以下、本発明のダブルデッキエレベータの実施形態について、図面を参照しながら説明する。
<実施形態1>
〔全体構成〕
実施形態1に係るダブルデッキエレベータ10は、図1に示すように、上梁12A、下梁12Bおよび上梁12Aと下梁12Bとを連結する2つの立枠12C,12Dを含み、正面視で、縦方向に(上下方向に)長い略長方形をした外かご枠12を有する。
外かご枠12の内側(枠内)には、上かご14と下かご16とが上下方向に離間して並んで設けられている。
外かご枠12には、従動シーブ18が取り付けられており、上かご14よりも上方で従動シーブ18に掛けられて折り返されたワイヤロープ20の一端部が上かご14に連結され、他端部が下かご16に連結されている。これにより、従動シーブ18に掛けられたワイヤロープ20の一端側で上かご14が吊り下げられ、他端側で下かご16が吊り下げられた構成となっている。すなわち、当該構成において、ワイヤロープ20は、上かご14と下かご16を外かご枠12内に上下方向に離間した状態で支持する支持手段として機能する。従動シーブ18は、後述するように、下かご16の上下移動に伴って走行するワイヤロープ20に従動して回転するシーブである。なお、上かご14と下かご16とは、上梁12Aと下梁12Bとの間に設置された、一対のガイドレール(不図示)によって、上下方向に移動自在に案内されている。
外かご枠12における下かご16の下方には、下かご16を上下方向に移動させるための移動ユニット22が取り付けられている。移動ユニット22は、シリンダ24Aとシリンダ24Aに対しその軸心方向に相対移動されるプランジャ24Bとを有する油圧式ジャッキ24(以下、単に「ジャッキ24」という。)と、ジャッキ24を駆動する油圧パワーユニット26とを含む。ジャッキ24は、前記軸心方向が上下方向となる姿勢で設けられており、プランジャ24Bの上端部が下かご16の下端部に連結されている。
油圧パワーユニット26は、油圧ポンプ26A、油圧ポンプ26Aを作動させるポンプ用モータ26B、およびポンプ用モータ26Bの出力軸と同軸上に設けられたロータリエンコーダ26Cを含む。ロータリエンコーダ26Cには、例えば、マルチターン型アブソリュートタイプのものを用いることができる。
油圧ポンプ26Aは、配管27を介してジャッキ24のシリンダ24Aに接続されている。配管27には、開閉弁(不図示)が設けられている。ポンプ用モータ26Bは、油圧ポンプ26Aを作動させることにより、配管27を通じて作動油をシリンダ24Aに送出またはシリンダ24Aから排出し、プランジャ24Bを上下方向に移動させる。このとき油圧ポンプ26Aとシリンダ24Aとの間を流動する作動油の油量に基づいて、プランジャ24Bのシリンダ24Aに対する上下方向への変位量が調整される。当該油量は、ロータリエンコーダ26Cからの出力値(回転角)に基づいて検出することができる。
ジャッキ24を駆動して、下かご16を上方へ移動させると、従動シーブ18に掛けられたワイヤロープ20で下かご16と連結された上かご14は、その自重により、下かご16の移動距離と同じ距離分下方へ移動する。これにより、上かご14と下かご16の上下方向における間隔(以下「かご間隔」という。)を短くすることができる。
一方、ジャッキ24を駆動して、下かご16を下方へ移動させると、上かご14は、下かご16の移動距離と同じ距離分上方へ引き上げられるため、かご間隔を長くすることができる。
このように、移動ユニット22は、油圧パワーユニット26でジャッキ24を駆動して下かご16を上下方向に移動させることによりかご間隔を変更し、変更する際に、プランジャ24Bのシリンダ24Aに対する上下方向の変位量を調整することによってかご間隔を調整する、かご間隔調整手段として機能する。
ここで、「かご間隔」とは、下かご16の床面16Aと上かご14の床面14Aとの間の上下方向における距離(D)を言う。本例において、調整されるべきかご間隔Dは、例えば、D1、D2、D3、D4(D1>D2>D3>D4)の4通りとする。すなわち、ダブルデッキエレベータ10が設置される建築物において、下かご14と上かご16とが同時に着床される二つの階の間の階高は4通り存在することとする。
上かご14と下かご16とは略同じ重量であるため、上かご14とワイヤロープ20でつるべ式に吊り下げられた下かご16を上下移動させるジャッキ24には、上かご14と下かご16のいずれにも乗客が乗車していない状態では、あまり荷重が掛からない。しかし、下かご16に乗客が乗車すると、ジャッキ24にはその分の荷重が下向きに掛かり、上かご14に乗客が乗車すると、ジャッキ24にはその分の荷重が上向きに掛かる。よって、ジャッキ24は、上かご14と下かご16とにおける乗客数の差等に起因する重量アンバランスによって生じる荷重を支持する機能も有している。
移動ユニット22による調整後のかご間隔Dを測定するため、本実施形態では、上かご14と下かご16の、外かご枠12に対する上下方向における絶対位置を検出するかご位置検出手段を有している。このかご位置検出手段として、ダブルデッキエレベータ10には、アブソリュートタイプの磁気式リニアスケール28(以下「磁気スケール28」という。)が設けられている。
磁気スケール28は、一端部から他端部に至る間の絶対位置(距離)情報を、例えば、0.5mmの分解能で、磁気パターン(磁気目盛り)として記録した記録テープである磁気テープ30と、磁気テープ30から前記磁気目盛りを読み取る2台の読取ユニット32,34とを含む。この磁気スケール28には、例えば、エルゴエレクトロニク株式会社製の「アブソリュート磁気スケール LIMAXシリーズ」など、公知のものを用いることができる。
磁気テープ30は、外かご枠12に、長さ方向が上下方向となるように取り付けられている。本例では、上梁12Aと下梁12Bとの間に、張架されている。なお、磁気テープ30は、上梁12Aと下梁12Bに限らず、例えば、立枠12Dの上部と下部にそれぞれ支持ブラケット(不図示)を固定し、当該支持ブラケット間に張架することとしても構わない。
この張架の態様としては、例えば、磁気テープ30の上端を、立枠12Dの上部に固定された前記支持ブラケット(不図示)または上梁12Aに固定する一方、磁気テープ30の下端と立枠12Dの下部に固定された前記支持ブラケット(不図示)または下梁12Bとを引張コイルばね(不図示)で連結して、磁気テープ30に一定の張力が掛かった状態で掛け渡すようにすることが考えられる。
また、引張コイルばねに代えて、磁気テープ30の下端に錘(不図示)を吊り下げることにより、一定の張力が掛かった状態で磁気テープ30を取り付けるようにしても構わない。
張架に限らず、例えば、上かご14と下かご16を上下方向に案内する上記したガイドレール(不図示)の、上かご14と下かご16の案内に支障をきたさない面に磁気テープ30を貼着しても構わない。
本例において、磁気テープ30は、目盛りが下から上に目盛られた状態となる向き(すなわち、上側程、目盛りの値が大きくなる向き)に取り付けられている。なお、磁気テープ30を外かご枠12に取り付ける向きは、この逆であっても構わない。
読取ユニット32は上かご14に固定され、もう一方の読取ユニット34は下かご16に固定されている。なお、読取ユニット32,34各々の上かご14、下かご16に対する上下方向における固定位置は任意である。読取ユニット32,34各々の上かご14、下かご16に対する固定位置は、上かご14と下かご16が移動ユニット22によって上下に移動される際、読取ユニット32,34各々が、磁気テープ30に沿って移動でき、磁気テープ30に記録された磁気目盛りを読み取ることができるような位置であれば構わない。
上記のようにして設けられた磁気スケール28において、読取ユニット32で読み取られる磁気目盛りの値が、読取時における上かご14の外かご枠12に対する上下方向の絶対位置を指標し、読取ユニット34で読み取られる磁気目盛りの値が、読取時における下かご16の外かご枠12に対する上下方向の絶対位置を指標する。すなわち、磁気スケール28によって、上かご14と下かご16の外かご枠12に対する上下方向の絶対位置を検出することができる。
また、読取ユニット32と読取ユニット34が読み取った磁気目盛りの値(以下「目盛値」という。)の差分(以下「目盛差」という。)は、かご間隔Dと一対一で対応するため、かご間隔Dを指標する。図1に示すように、上かご14と下かご16各々の床面14A,16Aから同じ高さに読取ユニット32,34がそれぞれ固定されている場合、前記目盛差はかご間隔Dと等しくなる。読取ユニット32,34が読み取る目盛値が参照されて、後述するように調整後のかご間隔Dを把握するため、かご間隔Dの測定がなされる。
上記のように、上かご14、下かご16等が設けられた外かご枠12が昇降する昇降路36上部には、機械室38が設けられており、機械室38には、巻上機40が設置されている。巻上機40は、巻上機モータ40A(図3)、巻上機モータ40Aの出力軸(不図示)に設けられた綱車40B、および前記出力軸と同軸上に設けられたロータリエンコーダ40C等を含む。ロータリエンコーダ40Cには、例えば、マルチターン型アブソリュートタイプのものを用いることができる。
機械室38には、また、巻上機40に隣接して、そらせ車42が設置されており、巻上機40の綱車40Bとそらせ車42には、主ロープ44が掛けられている。主ロープ44の一端部には外かご枠12が連結されており、他端部にはカウンタウエイト46が連結されている。巻上機モータ40A(図3)を駆動源として、巻上機40の綱車40Bが回転されると、外かご枠12、ひいては上かご14および下かご16とカウンタウエイト46とは、昇降路36内を互いに反対向きに昇降する。
ダブルデッキエレベータ10には、また、外かご枠12の昇降路36内での上下方向における位置を検出するかご枠検出手段48、上かご14の昇降路36内での上下方向における位置を検出する上かご検出手段50、および下かご16の昇降路36内での上下方向における位置を検出する下かご検出手段52が設けられている。
かご枠検出手段48は、外かご枠12に固定されたフォトセンサ54Aと昇降路36の側壁36Aに固定された遮光板56Aを含む。
上かご検出手段50は、上かご14に固定されたフォトセンサ54Bと昇降路36の側壁36Aに固定された遮光板56Bを含む。
下かご検出手段52は、下かご16に固定されたフォトセンサ54Cと昇降路36の側壁36Aに固定された遮光板56Cを含む。
フォトセンサ54A、54B、54Cは、いずれも基本的に同じ構成なので、これらを区別する必要のない場合は、アルファベットの添え字(A、B、C)を省略して説明することとする。また、遮光板56A、56B、56Cについても同様とする。
フォトセンサ54は、図2に示すように、発光素子542と受光素子544とが対向して設けられてなる透過型のフォトセンサであり、発光素子542と受光素子544の対向領域に相対的に進入する遮光板56を検出する構成となっている。
図1に戻り、遮光板56A、56B、56C各々の上下方向における固定位置について説明する。
先ず、遮光板56B、56Cについて説明すると、遮光板56Bは、上かご14が目的階に着床した状態のときに、フォトセンサ54Bで検出される位置に固定されている。
遮光板56Cは、下かご16が目的階に着床したときに、フォトセンサ54Cで検出される位置に固定されている。
よって、フォトセンサ54B、54Cが遮光板56B、56Cをそれぞれ検出しているか否かによって、上かご14、下かご16の各々が目的階に着床しているかどうかを判断することができる。
遮光板56Aは、上かご14および下かご16が同時に各々の目的階に着床しており、かつ、ワイヤロープ20の長さが基準長であるときに、フォトセンサ54Aで検出される位置に固定されている。ここで基準長とは、ダブルデッキエレベータ10の建物への設置が完了した時点であって、上かご14および下かご16に乗客等が乗っていない状態におけるワイヤロープ20の長さをいう。換言すれば、基準長は、設計仕様で規定されるワイヤロープ20の長さである。
遮光板56Bと遮光板56Cは、上かご14と下かご16とが同時に着床する二つの目的階毎に、一対として設けられている。また、当該一対の遮光板56B,56Cに対応させて、遮光板56Aが設けられている。すなわち、遮光板56Aは、外かご枠12の昇降路36内の上下方向における目標停止位置毎に設けられている。
上記の構成を有するダブルデッキエレベータ10は、主制御装置58と副制御装置66とによって、運転制御(図7、図8)等がなされる。
主制御装置58は、機械室38に設置されており、巻上機40などの駆動制御や上かご14、下かご16各々のかご扉(不図示)の開閉制御等を行う。主制御装置58は、巻上機40のロータリエンコーダ40Cからの出力値(回転角)に基づき、巻上機モータ40A(図3)を回転制御して、外かご枠12を昇降させる。
主制御装置58は、図3に示すように、CPU60にROM62やRAM64が接続された構成を有している。
ROM62は、図4に示すように、昇降テーブル620を有する。昇降テーブル620は、下かご16と上かご14が同時に着床する階(目的階)の組毎に、ロータリエンコーダ40Cの目標回転角およびかご間隔識別情報を対応付けて記憶したテーブルである。当該対応付けの各々はID(001、002、003、…)で識別される。
目標回転角は、外かご枠12の昇降制御において、CPU60により参照される。CPU60は、ロータリエンコーダ40Cからの出力値(回転角)が、目的階に対応する目標回転角(E1、E2、E3、…のいずれか)と一致するまで、巻上機モータ40Aを回転駆動させ、一致した状態で巻上機モータ40Aを停止させる。これにより、外かご枠12は、昇降路36内の上下方向において、上かご14と下かご16が各々の目的階に同時に着床することができる位置(目標停止位置)に停止されることとなる。目標回転角は、昇降路36内の上下方向における外かご枠12の目標停止位置と一対一で対応しているため、目標回転角は、目標停止位置に他ならない。
昇降テーブル620内の目標回転角の各々は、データ取得運転の際に格納される。データ取得運転では、実際に外かご枠12を昇降させ、かご枠検出手段48によって外かご枠12が検出されたときにロータリエンコーダ40Cが出力する各出力値(回転角)を昇降テーブル620に格納する。データ取得運転は、ダブルデッキエレベータ10が、建築物に設置されたとき、およびその後、定期的に行われ、昇降テーブル620の目標回転角は適時に更新される。
かご間隔識別情報d1、d2、d3、d4は、かご間隔D1、D2、D3、D4をそれぞれ特定するものである。例えば、下かご16の目的階が1、上かごの目的階が2の場合、かご間隔DはD1に調整されるべきであるので、昇降テーブル620のかご間隔識別情報のID=001に対応する欄には「d1」が記憶されている。
図3に戻り、CPU60は、ROM62に格納された各種制御プログラムを実行することにより、巻上機モータ40Aなどを統括的に制御して、円滑な外かご枠12(上かご14、下かご16)の昇降路36における昇降動作等による運転を実現する。RAM64は、CPU60が各種制御プログラムを実行するために使用されるワークメモリとなる。また、主制御装置58(のCPU60)は、副制御装置66に対し、所定のタイミングで後述する「かご間隔調整指令」、「かご間隔測定指令」等の種々の実行指令等を出す。
副制御装置66は、図1に示すように、外かご枠12に設置されている。副制御装置66は、主として、移動ユニット22を駆動制御して、かご間隔Dを調整したり、調整後のかご間隔Dを測定したりする。副制御装置66は、図3に示すように、CPU68とCPU68に接続されたROM70およびRAM72を有している。
ROM70は、CPU68が実行する各種プログラムや各種の情報が記憶されたテーブルを記憶領域に格納している。
ROM70は、図5(a)に示すように、かご間隔調整テーブル700を有する。かご間隔調整テーブル700は、かご間隔識別情報d1、d2、d3、d4とそれぞれに対応する油圧パワーユニット26の制御パラメータであるロータリエンコーダ26Cの回転角e1、e2、e3、e4とを対応付けて記憶している。回転角e1、e2、e3、e4の各々は、かご間隔D1、D2、D3、D4に調整するために必要なジャッキ24の駆動量(すなわち、プランジャ24Bの変位量DP1、DP2、DP3、DP4)と一対一で対応している。
ROM70は、さらに、図5(b)に示すように、かご間隔情報テーブル702を有する。かご間隔情報テーブル702は、かご間隔識別情報d1、d2、d3、d4とそれぞれに対応する目盛差ΔS1、ΔS2、ΔS3、ΔS4とを対応付けて記憶している。これらの目盛差ΔS1〜ΔS4を以下、「基準目盛差」という。基準目盛差ΔS1〜ΔS4の各々は、上かご14と下かご16の着床に必要なかご間隔精度を考慮して、許容される幅をもったものとされている。すなわち、移動ユニット22による調整後のかご間隔には、上かご14と下かご16各々の目的階の階高に対する許容範囲が設定されている。
主制御装置58からかご間隔識別情報(d1、d2、d3、d4のいずれか)を含むかご間隔調整指令を受け取ると、CPU68は、かご間隔調整テーブル700から、対応する回転角(e1、e2、e3、e4のいずれか)を読み出す。そして、CPU68は、配管27の開閉弁が開いた状態で、ロータリエンコーダ26Cからの出力値(回転角)が、読み出した回転角と一致するまで、ポンプ用モータ26Bを回転駆動させ、一致した状態でポンプ用モータ26Bを停止させるとともに、前記制御弁を閉じた状態にする。当該回転駆動により油圧ポンプ26Aが作動され、読み出された回転角に対応する変位量(DP1、DP2、DP3、DP4のいずれか)の分だけプランジャ24Bを上下移動させて、上かご14と下かご16を上下方向に移動させる。これにより、かご間隔Dが、上下二つの目的階の階高に適合したかご間隔(D1〜D4のいずれか)に調整される。
上記した調整が正確であれば、調整後のかご間隔Dは、上下二つの目的階の階高に適合したものとなっている。当該調整後のかご間隔Dは、上かご14と下かご16の、外かご枠12に対する上下方向における絶対位置を検出する磁気スケール28により実際に測定することにより、具体的には、読取ユニット32が読み取った目盛値と読取ユニット34が読み取った目盛値との目盛差を算出することにより把握し得る。そして、算出した目盛差を、対応する基準目盛差(ΔS1、ΔS2、ΔS3、ΔS4のいずれか)と比較することで、調整後における現状のかご間隔Dが基準目盛差の許容範囲内にあるか否かを確認することが可能となる。
しかしながら、上かご14と下かご16を吊り下げているワイヤロープ20は、上述したように、上下方向(長さ方向)に伸縮性を有するため、例えば、かご14,16内で乗客がジャンプ等したりすると、これが原因で、図6(a)に示すように、かご14,16が上下に振動する場合がある。かご14,16が外かご枠12に対して静止しているとき(振動していないとき)はともかく、このように上下に振動しているときに読取ユニット32,34によって検出されるかご14,16のかご位置は、ばらつきが大きく、このため、かご間隔Dが正確に測定されないおそれがある。
これに対し、かご14,16の振動が治まりさえすれば、かご間隔Dを正確に測定できるものの、当該振動が治まるまでの間は、調整後のかご間隔Dを正確に把握できないので、ダブルデッキエレベータ10の円滑な運転動作が阻害されることにもなりかねない。
そこで、本実施形態では、かご14,16が振動しているか否かにかかわらず、調整後のかご間隔Dを、磁気スケール28を利用して、以下のように測定することとしている。副制御装置66のRAM72は、CPU68が各種制御プログラムを実行する際に用いるワークメモリとして機能する他、かご間隔Dの調整のため、磁気スケール28の読取ユニット32,34が読み取った目盛値を「かご位置データ」として記憶する記憶領域等を有している。
RAM72は、図5(c)に示すように、読取ユニット32が読み取った目盛値を記憶する上かご位置記憶領域722と、読取ユニット34が読み取った目盛値を記憶する下かご位置記憶領域724とを有する。上かご位置記憶領域722には、読取ユニット32が読み取った複数の目盛値がサンプリングされて読み取られた順に記憶される。同様に、下かご位置記憶領域724には、読取ユニット34が読み取った複数の目盛値がサンプリングされて読み取られた順に記憶される。
ここで、上かご位置記憶領域722に記憶される目盛値の各々を、以下「上かご位置データ」といい、上かご位置記憶領域722に記憶されている複数の目盛値を、以下「一群の上かご位置データ」ということとする。同様に、下かご位置記憶領域724に記憶される目盛値の各々を、以下「下かご位置データ」といい、下かご位置記憶領域724に記憶されている複数の目盛値を、以下「一群の下かご位置データ」ということとする。
上記したように、副制御装置66(CPU68)は、磁気スケール28の読取ユニット32,34が読み取った目盛値(検出結果)をサンプリングして、複数の(上・下)かご位置データを含む一群の(上・下)かご位置データを、RAM72における(上・下)かご位置記憶領域722,724に記憶することにより取得するかご位置データ取得手段として機能する。
〔かご間隔測定処理〕
次に、主制御装置58からの「かご間隔測定指令」を受けて、副制御装置66で実行されるかご間隔Dの測定処理を、図6、図7を参照しながら説明する。
先ず、かご位置を推定する処理(図7のステップS12)に関する原理を、図6に基づいて説明する。なお、図6(a)には、上かご14と下かご16両方のかごが振動している様子が示されているが、かご位置を推定する原理は、基本的には、上かご14も下かご16も同じである。よって、以下、下かご16を例にとって説明し、上かご14については必要に応じて言及するに止めることとする。
図6(b)は、横軸に時間を、縦軸に下かご16の変位を採った、振動波形を示すグラフである。本実施形態において、下かご16は減衰振動しているものとし、その振動波形を実線で示す。この減衰振動の中心位置Lを算出し、算出して得られた中心位置Lを下かご16のかご位置とみなす(推定する)こととしている。また、減衰が無いとした場合の振動波形を正弦曲線とみなし、図6(b)において、破線で示す。
このような減衰振動の2周期分(0≦t≦2T)に相当する範囲には、極大点と極小点が交互に合計4個現れる。
ここで、上記減衰振動における減衰比を「γ(=e-αt)」、上記正弦曲線の振幅を「A」、角周波数を「ω」とする。また、当該減衰振動の2周期の間に現れる極点を、時系列順に、第1の極大点U1、第1の極小点L1、第2の極大点U2、第2の極小点L2とする。なお、これら極大点および極小点の極値にも同じ符号を用いることとする。すなわち、第1の極大値U1、第1の極小値L1、第2の極大値U2、第2の極小値L2とする。
極大値U1,U2及び極小値L1,L2は、それぞれ、以下の式(1)〜(4)で表される。
U1=L+γAsinωt (1)
L1=L+γ2Asinωt (2)
U2=L+γ3Asinωt (3)
L2=L+γ4Asinωt (4)
正弦曲線における極大点U1,U2では、「sinωt=1」になり、極小点L1,L2では、「sinωt=−1」になるので、式(1)〜(4)は、それぞれ、以下の式(5)〜(8)のように表すことができる。
U1=L+A・γ (5)
L1=L−A・γ2 (6)
U2=L+A・γ3 (7)
L2=L−A・γ4 (8)
ここで、
(L2−L1)/(U1−U2)
={(L−A・γ4)−(L−A・γ2)}/{(L+A・γ)−(L+A・γ3)}
={A・γ2・(1−γ2)}/{A・γ・(1−γ2)}
=γ (9)
となる。
よって、下かご16の減衰振動において、上記4つの極値(極大値U1,U2、極小値L1,L2)が把握できれば、減衰比γを求めることができる。
また、
(γ・U2+L2)/(γ+1)
=(γ・L+A・γ4+L−A・γ4)/(γ+1)
={(γ+1)・L}/(γ+1)
=L (10)
となる。
よって、下かご16の振動の減衰比γと極値(極大値U2、極小値L2)が把握できれば、その振動の中心位置Lを求めることができる。減衰比γは上記の通り極値U1、U2、L1、L2が把握できれば、求めることができるので、結局、4個の極値U1、U2、L1、L2が把握できれば、中心位置Lを求めることができるのである。
これら4つの極値は、下かご16の振動の2周期分(0≦t≦2T)に相当する範囲に現れることとなる。よって、磁気スケール28による一群の下かご位置データのサンプリング時間(期間)を、下かご16の振動の当該2周期分(第1の極大点U1、第1の極小点L1、第2の極大点U2、および第2の極小点L2をこの順で含む2周期分)が含まれるような十分な長さの時間(期間)に設定しておけば、取得した一群の下かご位置データから、上記式(9)、式(10)に基づいて、下かご16の振動の中心位置Lを割り出すことが可能となる。
かご間隔Dの測定は、かご間隔Dの調整がなされた後で実行されるため、ワイヤロープ20における、従動シーブ18に掛けられている部分から下かご16に至るまで間のロープ長は、下かご16が外かご枠12に対して静止している限り変化しない。ロープ長が定まれば当該ロープ長のときのワイヤロープ20のばね定数も定まるため、下かご16に生じる振動をいわゆる鉛直ばね振り子と見做すと、下かご16の固有振動数は、前記ばね定数と乗客等を含む下かご16の総重量によって定めることが可能となる。
前記ロープ長はかご間隔Dと一対一で対応しているため、下かご16の固有振動数は、対応するかご間隔D1、D2、D3、D4毎に定めることができる。当該固有振動数が定まれば固有周期も定められるので、当該固有周期に基づいて下かご16の振動の2周期も決定できるのである。
なお、本例のように、下かご16がジャッキ24のプランジャ24Bに連結されている場合、下かご16の固有振動数は、上述したロープ長(ばね定数)、下かご16の総重量に加えて、ジャッキ24の影響も受けることとなる。このような場合には、ジャッキ24の影響を考慮し、実験的に下かご16の固有振動数を求めるようにすればよい。
本実施形態では、取得した一群の下かご位置データにおいて、連続する6個のかご位置データの大小関係を比較し、かご位置データの値が3回連続して増加後、2回連続して減少した場合、この間に極大値が存するものと推定することとしている。以下、「かご位置データの値が3回連続して増加後、2回連続して減少する」ことを、「極大値条件」と称することとする。
また、取得した一群の下かご位置データにおいて、連続する6個のかご位置データの大小関係を比較し、かご位置データの値が3回連続して減少後、2回連続して増加した場合、この間に極小値が存するものと推定することとしている。以下、「かご位置データの値が3回連続して減少後、2回連続して増加する」ことを、「極小値条件」と称することとする。
そして、取得したかご位置データを最初から順次みていき、最初に極大値条件(「1回目の極大値条件」とする。)が成立した場合における当該6個のかご位置データの内、最初の1個を除く5個のかご位置データを第1の極大点群とし、当該5個のかご位置データの(すなわち、第1の極大点群の)総和をΣU1とすることとしている。
また、1回目の極大値条件が成立した次に極小値条件(「1回目の極小値条件」とする。)が成立した場合における当該6個のかご位置データの内、最初の1個を除く5個のかご位置データを第1の極小点群とし、当該5個のかご位置データの(すなわち、第1の極小点群の)総和をΣL1とすることとしている。
同様に、1回目の極大値条件の次に極大値条件が成立した場合(2回目の極大値条件が成立した場合)における第2の極大点群の総和をΣU2とし、1回目の極小値条件の次に極小値条件が成立した場合(2回目の極小値条件が成立した場合)における第2の極小点群の総和をΣL2とする。
そして、本実施形態では、上記第1の極大点群、第1の極小点群、第2の極大点群、および第2の極小点群をそれぞれ、第1の極大点U1、第1の極小点L1、第2の極大点U2、および第2の極小点L2として取り扱うこととし、4つの極大点群の各々の総和ΣU1、ΣU2、ΣL1、ΣL2を用いて、中心位置Lを算出することとしている。
すなわち、本実施形態では、減衰比γを、式(9)に相当する下記の式(11)により算出し、下かご16の振動の中心位置Lを、式(10)に相当する下記の式(12)により算出している。
γ=(ΣL2−ΣL1)/(ΣU1−ΣU2) (11)
L=(γ・ΣU2+ΣL2)/(γ+1) (12)
上記のように式(11)、式(12)を用いて中心位置Lを求めることとした理由(極大値または極小値の把握(推定)に複数のかご位置データを用いた理由)は以下の通りである。
すなわち、かご位置検出の目的から明らかなように、必要とするのは、振動が収束したとした場合におけるかご位置、すなわち、振動の中心位置Lである。
かご位置を求める際、下かご16が上下方向に振動しておらず、静止しているときは、磁気スケール28で読み取られ、磁気スケール28(読取ユニット34)から出力されるかご位置データを用いることができる。
しかし、下かご16が上下方向に振動している場合、読取ユニット34で読み取られた一のかご位置データは、下かご16の上下振幅におけるどの位置かを特定できないため、当該一のかご位置データのみでは、正確なかご間隔を把握することができない。
そこで、極大値または極小値が出現していると推定される間の複数の(本例では、5個の)かご位置データ(の総和)を用いることで、可能な限り、真の極大値や極小値との誤差を少なくするためである。なお、総和としても、式(11)、式(12)から明らかなように、減衰比γおよび中心位置Lは、ΣU1、ΣU2、ΣL1、ΣL2の比で算出されため、式(9)、式(10)で算出されるのと同様の次元の結果を得ることができる。
なお、上記の例では、式(9)、式(10)を適用するに際し、極大値U1、U2、極小値L1、L2をΣU1、ΣU2、ΣL1、ΣL2で推定し、式(11)、式(12)を用いて中心位置Lを求めたが、これに限らず、ΣU1、ΣU2、ΣL1、ΣL2各々の算術平均をもって、極大値U1、U2、極小値L1、L2を推定することとしても構わない。
すなわち、U1=(ΣU1)/5、U2=(ΣU2)/5、L1=(ΣL1)/5、L2=(ΣL2)/5とし、式(9)、式(10)を用いて、中心位置Lを算出しても構わない。複数の(本例では、5個の)かご位置データから、極小値または極大値を推定するのには変わりないからである。
上記したような処理を実行するためには、既述したように上記サンプリング時間を、第1の極大点U1、第1の極小点L1、第2の極大点U2、および第2の極小点L2をこの順で含む2周期が含まれるような十分な長さの時間(期間)に設定する必要がある。それには、先ず、下かご16の振動の周期が最大になるときの2周期(0≦t≦2T)を把握する必要がある。
具体的には、4通りのかご間隔D1、D2、D3、D4のうち、従動シーブ18に掛けられて折り返されたワイヤロープ20のロープ長が最も長くなるとき、すなわち、かご間隔Dが最も大きいD1のときの、下かご16を吊り下げている他端側のワイヤロープ20のロープ長に対応するばね定数と下かご16の総重量が最大のときの重量(下かご16の自重に最大積載荷重を加えた重量)によって定まる固有周期に基づき、最大となる2周期を把握できる。ロープ長が長いほど、ばね定数は小さくなるため、その分、固有周期も長くなるからである。
本実施形態のように、2つの総和ΣU1,ΣU2と2つの総和ΣL1,ΣL2に基づいて、減衰比γおよび振動の中心位置Lを割り出すようにすることで、下かご位置データのサンプリング中に乗客がジャンプする等の外乱があった場合に生じ得る、当該割り出したかご位置と実際のかご位置との間のずれを緩和することができるので、かご間隔Dの調整がなされた後の下かご16のかご位置を可能な限り正確に推定することが可能となる。
続いて、かご間隔Dの測定処理について、図7に示すフローチャートを参照しながら説明する。
主制御装置58から、かご間隔測定指令を受け取ると(ステップS10:YES)、副制御装置66のCPU68(図3)は、かご位置を推定する処理(ステップS12)を実行する。ステップS12では、上かご14のかご位置と下かご16のかご位置を、それぞれ推定する。かご位置を推定する処理は、基本的には、上かご14も下かご16も同じである。
CPU68は、読取ユニット34が読み取った目盛値(下かご位置データ)を取得し、下かご16のかご位置を検出する(ステップS121)。ステップS121において、読取ユニット34は、予め設定されているサンプリング時間の間、所定の等時間間隔(例えば、約10msec)で目盛値を複数回読み取り、読み取った目盛値の各々を副制御装置66に送信する。
読取ユニット34から送信された目盛値の各々は、読み取られた順に、RAM72の下かご位置記憶領域724内に格納される。このように、副制御装置66のCPU68は、読取ユニット34による検出結果(目盛値)を逐次サンプリングして、RAM72(下かご位置記憶領域724)に格納し、複数の目盛値(一群の下かご位置データ)を取得する(ステップS123)。
ステップS123が完了すると、CPU68は、RAM72に格納されている複数のかご位置データ(目盛値)を参照し、上述した原理の基、上記式(11)及び式(12)により、下かご16の振動の中心位置を割り出す(ステップS125)。
ステップS12では、上記した各ステップS121、S123、S125と同様の処理を、並行して、上かご14に対しても実行する。すなわち、読取ユニット32が読み取った目盛値(上かご位置データ)を取得して上かご14のかご位置を検出し(ステップS122)、RAM72の上かご位置記憶領域722に格納される読取ユニット32の検出結果(目盛値)を逐次サンプリングして複数の目盛値(一群の上かご位置データ)を取得し(ステップS124)、上記式(11)及び式(12)から、上かご14の振動の中心位置を割り出す(ステップS126)。ステップS12が完了して、上かご14と下かご16各々の振動の中心位置が割り出されると、ステップS14へ進む。
ステップS14では、ステップS12で割り出した、上かご14と下かご16各々の振動の中心位置の目盛差を算出する。当該算出により得られた目盛差は、上かご14と下かご16各々の推定位置から割り出されたかご間隔Dに相当するため、当該目盛差を算出することは、かご間隔Dを測定することに他ならない。よって、この目盛差を算出して得た時点で、かご間隔Dの測定処理は終了する。
このように、本実施形態では、かご14,16のかご位置を上記のように推定しているので、かご14,16がたとえ振動していても、推定されるかご位置と実際のかご位置との間のずれは小さいものとなり、可能な限り正確に、かご間隔Dを測定できるため、かご間隔Dを従来よりも精度良く把握することが可能となるのである。
〔昇降運転制御〕
次に、上述したかご間隔測定処理を含む、ダブルデッキエレベータ10の昇降運転制御について、図8に示すフローチャートを参照しながら説明する。
当該昇降運転制御プログラムは、上かご14、下かご16のかご内呼びや各階の乗り場呼びの状況から、次の目的階が決定された後に実行される。
主制御装置58のCPU60は、先ず、次の目的階が決定されているか否かを確認する(ステップS20)。目的階が決定済みの場合(ステップS20:YES)、CPU60は、ROM62に格納されている昇降テーブル620を参照して巻上機モータ40Aを回転駆動させ、目標停止位置に向けた外かご枠12の昇降を開始する(ステップS22)と共に、副制御装置66に対してかご間隔調整指令を送信する(ステップS24)。一方、目的階が未決定の場合(ステップS20:NO)は、待機状態となる。
かご間隔調整指令を受けた副制御装置66のCPU68は、ROM70に格納されているかご間隔調整テーブル700を参照してジャッキ24を駆動させ、上かご14、下かご16各々を上下方向に移動させることによって、かご間隔Dを、上下二つの目的階の階高に適合する間隔を目標に調整する(ステップS40)。続いて、CPU68は、かご14,16の移動が終了しているか否かを確認し(ステップS42)、まだ終了していない場合(ステップS42:NO)は、調整を継続する。一方、かご14,16の移動がすでに終了している場合(ステップS42:YES)、CPU68は、かご間隔Dの調整がなされた旨を主制御装置58に送信する。
かご間隔Dの調整がなされた旨を主制御装置58が受信すると、CPU60は、続けて副制御装置66に対してかご間隔測定指令を送信する(ステップS26)。かご間隔測定指令を受けた副制御装置66のCPU68は、上述したかご間隔測定処理(図7)を実行し、調整後のかご間隔Dを測定する(ステップS44)。
ステップS44でかご間隔Dを測定した後、CPU68は、ROM70に格納されているかご間隔情報テーブル702を参照して、測定したかご間隔Dとこれに対応する基準目盛差とを比較し、測定したかご間隔Dが基準目盛差の許容範囲内にあるか否かを判断する(ステップS46)。許容範囲を超えている場合(ステップS46:NO)、ステップS40と同様に、かご間隔Dを再度調整し(ステップS48)、再調整された後のかご間隔Dを再度測定する(ステップS44)。そして、測定されたかご間隔Dが基準目盛差の許容範囲内に収まるまで、ステップS44、ステップS46およびステップS48を繰り返し実行する。かご間隔Dが基準目盛差の許容範囲内になれば、かご間隔Dの調整が完了した旨を主制御装置58に送信する(ステップS46:YES)。
主制御装置58は、その後、外かご枠12を目標停止位置に停止させる(ステップS28)。この時点で、(i)かご間隔Dの調整が完了した旨を主制御装置58が受信している場合、外かご枠12の停止と同時に、上かご14、下かご16も、それぞれの目的階に精度良く着床した状態となる(ステップS30)。一方、(ii)かご間隔Dの調整が完了した旨を主制御装置58が受信していない場合、その旨を受信した時点でかご間隔Dの調整が完了し、上かご14、下かご16が、それぞれの目的階に精度良く着床した状態となる(ステップS30)。
上かご14、下かご16が着床されると、主制御装置58は、上かご14、下かご16各々のかご扉が開いた状態にして(ステップS32)、乗客の乗降が完了したか否かを監視する(ステップS34)。主制御装置58は、乗客の乗降が完了していないとき(ステップS34:NO)には、かご扉が開いた状態を維持し、乗客の乗降が完了すると(ステップS34:YES)、かご扉を閉じる(ステップS36)。
乗客の乗降が完了すると、主制御装置58は、次の目的階の有無を確認し(ステップS38)、次の目的階が決定されていれば(ステップS38:YES)、次の目標停止位置に向けた外かご枠12の昇降を開始する(ステップS22)と共に、副制御装置66に対してかご間隔調整指令を送信する(ステップS24)。一方、次の目的階が未決定の場合(ステップS38:NO)は、昇降運転制御を一旦終了し、待機状態となる。
なお、上述したダブルデッキエレベータ10の昇降運転制御において、かご間隔Dの調整は、例えば、上かご14、下かご16各々のかご扉が全閉して、外かご枠12が昇降開始した直後など、外かご枠12が目標停止位置まで到着するまでの間の可能な限り早いタイミングで行うことが望ましい。これにより、外かご枠12が目標停止位置に至るまでの間、かご間隔Dの調整を完了させるための時間をより長く確保することが可能となる。
外かご枠12が目標停止位置に停止される以前に、かご間隔Dが正確に調整されていることを把握できていれば、外かご枠12が昇降中であっても、外かご枠12が目標停止位置に停止した時点で、かご14,16を目的階にジャストレベルの高精度で着床させられることを認識し得ることとなるため、着床直前からかご扉(不図示)を開け始める、いわゆる戸開走行を安全に実施することができる。その結果、ダブルデッキエレベータ10の昇降運転が円滑になり、乗客の搬送効率向上に資することとなる。
<実施形態2>
実施形態1に係るダブルデッキエレベータ10は、上かご14と下かご16のうち一方を(本例では、下かご16を)、ジャッキ24で上下方向に移動させるジャッキ式のダブルデッキエレベータであったが、実施形態2に係るダブルデッキエレベータ74は、図9に示すように、上かご14と下かご16とを連結するワイヤロープ20が、外かご枠12の上梁12Aに設置された副巻上機76の駆動シーブ76Aに掛けられて、駆動シーブ76Aをモータ76Bで回転駆動することにより、かご間隔Dを変更するトラクション式のダブルデッキエレベータである。
実施形態2に係るダブルデッキエレベータ74は、上かご14と下かご16のかご間隔Dを変更するための駆動方式が異なる以外は、実質的に、実施形態1のダブルデッキエレベータ10と同じ構成である。よって、図9において、図1に示したダブルデッキエレベータ10と実質的に同じ構成には、同じ符号を付して、その説明については省略する。
ダブルデッキエレベータ74の有する副制御装置66も、設置位置は異なるものの、実施形態1のものと同様である。また、実施形態2において、副制御装置66のCPU68で実行されるかご間隔推定処理プログラム、およびかご間隔測定プログラムも、図7に示すフローチャートに基づいて説明したものと同様であり、主制御装置58のCPU60と副制御装置66のCPU68とが連携して実行される昇降運転制御プログラムも、図8に示すフローチャートに基づいて説明したものと同様であるので、その説明についても省略する。
なお、実施形態2に係るトラクション式のダブルデッキエレベータ74は、上記のとおり、上かご14と下かご16を連結するワイヤロープ20が駆動シーブ76Aに掛けられた構成であるため、下かご16の固有振動数は、ワイヤロープ20における、駆動シーブ76Aに掛けられている部分から下かご16に至るまで間のロープ長に対応するばね定数と下かご16の総重量によって定まることとなる。
<実施形態3>
実施形態1,2では、かご間隔Dが調整される際、外かご枠12に対し、上かご14、下かご16がいずれも上下方向に移動される『可動かご』であったが、実施形態3では、一方のかご(本例では、上かご)は、外かご枠12に固定された『固定かご』であり、他方のかご(本例では、下かご)のみが上下方向に昇降移動される『可動かご』である構成となっている。
図10に示すように、実施形態3に係るダブルデッキエレベータ80は、上かご82が外かご枠12に固定され、下かご16のみがジャッキ24によって上下方向に昇降移動される以外は、実施形態1,2に係るダブルデッキエレベータ10,74(図1、図9)と基本的に同じ構成である。よって、図10において、ダブルデッキエレベータ10,74と実質的に同じ構成要素については、同じ符号を付して、その説明は必要に応じて言及するに止め、以下、相違する部分を中心に説明する。
ダブルデッキエレベータ80において、外かご枠12は、中間梁12Eをさらに含む。中間梁12Eは、立枠12C,12Dの上下方向中間部やや上側に横架されている。中間梁12Eの上面側に防振ゴム84を介して、上かご82が固定されている。中間梁12Eには、また、磁気スケール28を構成する磁気テープ30の上端が固定されており、中間梁12Eと下梁12Bとの間に、磁気テープ30が張架されている。
下かご16は、ジャッキ24が駆動されることで、かご間隔Dの調整のため上下方向に移動されると同時に、このジャッキ24によって、外かご枠12内に、上かご82に対し上下方向に離間した状態で支持されている。すなわち、実施形態3に係るダブルデッキエレベータ80において、ジャッキ24は、かご間隔調整手段として機能する移動ユニット22の一部を構成すると同時に、下かご16を支持する支持手段としての機能も兼ね備えている。
ダブルデッキエレベータ80の有する副制御装置66は、実施形態1のものと同様であり、実施形態3において、副制御装置66のCPU68で実行されるかご間隔推定処理プログラム、およびかご間隔測定プログラムも、基本的には、図7に示すフローチャートに基づいて説明したものと同様である。また、主制御装置58のCPU60と副制御装置66のCPU68とが連携して実行される昇降運転制御プログラムは、図8に示すフローチャートに基づいて説明したものと実質的に同じである。よって、以下、実施形態1,2と相違する部分を中心に説明する。
ダブルデッキエレベータ80では、上かご82が外かご枠12に固定されているので、上かご82のかご位置は一定(不動)であるものと取り扱うことができる。よって、かご間隔Dを測定する際に、かご間隔推定処理を実行する必要があるのは、上述したような振動が生じ得る下かご16のみとなる。この場合、上かご14のかご位置は、予め測定して得た目盛値に相当する固定値をROM70またはRAM72の記憶領域に格納しておけばよい。
したがって、実施形態3では、図7に示すステップS121、S123、S125と同様に、かご位置推定処理を実行して下かご16のかご位置を推定し、また、図7に示すステップS14と同様に、上かご14のかご位置を指標する固定値と下かご16の推定位置を指標する目盛値の差分を算出することにより、かご間隔Dを測定することが可能となるのである。
以上、本発明に係るダブルデッキエレベータを実施形態に基づいて説明してきたが、本発明は、上記した形態に限らないことは勿論であり、例えば、以下のような形態で実施されても構わない。
(1)上記実施形態では、振動しているかごの、その振動の中心位置を算出し、算出して得られた中心位置をかご位置と推定することとしていたが、かご位置を推定するのに有利な手法の一例として例示したに過ぎず、その他の手法を応用して、かご位置を推定することとしても構わない。
例えば、上述したように、サンプリングした一群のかご位置データの算術平均値をかご位置と推定するようにする他、一群のかご位置データを母集団とする標準誤差を算出することで、かご位置を推定することとしても構わない。要は、振動に起因して正確なかご位置の検出が困難であるような状況であっても、取得し得るかご位置の検出結果から、かご間隔が可能な限り正確に把握できればよいのである。
(2)上記実施形態では、かご間隔Dの調整を、上かご14、下かご16各々のかご扉が全閉して、外かご枠12が昇降開始した直後に行うこととしていたが、例えば、前記かご扉が全閉して、外かご枠12が昇降開始する直前に行うこととしても構わない。要は、かご間隔Dの調整を開始できる条件、すなわち、前記かご扉が全閉していて(図8のステップS36)、上かご14、下かご16のかご内呼びや各階の乗り場呼びから、次の目的階が決定されている(図8のステップS38:YES)という条件が揃った時点で、かご間隔Dの調整を可能な限り早いタイミングで行うようにしてもよい。
(3)上記実施形態において、主制御装置58は、「かご間隔調整指令(図8のステップS24)」と「かご間隔測定指令(図8のステップS26)」を、副制御装置66へ順次個別に送信することとしていたが、「かご間隔把握指令」として両者を単一の指令に含めて一括送信するようにしても構わない。あるいは、かご扉の開閉動作を主制御装置58からの指令に基づき、副制御装置66が行うように構成されていてもよい。主制御装置58と副制御装置66とが連携して、上述した昇降運転制御を行うために必要な処理を確実に実行できさえすればよい。
(4)上記実施形態では、かご位置検出手段である読取ユニットから検出結果であるかご位置データを、逐次、副制御装置に送信されるように構成されていたが、例えば、読取ユニット側にメモリが設けられているような場合には、読み取った一群のかご位置データを読取ユニットのメモリ内に一時的に格納しておき、所要のタイミングで、副制御装置がメモリ内に格納されている一群のかご位置データを読み出して、かご位置推定処理を実行するような構成であっても構わない。
あるいは、読取ユニットのメモリ内に格納されている一群のかご位置データから、当該読取ユニットに上述したかご位置推定処理を実行させ、推定したかご位置を前記メモリ内の所定の記憶領域に格納しておき、所要のタイミングで、副制御装置が推定されたかご位置を読み出すような構成としても構わない。このような構成にすれば、読取ユニットと副制御装置の間の通信データ量を削減できる。
(5)上記実施形態1,2では、上かごと下かごの各々が上下方向に移動する「可動かご」となっているかごの支持態様であったが、上かごと下かごの両方を「可動かご」とするかごの支持態様は、上記実施形態1,2とは異なる態様であってもよい。例えば、上かご、下かごを、それぞれ専用のジャッキで支持する態様であっても構わない。あるいは、実施形態1における移動ユニット22に替えて、ボールねじやパンタグラフ等の駆動方式により、下かご16を上下移動させるような形態とすることも可能である。
また、上記実施形態3では、上かごを「固定かご」とし、下かごを「可動かご」とするかごの支持態様であったが、これとは逆の態様、すなわち、上かごを「可動かご」とし、下かごを「固定かご」とするかごの支持態様であってもよい。さらに、可動かごを上下方向に移動させる駆動方式は、ジャッキに限らず、例えば、可動かごをカウンタウエイトとつるべ式に連結したトラクション式の駆動方式であっても構わない。
このように、本発明は、上かごと下かごのうち、少なくとも一方のかごに上下の振動が生じ得るようなかごの支持態様となっているダブルデッキエレベータに適用することができるのである。
(6)上記実施形態1,3において、下かご16に連結されたジャッキ24は、プランジャ24Bの軸心方向が上下方向となる姿勢で設置されていたが、ジャッキ24の設置姿勢は、必ずしもこのような姿勢である必要はない。例えば、上下方向に対して、プランジャ24Bの軸心が交差する姿勢でジャッキ24を設置し、公知のリンク機構等を介して、ジャッキの駆動力を上下方向に伝達するような構成を採用することも可能である。
(7)上記実施形態では、かご位置検出手段として、磁気式リニアスケールが採用されているが、他の検出手段を採用しても構わない。例えば、光学一次元コードセンサ、光学二次元コードセンサ、レーザ距離センサ、超音波距離センサといった、公知のセンサを用いることができる。
(8)上記実施形態では、調整されるかご間隔は4通り(D1、D2、D3、D4)であったが、これに限らないことは勿論である。ダブルデッキエレベータが設置される建築物の設計に合わせて、2通り、3通り、または5通り以上に設定することができる。あるいは、前記建築物における全ての階床間ごとに調整されるべきかご間隔Dを設定しても構わない。例えば、10階建ての建築物の場合、かご間隔Dは9通り(D1〜D9)に設定される。建築物における階高は必ずしも設計図のとおりにはならないからである。
(9)上記実施形態では、一群のかご位置データから、かごの振動において続いて出現する2個の極大値(U1、U2)と2個の極小値(L1、L2)を推定し、推定した前記2個の極大値と前記2個の極小値から式(9)、式(10)により中心位置Lを算出した。
そして、式(9)、式(10)に適用する推定値として、上記総和ΣU1、ΣU2、ΣL1、ΣL2(式(11)、式(12))、または、算出平均値U1=(ΣU1)/5、U2=(ΣU2)/5、L1=(ΣL1)/5、L2=(ΣL2)/5を用いた。しかしながら、これに限らず、以下のようにしても構わない。
すなわち、上記実施形態では、一群のかご位置データにおいて極大値条件が成立すると、連続する6個のかご位置データの内、最初の1個を除く5個のかご位置データの総和や算術平均値を極大値とみなした(推定した)が、これに限らず、前記6個のかご位置データの内、増加から減少に転じる直前のかご位置データ(すなわち、最初から4個目のかご位置データ)をピックアップし、これを極大値と推定しても構わない。
同じく、上記実施形態では、一群のかご位置データにおいて極小値条件が成立すると、最初の1個を除く5個のかご位置データの総和や算術平均値を極小値とみなした(推定した)が、これに限らず、前記6個のかご位置データの内、減少から増加に転じる直前のかご位置データ(すなわち、最初から4個目のかご位置データ)をピックアップし、これを極小値と推定しても構わない。
すなわち、上記実施形態では、式(9)、式(10)に代入する第1の極大値、第2の極大値、第1の極小値、および第2の極小値の各々には、磁気スケール28で検出した複数個(本例では、5個)のかご位置データの総和や算術平均を用いたが、式(9)、式(10)に代入する4個の極値の各々は、磁気スケールで検出した一のかご位置データをそのまま用いることとしても構わないのである。つまり、一群のかご位置データから、極値に相応すると見なされるかご位置データをピックアップし、ピックアップしたかご位置データ(極値)を式(9)、式(10)に代入するのである。
なお、この場合、磁気スケールで検出した一のかご位置データをそのまま用いることとしているものの、当該一のかご位置データは、一群のかご位置データ(すなわち、複数のかご位置データ)から極大値または極小値に相応するとして選択されたかご位置データであるため、単に検出した一のかご位置データを用いる従来よりも、必要とするかご位置(極大点、極小点)を正確に把握することができるのである。
本発明は、その趣旨を逸脱しない範囲で当業者の知識に基づいて種々なる改良、修正、又は変形を加えた態様でも実施できる。また、同一の作用又は効果が生じる範囲内で、何れかの発明特定事項を他の技術に置換した形態で実施しても良い。