JP6690348B2 - マルチコア光ファイバ製造方法 - Google Patents

マルチコア光ファイバ製造方法 Download PDF

Info

Publication number
JP6690348B2
JP6690348B2 JP2016062059A JP2016062059A JP6690348B2 JP 6690348 B2 JP6690348 B2 JP 6690348B2 JP 2016062059 A JP2016062059 A JP 2016062059A JP 2016062059 A JP2016062059 A JP 2016062059A JP 6690348 B2 JP6690348 B2 JP 6690348B2
Authority
JP
Japan
Prior art keywords
core
region
common
cladding
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016062059A
Other languages
English (en)
Other versions
JP2017171555A (ja
Inventor
拓志 永島
拓志 永島
中西 哲也
哲也 中西
佐々木 隆
隆 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2016062059A priority Critical patent/JP6690348B2/ja
Publication of JP2017171555A publication Critical patent/JP2017171555A/ja
Application granted granted Critical
Publication of JP6690348B2 publication Critical patent/JP6690348B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

本発明は、共通クラッド内に複数のコアが設けられたマルチコア光ファイバ(以下、「MCF」と記す)を製造するためのMCF製造方法に関するものである。
特許文献1には、共通クラッド管と複数のコアロッドをコラプスすることでMCF用の光ファイバ母材を製造した後に該光ファイバ母材の線引きを行うか、または、ロッドイン線引き(複数のコアロッドと共通クラッド管を加熱により一体化しながら行われる線引き)を行うMCF製造方法が開示されている。なお、共通クラッド管の軟化点はコアロッドよりも低くなっている。
特開昭61−201633号公報
発明者らは、従来のMCF製造方法について検討した結果、以下のような課題を発見した。すなわち、従来のMCF製造方法に利用される複数のコアロッドそれぞれはシリカガラスからなるため、該複数のコアロッドそれぞれが、高い比屈折率差Δnを有するコア領域(線引き後のファイバにおけるコアとなる領域)と、その外周面に設けられたクラッド層で構成された場合、該クラッド層により多くの不純物(屈折率調整剤)を添加する必要があった。特に、共通クラッド管と該共通クラッド管に設けられた複数の孔にそれぞれ挿入された複数のコアロッドを加熱により一体化する際(母材製造工程)、軟化点の関係で、共通クラッド管の各孔に挿入されたコアロッドの形状が歪み易くなる。上記特許文献1では、各コアロッドの変形、すなわち各コアロッドに含まれるコア領域の変形を抑制するため、共通クラッド管の軟化点を各コアロッドより低くしているが、この場合、各コアロッドがコア領域のみの構成に制限されるという課題があった。
本発明は、上述のような課題を解決するためになされたものであり、MCF用の光ファイバ母材の一部を構成するコアロッドの変形、すなわち該コアロッドに含まれるコア領域の変形を効果的に抑制するための構造を備えたMCFの製造方法を提供することを目的としている。
本実施形態に係るMCF製造方法は、それぞれが所定軸に沿って延びた複数のコアと、複数のコアそれぞれを覆う共通クラッドと、を備えたMCFマルチコア光ファイバを製造する方法であって、共通クラッド管製造工程と、挿入工程と、母材製造工程と、線引き工程と、を備える。共通クラッド管製造工程では、所定軸に相当する中心軸に沿って延びた、共通クラッドの少なくとも一部となるべきガラスロッドに、該中心軸に沿って複数の孔を形成することにより、共通クラッド管が製造される。挿入工程では、共通クラッド管における複数の孔に、複数のコアロッドがそれぞれ挿入される。複数のコアロッドそれぞれは、その長手方向に沿って延びたコア領域と、該コア領域の外周面を取り囲むクラッド層と、該コア領域の外周面を取り囲むようにクラッド層内に設けられた高粘性層と、を有する。なお、高粘性層は、それぞれが複数の孔それぞれの内壁を含む共通クラッド管における孔周辺領域の粘性よりも高い粘性を有する。母材製造工程では、当該MCF用の光ファイバ母材を製造するため、共通クラッド管と複数の孔それぞれに挿入された複数のコアロッドとが加熱される。これにより、共通クラッド管と複数のコアロッドとが一体化され、光ファイバ母材が得られる。線引き工程では、光ファイバ母材の一端を加熱しながら線引きすることにより、当該MCFが得られる。
本実施形態によれば、MCF用の光ファイバ母材の一部を構成するコアロッドには、該コアロッドに含まれるコア領域の外側に高粘性層が設けられており、複数の孔が設けられた共通クラッド管と該複数の孔にそれぞれ挿入された複数のコアロッドとを一体化のために加熱する際に生じる可能性がある、該複数のコアロッドそれぞれにおけるコア領域の変形が効果的に抑制される。
本実施形態に係るMCFの製造方法が適用される線引き装置の構成を示す図である。 本実施形態に係るMCFの製造方法の第1構成例として、共通クラッド管、コアロッド、およびコアロッドの屈折率分布の例を示す図である。 本実施形態に係るMCFの製造方法の第2構成例として、共通クラッド管、コアロッド、およびコアロッドの屈折率分布の例を示す図である。 本実施形態に係るMCFの製造方法の第3構成例として、共通クラッド管、コアロッド、およびコアロッドの屈折率分布の例を示す図である。 本実施形態に係るMCFの製造方法の第4構成例として、共通クラッド管、コアロッド、およびコアロッドの屈折率分布の例を示す図である。 比較例として、共通クラッド管、コアロッド、およびコアロッドの屈折率分布の例を示す図である。 本実施形態に係るMCFの製造方法の第5構成例として、共通クラッド管、コアロッド、およびコアロッドの屈折率分布の例を示す図である。 図7に示された第5構成例の共通クラッド管の製造方法を説明するための図である。
[本願発明の実施形態の説明]
最初に本願発明の実施形態の内容をそれぞれ個別に列挙して説明する。
(1)本実施形態に係るMCF製造方法は、それぞれが所定軸に沿って延びた複数のコアと、複数のコアそれぞれを覆う共通クラッドと、を備えたMCFマルチコア光ファイバを製造する方法であって、共通クラッド管に設けられた複数の孔に複数のコアロッドをそれぞれ挿入した状態で、該共通クラッド管と複数のコアロッドを加熱により一体化することでMCF用の光ファイバ母材を得る。その際、各コアロッドに以下の特殊構造を採用することにより、各コアロッドに含まれるコア領域(線引き後に当該MCFの各コアとなる領域)の粘性が低くても、加熱によるコア領域の変形が抑制される。具体的に当該MCF製造方法は、本実施形態の一態様として、共通クラッド管製造工程と、挿入工程と、母材製造工程と、線引き工程と、を備える。共通クラッド管製造工程では、所定軸に相当する中心軸に沿って延びた、共通クラッドの少なくとも一部となるべきガラスロッドに、該中心軸に沿って複数の孔を形成することにより、共通クラッド管が製造される。挿入工程では、共通クラッド管における複数の孔に、複数のコアロッドがそれぞれ挿入される。複数のコアロッドそれぞれは、その長手方向に沿って延びたコア領域と、該コア領域の外周面を取り囲むクラッド層と、該コア領域の外周面を取り囲むようにクラッド層内に設けられた高粘性層と、を有する。なお、高粘性層は、それぞれが複数の孔それぞれの内壁を含む共通クラッド管における孔周辺領域の粘性よりも高い粘性を有する。また、各コアロッドの変形を効果的に抑制するためには、高粘性層は、該コアロッドの外周面を含む、クラッド層の最外層または最外領域であるのが好ましい。母材製造工程では、当該MCF用の光ファイバ母材を製造するため、共通クラッド管と複数の孔それぞれに挿入された複数のコアロッドとが加熱される。これにより、共通クラッド管と複数のコアロッドとが一体化され、光ファイバ母材が得られる。線引き工程では、光ファイバ母材の一端を加熱しながら線引きすることにより、当該MCFが得られる。
(2)本実施形態の一態様として、線引き工程により得られるマルチコア光ファイバにおいて、複数のコアロッドそれぞれにおける高粘性層に相当する領域の残留応力は、引っ張り応力であるのが好ましい。複数のコアロッドそれぞれにおけるコア領域に相当する領域の残留応力は、圧縮応力であるのが好ましい。共通クラッド管における孔周辺領域それぞれに相当する領域の残留応力は、引っ張り応力であり、かつ、該引っ張り応力の絶対値が高粘性層に相当する領域における引っ張り応力の絶対値以下であるのが好ましい。
(3)本実施形態の一態様として、共通クラッド管および複数のコアロッドを一体化することによりMCF用の光ファイバ母材を得る母材製造工程と、該光ファイバ母材を線引きする線引き工程とは、同時に実行されるのが好ましい。この場合、線引き工程が母材製造工程を兼ねるため、母材製造のための加熱工程を減らすことが可能になる(製造コストの低減)。
(4)本実施形態の一態様として、中心軸に直交する、共通クラッド管の断面形状は、非円形であってもよい。共通クラッド管の断面形状を非円形とすることで、複数のMCFの向きを揃えて配列することが容易になる。また、上述のように母材製造工程と線引き工程を同時に実行することで(母材製造用の加熱工程の省略)、コアロッドにおける断面形状の変形を抑制する効果も得られる。
(5)本実施形態の一態様として、複数のコアロッドそれぞれにおけるクラッド層は、コア領域から当該クラッド層の外周面に向かって順に配置された、第1クラッド領域、第2クラッド領域、および第3クラッド領域を備えてもよい。第1クラッド領域は、コア領域の外周面を取り囲む領域である。第2クラッド領域は、第1クラッド領域の外周面を取り囲み、該第1クラッド領域の屈折率よりも低い屈折率を有する。第3クラッド領域は、第2クラッド領域の外周面を取り囲み、該第2クラッド領域の屈折率よりも低い屈折率を有する。特に、第3クラッド領域の粘性は、共通クラッド管における孔周辺領域それぞれの粘性以上に設定されている。各コアロッドにこのような構成が適用されることにより、曲げ耐性の強いファイバが得られる。
(6)本実施形態の一態様として、共通クラッド管の内部には、線引き後のMCFにおける複数のコアを識別するためのマーカが設けられてもよい。このように予め共通クラッド管の内部にマーカを埋め込むことで、得られたMCFにおける複数のコアの識別が可能になる。
以上、この[本願発明の実施形態の説明]の欄に列挙された各態様は、残りの全ての態様のそれぞれに対して、または、これら残りの態様の全ての組み合わせに対して適用可能である。
[本願発明の実施形態の詳細]
本願発明に係るMCF製造方法(マルチコア光ファイバ製造方法)の具体例を、以下に添付の図面を参照しながら詳細に説明する。なお、本発明は、これら例示に限定されるものではなく、特許請求の範囲によって示され、また、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図されている。また、図面の説明において同一の要素には同一符号を付して重複する説明を省略する。
図1は、本実施形態に係るMCF製造方法に用いられる線引き装置の構成を示す図である。図1の線引き装置は、光ファイバ母材を保持するための保持部35を含む圧力調整装置30、線引き炉40を、少なくとも備えている。なお、図1の線引き装置において、共通クラッド管10に設けられた複数の孔に複数のコアロッドがそれぞれ挿入された状態で(挿入工程後)、該共通クラッド管10の下端が線引き炉40にセットされる。このとき、共通クラッド管10の上端は、圧力調整装置30の保持部35により保持されている。圧力調整装置30は、共通クラッド管10における複数の孔の内壁と、複数のコアロッド20の外周面との間の空間を減圧状態(理想的には真空)に維持している。
また、図1の線引き装置では、複数のコアロッド20がそれぞれ対応する孔に挿入された共通クラッド管10の下端が、線引き炉40内において加熱しながら矢印S1で示された方向に線引きされることにより、MCF100が製造される。この線引き工程では、線引き炉40内での加熱により、共通クラッド管10と複数のコアロッド20とが一体化されながら該共通クラッド管10の下端が線引きされるため、共通クラッド管10および複数のコアロッド20を一体化することによりMCF用の光ファイバ母材を得る母材製造工程と、該光ファイバ母材を線引きする線引き工程とが同時に実行される。なお、当然のことながら、線引き炉40には、複数のコアロッド20がそれぞれ対応する孔に挿入された共通クラッド管10に替え、母材製造工程を経て得られた光ファイバ母材がセットされてもよい。
共通クラッド管10(線引き後に得られるMCF100の物理クラッドに相当する部分)に設けられた複数の孔に挿入されるコアロッド20それぞれは、その長手方向に沿って延びたコア領域(線引き後に得られるMCF100の各コアとなる部分)と、該コア領域の外周面を取り囲むクラッド層(線引き後に得られるMCF100の光学クラッドに相当する部分)と、該コア領域の外周面を取り囲むようにクラッド層内に設けられた高粘性層と、を有する。高粘性層は、それぞれが複数の孔それぞれの内壁を含む共通クラッド管における孔周辺領域の粘性よりも高い粘性を有する。このような特殊構造を有するコアロッド20が適用されることにより、線引き工程により得られるMCF100の各部における残留応力分布には、以下のような特徴がある。すなわち、複数のコアロッド20それぞれにおける高粘性層に相当する領域の残留応力は、引っ張り応力である。複数のコアロッド20それぞれにおけるコア領域に相当する領域の残留応力は、圧縮応力である。また、共通クラッド管10における孔周辺領域それぞれに相当する領域の残留応力は、引っ張り応力であり、かつ、該引っ張り応力の絶対値が高粘性層に相当する領域における引っ張り応力の絶対値以下である。
以下、図2〜図8を参照しながら本実施形態に係るMCFの製造方法の種々の構成例および比較例について説明する。なお、図2〜図5および図7は、本実施形態に係るMCFの製造方法の第1〜第5構成例を示し、図6は、比較例を示す。また、図8は、図7に示された第5構成例の共通クラッド管の製造方法を説明するための図である。
(第1構成例)
図1は、本実施形態に係るMCFの製造方法の第1構成例を示す図であり、図2(a)は共通クラッド製造工程を経て得られた、複数の孔が設けられた共通クラッド管の断面図、図2(b)はコアロッドの断面図、および図2(c)はコアロッドの屈折率分布の例をそれぞれ示す。
第1構成例の共通クラッド管10Aの断面(図2(a))は、図1中のX−Y平面に相当する断面である。このような円形の断面形状を有する共通クラッド管10Aは、中心軸AX1を中心にそれぞれがZ方向に沿って延びた7つの孔15が形成されている。第1構成例のコアロッド20Aの断面(図2(b))も同様に、図1中のX−Y平面に相当する断面である。コアロッド20Aは、中心軸AX2を含みZ軸に沿って延びたコア領域21と、コア領域21の外周面上に設けられたクラッド層22を備える。このクラッド層22は、線引き後に得られるMCF100の光学クラッドに相当する領域であって、OH基濃度が低く設定されたガラス領域である。また、図2(c)に示された屈折率分布25A1は、図2(a)に示された線Lに沿ったコアロッド20Aの各部の屈折率分布である。
この第1構成例のコアロッド20Aは、OVD(Outside Vaper-phase Deposition)法により製造可能であり、クラッド層22は純シリカガラスからなる。まり、係るクラッド層22は、高粘性層として、孔15の内壁を含む、共通クラッド管10Aの周辺領域の粘性よりも高い粘性を有する。
上述のような構造を有する共通クラッド管10Aおよびコアロッド20Aを、図1の線引き装置において母材製造工程(加熱により、共通クラッド管10Aとコアロッド20Aを一体化する工程)および線引き工程を同時に行うことにより(ロッドイン線引き)、コアの変形が抑制されたMCF100が得られる。なお、図1の例では母材製造工程と線引き工程が同時に実行される線引き装置が開示されているが、母材製造工程と線引き工程は別別に実行されてもよい(以下に説明する種々の構成例も同様)。
なお、上記特許文献1に開示された従来のMCF製造方法も、図2(a)および図2(b)と同様の断面構造を有する共通クラッド管およびコアロッドを用いてMCF用の光ファイバ母材を製造している。ただし、従来のMCF製造方法に適用されるコアロッドでは、コア領域の外周面上に設けられたクラッド層の粘性が、共通クラッド管の粘性よりも低くなっている。すなわち、図2(c)に示された、コアロッドの屈折率分布25A2のように、当該コアロッドのクラッド層には、コア領域の比屈折率差を相対的に高く設定するため、屈折率低下剤などの当該クラッド層の粘性を低下させる不純物が添加されている。したがって、共通クラッド管とコアロッドを加熱一体化する際、コアロッド表面が共通クラッド管内面に対して相対的に軟らかいため、従来のMCF製造方法では、コアロッドに変形が避けられない。
これに対し、上述の第1構成例では、共通クラッド管10Aの粘性よりもクラッド層22の粘性が高ければよい。
(第2構成例)
図3は、本実施形態に係るMCFの製造方法の第2構成例を示す図であり、図3(a)は共通クラッド製造工程を経て得られた、複数の孔が設けられた共通クラッド管の断面図、図3(b)はコアロッドの断面図、および図3(c)はコアロッドの屈折率分布の例をそれぞれ示す。
第2構成例の共通クラッド管10Bの断面(図3(a))は、図1中のX−Y平面に相当する断面である。このような円形の断面形状を有する共通クラッド管10Bにも、中心軸AX1を中心にそれぞれがZ方向に沿って延びた7つの孔15が形成されている。第2構成例のコアロッド20Bの断面(図3(b))も同様に、図1中のX−Y平面に相当する断面である。コアロッド20Bは、中心軸AX2を含みZ軸に沿って延びたコア領域21と、コア領域21の外周面上に設けられた第1クラッド領域22aと、第1クラッド領域22aの外周面上に設けられた第2クラッド領域22bを備える。なお、第1および第2クラッド領域22a、22bによりコア領域21の外周面を覆うクラッド層(光学クラッド)が構成されている。また、図3(c)に示された屈折率分布25Bは、図3(a)に示された線Lに沿ったコアロッド20Bの各部の屈折率分布である。なお、第2構成例のコアロッド20Bおよび共通クラッド管10Bのガラス粘性に関して、共通クラッド管10Bの粘性は、第1クラッド領域22aの粘性よりも高く、第2クラッド領域22bの粘性よりも低く設定されている。したがって、この第2構成例では、クラッド層の最外領域に位置する第2クラッド領域22bが高粘性層となっている。
上述のような構造を有する共通クラッド管10Bおよびコアロッド20Bを、図1の線引き装置において母材製造工程および線引き工程を同時に行うことにより(ロッドイン線引き)、コアの変形が抑制されたMCF100が得られる。加熱により共通クラッド管10Bとコアロッド20Bを一体化する際、コアロッド20Bの表面は、共通クラッド管10Bの孔15の内壁に対して相対的に硬いか同等であるため、コアロッド20Bの変形が効果的に抑止され得る。なお、母材製造工程(加熱による一体化)の際のガラス粘性の大小は、線引き後に得られるMCF100内の残留応力を調べることで確認できる。すなわち、相対的に硬い部分(高粘性領域)では残留応力は引っ張り応力となり、軟らかい部分(低粘性領域)では残留応力が圧縮応力となる。
(第3構成例)
図4は、本実施形態に係るMCFの製造方法の第3構成例を示す図であり、図4(a)は共通クラッド製造工程を経て得られた、複数の孔が設けられた共通クラッド管の断面図、図4(b)はコアロッドの断面図、および図4(c)はコアロッドの屈折率分布の例をそれぞれ示す。なお、この第3構成例の共通クラッド管10Cの断面は矩形形状を有する。
第3構成例の共通クラッド管10Cの断面(図4(a))は、図1中のX−Y平面に相当する断面である。このような矩形の断面形状を有する共通クラッド管10Cには、中心軸AX1を中心にそれぞれがZ方向に沿って延びた3つの孔15が形成されている。第3構成例のコアロッド20Cの断面(図4(b))も同様に、図1中のX−Y平面に相当する断面である。コアロッド20Cは、中心軸AX2を含みZ軸に沿って延びたコア領域21と、コア領域21の外周面上に設けられた第1クラッド領域22aと、第1クラッド領域22aの外周面上に設けられた第2クラッド領域22bを備える。なお、第1および第2クラッド領域22a、22bによりコア領域21の外周面を覆うクラッド層(光学クラッド)が構成されている。また、図4(c)に示された屈折率分布25Cは、図4(a)に示された線Lに沿ったコアロッド20Cの各部の屈折率分布である。なお、第3構成例のコアロッド20Cおよび共通クラッド管10Cのガラス粘性に関して、共通クラッド管10Cの粘性は、第1クラッド領域22aの粘性よりも高く、第2クラッド領域22bの粘性よりも低く設定されている。したがって、この第3構成例でも、クラッド層の最外領域に位置する第2クラッド領域22bが高粘性層となっている。
なお、この第3構成例において、共通クラッド管10Cの断面は、図4(a)に示されたように非円形の断面形状を有する。これにより、線引き後に得られるMCF100の端面を特定の角度に調整することが容易になり、複数のMCFの整列や接続が容易になる。
上述のような構造を有する共通クラッド管10Cおよびコアロッド20Cを、図1の線引き装置において母材製造工程および線引き工程を同時に行うことにより(ロッドイン線引き)、コアの変形が抑制されたMCF100が得られる。また、加熱により共通クラッド管10Cとコアロッド20Cを一体化する際、コアロッド20Cの表面は、共通クラッド管10Cの孔15の内壁に対して相対的に硬いか同等であるため、コアロッド20Cの変形が効果的に抑止され得る。なお、母材製造工程(加熱による一体化)の際のガラス粘性の大小は、線引き後に得られるMCF100内の残留応力を調べることで確認できる。すなわち、相対的に硬い部分(高粘性領域)では残留応力は引っ張り応力となり、軟らかい部分(低粘性領域)では残留応力が圧縮応力となる。
上述のように、この第3構成例によれば、共通クラッド管10Cの断面として非円形を採用しているため、共通クラッド管10Cおよびコアロッド20Cを加熱により一体化する際、共通クラッド管10Cの断面形状が変形し易くなるが、コアロッド20Cの変形は効果的に抑制される。また、この第3構成例も図1の線引き装置により母材製造工程(加熱による一体化)と線引き工程が同時に実行されるため、共通クラッド管10Cの断面形状の変形を抑制することも可能になる。さらに、共通クラッド管10Cの断面形状が非円形の場合、共通クラッド管10Cを加熱した際、該共通クラッド管10Cの外周部とその内部とで温度分布が生じ易くなるが、当該共通クラッド管10Cの外周部の変形を抑制するため、同一温度における粘度分布は、中心軸AX1から当該共通クラッド管10Cの外周面に向かって粘性が高くなるよう設定されるのが好適である。
(第4構成例)
図5は、本実施形態に係るMCFの製造方法の第4構成例を示す図であり、図5(a)は共通クラッド製造工程を経て得られた、複数の孔が設けられた共通クラッド管の断面図、図5(b)はコアロッドの断面図、および図5(c)はコアロッドの屈折率分布の例をそれぞれ示す。
第4構成例の共通クラッド管10Dの断面(図5(a))は、図1中のX−Y平面に相当する断面である。このような円形の断面形状を有する共通クラッド管10Dには、中心軸AX1を中心にそれぞれがZ方向に沿って延びた7つの孔15が形成されている。第4構成例のコアロッド20Dの断面(図5(b))も同様に、図1中のX−Y平面に相当する断面である。コアロッド20Dは、中心軸AX2を含みZ軸に沿って延びたコア領域21と、コア領域21の外周面上に設けられた第1クラッド領域22aと、第1クラッド領域22aの外周面上に設けられた第2クラッド領域22bと、第2クラッド領域22bの外周面上に設けられた第3クラッド領域22cを備える。なお、第1〜第3クラッド領域22a〜22cによりコア領域21の外周面を覆うクラッド層(光学クラッド)が構成されている。また、図5(c)に示された屈折率分布25Dは、図5(a)に示された線Lに沿ったコアロッド20Dの各部の屈折率分布である。
図5(c)の屈折率分布25Dに示されたように、第1クラッド領域22aの屈折率は、コア領域21の屈折率よりも低く、かつ、第2クラッド領域22bの屈折率よりも高い。また、第2クラッド領域22bの屈折率は、第3クラッド領域22cおよび共通クラッド管10Dの各屈折率よりも低い。第3クラッド領域22cの粘性は、共通クラッド管10Dと同等以上である。第2クラッド領域22bは、共通クラッド管10Dよりも屈折率を低下させるための屈折率低下剤を多く含み、共通クラッド管10Dの粘性よりも低い粘性を有する。第3クラッド領域22cの粘性を共通クラッド管10Dの粘性よりも高くすることで、コアロッド20Dの変形を抑制することが可能になる。コア領域21、第1クラッド領域22a、第2クラッド領域22b、および第3クラッド領域22a〜22cからなる屈折率分布は、曲げ強化ファイバの構造としてよく知られており、本実施形態により、曲げ強化ファイバにおいても、コアロッド20Dの歪みを抑制することが期待できる。
なお、第3クラッド領域22cの粘性が、光学設計上、共通クラッド管10Dよりも低くなる場合は、第3クラッド領域22cの外周面上に、共通クラッド管10Dの粘性よりも高い粘性を有する第4クラッド領域が設けられてもよい。この場合、それぞれがコア領域21を取り囲む第1〜第4クラッド領域によりクラッド層(光学クラッド)が構成される。
上述のような構造を有する共通クラッド管10Dおよびコアロッド20Dを、図1の線引き装置において母材製造工程および線引き工程を同時に行うことにより、コアの変形が抑制されたMCF100が得られる。加熱により共通クラッド管10Dとコアロッド20Dを一体化する際、コアロッド20Dの表面は、共通クラッド管10Dの孔15の内壁に対して相対的に硬いか同等であるため、コアロッド20Dの変形が効果的に抑止され得る。なお、母材製造工程(加熱による一体化)の際のガラス粘性の大小は、線引き後に得られるMCF100内の残留応力を調べることで確認できる。すなわち、相対的に硬い部分(高粘性領域)では残留応力は引っ張り応力となり、軟らかい部分(低粘性領域)では残留応力が圧縮応力となる。
(比較例)
図6は、比較例を示す図であり、図6(a)は共通クラッド製造工程を経て得られた、複数の孔が設けられた共通クラッド管の断面図、図6(b)はコアロッドの断面図、および図6(c)はコアロッドの屈折率分布の例をそれぞれ示す。この比較例の共通クラッド管10Eの断面は矩形形状を有する。
比較例の共通クラッド管10Eの断面(図6(a))は、図1中のX−Y平面に相当する断面である。このような矩形の断面形状を有する共通クラッド管10Eには、中心軸AX1を中心にそれぞれがZ方向に沿って延びた3つの孔15が形成されるとともに、コア位置を認識するためのマーカ(マーカロッド)50が挿入される孔(図8参照)も形成されている。比較例のコアロッド20Eの断面(図6(b))も同様に、図1中のX−Y平面に相当する断面である。コアロッド20Eは、中心軸AX2を含みZ軸に沿って延びたコア領域21と、コア領域21の外周面上に設けられた第1クラッド領域22aと、第1クラッド領域22aの外周面上に設けられた第2クラッド領域22bを備える。なお、第1および第2クラッド領域22a、22bによりコア領域21の外周面を覆うクラッド層(光学クラッド)が構成されている。また、図6(c)に示された屈折率分布25Eは、図6(a)に示された線Lに沿ったコアロッド20Eの各部の屈折率分布である。なお、比較例のコアロッド20Eおよび共通クラッド管10Eのガラス粘性に関して、共通クラッド管10Eの粘性は、第1クラッド領域22aの粘性よりも高く、第2クラッド領域22bの粘性よりも低く設定されている。したがって、この比較例でも、クラッド層の最外領域に位置する第2クラッド領域22bが高粘性層となっている。
上述のような構造を有する共通クラッド管10E、コアロッド20E、およびマーカ50を、図1の線引き装置において母材製造工程および線引き工程を同時に行うことにより(ロッドイン線引き)、非円形断面を有するMCFが得られる。なお、共通クラッド管10Eにはコアロッド20Eが挿入される孔15の他、線引き後に得られるMCFの各コアを識別するためのマーカ50が挿入される孔も設けられている。マーカ50用の孔は、共通クラッド管10Eの断面形状が対称性を失うように配置される。ここで、コアロッド20Eおよびマーカ50を共通クラッド管10Eと同時に加熱一体化すると、該共通クラッド管10Eの断面に対してマーカ50が非対称な位置に配置されていることから、線引き後に得られるMCFのクラッド断面の形状に歪みが生じることが懸念される。
(第5構成例)
図7は、本実施形態に係るMCFの製造方法の第5構成例を示す図であり、図7(a)は共通クラッド管製造工程を経て得られた、複数の孔が設けられた共通クラッド管の断面図、図7(b)はコアロッドの断面図、および図7(c)はコアロッドの屈折率分布の例をそれぞれ示す。この第5構成例の共通クラッド管10Fの断面も矩形形状を有する。
この第5構成例も、上述の比較例と同様の断面構造を有する共通クラッド管10Fおよびコアロッド20Fが適用されるが、コアロッド20Fが挿入される孔15が共通クラッド管10Fに形成される前に、マーカ(マーカロッド)50と共通クラッド管10Fが加熱により一体化されている点で、比較例(図6(a)〜図6(c))とは異なる。
すなわち、第5構成例の共通クラッド管10Fの断面(図7(a))は、図1中のX−Y平面に相当する断面である。このような矩形の断面形状を有する共通クラッド管10Fには、中心軸AX1を中心にそれぞれがZ方向に沿って延びた3つの孔15が形成されるとともに、コア位置を認識するためのマーカ(マーカロッド)50が一体化されている。第5構成例のコアロッド20Fの断面(図7(b))も同様に、図1中のX−Y平面に相当する断面である。コアロッド20Fは、中心軸AX2を含みZ軸に沿って延びたコア領域21と、コア領域21の外周面上に設けられた第1クラッド領域22aと、第1クラッド領域22aの外周面上に設けられた第2クラッド領域22bを備える。なお、第1および第2クラッド領域22a、22bによりコア領域21の外周面を覆うクラッド層(光学クラッド)が構成されている。また、図7(c)に示された屈折率分布25Fは、図7(a)に示された線Lに沿ったコアロッド20Fの各部の屈折率分布である。なお、第5構成例のコアロッド20Fおよび共通クラッド管10Fのガラス粘性に関して、共通クラッド管10Fの粘性は、第1クラッド領域22aの粘性よりも高く、第2クラッド領域22bの粘性よりも低く設定されている。したがって、この第5構成例でも、クラッド層の最外領域に位置する第2クラッド領域22bが高粘性層となっている。
なお、この第5構成例の共通クラッド管10Fは、非円形断面を有するとともに、孔15の形成前に予めマーカ50が埋め込まれている。このような断面構造を有する共通クラッド管10Fは、図8に示された各工程を得られる。すなわち、ステップST10(マーカ用孔開け)において、円形の断面形状を有するガラスロッド150に、その長手方向に沿ってマーカ(マーカロッド)50が挿入される孔16が形成される。続いて、ステップST20(マーカ挿入)において、ガラスロッド150に形成された孔16内にマーカ50が挿入される。ステップST30(加熱による一体化)では、ガラスロッド150と孔16に挿入されたマーカ50を加熱することにより、これらガラスロッド150およびマーカ50が一体化される。そして、ステップST30により得られた円形の断面形状を有するガラスロッド150(マーカ50が埋め込まれている)は、ステップST40(非円形加工)において、その断面形状が矩形になるように加工され、非円形の断面形状を有するガラスロッド151が得られる。このステップST40を経て得られたガラスロッド151には、マーカ50が既に埋め込まれており、ステップST50(孔開け)では、このガラスロッド151に対してコアロッド挿入用の孔15を形成することにより、図7(a)に示された断面形状を有する共通クラッド管10Fが得られる。
なお、図8中に示されたステップST50は、上述の第1〜第5構成例における共通クラッド管10A〜10D、10Fの製造工程(共通クラッド管製造工程)に相当する。
上述のような構造を有する共通クラッド管10F(マーカ50は埋め込み済み)およびコアロッド20Fを、図1の線引き装置において母材製造工程および線引き工程を同時に行うことにより、コアの変形が抑制されたMCF100が得られる。加熱により共通クラッド管10Fとコアロッド20Fを一体化する際、コアロッド20Fの表面は、共通クラッド管10Fの孔15の内壁に対して相対的に硬いか同等であるため、コアロッド20Fの変形が効果的に抑止され得る。また、これにより、マーカ50と共通クラッド管10Fの一体化に起因する、線引き後に得られるMCFにおけるクラッドの断面形状の歪を修正することができる。
10、10A、10B、10C、10D、10F…共通クラッド管、20、20A、20B、20C、20D、20F…コアロッド、21…コア領域、22…クラッド層、22a…第1クラッド領域、22b…第2クラッド領域、22c…第3クラッド領域、50…マーカ(マーカロッド)、100…MCF(マルチコア光ファイバ)。

Claims (7)

  1. それぞれが所定軸に沿って延びた複数のコアと、前記複数のコアそれぞれを覆う共通クラッドと、を備えたマルチコア光ファイバを製造するためのマルチコア光ファイバ製造方法であって、
    前記所定軸に相当する中心軸に沿って延びた、前記共通クラッドの少なくとも一部となるべきガラスロッドに、前記中心軸に沿って複数の孔を形成することにより、共通クラッド管を製造する共通クラッド管製造工程と、
    前記共通クラッド管における前記複数の孔それぞれに、その長手方向に沿って延びたコア領域と、前記コア領域の外周面を取り囲むクラッド層と、前記コア領域の外周面を取り囲むとともに前記コア領域の外周面から離間した状態で前記クラッド層内に設けられ、それぞれが前記複数の孔それぞれの内壁を含む前記共通クラッド管における孔周辺領域の粘性よりも高い粘性を有する高粘性層と、をそれぞれが有する複数のコアロッドを挿入する挿入工程と、
    前記共通クラッド管と前記複数の孔それぞれに挿入された前記複数のコアロッドとを加熱により一体化することで、光ファイバ母材を製造する母材製造工程と、
    前記光ファイバ母材の一端を加熱しながら線引きすることにより、前記マルチコア光ファイバを得る線引き工程と、
    を備えたマルチコア光ファイバ製造方法。
  2. 前記線引き工程により得られるマルチコア光ファイバにおいて、
    前記複数のコアロッドそれぞれにおける前記高粘性層に相当する領域の残留応力が引っ張り応力であり、
    前記複数のコアロッドそれぞれにおける前記コア領域に相当する領域の残留応力が圧縮応力であり、
    前記共通クラッド管における前記孔周辺領域それぞれに相当する領域の残留応力が引っ張り応力であり、かつ、前記引っ張り応力の絶対値が前記高粘性層に相当する領域における引っ張り応力の絶対値以下であることを特徴とする請求項1に記載のマルチコア光ファイバ製造方法。
  3. 前記共通クラッド管および前記複数のコアロッドを一体化することにより前記光ファイバ母材を得る前記母材製造工程と、前記光ファイバ母材を線引きする線引き工程とを、同時に実行することを特徴とする請求項1または2に記載のマルチコア光ファイバ製造方法。
  4. 前記中心軸に直交する、前記共通クラッド管の断面形状が非円形であることを特徴とする請求項1〜3の何れか一項に記載のマルチコア光ファイバ製造方法。
  5. 前記中心軸に直交する、前記共通クラッド管の断面において、同一温度に対する前記共通クラッド管の粘度分布が、前記中心軸から前記断面の外周に向かって粘性が高くなる形状を有することを特徴とする、請求項4に記載のマルチコア光ファイバ製造方法。
  6. 前記複数のコアロッドそれぞれにおける前記クラッド層が、前記コア領域の外周面を取り囲む第1クラッド領域と、前記第1クラッド領域の外周面を取り囲み、前記第1クラッド領域の屈折率よりも低い屈折率を有する第2クラッド領域と、前記第2クラッド領域の外周面を取り囲み、前記第2クラッド領域の屈折率よりも低い屈折率を有する第3クラッド領域と、を有し、
    前記第3クラッド領域の粘性が、前記共通クラッド管における前記孔周辺領域それぞれの粘性以上であることを特徴とする、請求項1〜5の何れか一項に記載のマルチコア光ファイバ製造方法。
  7. 前記共通クラッド管の内部には、前記線引き工程により得られるマルチコア光ファイバにおける前記複数のコアを識別するためのマーカが設けられていることを特徴とする、請求項1〜6の何れか一項に記載のマルチコア光ファイバ製造方法。
JP2016062059A 2016-03-25 2016-03-25 マルチコア光ファイバ製造方法 Active JP6690348B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016062059A JP6690348B2 (ja) 2016-03-25 2016-03-25 マルチコア光ファイバ製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016062059A JP6690348B2 (ja) 2016-03-25 2016-03-25 マルチコア光ファイバ製造方法

Publications (2)

Publication Number Publication Date
JP2017171555A JP2017171555A (ja) 2017-09-28
JP6690348B2 true JP6690348B2 (ja) 2020-04-28

Family

ID=59973910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016062059A Active JP6690348B2 (ja) 2016-03-25 2016-03-25 マルチコア光ファイバ製造方法

Country Status (1)

Country Link
JP (1) JP6690348B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4206764A1 (en) 2021-12-28 2023-07-05 Sterlite Technologies Limited Multi-core fiber and manufacturing method thereof and multi-core fiber marker

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022059699A1 (ja) * 2020-09-17 2022-03-24
JP2022139016A (ja) * 2021-03-11 2022-09-26 古河電気工業株式会社 マルチコアファイバ、マルチコアファイバの製造方法、マルチコアファイバ母材、およびマルチコアファイバ母材の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201633A (ja) * 1985-03-04 1986-09-06 Sumitomo Electric Ind Ltd マルチコア光フアイバの製造方法
JP4079204B2 (ja) * 1998-11-09 2008-04-23 信越石英株式会社 光ファイバ母材用石英ガラス管及びその製造方法
JP2000203589A (ja) * 1998-11-09 2000-07-25 Hidenori Iida 情報媒体紙片取出装置
JP4345180B2 (ja) * 2000-03-10 2009-10-14 住友電気工業株式会社 光ファイバ母材製造方法、光ファイバ母材および光ファイバ製造方法
JP2003238181A (ja) * 2002-02-13 2003-08-27 Sumitomo Electric Ind Ltd 光ファイバ及び光ファイバの製造方法
JP5281030B2 (ja) * 2010-03-31 2013-09-04 株式会社フジクラ 多孔キャピラリ及びマルチコア光ファイバ
JP5819682B2 (ja) * 2011-09-05 2015-11-24 株式会社フジクラ 通信用マルチコアファイバ
JP5921518B2 (ja) * 2013-11-18 2016-05-24 株式会社フジクラ マルチコアファイバ及びそのマルチコアファイバの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4206764A1 (en) 2021-12-28 2023-07-05 Sterlite Technologies Limited Multi-core fiber and manufacturing method thereof and multi-core fiber marker

Also Published As

Publication number Publication date
JP2017171555A (ja) 2017-09-28

Similar Documents

Publication Publication Date Title
CN105073663B (zh) 预制件制造方法
JP6690348B2 (ja) マルチコア光ファイバ製造方法
US9733424B2 (en) Multicore fiber and method of manufacturing the same
JP5921518B2 (ja) マルチコアファイバ及びそのマルチコアファイバの製造方法
JP6581877B2 (ja) マルチコアファイバの製造方法
JP2011168464A (ja) マルチコア光ファイバ用母材製造方法
US20130074551A1 (en) Method of making multi-core optical fiber and method of making multi-core optical fiber connector
JP6291885B2 (ja) マルチコア光ファイバ製造方法
JP2010215458A (ja) 光ファイバの製造方法、並びに光ファイバ
US20190135679A1 (en) A method of fiber production
JP2010173917A (ja) ホーリーファイバ用母材及びその製造方法
US11820695B2 (en) Manufacturing method for preform of multi-core fiber and manufacturing method for multi-core fiber
JP2020019680A (ja) マルチコアファイバ用母材の製造方法およびマルチコアファイバの製造方法
EP2388628A2 (en) Optical fiber manufacturing method, optical fiber and optical fiber preform
CN104536087A (zh) 一种多材料混合微结构光纤及其制备方法
JP6966311B2 (ja) マルチコア光ファイバ母材の製造方法、及び、マルチコア光ファイバの製造方法
JP6291892B2 (ja) マルチコア光ファイバ母材製造方法
JP3513101B2 (ja) フォトニッククリスタルファイバの製造方法
JP4616892B2 (ja) 光ファイバ製造方法
WO2022059699A1 (ja) マルチコアファイバ
JP2010169965A (ja) フォトニッククリスタルファイバおよびその製造方法
WO2023090174A1 (ja) マルチコアファイバおよびその製造方法
WO2023135944A1 (ja) マルチコア光ファイバの製造方法及びマルチコア光ファイバ
JP4343066B2 (ja) 光ファイバの製造方法
KR20060088248A (ko) 공기홀을 갖는 광섬유용 모재의 제조 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200323

R150 Certificate of patent or registration of utility model

Ref document number: 6690348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250