膜の厚みに依存した特有の色を正反射方向にて発色させることができる。
特開2010−52225号公報 特開2012−85123号公報
しかしながら、特許文献1は、正反射光の色を制御することは考慮されていない。また、特許文献2の薄膜干渉を用いた方法では、均一なクリアインクの膜を任意の厚さで形成するために、当該膜の厚みを精度良く形成する必要がある。また、当該膜は、クリアインク量だけではなく、クリアインクが着弾する面の微細形状にも大きく影響されるため、予め、当該膜の下地となる画像ごとにその再現特性を保持する必要がある。
本発明は、見る角度によって異なる色が見える視覚効果を画像に簡便に付与するための処理を提供することを目的とする。
上記課題を解決するために、本発明に係る画像処理装置は、記録媒体上における第1画像の上に第2画像を重ねて画像を形成するためのデータを生成する画像処理装置であって、第1の色と、前記第1の色とは異なる第2の色と、を表す色情報を取得する第1取得手段と、金属を含有する色材を記録する第1の位置であるか、又は、金属を含有する色材を記録しない第2の位置であるかを特定する値を各画素に有する前記第1画像を表す第1画像データを取得する第2取得手段と、注目画素が前記第1の位置である場合は前記第1の色を前記注目画素に配置し、前記注目画素が前記第2の位置である場合は前記第2の色を前記注目画素に配置することにより、複数の画素を含む所定領域において前記第1の色と前記第2の色とが混在する前記第2画像を表す第2画像データを生成する第1生成手段と、前記第1画像データと前記第2画像データとに基づいて、金属を含有する色材及び有色色材を用いて前記第1画像の上に前記第2画像を形成するための画像形成データを生成する第2生成手段と、を有することを特徴とする。
本発明によれば、見る角度によって異なる色が見える視覚効果を画像に簡便に付与する処理を提供することができる。
実施例における画像処理装置1のハードウェア構成を示すブロック図 実施例における画像処理装置1の機能構成を示すブロック図 実施例におけるプリンタ14の構成を示す図 実施例において記録媒体上に形成された画像の断面模式図 実施例において記録媒体上に形成された画像の光の反射特性を説明する図 実施例において記録媒体上に形成された画像の正反射方向と非正反射方向で見える色を説明する図 実施例1における画像処理装置1の処理を示すフローチャート 実施例1におけるUIの例を示す図 実施例1における色画像データを説明する図 実施例1において参照するLUTの例を示す図 実施例2におけるUIの例を示す図 実施例3におけるUIの例を示す図 実施例3における下層画像データを生成する処理を示すフローチャート 実施例4における配置情報の例を示す図 実施例4における配置情報を取得する処理を示すフローチャート 実施例5における上層画像データを生成する処理を示すフローチャート 実施例6における画像処理装置1の機能構成を示すブロック図 実施例6における画像処理装置1の処理を示すフローチャート 実施例6において参照するLUTの例を示す図 実施例7における画像投影システム20のハードウェア構成を示すブロック図 実施例7における画像投影システム20の機能構成を示すブロック図 実施例7における画像投影システム20の処理内容を示すフローチャート 実施例7における画像投影システム20の投影画像及びスクリーンの位置関係を説明するための模式図 実施例1における入力画像データの生成方法の例を説明する模式図 実施例1における主観評価実験の結果を示す図
本発明を実施するための形態について図面を参照して説明する。ただし、この実施例に記載されている構成要素はあくまで例示であり、本発明の範囲をそれらに限定する趣旨のものではない。
[実施例1]
本実施例では、任意の色情報に基づいて、色材として光沢インク及びカラーインクを搭載したプリンタを制御し、画像に対する入射光の非正反射方向で見える色及び正反射方向で見える色を制御したプリント物を形成する。尚、以下、入射光の非正反射方向で見える色を拡散反射色と呼び、入射光の正反射方向で見える色を正反射色と呼ぶ。
図1に、本実施例における画像処理装置1のハードウェア構成例を示す。画像処理装置1は、例えばコンピュータ11によって構成され、CPU101は、RAM103をワークメモリとして、ROM102、HDD(ハードディスクドライブ)17などに格納されたOS(オペレーティングシステム)や各種プログラムを実行する。また、CPU101は、システムバス107を介して各構成を制御する。尚、後述するフローチャートによる処理は、ROM102やHDD17などに格納されたプログラムコードがRAM103に展開され、CPU101によって実行される。汎用I/F(インターフェース)104は、例えばUSBなどシリアルバスインターフェースであり、シリアルバス12を介して、マウスやキーボードなどの入力デバイス13やプリンタ14などが接続される。SATA(シリアルATA)I/F105は、シリアルバスインターフェースであり、シリアルバス16を介して、HDD17や各種記録メディアの読み書きを行う汎用ドライブ18が接続される。CPU101は、HDD17や汎用ドライブ18にマウントされた各種記録メディアを各種データの格納場所として使用する。VC(ビデオカード)106は、ビデオインターフェースであり、ディスプレイ15が接続される。CPU101は、プログラムによって提供されるUI(ユーザインターフェース)をディスプレイ15に表示し、入力デバイス13を介して受け付けるユーザ指示などの入力を受信する。
図2は、本実施例における画像処理装置1の機能ブロック図である。上述した各種プログラムに含まれる画像処理アプリケーションが、CPU101からの指令に基づき実行する処理内容について、図2を参照して説明する。画像処理装置1は、UI表示部201と、色情報取得部202と、色画像データ生成部203と、層画像データ生成部204と、画像形成部205と、データ格納部206とを有する。さらに、層画像データ生成部204は下層画像データ生成部2041と上層画像データ生成部2042とを有し、画像形成部205は下層画像形成部2051と上層画像形成部2052とを有する。UI表示部201は、ディスプレイ15によって実現され、ユーザからの入力を受け付けるGUI(グラフィカル・ユーザ・インターフェース)などを外部のディスプレイ15に表示させる。色情報取得部202はユーザによって入力された情報に従い、色情報を含む入力画像データを取得する。色画像データ生成部203は、色情報取得部202で取得した入力画像データから色画像データを生成する。下層画像データ生成部2041及び上層画像データ生成部2042は、記録媒体上に形成する画像を示す画像データを生成する。下層画像形成部2051及び上層画像形成部2052は、外部のプリンタ14に指示し入力した各画像データを記録媒体上に画像として形成させる。データ格納部206は、プリンタ14に搭載された各インクの特性値などの情報を予め保持する。各部における詳細な制御動作については後述する。
図3に、プリンタ14の構成図を示す。ヘッドカートリッジ301には、複数の吐出口からなる記録ヘッドと、記録ヘッドに対してインクを供給するインクタンクと、記録ヘッドの各吐出口を駆動する信号を受信するためのコネクタが設けられている。ヘッドカートリッジ301は、キャリッジ302に交換可能に搭載されている。キャリッジ302には、コネクタを介してヘッドカートリッジ301に駆動信号等を伝達するためのコネクタホルダが設けられている。キャリッジ302は、ガイドシャフト303に沿って往復移動可能に構成される。具体的には、キャリッジ302は、主走査モータ304を駆動源として、モータプーリ305、従動プーリ306、タイミングベルト307等の駆動機構を介して駆動されるとともに、その位置及び移動が制御される。尚、このキャリッジ302のガイドシャフト303に沿った移動を「主走査」といい、移動方向を「主走査方向」という。印刷用の記録媒体308は、ASF(オートシートフィーダ)310に載置されている。記録媒体308に画像を形成する際、給紙モータ311の駆動に伴いピックアップローラ312が回転し、ASF310から記録媒体308が一枚ずつ分離され、給紙される。更に、記録媒体308は、搬送ローラ309の回転によりキャリッジ302上のヘッドカートリッジ301の吐出口面と対向する記録開始位置に搬送される。搬送ローラ309は、ラインフィードモータ313を駆動源としてギアを介して駆動される。記録媒体308が供給されたか否かの判定と給紙時位置の確定は、記録媒体308がエンドセンサ314を通過した時点で行われる。キャリッジ302に搭載されたヘッドカートリッジ301は、吐出口面がキャリッジ302から下方へ突出して記録媒体308と平行になるように保持されている。制御部320は、CPUや記憶手段等から構成されており、外部からプリンタ特性に即した解像度(以下、プリンタ解像度と呼ぶ)の画像データを受け取り、当該画像データに基づいて各パーツの動作を制御する。
以下、制御部320によって制御される各パーツの画像形成動作について説明する。まず、下層画像を形成するために、記録媒体308が記録開始位置に搬送されると、キャリッジ302がガイドシャフト303に沿って記録媒体308上を移動し、その移動の際に記録ヘッドの吐出口より光沢インクが吐出される。キャリッジ302がガイドシャフト303の一端まで移動すると、搬送ローラ309が所定量だけ記録媒体308をキャリッジ302の走査方向に垂直な方向に搬送する。この記録媒体308の搬送を「紙送り」又は「副走査」といい、この搬送方向を「紙送り方向」又は「副走査方向」という。記録媒体308を所定量だけ副走査方向に搬送し終えると、キャリッジ302は再度ガイドシャフト303に沿って移動する。このように、記録ヘッドのキャリッジ302による走査と紙送りとを繰り返す。この結果、記録媒体308全体に、下層画像が形成される。下層画像が形成された後、搬送ローラ309が記録媒体308を記録開始位置に戻し、下層画像の形成と同様のプロセスで下層画像の上層にシアン、マゼンタ、イエロー、ブラックの各色インクを吐出し、上層画像を形成する。説明を簡易にするため、プリンタ14の記録ヘッドは、インク滴を吐出するか否かの二値で制御され、所定解像度の画像データ1画素領域にてインク滴の吐出をすべてオンにした状態をインク量100%として扱う。尚、インクの吐出量が変調可能な記録ヘッドが一般的に使用されているが、上述の二値化処理を変調可能な複数レベルへの多値化処理に拡張すれば適用可能であり、二値化に限定されるものではない。本実施例において、下層画像の形成に使用する光沢インクは、入射した光を拡散反射しやすい特性を有するホワイトインクを用いる。ホワイトインク量100%にて形成したホワイトインクの被覆面は、記録媒体と比較して低い光沢度を有する。また、記録媒体は、アルミ蒸着紙など高い光沢度を有するシルバーメディアを使用する。
図4(a)に本実施例における画像処理装置1にて、後述する処理内容を経て形成されるプリント物の断面の模式図を示す。図中401はシルバーメディアを示し、本実施例で利用する記録媒体である。図中の402乃至404に示す矩形はホワイトインク及びカラーインクを表し、矩形幅はプリンタ14が受け取る所定解像度の画像データ1画素の大きさに相当する。本実施例において、プリンタ解像度を1200dpi、矩形幅を約20μmとする。尚、吐出されたインク滴は、インク及び着弾面の物理特性に基づく濡れ広がりなどの過程を経て形状が決定されるが、説明を簡易にするため、本実施例では記録媒体上に定着したインク形状を矩形として説明する。図中402はホワイトインク、403はシアンインク、404はイエローインクを表し、ホワイトインク402にてシルバーメディア401が被覆された領域Aは、シルバーメディアが被覆されていない領域Bと比較して入射した光が拡散反射しやすい領域である。領域A及び領域Bには、例えばシアンインク403及びイエローインク404といった、光の吸収波長域が異なるカラーインクがそれぞれ配置される。ここで、領域A及び領域Bは、約100×100μmに相当する5×5画素領域とし、これを光の反射特性の最小制御単位とする。また、領域A及び領域Bを2×2個配置した、約200×200μmに相当する10×10画素領域を、拡散反射色及び正反射色の最小制御単位とする。尚、記録ヘッドの駆動精度に起因する再現性低下を考慮し、異なるサイズを制御単位に設定してもよいが、このような制御単位のサイズは視角特性に基づき設定することが望ましい。例えば視力をE、観察距離をDとしたとき、以下の式から視角分解能S、解像度Rを導出することができる。
S=tan{(2×3.14)/E/(360×60)}×D ・・・(式1)
R=25.4×10−3/S ・・・(式2)
式1及び式2によれば、例えば、明視距離250mm、視力1.0とした一般的な観察条件に対応する視角分解能80μmが得られ、当該サイズを反射光の色の制御単位サイズとして設定することができる。これにより、反射光の色の制御単位が1つの領域として知覚される。その他に、例えばBartenモデルなど、公知の視角感度特性に基づきサイズを決定しても良いし、本実施例にて形成するプリント物を観察する幾何条件下にて主観評価実験を行うことで適当なサイズを決定しても構わない。次にこのサイズを決定するために行った主観評価実験の結果を示す。
本実施例の処理を経て作成したプリント物を見たとき、「領域Aと領域Bとの配置のパターンが判別できるか否か」と、「見る角度によって見える色が変化するか」という2つの観点で主観評価実験を行った。評価する試料は、カラーインク及びホワイトインクを搭載した解像度720dpiのプリンタとシルバーメディアを用いて、本実施例の処理により作成したプリント物である。式1から、350dpi以上の解像度では領域Aと領域Bが1つの領域として知覚されるほど細かいとわかるため、720dpiの画素2つ分を1画素とした360dpi以下の解像度についてサンプルを作成した。サンプルには解像度ごとに1から12の番号をつけ、各サンプルに対して主観評価を行った。また、評価環境は蛍光灯が天井に備え付けられたオフィスである。評価者には○、△、×の三段階のうちいずれかを選択してもらった。パターンの判別の観点では、○は「パターンが判別できない」、△は「パターンは判別できないが粒状感が気になる」、×は「パターンが判別できる」とした。また、色の変化の観点では、○は「色の変化を知覚した」、△は「色の変化を少し知覚した」。×は「色の変化が知覚できない」とした。
上述した主観評価実験の結果を図25に示す。表の数値は、○、△、×をそれぞれ選んだ人数の、全体の人数に対する割合である。結果から、色の変化については、今回実験を行った解像度の最も小さい30dpiでも色の変化が知覚されることが確認できた。パターンの判別については、51dpi以上あればパターンが判別できないプリントとなることわかる。つまり、30dpi以上の解像度のプリント物であれば見る角度によって異なる色が知覚され、さらに、領域Aと領域Bとのパターンを判別させないためには51dpi以上の解像度にすることが望ましいことが実験から確認できた。また、粒状感を低減するためには、解像度を60dpi以上にすることが望ましい。
次に、シルバーメディアがホワイトインクに被覆された領域である領域Aとシルバーインクがホワイトインクに被覆されていない領域である領域Bとの光の反射特性の違いについて図5を参照して説明する。図5(a)は、シルバーメディア501を被覆しているホワイトインク502に入射した光503の反射光を模式的に示した図であり、角度θにおける反射光の強度を破線504までの距離dにて表現する。拡散反射しやすい特性を有するホワイトインクでは、図に示すように、角度θに寄らずほぼ均一な強度で反射される。図5(b)は、シルバーメディア501に入射した光503の反射光を模式的に示した図であり、角度θにおける反射光の強度を破線505までの距離dにて表現する。シルバーメディア501は、図5(b)に示すように、ホワイトインク502の被覆面と比較して正反射方向θ=0近傍にて高い反射強度を持ち、正反射方向近傍以外では低い反射強度を持つ。尚、それぞれカラーインクを上層に配置した領域A及び領域Bにおいても当該光の反射特性の相対関係は保持されるものとする。また、入射光の反射方向のうち1つの方向とそれ以外の1つの方向とで領域Aと領域Bの互いに対する反射強度の比率が異なる光の反射特性をそれぞれが有していれば、上述したそれぞれの光の反射特性に限定しない。ただし、各領域の光の反射特性は、角度に寄らず均一な強度で反射する完全拡散反射面と、正反射方向にのみ反射する鏡面に類似することがより望ましい。
次に、反射光の色の最小制御単位領域、つまり領域Aと領域Bを含むマクロ領域Oを、非正反射方向及び正反射方向にて観察した際に視認される色の違いについて、図6を参照して説明する。図中611及び612に示す破線は、図5と同様にプリント物610に対し垂直に光を入射したときの反射光の強度を表す。領域Oを、図6(a)に示す非正反射方向615にて観察したとき、613と614とで示す反射光が積算された色が視認される。上述したように、非正反射方向では、領域Aの反射光613は領域Bの反射光614と比較して高い反射強度を有するため、領域Oにおいては領域Aの反射光の色であるイエローに近い色味を視認することができる。同様に、正反射方向623にて観察したとき、621と622とで示す反射光が積算され、領域Bの反射光の色であるシアンに近い色味が視認される。尚、シアン及びイエローの一次色を用いて説明したが、他の一次色、あるいはシアン、マゼンタ、イエロー、ブラックから成る任意の組合せの混色により再現される二次色を用いて同様の制御を行うことも可能である。以下、領域Aと領域Bが混在した領域を複数配置したプリント物を形成するための画像処理を行う画像処理装置1の一連の処理内容について説明する。
図7(a)、(b)、及び(c)は、本実施例における画像処理装置1の処理内容を示すフローチャートである。以下、図7を参照して本実施例における画像処理装置1の処理内容の詳細を説明する。尚、図7に示されるフローチャートによる処理は、ROM102に格納されたプログラムコードがRAM103に展開され、CPU101によって実行される。図7に示されるフローチャートは、ユーザが入力デバイス13を操作して指示を入力し、CPU101が入力された指示を受け付けることにより開始する。以下、各ステップ(工程)は符号の前にSをつけて表す。
S10において、2つの入力画像データを取得する。まず、画像処理装置1が必要な情報の入力を受け付けるために、UI表示部201はユーザに必要な情報の入力を促すUIをディスプレイ15に表示する。図8に、本実施例におけるユーザに入力を促すUIの例を示す。入力領域801は、HDD17などの記憶装置に予め記録したデータファイルのパス及びファイル名を指示するための指示入力部である。ここで、指示入力したパス及びファイル名に対応するデータファイルは、図24に示すような幾何条件で、撮像装置2403を用いて撮像した2つのRGB画像のデータである。具体的には、図24(a)に示す様な、光源2402からの入射光の正反射方向から被写体2401を撮像したRGB画像のデータと、図24(b)に示す様な、光源2402からの入射光の非正反射方向から被写体2401を撮像したRGB画像のデータである。このRGB画像のデータを入力画像データと呼ぶ。尚、予め格納しておく必要はなく、直接2つの入力画像データを入力する処理であっても良い。また、図24に示す様な光源位置ではなく、撮像装置の位置を変えて撮像した、非正反射方向のRGB画像及び正反射方向のRGB画像であっても良い。このとき、幾何条件による差分をアフィン変換など公知の歪み補正処理によって補正することによって、後述する色画像データを生成することができる。再び図8に戻り、出力ボタン802は、記録媒体上に印刷処理を開始させる指示を受け付ける領域である。終了ボタン803は、図7に示される一連の処理を終了させる指示を受け付ける領域である。ユーザにより入力領域801に画像データファイルのパス及びファイル名が指示入力され、次いで出力ボタン802が押下されると、S20に移行する。
S20において、色情報取得部202はS10でUIを介してユーザから指示された情報に対応する上述した2つの入力画像データをデータ格納部206から取得する。S30において、色画像データ生成部203はS20で取得した2つの入力画像データのRGB値をそれぞれ拡散反射色及び正反射色とし、1つの画像ファイルの各レイヤ画素値として格納することで、6チャネルの画像データである色画像データを生成する。このとき、入射光の非正反射方向から撮像して得た入力画像データのRGB値を拡散反射色R1、G1、B1とし、入射光の正反射方向から撮像して得た入力画像データのRGB値を正反射色R2、G2、B2とする。この色画像データのデータ構成を図9(a)にて模式的に表す。図に示す様に、色画像データの各画素には、拡散反射色及び正反射色に対応するRGB値が各チャネルに格納され、当該RGB値は、sRGB空間上にて定義されるものとする。尚、色情報はAdobeRGB空間上で定義されるRGB値あるいはLAB空間上で定義されるLAB値といった他の形式であってもよい。また、色画像データが示す画像の解像度は、上述した拡散反射色及び正反射色の最小制御単位を1画素とする120(1200/10)dpiとする。
S40において、下層画像データ生成部2041は、各画素にホワイトインク量が格納された下層画像データを生成する。下層画像データは、解像度1200dpiとする。処理動作の詳細については後述する。S50において、上層画像データ生成部2041は、下層画像データと、色画像データとに基づき、各画素にカラーインク量が格納された上層画像データを生成する。上層画像データは、解像度1200dpiとする。処理動作の詳細については後述する。
S60において、下層画像形成部2051は、下層画像データに基づいて、公知のハーフトーン処理、パス分解処理を行い、記録走査毎の記録ドット位置を決定し、画像形成データを生成した後、上述したプリンタ14による上層画像の形成動作を実行する。S70において、上層画像形成部2051は、上層画像データに基づいて、公知のハーフトーン処理、パス分解処理を行い、記録走査毎の記録ドット位置を決定し、画像形成データを生成した後、上述したプリンタ14による上層画像の形成動作を実行する。以上で画像データに対する一連の画像形成処理が完了する。次に、S40及びS50について、それぞれの処理の詳細を説明する。
図7(b)を参照して下層画像データを生成する処理(S40)の詳細について説明する。本実施例において下層画像データ生成部2041が生成する下層画像データは、各画素値がホワイトインク量に対応した、所定解像度のグレースケールの画像データとする。尚、光の反射特性が異なる領域を形成するための配置情報が含まれるのであれば、下層画像データは他のデータ形式であっても構わない。
S41において、反射光の色の最小制御単位領域における領域Aと領域Bとの配置情報をデータ格納部206から取得する。配置情報は、例えば図9(b)に示すような、領域A901及び領域B902の2つの領域の配置が記録された二値パターン(以下、配置パターンと呼ぶ)とし、10×10画素の二値画像データとしてデータ格納部206に予め格納されているものとする。尚、領域A901は0、領域B902は1の値が対応する。
S42において、上述した0と1との二値と、ホワイトインク量とが対応付けられた変換テーブルに基づき、二値画像データを、各画素値をホワイトインク量とするグレースケール画像データに変換する。変換テーブルのデータ形式を図10(a)に示す。上述した通り、領域Aはホワイトインク被覆面、領域Bはシルバーメディアにて再現するため、二値情報は、ホワイトインク量100%及び0%を示す二値にそれぞれ変換される。
S43において、S30にて生成した色画像データとS42にて変換したグレースケール画像データに基づき、下層画像データを生成する。具体的には、120dpiの色画像データ各画素を、10×10画素のグレースケール画像データに置換した、1200dpiのグレースケール画像データを生成する。本ステップにて生成した1200dpiのグレースケール画像データを下層画像データとする。尚、領域A及び領域Bの2つの領域の配置に対応する二値画像データを下層画像データとし、S42にて説明したホワイトインク量への変換処理は、下層画像形成部206にてプリンタ14内部で処理される形態であっても良い。
次に、図7(c)を参照して上層画像データを生成する処理(S50)の詳細について説明する。本実施例において上層画像データ生成部が生成する上層画像データは、画素ごとにCMYKインク量に対応した画素値が格納され、解像度1200dpiを有する4チャネルのカラー画像データとする。尚、色情報の異なる領域を下層画像上に形成するための配置情報が含まれるのであれば、上層画像データは他のデータ形式であっても構わない。
S51において、データ格納部206から色画像データのRGB値とCMYKインク量が対応した色分解LUT(Look Up Table)を取得し、LUTを参照して色画像データの各画素におけるカラーインク量を決定する。ここで、拡散反射色R1、G1、B1に対応するCMYKインク量C1、M1、Y1、K1と、正反射色R2、G2、B2に対応するCMYKインク量C2、M2、Y2、K2がLUTから導出される。LUTのデータ形式の例を図10(b)に示す。本実施例においては、拡散反射色のRGB値と正反射色のRGB値とで図10(b)に示すような同一のLUTを用いてCMYKインク量を決定する。この場合、領域Aのホワイトインクと領域Bのシルバーメディアのように下地によって再現される色が異なるため、それぞれ異なるLUTを参照することが望ましい。このとき、拡散反射色に対応するLUTは、ホワイトインク被覆面上にCMYKそれぞれのインク量を異ならせて形成した複数の色票の色再現特性を計測し、当該色再現特性に基づくカラーマッチング処理によって生成することができる。また、正反射色に対応するLUTについても同様に、シルバーメディア上に上述と同様に形成した色票の色再現特性を計測し、当該色再現特性に基づくカラーマッチング処理によって生成することができる。カラーマッチング処理は、色空間上の距離が最小となる色差最小マッピング、又は、色相角の保持を拘束条件とした場合の色差最小マッピング等、公知技術を利用することが可能である。尚、CMYKインク量を個別に決定せずに、例えば図10(c)に示すLUTを用いて各CMYKインク量を1つのLUTを用いて決定してもよい。図10(c)に示す例では、各RGB値を5分割した15625(5^6)通りの組合せに対応する各CMYKインク量が保持されている。当該LUTを用いることで、領域B上のCMYKインク量が拡散反射色に与える影響を踏まえ、領域A上のCMYKインク量が正反射色に与える影響を踏まえた色特性の再現が可能となる。当該LUTは、反射光の色の最小制御単位領域で積算された色再現特性をCMYKインク量の組合せごとに計測し、当該色再現特性に基づくカラーマッチング処理によって生成することができる。
S52において、S51にて取得したCMYKインク量及び、S40にて生成した下層画像データに基づき、上層画像データを生成する。本ステップにおいて生成する上層画像データとは、各画素にS51にて取得したCMYKインク量が格納された、4チャネルのカラー画像データである。この上層画像データは、色画像データ1画素が10×10画素に対応する、解像度1200dpiの画像データである。ここで、S51において取得した拡散反射色に対応するCMYKインク量と、正反射色に対応するCMYKインク量は、下層画像データを参照して10×10画素内に配置される。具体的には、下層画像データにおける同座標の画素が領域A(ホワイトインク量100%)であれば拡散反射色に対応するCMYKインク量を、領域B(ホワイトインク量0%)であれば正反射色に対応するCMYKインク量をそれぞれ格納する。
以上説明したように、本実施例における画像処理装置1は、拡散反射色及び正反射色を示す色情報が格納された色画像データを生成し、色画像データに基づいてホワイトインク及びカラーインクの吐出量を制御する。これにより、拡散反射色及び正反射色を制御したプリント物を形成することが可能となる。
[実施例2]
実施例1では、色画像データの生成に、拡散反射色と正反射色を示す2つの入力画像データを用いる形態を説明した。本実施例では、UIを介して再現目標とする色情報をユーザが直接指示し、当該色情報を色画像データの生成に用いる形態について複数のUI例を説明する。尚、実施例2における画像処理装置1の機能構成は、実施例1のものと同じである。本実施例では、UI表示部201、色情報取得部202、及び色画像データ生成部203による再現目標とする色情報を有する色画像データを生成する処理(S10乃至S30)について実施例1と相違するため、以下、当該処理の内容について主に説明する。
まず、図11(a)を用いて、印刷領域において一様な拡散反射色及び正反射色を示す色情報をUIにて直接指示入力する形態について説明する。S10において、画像処理装置1が必要な情報の入力を受け付けるために、UI表示部101はユーザに必要な情報の入力を促すUIをディスプレイ15に表示する。図11(a)に、ユーザに入力を促すUIを示す。入力領域1101及び1102は、拡散反射色及び正反射色を指示するための指示入力部である。また、表示部1103及び1104は、ユーザが指示入力を行うことで色情報が更新されると、当該色情報をディスプレイ15の色再現特性を加味してディスプレイ上に再現する。拡散反射色及び正反射色は、sRGB空間上にて定義されるRGB値とするが、AdobeRGBあるいはCIELAB値といった他の形式であってもよい。尚、入力する色情報は、予めデータ格納部206に記録された複数の色情報をUI上でユーザに提示し、プリセットされた複数の色情報の中から、ユーザがUIを介して選択する形態でもよい。再び図11(a)に戻り、出力ボタン1105は、記録媒体上に印刷処理を開始させる指示を受け付ける領域である。終了ボタン1106は、画像処理装置1の一連の処理を終了させる指示を受け付ける領域である。ユーザにより入力領域1101及び1102に色情報が指示入力され、次いで出力ボタン1105が押下されると、S20に移行する。
S20において、S10にてユーザが指示入力した拡散反射色R1、G1、B1、及び正反射色R2、G2、B2を取得する。S30において、S20で取得した色情報を用いて色画像データを生成する。色画像データの形式は実施例1と同様に、反射光の色の最小制御単位を1画素とする120(1200/10)dpiの解像度を有し、各画素には拡散反射色及び正反射色のRGB値が格納された6チャネルの画像データとする。尚、拡散反射色及び正反射色のRGB値は、S10にて指示入力した値であり、全画素一様に格納する。以下、当該色画像データに基づき、実施例1にて説明したS40乃至S70に記載の処理を実行することで、印刷領域内で一様な拡散反射色及び正反射色を制御したプリント物を形成するための画像処理を行うことができる。
次に、図11(b)を用いて、UIにて拡散反射色を示す入力画像データを指示入力し、さらに正反射色を示す色情報を直接指示入力する形態について説明する。S10において、画像処理装置1が必要な情報の入力を受け付けるために、UI表示部101はユーザに必要な情報の入力を促すUIをディスプレイ15に表示する。図11(b)に、ユーザに入力を促すUIを示す。入力領域1107は、HDD17などの記憶装置に予め記録したデータファイルのパス及びファイル名を指示するための指示入力部である。指示入力したパス及びファイル名に対応するデータファイルは、各画素に拡散反射色の色情報が格納された入力画像データであり、色情報とはsRGB空間上にて定義されるRGB値を指す。尚、AdobeRGBあるいはCIELAB値といった他の形式であっても良い。また、当該入力画像データは実施例1のように、入射光の非正反射方向から撮像して得た画像データで良い。尚、入力画像データが示す画像の解像度は、上述した反射光の色の最小制御単位を1画素とする120(1200/10)dpiとする。再び図11(b)に戻り、入力領域1108は、正反射色の色情報を直接指示するための指示入力部である。表示領域1109は、ユーザが入力領域1108にて指示入力を行い、色情報が更新されると、当該色情報をディスプレイ15の色再現特性を加味してディスプレイ上に再現する表示部である。出力ボタン1110は、記録媒体上に印刷処理を開始させる指示を受け付ける領域である。終了ボタン1111は、画像処理装置1の一連の処理を終了させる指示を受け付ける領域である。ユーザにより入力領域11017及び1108への指示入力がなされ、次いで出力ボタン1110が押下されると、S20に移行する。
S20において、S10にて指示した拡散反射色を示す入力画像データ、及び正反射色を示す色情報を取得する。S30において、S20で取得した1つの色画像データと色情報を用いて色画像データを生成する。当該色画像データは、S10にて指示した拡散反射色を示す入力画像データのRGB値が格納された3チャネルの画像データを、6チャネルに拡張し、拡張したチャネルにS10にて入力した正反射色を示すRGB値を全画素に格納した画像データとする。以下、色画像データに基づき、実施例1にて説明したS40乃至S70に記載の処理を実行することで、印刷領域内で一様な正反射色を制御したプリント物を形成することができる。
次に、UIにて拡散反射色及び正反射色の基準となる色情報と、当該基準となる色情報から拡散反射色及び正反射色を生成するための色補正情報を入力する形態について図11(c)を用いて説明する。S10において、画像処理装置1が必要な情報の入力を受け付けるために、UI表示部101はユーザに必要な情報の入力を促すUIをディスプレイ15に表示する。図11(c)に、ユーザに入力を促すUIを示す。入力領域1112は、HDD17などの記憶装置に予め記録したデータファイルのパス及びファイル名を指示するための指示入力部である。指示入力したパス及びファイル名に対応するデータファイルは、拡散反射色と正反射色との基準となる色情報が格納された入力画像データであり、色情報とはsRGB空間上にて定義されるRGB値を指す。尚、AdobeRGBあるいはCIELAB値といった他の形式であっても良い。尚、解像度は上述した拡散反射色及び正反射色の最小制御単位を1画素とする120(1200/10)dpiとする。再び図11(c)に戻り、入力領域1113及び1114は、入力画像データから拡散反射色及び正反射色を生成する際に用いる色補正情報を入力する指示入力部である。ここで色補正情報とは、CIELAB空間上にて定義される色相hの回転角度とする。尚、色補正情報は、色相以外に彩度など、他の色特性の差分を表す情報であれば構わない。出力ボタン1115は、記録媒体上に印刷処理を開始させる指示を受け付ける領域である。終了ボタン1116は、画像処理装置1の一連の処理を終了させる指示を受け付ける領域である。ユーザにより入力領域1112乃至1115への指示入力がなされ、次いで出力ボタン1115が押下されると、S20に移行する。
S20において、S10にて指示した2つの入力画像データ、及び色補正情報である色相回転角度を取得する。S30において、2つの入力画像データと色相回転角度を基に色画像データを生成する。本ステップにて生成する色画像データの形式は、実施例1と同様に反射光の色の最小制御単位を1画素とする120(1200/10)dpiの解像度を有し、各画素には拡散反射色及び正反射色のRGB値が格納された6チャネルの画像データとする。各画素に格納する拡散反射色のRGB値は、入力画像データの画素値をCIELchに変換(RGB→Lch)し、S10にて入力領域1113に入力した色相回転角度を加算した後、逆変換(Lch→RGB)することで得られるRGB値とする。同様に、S10にて入力領域1114に入力した色相回転角度を用いることで、正反射色のRGB値を取得することができる。以下、色画像データに基づき、実施例1にて説明したS40乃至S70に記載の処理を実行することで、画素ごとに異なる拡散反射色及び正反射色を制御したプリント物を形成することができる。
以上説明したように、UIを介して再現目標とする色情報をユーザが指示することで、拡散反射色及び正反射色を有する画像データを生成することができる。当該画像データを用いることで、拡散反射色及び正反射色を制御したプリント物を形成することが可能となる。
[実施例3]
実施例1では、シルバーメディア上のホワイトインク量を制御することで光の反射特性が領域ごとに異なる下層画像を形成する形態について説明した。本実施例では、使用するメディアの特性に応じて、下層画像の形成方法を適応的に変更する形態について説明する。実施例1との差異として、プリンタ14はホワイトインクに加えてシルバーインクを光沢インクとして搭載する。シルバーインクは光輝材を含有したインクである。シルバーインク量100%で任意のメディアを被覆することにより、ホワイトインクあるいは他のカラーインク被覆面と比較して、入射光の正反射方向への高い反射強度を有する領域、つまり高光沢な領域を形成することができる。尚、実施例3における画像処理装置1の機能構成は、実施例1のものと同じである。本実施例では、上述の実施例と相違する処理について主に説明する。
S10において、画像処理装置1が必要な情報の入力を受け付けるために、UI表示部101はユーザに必要な情報の入力を促すUIをディスプレイ15に表示する。図12に、本実施例におけるユーザに入力を促すUIの例を示す。入力領域1201は、実施例1と同様に、入力画像データを指示するための指示入力部である。入力領域1202は、記録媒体として使用するプリントメディアを指示するための指示入力部である。本実施例では、プリセットされた、光沢度が既知である複数メディアから使用するメディアをユーザが選択する形態をとる。尚、当該光沢度を直接入力する形態でもよい。再び図12に戻り、出力ボタン1203は、記録媒体上に印刷処理を開始させる指示を受け付ける領域である。終了ボタン1204は、図7に示される一連の処理を終了させる指示を受け付ける領域である。ユーザにより入力領域1201及び1202に指示入力がなされ、次いで出力ボタン1203が押下されると、S20に移行する。
S20において、色情報取得部202は、実施例1と同様の処理により、入力画像データをデータ格納部206から取得する。本実施例では、入力画像データに加えて、S10にて指示入力したメディアに対応する光沢度を取得する。S30において、実施例1と同様に、色画像データ生成部は2つの入力画像データから色画像データを生成する。S40において、下層画像データ生成部2041は、各画素にホワイトインク量及びシルバーインク量が格納された2チャンネルの画像データである下層画像データを生成する。下層画像データは、解像度1200dpiとする。処理動作の詳細については後述する。S50において、上層画像データ生成部2042は、実施例1と同様の処理により、上層画像データを生成する。S60において、下層画像形成部2051は、下層画像データに基づいて、上述したプリンタ14による上層画像の形成動作を実行する。S70において、上層画像形成部2052は、上層画像データに基づいて、上述したプリンタ14による上層画像の形成動作を実行する。
図13を参照して下層画像データを生成する処理(S40)の詳細について説明する。本実施例において下層画像データ生成部が生成する下層画像データは、各画素値がホワイトインク量及びシルバーインク量に対応した、所定解像度の2チャンネルの画像データとする。
S41において、実施例1と同様にして、反射光の色の最小制御単位領域における領域A及び領域Bの配置情報をデータ格納部206から取得する。S42において、データ格納部206に予め格納された、ホワイトインク被覆面の光沢度、シルバーインク被覆面の光沢度、S20にて取得したメディアに対応する光沢度を比較して、光沢度の差が最大となる組み合わせを決定する。本実施例においては、上述した各光沢インクの特性から、低光沢領域と高光沢領域を実現する組み合わせは、ホワイトインクとシルバーインク、低光沢なメディアとシルバーインク、又はホワイトインクと高光沢なメディアの計3組のいずれかである。S43において、S42で決定した組み合わせに基づき、二値画像データを、ホワイトインク量及びシルバーインク量が格納された画像データに変換する。尚、実施例1と同様に、組み合わせごとに二値情報とインク量とが対応したテーブルがデータ格納部206に記録されているものとする。
S44において、S30にて生成した色画像データとS43にて変換したインク量が格納された画像データとに基づき、実施例1と同様の処理により、下層画像データを生成する。具体的には、120dpiの色画像データ各画素を、S43にて変換した画像データに置換した、1200dpiのグレースケール画像データを生成する。本ステップにて生成したシルバーインク量及びホワイトインク量に対応した2チャンネルで1200dpiの画像データを下層画像データとする。
以上説明したように、使用するメディアと備えるインクとの中から光沢度の差が大きい組み合わせを選択することによって、プリント物を見たときに視認させたい色をより精度良く再現できる。よって、本実施例により、メディアに応じて拡散反射色及び正反射色をより好適に制御するための下層画像を形成することが可能になる。
尚、本実施例はホワイトインクとシルバーインク、低光沢なメディアとシルバーインク、ホワイトインクと高光沢なメディアの計3つの組み合わせがある形態について説明したが、上記一例に限定されない。実施例1で示した領域Aと領域Bを実現するものであれば、低光沢領域である領域Bにはマット紙、高光沢領域である領域Aにはゴールドインクや光沢紙、などを用いても良い。例えばゴールドインクと通常のホワイトメディアのような組み合わせでも良い。この場合、ゴールドインクが有する色を加味した変換を行うLUTを用いることが望ましい。
[実施例4]
実施例1では、領域Aと領域Bとを示す二状態の配置が記録された配置パターンは、予めデータ格納部206に記録した固定のパターンを用いた。本実施例では、入力情報に基づき、配置パターンを適応的に選択する形態について説明する。本実施例では、下層画像データ生成部2041におけるS41について上述の実施例の処理と相違するため、以下、当該処理の内容について主に説明する。尚、実施例1とは異なり、データ格納部206は、領域Aと領域Bとの互いに対する、形成する画像を占める面積の比率に応じた複数の配置パターンを保有する。当該複数の配置パターンの例を図14に示す。図14に示すように、領域Aと領域Bとが取り得る面積比率0/4、1/4、2/4、3/4、4/4に対応する計5通りの配置パターンがデータ格納部206に記録されているものとする。図15を参照して、色画像データの各画値に応じて、異なる配置パターンをデータ格納部206から取得する処理(S41)の詳細を説明する。
S411において、色画像データの各画素について、領域Aの領域Bに対する面積比率Hを0/4乃至4/4の中から決定する。具体的には、式3の目的関数f(H)を最適化する面積比率Hを導出する。
f(H)={(G1/G2)−(H×Gw/(1−H)×Gs)}^2
・・・(式3)
G1及びG2は拡散反射色及び正反射色にそれぞれ対応するRGB値のG値であり、輝度値に相当するものとして扱う。G1/G2は、非正反射方向から見たときの輝度と正反射方向から見たときの輝度の互いに対する比率を表す。Gw及びGsは、ホワイトインク被覆面(領域A)の非正反射方向の輝度値と、シルバーメディア紙面(領域B)の正反射方向の輝度値とする。当該輝度値は所定の幾何条件下にて計測され、データ格納部206に予め記録された値を利用する。Hは、上述した通り反射光の色の制御領域内における領域Aの領域Bに対する面積比率を指す。(H×Gw/(1−H)×Gs)は、面積比率Hの配置パターンで下層画像を形成した際の非正反射方向で見たときの輝度と正反射方向で見たときの輝度との互いに対する比率の推定値を指す。
S412において、色画像データの画素ごとに、S411にて決定した面積比率に対応する配置パターンをデータ格納部206より取得する。当該配置パターンを用いることで、S30で生成した色画像データと、より類似した輝度比率を有する下層画像を形成することが可能となる。
尚、非正反射方向及び正反射方向の輝度値に基づき面積比率を決定する形態を説明したが、これに限定しない。例えば、面積比率に応じた拡散反射色及び正反射色の色域と色画像データのRGB値とを比較して、拡散反射色及び正反射色の再現誤差が最小となる面積比率を導出してもよい。さらに、色画像データのRGB値に基づき面積比率を決定する形態でなくてもよい。例えば、拡散反射色及び正反射色のうちどちらの色をどの程度優先して再現するかを示す、再現精度の優先度合いをUIを介して入力する。拡散反射色の優先度合いが正反射色と比較して高い場合、低光沢領域である領域Aの面積比率が高い配置パターンを選択する形態でも良い。
以上説明したように、入力情報に基づき、配置パターンを適応的に選択する形態について説明した。本実施例により、拡散反射色及び正反射色をより好適に制御することが可能になる。
[実施例5]
実施例1では、反射光の色の最小制御単位が1画素に相当する解像度の画像データを色画像データとして用いていたが、より解像度の高い画像を用いても良い。本実施例では、プリンタ解像度1200dpiにて拡散反射色及び正反射色が入力された際の上層画像データの生成方法について説明する。尚、下層画像データは実施例1と同様に、プリンタ解像度1200dpiにて、図9(b)に示す二値パターンが一様に配置された画像データとする。以下、上述の実施例と相違する上層画像データの生成(S50)について主に説明する。
図16を参照して上層画像データを生成する処理(S50)の詳細について説明する。実施例1と同様に上層画像データ生成部2042が生成する上層画像データは、画素ごとにCMYKインク量に対応した画素値が格納され、プリンタ解像度に相当する解像度1200dpiを有する4チャネルのカラー画像データとする。
S51において、実施例1と同様に、データ格納部206から色画像データのRGB値とCMYKインク量が対応した色分解LUTを取得し、LUTを参照して色画像データの各画素におけるカラーインク量を決定する。尚、本実施例では実施例1と異なり、色画像データはプリンタ解像度1200dpiを有する。そのため、下層画像データの1画素ごとに拡散反射色及び正反射色に対応するCMYKインク量が決定される。S52において、S51にて取得したCMYKインク量及び、S40にて生成した下層画像データに基づき、上層画像データを生成する。具体的には、下層画像データにおける同座標の画素が領域Aか領域Bかに基づき、拡散反射色に対応するCMYKインク量又は正反射色に対応するCMYKインク量のいずれか一方を選択する。つまり、各画素について対応する下層画像データの画素値(ホワイトインク量)が100であればS51にて決定した拡散反射色に対応するCMYKインク量を選択する。また、0であればS51にて決定した正反射色に対応するCMYKインク量を選択する。当該選択したCMYKインク量は上層画像データにおける画素値として格納する。
以上説明したように、本実施例における画像処理装置1は、上層画像データとして、プリンタ解像度と同等の解像度を有する色画像データを用いる形態について説明した。
[実施例6]
実施例1では、データ生成及び画像形成処理について、上層画像と下層画像とに分かれた機能構成を取る形態を以って説明した。本実施例では、入力した拡散反射色を示す色情報を、拡散反射色を表現するためのインクの積層構造に変換し、入力した正反射色を示す色情報を、正反射色を表現するためのインクの積層構造へ変換する。その後、当該積層構造の配置を決定し、画像形成を行う形態について説明する。尚、本実施例では、上述の実施例と相違する処理について主に説明する。
図17は、本実施例における画像処理装置1の機能構成を示すブロック図である。本実施例における画像処理アプリケーションが、CPU101からの指令に基づき実行する処理内容について、図17を参照して説明する。画像処理装置1は、UI表示部1701と、色情報取得部1702と、第1構造決定部17031と第2構造決定部17032とから成る構造決定部1703、配置決定部1704と、画像形成部1705と、データ格納部1706を有する。UI表示部1701は、ディスプレイ15によって実現され、ユーザからの入力を受け付けるGUIなどをディスプレイ15に表示する。このようなUI表示部1701は、拡散反射色及び正反射色といった色情報を含むデータ入力を受け付ける入力受付部として機能する。色情報取得部1702は、入力を受け付けた入力画像データを取得する。第1構造決定部17031は、取得した拡散反射色を記録媒体上に再現するためのインクの積層構造を決定する。第2構造決定部17032は、取得した正反射色を記録媒体上に再現するためのインクの積層構造を決定する。配置決定部1704は、正反射色及び拡散反射色をそれぞれ示す2つの積層構造の配置を決定する。画像形成部1705は、積層構造及びその配置情報に基づき、プリンタ14によって記録媒体上に画像を形成する。データ格納部1706は、プリンタ14に搭載された各インクの特性値などの情報を予め保持する。各部位における詳細な制御動作については後述する。
図18は、本実施例における画像処理装置1の処理内容を示すフローチャートである。以下、図18を参照して本実施例における画像処理装置1の処理内容の詳細を説明する。尚、図18に示されるフローチャートによる処理は、ROM102に格納されたプログラムコードがRAM103に展開され、CPU101によって実行される。図18に示されるフローチャートは、ユーザが入力デバイス13を操作して指示を入力し、CPU101が入力された指示を受け付けることにより開始する。
S10において、画像処理装置1が必要な情報の入力を受け付けるために、UI表示部1701はユーザに必要な情報の入力を促すUIをディスプレイ15に表示する。本実施例では、実施例1と同様に、図8に示すUIを表示し、ユーザにより各画素に色情報が格納された画像データファイルのパス及びファイル名が入力領域801に指示入力され、次いで出力ボタン802が押下されると、S20に移行する。S20において、データ格納部1706からS10にてユーザが指示した、拡散反射色及び正反射色を示す色情報が格納された入力画像データを取得する。ここで、拡散反射色を示す色情報はS30にて拡散反射色を制御するためのインクの積層構造を決定する際に使用し、正反射色を示す色情報はS40にて正反射色を制御するためのインクの積層構造を決定する際に使用する。尚、後述するS30及びS40については、異なる処理順としたり、処理を平行して行うことも可能である。
S30において、第1構造決定部17031は、S20にて取得した拡散反射色を再現するインクの積層構造を形成するために必要な情報を生成する。以下、当該情報を第1構造データとする。尚、形成する積層構造とは、実施例1にて説明した図4に示す領域Aの積層構造に相当する。また、第1構造データとは、積層構造をプリンタ14にて形成するためのホワイトインク量、カラーインク量、及び、記録媒体上への各インクの記録順序を指す。以下、第1構造データを生成するための詳細な制御動作を説明する。先ず、S20にて取得した入力画像データから拡散反射色のRGB値を取得する。次に、データ格納部1706から、インク量及び記録順序と拡散反射色のRGB値とが対応づけられたLUTを参照する。図19(a)にLUTのデータ形式の一例を示す。上述した通り、拡散反射色のRGB値に対応する光沢インク及びカラーインク量、インクの記録順序が記述されている。図に示す例では、インクの記録順序は光沢インクとカラーインクとの順序を記録しており、光沢インクを先に打つ場合を1、カラーインクを先に打つ場合を0とする。最後に、LUTを参照して、拡散反射色を再現するための積層構造、即ちCMYKW各インク量及びこれらインクの記録順を導出し、これを第1構造データとする。
S40において、第2構造決定部17032は、S20にて取得した正反射色を再現するインクの積層構造を形成するために必要な情報を、S30と同様にして生成する。以下、当該情報を第2構造データとする。尚、形成する積層構造とは、実施例1にて説明した図4に示す領域Bの積層構造に相当する。また、第2構造データとは、積層構造をプリンタ14にて形成するためのホワイトインク量、カラーインク量、及び、記録媒体上への各インクの記録順序を指す。以下、当該第2構造データを生成するための詳細な制御動作を説明する。先ず、S20にて取得した入力画像データから正反射色のRGB値を取得する。次に、データ格納部1706から、インク量及び記録順序と正反射色のRGB値とが対応づけられたLUTを参照する。図19(b)にLUTのデータ形式の一例を示す。上述した通り、正反射色のRGB値に対応する光沢インク及びカラーインク量、インクの記録順序が記述されている。図に示す例では、インクの記録順序は光沢インクとカラーインクとの順序を記録しており、光沢インクを先に打つ場合を1、カラーインクを先に打つ場合を0とする。最後に、LUTを参照して、正反射色を再現するための積層構造、即ちCMYKW各インク量及びこれらインクの記録順を導出し、これを第2構造データとする。尚、構造データは、プリセットされた条件に応じて異なってもよい。例えば、上述した例では、カラーインクと光沢インクとの記録順についてのみ保持していたが、C、M、Y、K、W、計5つのインク各々について、1から5までの全記録順を保持する形態であってもよい。また、画像形成部1705にてCMYKインクとWインクの記録順がプリセットされている場合、CMYKWインク量だけが構造データとして決定される形態であっても良い。
S50において、配置決定部1704は、反射光の色の制御単位領域内における、S30及びS40にて決定した積層構造の配置を決定する。当該配置の情報は、実施例1と同様に、データ格納部1706に記録されているものとする。ただし、実施例4に記載した通り、入力情報によって適応的に決定してもよい。以下、このようにS50にS30及びS40にて生成した構造データを配置したデータを配置データとする。S60において、画像形成部1705は、S50にて生成した配置データに従い、S30及びS40にて決定した積層構造を記録媒体上に形成する。
以上説明したように、本実施例によれば、実施例1と異なる機能構成にて、実施例1と同様のインクの積層構造を形成することが可能である。
[実施例7]
実施例1では、上層画像データ及び下層画像データを生成し、当該画像データに基づきプリンタ14にて画像を形成する形態を説明した。本実施例では、プロジェクタよって、スクリーン上に拡散反射色及び正反射色を制御した画像を投影する形態について説明する。尚、本実施例では、前述の実施例と相違する処理について主に説明する。
図20は、本実施例における画像投影システム20のハードウェア構成例である。画像投影システム20は、実施例1にて説明した画像処理装置1と異なり、プリンタ14に変わってプロジェクタ2001が接続される。また、プロジェクタ2001は、投影した画像を撮像するための撮像装置を内蔵しているものとする。尚、他の部位については実施例1と同様のため説明を省略する。
図21は、本実施例における画像投影システム20の機能構成を示すブロック図である。本実施例における画像処理アプリケーションが、CPU101からの指令に基づき実行する処理内容について、図21を参照して説明する。
画像投影システム20は、UI表示部2101と、色情報取得部2102と、下層画像データ生成部2103と、上層画像データ生成部2104と、画像投影部2105、データ格納部2106を有する。さらに、下層画像データ生成部2103はテストパターン投影部21031、撮像部21032、検出部21033、マスクデータ生成部21034から成り、上層画像データ生成部2104は投影画像生成部21041から成る。UI表示部2101は、ディスプレイ15によって実現され、ユーザからの入力を受け付けるGUIなどをディスプレイ15に表示する。このようなUI表示部2101は、拡散反射色及び正反射色といった色情報を含むデータ入力を受け付ける入力受付部として機能する。色情報取得部2102は、入力を受け付けた色情報を示すデータを取得する。テストパターン投影部21031は、既知のマーカーを含む画像をスクリーン上に投影する。尚、スクリーンは、領域Aと領域Bが混在しており、実施例1にて形成した下層画像と同様の特性を持つものとする。また、スクリーン内にはテストパターンと同様に既知のマーカーが含まれているものとする。撮像部21032は、スクリーン及びスクリーン上に投影されたテストパターンを撮像する。検出部21033は、撮像画像からスクリーンに含まれるマーカー及び投影したテストパターンに含まれるマーカーを検出する。マスクデータ生成部21034は、投影画像の各画素の投影先が、スクリーン内に混在する2つの領域のいずれに対応するかを示すマスクデータを生成する。投影画像生成部21041は、色情報取得部2102にて取得したデータとマスクデータ生成部21034で生成したマスクデータに基づき、投影画像を生成する。画像投影部2105は投影画像生成部21041にて生成した投影画像をスクリーンに投影する。データ格納部2106は、スクリーン特性などの情報を予め保持する。当該スクリーン特性とは、前述したスクリーン内に混在する2つの領域の配置情報を指す。各部位における詳細な制御動作については後述する。
図22(a)及び(b)は、本実施例における画像投影システム20の処理内容を示すフローチャートである。以下、図22を参照して本実施例における画像投影システム20の処理内容の詳細を説明する。尚、図22に示されるフローチャートによる処理は、ROM102に格納されたプログラムコードがRAM103に展開され、CPU101によって実行される。図22に示されるフローチャートは、ユーザが入力デバイス13を操作して指示を入力し、CPU101が入力された指示を受け付けることにより開始する。
S10において、画像投影システム20が必要な情報の入力を受け付けるために、UI表示部2101はユーザに必要な情報の入力を促すUIをディスプレイ15に表示する。本実施例では、実施例1と同様に、図8に示すUIを表示し、ユーザにより各画素に色情報が格納された画像データファイルのパス及びファイル名が指示入力され、次いで出力ボタン802が押下されると、S20に移行する。S20において、データ格納部2106からS10にてユーザが指示した、拡散反射色及び正反射色の色情報が格納された入力画像データを取得する。
S30において、下層画像データ生成部2103は、下層画像データを生成する。この下層画像データとは、画像各画素の投影先が、スクリーン内に混在する2つの領域のいずれに対応するかを示すマスクデータを指す。当該処理動作の詳細については後述する。S40において、上層画像データ生成部2104は、下層画像データと、入力画像データとに基づき、各画素にRGB値が格納された3チャネルのカラー画像データを生成する。当該カラー画像データは、上述した下層画像データを参照し、入力画像データに含まれる拡散反射色を表すRGB値、正反射色を表すRGB値を画素ごとに選択することによって生成される。S50において、画像投影部2105は、ステップS40にて生成した上層画像データが示す画像をスクリーン上に投影する。
次に、図22(b)を参照して下層画像データを生成する処理(S30)の詳細について説明する。本実施例において下層データ生成部2103が生成する下層画像データは、画像各画素の投影先が、スクリーン内に混在する2つの領域のいずれに対応するかを示すマスクデータを指す。当該マスクデータは2つの領域を判別する二値を各画素に格納した二値画像データである。
S31において、テストパターン投影部21031は所定のテストパターンを投影する。図23にスクリーン2301、プロジェクタ2001、投影領域2302の関係を説明するための模式図を示す。本実施例におけるテストパターンは、後述する処理にて検出可能なマーカーを配置した画像とし、具体的には、図23の投影領域2302に示す様な、四隅に黒の矩形が配置された画像を指す。また、上述の通りスクリーン内には実施例1にて説明した領域A及び領域Bにそれぞれ対応する低光沢領域2303、高光沢領域2304が配置されている。S32において、撮像部21032は、テストパターンが投影されたスクリーンを撮像する。尚、上述の通り撮像部はプロジェクタ2001に内蔵されているものとする。
S33において、検出部21033は、32にて撮像した画像から、スクリーンに含まれるマーカー及び投影したテストパターンに含まれるマーカーを検出する。具体的には、先ず、撮像した画像を所定の閾値で二値化して連結領域のラベリングを行う。次に、撮像した画像の四隅それぞれからの距離が最小となるラベル4つの端点を導出し、当該座標を検出したスクリーン四隅の座標とする。同様にして、先の4つのラベルを除いた上で、画像の四隅からの距離が最小となるラベル4つの端点を導出し、当該座標を検出した投影領域の四隅の座標とする。その他、投影するテストパターン及び検出方法は公知のパターンマッチングなどを用いて実現可能である。
S34において、マスクデータ生成部21034は、S33にて検出した座標と、データ格納部2106に保持されたスクリーン特性とに基づき、マスクデータを生成する。スクリーン特性は、マーカーで囲われた枠内における低光沢領域と高光沢領域の配置情報であり、S33にて検出した座標を基準とした位置合わせにより、画像各画素と、スクリーン内に混在する2つの領域との対応づけが可能となる。
以上説明したように、本実施例によれば、プロジェクタよって、スクリーン上に拡散反射色及び正反射色を制御した画像を投影することが可能である。
[実施例8]
実施例1では、下層画像として光の反射特性の異なる2つの領域を配置したが、当該反射特性は2つに限定する必要は無い。本実施例では、下層画像として光の反射特性の異なる3つの領域を配置する形態について説明する。上層画像では実施例1と同様に、下層画像に基づいて色情報を配置する。本実施例によれば、3つの幾何条件下における色をそれぞれ制御することが可能となる。つまり上述の拡散反射色及び正反射色とさらにもう1種類の色が方向によって見えるようになる。尚、4つ以上の幾何条件下における色を制御する場合も同様である。また、本実施例における画像処理装置1の機能構成は、実施例1のものと同じである。本実施例では、上述の実施例と相違する処理について主に説明する。
図4(b)に本実施例における画像処理装置1にて、後述する処理内容を経て形成されるプリント物断面の模式図を示す。本実施例では、実施例1にて説明した領域A及び領域Bに加え、領域Cが混在するプリント物を形成する。領域Cは、領域内の一部がホワイトインクに被覆され、その上層にカラーインクが塗布された領域である。以下、領域Cにおける上層のカラーインク405をグリーンとして説明する。図6(b)、(c)、(d)、及び(e)は、領域Cにおける反射光の強度を模式的に示した図である。図6(a)と同様に、図中の破線は領域Cにおける角度ごとの反射強度を示し、当該光の反射特性は領域A及び領域Bにおける入射光の反射強度の加重平均にて推定することができる。領域Cを含む3領域を配置したマクロ領域の反射光を観察したとき、図6(c)、(d)、(e)に示す様に、各幾何条件によって、反射強度に最も寄与する反射光に対応する領域が異なることが分かる。例えば、図に示す様に光の入射角度と観察角度θrとの差が最も大きい場合、図6(c)に示す様に、反射強度への寄与は領域Aからくる反射光が最大となり、領域Aの反射色であるイエローに近い色味を視認することができる。また、光の入射角度と観察角度θrとの差が最も小さい正反射方向近傍から観察する場合、図6(d)に示す様に、反射強度への寄与は領域Bからくる反射光が最大となり、領域Bの反射色であるシアンに近い色味を視認することができる。同様に、図6(e)に示す条件下では、領域Cの反射光の寄与が最大となり、領域Cの反射色であるグリーンに近い色味を視認することができる。尚、光の反射特性は、各幾何条件下で反射強度への寄与が最大となる領域が異なれば良い。以下、図4(b)に示すプリント物を形成するための画像処理装置1の一連の処理内容について説明する。
S10において、実施例1と同様に、UI表示部101はユーザにUIを表示し、ユーザは入力画像データに関する情報を指示入力する。ここで、本実施例では、入力画像データは実施例1と異なり3つの幾何条件において撮像した3つのRGB画像のデータである。各RGB値は、例えば、図24(a)及び(b)を参照して説明した幾何条件に加え、光源位置が図24(c)に示すような幾何条件下にて撮影を行うことで取得する。具体的には、撮像装置の角度θlを45度とし、図24(a)の光源角度θiを45度、図24(b)の光源角度θiを0度としたとき、図24(c)の光源角度θiを上述した2つの角度の間となる22.5度とする。当該幾何条件は一例であって、角度は異なる値をとってもよいし、上述したように撮像装置の位置を変えても構わない。入力画像データに関する情報を指示入力した後、出力ボタン802が押下されると、S20に移行する。
S20において、S10でUIを介してユーザから指示された情報に対応する上述した3つの入力画像データをデータ格納部206から取得する。S30において、色画像データ生成部203はS20で取得した3つの入力画像データのRGB値をそれぞれ拡散反射色、正反射色、及び第3色とし、このRGB値を1つの画像ファイルの各レイヤ画素値として格納する。これにより、9チャネルの画像データである色画像データを生成する。
S40において、下層画像データ生成部2041は、各画素にホワイトインク量が格納されたグレースケール画像データを生成する。下層画像データとは、低光沢領域(領域A)及び高光沢領域(領域B)に加え、中光沢領域(領域C)の3つの光の反射特性の配置情報を指す。以下、S40における詳細な制御動作を説明する。先ず、反射光の色の最小制御単位領域における領域の配置情報をデータ格納部206から取得する。配置情報は光沢特性の異なる三状態が記録された三値パターンとする。次に、光の反射特性を示す三値に応じてホワイトインク量を決定する。例えば、領域A、領域B、領域Cのホワイトインク量をそれぞれ100、0、50%と設定する。最後に、実施例1におけるS43に記載の処理によってグレースケール画像データを生成する。当該グレースケール画像データを下層画像データとする。
S50において、上層画像データ生成部2042は、下層画像データと、入力画像データとに基づき、各画素にカラーインク量が格納されたカラー画像データを生成する。以下、S50における詳細な制御動作を説明する。先ず、実施例1におけるS51に記載の処理によって、各RGB値からCMYK値をそれぞれ算出する。次に、下層画像データに示す光の反射特性に対応するCMYK値を選択し、配置することでカラー画像データを生成する。本実施例では、上記の通り下層画像データには領域A、領域B、領域Cの3つの領域が配置されており、図24(a)に示す幾何条件にて取得したRGB値から算出したCMYK値を領域Bに配置する。同様に、図25(b)、図25(c)に示す幾何条件にて取得したRGB値から算出したCMYK値を、それぞれ領域A、領域Cに配置する。当該カラー画像データを上層画像データとする。
S60において、下層画像形成部2051は、下層画像データに基づいて、上述したプリンタ14による上層画像の形成動作を実行する。S70において、上層画像形成部2052は、上層画像データに基づいて、上述したプリンタ14による上層画像の形成動作を実行する。
以上説明したように、入射光の非正反射方向と正反射方向の二条件に限定せず、複数幾何条件下における異なる色の見えをそれぞれ制御することが可能となる。
[その他の実施例]
上記実施例では、2つの入力画像データから色画像データを生成し、下層画像データ及び上層画像データの生成に用いる例を示したが、下層画像データ及び上層画像データの生成方法は上記一例に限定されない。例えば、色画像データ生成のステップを行わずに、2つの入力画像データから直接下層画像データ及び上層画像データを生成する形態でも良い。その場合、下層画像データの生成における解像度変換は2つのうちどちらかの入力画像データを用いる。また、上層画像データの生成では、上記領域Aと同座標の画素に、拡散反射色を示す入力画像データのRGB値をCMYKインク量に変換したものを格納する。そして、上記領域Bと同座標の画素に、正反射色を示す入力画像データのRGB値をCMYKインク量に変換したものを格納する。
また、上記実施例では、データ格納部に予め記録した所定のLUTを用いてインク量を導出する方法を説明したが、インク量の導出方法はこれに限定されない。例えば、LUTに変わり、所定の数式を用いて導出しても良い。また、予めデータ格納部には複数のLUTが記録され、UIを介して受け付けた情報に基づき、処理に用いるLUTを選択する形態をとることも可能である。
また、上記実施例では、反射光の色の最小制御単位及び光の反射特性の最小制御単位には所定値を利用したが、当該制御単位はUIを介してユーザが任意に指定できる形態であっても良い。
また、上記実施例では、印刷領域全域に、拡散反射色及び正反射色の制御を適用する処理を説明したが、部分的に適用する形態であっても良い。例えば、拡散反射色及び正反射色の制御を適用する領域と、拡散反射色のみを制御する領域とを判別するマスク画像を生成または外部から取得することで、領域ごとに、上記実施例に記載の処理と通常のプリント処理との切り替えが可能になる。
また、上記実施例では、プリンタ特性に即した解像度に基づき、入力画像データの解像度を既定していたが、公知の解像度変換処理を利用することで、任意の解像度の画像データを入力画像データとして扱うことも可能である。
また、上記実施例では、光の反射特性の異なる領域が配置された下層画像のデータ生成と、下層画像に応じて色情報が配置された上層画像のデータ生成と、下層画像及び上層画像の形成とを行う形態を説明したが、これら2層に限定しない。例えば、前記実施例にて形成した下層画像及び上層画像の上に、クリアインクにて一様な膜厚を形成するなどして2層以上の多層となる積層構造であっても構わない。
また、上記実施例では、インクジェット方式を採用した画像形成部の例を示したが、電子写真方式などその他の記録方式であってもよい。
また、上記実施例では、光の反射特性又は反射光の色の制御単位とする領域形状は、縦横の画素数が等しい矩形を用いて説明したが、これに限定しない。例えば縦横の画素数が異なる矩形でも良いし、他の多角形を模した形状でも構わない。
本発明は、上述の実施例の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
1 画像処理装置
14 プリンタ
202 色情報取得部
203 色画像データ生成部
204 層画像データ生成部
205 画像形成部
206 データ格納部

Claims (18)

  1. 記録媒体上における第1画像の上に第2画像を重ねて画像を形成するためのデータを生成する画像処理装置であって、
    第1の色と、前記第1の色とは異なる第2の色と、を表す色情報を取得する第1取得手段と、
    金属を含有する色材を記録する第1の位置であるか、又は、金属を含有する色材を記録しない第2の位置であるかを特定する値を各画素に有する前記第1画像を表す第1画像データを取得する第2取得手段と、
    注目画素が前記第1の位置である場合は前記第1の色を前記注目画素に配置し、前記注目画素が前記第2の位置である場合は前記第2の色を前記注目画素に配置することにより、複数の画素を含む所定領域において前記第1の色と前記第2の色とが混在する前記第2画像を表す第2画像データを生成する第1生成手段と、
    前記第1画像データと前記第2画像データとに基づいて、金属を含有する色材及び有色色材を用いて前記第1画像の上に前記第2画像を形成するための画像形成データを生成する第2生成手段と、
    を有することを特徴とする画像処理装置。
  2. 前記第1画像において、入射光の反射方向のうち第1の方向への、前記第1の位置における反射強度と前記第2の位置における反射強度との比率は、前記入射光の反射方向のうち前記第1の方向とは異なる第2の方向への、前記第1の位置における反射強度と前記第2の位置における反射強度との比率と異なることを特徴とする請求項1に記載の画像処理装置。
  3. 前記第1の位置は、入射光の正反射方向で前記第2の位置よりも反射強度が大きく、かつ、入射光の非正反射方向で前記第2の位置よりも反射強度が小さいことを特徴とする請求項1又は請求項2に記載の画像処理装置。
  4. 前記色情報には、被写体を正反射方向から撮像して得られる前記第1色を表す色情報と、前記被写体を非正反射方向から撮像して得られる前記第2色を表す色情報と、が含まれ、
    前記第1画像の上に前記第2画像を重ねて形成される画像により、前記被写体の正反射方向の色と非正反射方向の色とが再現されることを特徴とする請求項1乃至請求項3のいずれか一項に記載の画像処理装置。
  5. 基準色を表す基準色情報と、前記基準色を正反射方向の色である前記第1の色に補正するための色補正情報と、前記基準色を非正反射方向の色である前記第2の色に補正するための色補正情報と、を指定するユーザの入力を受け付ける受付手段をさらに有し、
    前記第1取得手段は、前記基準色情報と前記色補正情報とに基づいて、前記第1の色と前記第2の色とを表す前記色情報を取得することを特徴とする請求項1乃至請求項3のいずれか一項に記載の画像処理装置。
  6. 前記色補正情報は、前記基準色の色相を補正するための、色空間における色相角の回転角度であることを特徴とする請求項5に記載の画像処理装置。
  7. 前記第1の色及び前記第2の色に基づいて、前記第1の位置と前記第2の位置との、前記第1画像を占める面積比率を決定する決定手段をさらに有し、
    前記第2取得手段は、前記面積比率に基づいて、前記第1画像データを取得することを特徴とする請求項1乃至請求項6のいずれか一項に記載の画像処理装置。
  8. 前記決定手段は、正反射方向の色である前記第1の色と、非正反射方向の色である前記第2の色と、が前記記録媒体上で再現される際の誤差が最小となるように、前記面積比率を決定することを特徴とする請求項7に記載の画像処理装置。
  9. 前記第1の色と前記第2の色とでどちらの色を優先して再現するかを表す優先度合いに基づいて、前記第1の位置と前記第2の位置との、前記第1画像を占める面積比率を決定する決定手段をさらに有し、
    前記第2取得手段は、前記面積比率に基づいて、前記第1画像データを取得することを特徴とする請求項1乃至請求項6のいずれか一項に記載の画像処理装置。
  10. 前記第1取得手段に取得される前記色情報は、前記第1の色と前記第2の色とで、異なる変換テーブルを用いて有色色材の量に変換されることを特徴とする請求項1乃至請求項9のいずれか一項に記載の画像処理装置。
  11. 前記画像形成データは、前記記録媒体上における、金属を含有する色材及び有色色材のドット配置を表すデータであることを特徴とする請求項1乃至請求項9のいずれか一項に記載の画像処理装置。
  12. 前記記録媒体はホワイトメディアであって、
    前記金属を含有する色材はシルバーインクであることを特徴とする請求項1乃至請求項11のいずれか一項に記載の画像処理装置。
  13. 金属を含有する記録媒体上における第1画像の上に第2画像を重ねて画像を形成するためのデータを生成する画像処理装置であって、
    第1の色と、前記第1の色とは異なる第2の色と、を表す色情報を取得する第1取得手段と、
    ホワイト色材を記録する第1の位置であるか、又は、ホワイト色材を記録しない第2の位置であるかを特定する値を各画素に有する前記第1画像を表す第1画像データを取得する第2取得手段と、
    注目画素が前記第1の位置である場合は前記第1の色を前記注目画素に配置し、前記注目画素が前記第2の位置である場合は前記第2の色を前記注目画素に配置することにより、複数の画素を含む所定領域において前記第1の色と前記第2の色とが混在する前記第2画像を表す第2画像データを生成する第1生成手段と、
    前記第1画像データと前記第2画像データとに基づいて、ホワイト色材及び有色色材を用いて前記第1画像の上に前記第2画像を形成するための画像形成データを生成する第2生成手段と、
    を有することを特徴とする画像処理装置。
  14. 記録媒体上における第1画像の上に第2画像を重ねて画像を形成する印刷装置であって、
    第1の色と、前記第1の色とは異なる第2の色と、を表す色情報を取得する第1取得手段と、
    金属を含有する色材を記録する第1の位置であるか、又は、金属を含有する色材を記録しない第2の位置であるかを特定する値を各画素に有する前記第1画像を表す第1画像データを取得する第2取得手段と、
    注目画素が前記第1の位置である場合は前記第1の色を前記注目画素に配置し、前記注目画素が前記第2の位置である場合は前記第2の色を前記注目画素に配置することにより、複数の画素を含む所定領域において前記第1の色と前記第2の色とが混在する前記第2画像を表す第2画像データを生成する生成手段と、
    前記第1画像データと前記第2画像データとに基づいて、金属を含有する色材及び有色色材を用いて前記第1画像の上に前記第2画像を形成する形成手段と、
    を有することを特徴とする印刷装置。
  15. 金属を含有する記録媒体上における第1画像の上に第2画像を重ねて画像を形成する印刷装置であって、
    第1の色と、前記第1の色とは異なる第2の色と、を表す色情報を取得する第1取得手段と、
    ホワイト色材を記録する第1の位置であるか、又は、ホワイト色材を記録しない第2の位置であるかを特定する値を各画素に有する前記第1画像を表す第1画像データを取得する第2取得手段と、
    注目画素が前記第1の位置である場合は前記第1の色を前記注目画素に配置し、前記注目画素が前記第2の位置である場合は前記第2の色を前記注目画素に配置することにより、複数の画素を含む所定領域において前記第1の色と前記第2の色とが混在する前記第2画像を表す第2画像データを生成する生成手段と、
    前記第1画像データと前記第2画像データとに基づいて、ホワイト色材及び有色色材を用いて前記第1画像の上に前記第2画像を形成する形成手段と、
    を有することを特徴とする印刷装置。
  16. 記録媒体上における第1画像の上に第2画像を重ねて画像を形成するためのデータを生成する画像処理装置であって、
    第1の色と、前記第1の色とは異なる第2の色と、を表す色情報を取得するステップと、
    金属を含有する色材を記録する第1の位置であるか、又は、金属を含有する色材を記録しない第2の位置であるかを特定する値を各画素に有する前記第1画像を表す第1画像データを取得するステップと、
    注目画素が前記第1の位置である場合は前記第1の色を前記注目画素に配置し、前記注目画素が前記第2の位置である場合は前記第2の色を前記注目画素に配置することにより、複数の画素を含む所定領域において前記第1の色と前記第2の色とが混在する前記第2画像を表す第2画像データを生成するステップと、
    前記第1画像データと前記第2画像データとに基づいて、金属を含有する色材及び有色色材を用いて前記第1画像の上に前記第2画像を形成するための画像形成データを生成するステップと、
    を有することを特徴とする画像処理方法。
  17. 金属を含有する記録媒体上における第1画像の上に第2画像を重ねて画像を形成するためのデータを生成する画像処理方法であって、
    第1の色と、前記第1の色とは異なる第2の色と、を表す色情報を取得するステップと、
    ホワイト色材を記録する第1の位置であるか、又は、ホワイト色材を記録しない第2の位置であるかを特定する値を各画素に有する前記第1画像を表す第1画像データを取得するステップと、
    注目画素が前記第1の位置である場合は前記第1の色を前記注目画素に配置し、前記注目画素が前記第2の位置である場合は前記第2の色を前記注目画素に配置することにより、複数の画素を含む所定領域において前記第1の色と前記第2の色とが混在する前記第2画像を表す第2画像データを生成するステップと、
    前記第1画像データと前記第2画像データとに基づいて、ホワイト色材及び有色色材を用いて前記第1画像の上に前記第2画像を形成するための画像形成データを生成するステップと、
    を有することを特徴とする画像処理方法。
  18. コンピュータを請求項1乃至請求項13のいずれか一項に記載の画像処理装置の各手段として機能させるためのプログラム。
JP2016072600A 2016-03-31 2016-03-31 画像処理装置及び画像処理方法 Active JP6708462B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016072600A JP6708462B2 (ja) 2016-03-31 2016-03-31 画像処理装置及び画像処理方法
EP17773825.9A EP3438811B1 (en) 2016-03-31 2017-02-20 Image processing device and image processing method
CN201780022003.7A CN108885541B (zh) 2016-03-31 2017-02-20 图像处理设备和图像处理方法
PCT/JP2017/006142 WO2017169277A1 (ja) 2016-03-31 2017-02-20 画像処理装置及び画像処理方法
US16/143,069 US10867411B2 (en) 2016-03-31 2018-09-26 Image processing apparatus and image processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016072600A JP6708462B2 (ja) 2016-03-31 2016-03-31 画像処理装置及び画像処理方法

Publications (3)

Publication Number Publication Date
JP2017182674A JP2017182674A (ja) 2017-10-05
JP2017182674A5 JP2017182674A5 (ja) 2019-05-09
JP6708462B2 true JP6708462B2 (ja) 2020-06-10

Family

ID=59964146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016072600A Active JP6708462B2 (ja) 2016-03-31 2016-03-31 画像処理装置及び画像処理方法

Country Status (5)

Country Link
US (1) US10867411B2 (ja)
EP (1) EP3438811B1 (ja)
JP (1) JP6708462B2 (ja)
CN (1) CN108885541B (ja)
WO (1) WO2017169277A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11496647B2 (en) 2020-11-12 2022-11-08 Fujifilm Business Innovation Corp. Information processing apparatus

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10430974B2 (en) * 2016-10-28 2019-10-01 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and storage medium
JP6571714B2 (ja) * 2017-05-01 2019-09-04 ローランドディー.ジー.株式会社 インクジェットプリンタ
JP6977405B2 (ja) * 2017-09-01 2021-12-08 富士フイルムビジネスイノベーション株式会社 画像処理装置、画像形成装置およびプログラム
JP2020019250A (ja) * 2018-08-02 2020-02-06 キヤノン株式会社 画像処理装置、画像処理方法、及びプログラム
JP7192496B2 (ja) * 2018-12-28 2022-12-20 セイコーエプソン株式会社 画像処理装置および画像処理プログラム
CN110149456A (zh) * 2019-05-20 2019-08-20 珠海奔图电子有限公司 图像处理方法、服务设备、存储介质及计算机设备
CN110675364B (zh) * 2019-08-21 2023-07-28 北京印刷学院 一种图像的金色金属色区域提取系统及方法
JP7452313B2 (ja) 2020-07-30 2024-03-19 コニカミノルタ株式会社 変角特性の取得方法、画像処理方法、画像表示方法、変角特性の取得装置、および変角特性の取得条件決定プログラム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4320166B2 (ja) * 2002-12-04 2009-08-26 富士フイルム株式会社 ハードコピーおよびハードコピーの作製方法
JP4998120B2 (ja) * 2007-07-09 2012-08-15 大日本印刷株式会社 印刷物製造方法及び印刷物
JP5444664B2 (ja) 2008-08-27 2014-03-19 セイコーエプソン株式会社 印刷方法と装置
JP2010186344A (ja) * 2009-02-12 2010-08-26 Noritsu Koki Co Ltd 表示装置、及び写真注文受付装置
JP2012081638A (ja) * 2010-10-08 2012-04-26 Canon Inc 画像処理装置及び画像処理方法
JP2012085123A (ja) 2010-10-12 2012-04-26 Canon Inc 画像処理装置およびその方法
JP5717396B2 (ja) * 2010-10-20 2015-05-13 キヤノン株式会社 画像処理装置および画像処理方法
JP5901200B2 (ja) * 2011-09-29 2016-04-06 キヤノン株式会社 画像処理装置、画像処理方法および記録物
JP5988909B2 (ja) * 2012-05-08 2016-09-07 キヤノン株式会社 画像処理装置および画像処理方法
JP2016066830A (ja) * 2014-09-22 2016-04-28 キヤノン株式会社 画像処理装置、画像処理方法およびプログラム
JP6532249B2 (ja) * 2015-03-13 2019-06-19 キヤノン株式会社 画像データを作成する装置、方法、及びプログラム
US9906676B2 (en) * 2015-03-26 2018-02-27 Canon Kabushiki Kaisha Image processing apparatus and image processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11496647B2 (en) 2020-11-12 2022-11-08 Fujifilm Business Innovation Corp. Information processing apparatus

Also Published As

Publication number Publication date
CN108885541A (zh) 2018-11-23
EP3438811B1 (en) 2024-01-31
EP3438811A1 (en) 2019-02-06
EP3438811A4 (en) 2019-11-20
CN108885541B (zh) 2021-09-07
US10867411B2 (en) 2020-12-15
WO2017169277A1 (ja) 2017-10-05
JP2017182674A (ja) 2017-10-05
US20190080479A1 (en) 2019-03-14

Similar Documents

Publication Publication Date Title
JP6708462B2 (ja) 画像処理装置及び画像処理方法
US10205854B2 (en) Image processing apparatus, image processing method, and appearance reproduction apparatus
JP5729950B2 (ja) 画像処理装置および画像処理方法
US20090021784A1 (en) Device and Method for Print Control
US10877709B2 (en) Image processing apparatus, non-transitory recording medium storing image processing program, and image processing method for generating a color chart image data
JP2017013410A (ja) 画像処理装置、画像処理方法、および、プログラム
JP6755739B2 (ja) 画像処理装置、画像処理方法及びプログラム
WO2015185159A1 (en) Modifying color gamuts
US10046571B2 (en) Image processing apparatus, image processing method, and storage medium
JP6732541B2 (ja) 画像処理装置及び画像処理方法
US11675990B2 (en) Image processing apparatus, image processing method, and storage medium
US20230202203A1 (en) Recording device and recording method
JP6675504B2 (ja) 画像処理装置およびその方法
US10616450B2 (en) Printed matter, printed matter manufacturing method, and image forming apparatus
JP2023045624A (ja) 画像処理装置、画像処理方法およびプログラム
JP2016144005A (ja) 画像処理装置およびその方法
JP6486125B2 (ja) 画像処理装置およびその方法
JP2021122980A (ja) 画像処理装置、画像処理方法及びプログラム
JP2016076774A (ja) 画像記録装置、画像記録方法、及びプログラム
JP6606329B2 (ja) 画像処理装置およびその方法
JP2022050987A (ja) 画像処理装置、画像処理方法及びプログラム
JP2008054164A (ja) 画像処理装置、印刷装置、画像処理方法、および印刷方法
JP2011130121A (ja) 画像処理装置およびその方法
JP2018078538A (ja) 画像処理装置、画像処理方法及びプログラム
JP2015197817A (ja) 画像処理装置およびその方法、並びに、印刷物

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200521

R151 Written notification of patent or utility model registration

Ref document number: 6708462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151