JP6686838B2 - 高清浄鋼の製造方法 - Google Patents

高清浄鋼の製造方法 Download PDF

Info

Publication number
JP6686838B2
JP6686838B2 JP2016203441A JP2016203441A JP6686838B2 JP 6686838 B2 JP6686838 B2 JP 6686838B2 JP 2016203441 A JP2016203441 A JP 2016203441A JP 2016203441 A JP2016203441 A JP 2016203441A JP 6686838 B2 JP6686838 B2 JP 6686838B2
Authority
JP
Japan
Prior art keywords
molten steel
slag
inclusions
ladle
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016203441A
Other languages
English (en)
Other versions
JP2018066031A (ja
Inventor
健一郎 宮本
健一郎 宮本
兼安 孝幸
孝幸 兼安
中村 亮太
亮太 中村
秀司 鈴木
秀司 鈴木
卓巳 五所
卓巳 五所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2016203441A priority Critical patent/JP6686838B2/ja
Publication of JP2018066031A publication Critical patent/JP2018066031A/ja
Application granted granted Critical
Publication of JP6686838B2 publication Critical patent/JP6686838B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、高清浄鋼の製造方法に係り、更に詳細には、Al脱酸による高炭素系(例えば、炭素含有量が0.1質量%以上)の高清浄鋼の製造方法に関する。
転炉等で大気圧下で吹酸脱炭して製造した一次精錬終了後の溶鋼は、鋼中の溶存酸素濃度が高いため、転炉出鋼時あるいは二次精錬後の取鍋内で、脱酸処理が施された後に鋳造され、製品としての特性を得ている。
脱酸には、酸素と結合して酸化物を生成する元素の添加が一般に行われており、Al(アルミニウム)の他、Si(珪素)、C(炭素)、Ti(チタン)、Ca(カルシウム)、Zr(ジルコニウム)、REM(希土類金属)等を、脱酸材として用いることが知られている。
このうち、脱酸材として用いるAlは、安価で、かつ、強い脱酸効果があり、これを用いて製造した鋼材は、汎用性が高い。
しかし、Alによる脱酸反応後に生成するアルミナ(Al)は、凝固後の鋼材(連続鋳造して得た鋳片及び鋼片)中に介在物として残存し、清浄度が低下して、鋼材品質を損なう原因となる場合がある。例えば、肌焼鋼等の高炭素鋼の冷間鍛造時の割れ感受性に対しては、鋼材の清浄度が大きく影響することが知られている。このため、鋼材品質の向上を図る上で、アルミナ介在物の悪影響を排除して、鋼材の清浄度を高める必要がある。
更に、溶鋼中にアルミナが多量に存在すると、鋳造時において、浸漬ノズル内面へのアルミナの付着や凝集が促進され、鋳型(モールド)内での偏流発生やノズル閉塞が生じることに起因して、湯面の変動量が大きくなり、モールドパウダーの混入(パウダー系介在物)による品質劣化の原因となる。
なお、脱酸材としてAl以外の金属を用いた場合でも、生成した金属酸化物(介在物)は製品品質を損なう可能性があり、この点ではAlと同様である。
そこで、以下の方法が提案されている。
例えば、特許文献1には、スラグ改質後にガス吹込み用ランスにより、不活性ガスと共にCaO(生石灰)とAlからなる粒状フラックスを吹付け、溶鋼中に浮遊しているスラグ系介在物と合体させ、更に取鍋底部よりArガス(アルゴンガス)を吹込み、スラグとの接触を避けながら不活性ガス下で脱酸を行うことにより、溶鋼中の介在物の浮上を促進して、溶鋼中の介在物を低減させる方法が開示されている。
詳細には、転炉内にCaOを投入し、スラグを固化させて取鍋へ出鋼し、取鍋上スラグに均一にAlを散布して、スラグ中の酸化鉄濃度を3質量%以下に改質する。更に、脱酸材として金属Alを添加し、生成する介在物の改質剤としてCaOを活用し、溶鋼の撹拌により介在物を浮上させる。
また、特許文献2には、生成したアルミナ介在物のスラグへの吸着除去を促進するために、出鋼後から鋳造開始までの間の取鍋スラグの酸素ポテンシャルを低く抑えて、スラグによる溶鋼の再酸化を防止すると共に、スラグの成分組成をAl吸収能に優れたものに調整する技術が開示されている。
詳細には、精錬炉からの出鋼時に、出鋼流に向けて所定量のCaOを投入し、次いで出鋼後の取鍋スラグにスラグ改質剤として、金属Alを単体又は金属Alを含むフラックスの形態で添加する。更に、RH脱ガス設備で脱ガス処理を実施し、脱ガス処理中及び/又は脱ガス処理後に、CaO又はAlを取鍋内スラグに添加し、スラグの(wt%CaO)/(wt%Al)の値を0.4〜0.7の範囲内、SiO濃度を2〜15wt%の範囲内に調整し、かつ、T.Fe濃度を3.0wt%以下に維持することにより、スラグ中の酸素による再酸化を防止する。
そして、特許文献3には、真空脱ガス装置を使用した溶鋼の脱炭処理、及び、これに続く脱酸処理において、脱炭に必要な溶存酸素を適正に保持すると同時に、Alの形成を抑制する方法が開示されている。
詳細には、出鋼時にスラグ改質剤を添加してスラグ中の低級酸化物の濃度を調整し、溶鋼環流式の脱ガス装置を用いて脱炭処理した後、Al脱酸処理の前及び/又は後で、スラグ改質剤を添加する。
特開平7−300612号公報 特開平11−21614号公報 特開平10−298629号公報
しかしながら、本発明者らの知見では、前記従来の技術ではいずれも、粒径が大きなアルミナ介在物(例えば、70μm以上)を減少させる効果は望めるものの、粒径が小さなアルミナ介在物(20μm以下)を減少させる効果が少ないことを明らかにした。
本発明はかかる事情に鑑みてなされたもので、従来よりもアルミナ介在物の個数を低減でき、特に粒径が20μm以下クラスのアルミナ介在物の個数を低減可能な高清浄鋼の製造方法を提供することを目的とする。
前記目的に沿う本発明に係る高清浄鋼の製造方法は、大気圧下で吹酸脱炭する一次精錬を行った溶鋼を、少なくとも出鋼工程、取鍋精錬工程、及び、真空脱ガス工程で順次処理して溶製した後、連続鋳造工程でタンディッシュに注湯して連続鋳造する高清浄鋼の製造方法において、
前記出鋼工程での溶鋼の出鋼から前記取鍋精錬工程で溶鋼の撹拌処理を行う前までの間に、溶鋼及びスラグのいずれか一方又は双方に生石灰を投入すると共に、金属アルミニウム及び金属アルミニウムを含むフラックスのいずれか一方又は双方を添加して、スラグを改質処理し、スラグのT.Fe濃度とMnO濃度の合計を5質量%以下、かつ、溶鋼の溶存酸素濃度を10ppm以上50ppm以下の範囲とした後、
前記取鍋精錬工程で溶鋼の前記撹拌処理を行い、前記真空脱ガス工程で溶鋼を環流させて脱ガス処理し、該脱ガス処理から前記連続鋳造工程で連続鋳造を開始するまでに10分以上静置して、
前記連続鋳造工程では、溶鋼を受け入れる受湯部と、該溶鋼を連続鋳造する鋳型に注入する排湯部とに仕切る堰が内部に設けられ、該堰の高さを溶鋼深さの0.3倍以上0.8倍以下とした前記タンディッシュに、前記脱ガス処理後に静置した溶鋼を注湯する。
ここで、上記した、出鋼工程での溶鋼の出鋼から、取鍋精錬工程で溶鋼の撹拌処理を行う前までの間に、生石灰等(生石灰と、金属アルミニウム及び/又はこれを含むフラックス)を添加するとは、例えば、溶鋼の出鋼時、あるいは、溶鋼の出鋼後の取鍋であって取鍋精錬工程で溶鋼を撹拌処理する前の取鍋(以下、出鋼後かつ取鍋精錬工程前の取鍋ともいう)に、生石灰等を添加することを意味する。なお、溶鋼の出鋼時とは、溶鋼の出鋼中に生石灰等を添加することを意味し、出鋼後かつ取鍋精錬工程前の取鍋とは、予め生石灰等を入れた取鍋に溶鋼を出鋼する場合や、取鍋内への溶鋼の出鋼後に速やかに(出鋼直後)取鍋内に生石灰等を添加する場合を意味する。この取鍋精錬工程は、少なくとも撹拌処理を行う工程であり、例えば、LF(Ladle Furnace)のように、取鍋に貯蔵された溶鋼に対し、撹拌処理のみならず昇温処理等を行ってもよい。
また、生石灰等の添加は、溶鋼及びスラグの一方又は双方に対して行われる。
そして、生石灰と金属アルミニウムやこれを含むフラックス(以下、金属Al等ともいう)の添加は、同時に行ってもよく、また、別々に行ってもよい。この生石灰と金属Al等の添加方法は、操業状況によって種々変更できるが、例えば、出鋼時と、出鋼後かつ取鍋精錬工程前の取鍋のいずれか一方のみで、生石灰と金属Al等の双方を添加してもよく、また、出鋼時に、生石灰と金属Al等の双方を添加し、更に出鋼後かつ取鍋精錬工程前の取鍋に、生石灰と金属Al等のいずれか一方のみを添加することもできる。
本発明に係る高清浄鋼の製造方法は、一次精錬終了直後の、スラグのT.Fe濃度及びMnO濃度と溶鋼の溶存酸素濃度が高い状態において、出鋼工程での溶鋼の出鋼から、取鍋精錬工程で溶鋼の撹拌処理を行う前までの間に、生石灰を投入すると共に、金属Al等を添加して、スラグを改質処理するので、この処理の際に生成したアルミナ系介在物を低融点のカルシウムアルミネートとして、例えば、LF等による取鍋精錬工程(撹拌処理)で浮上除去できる。更に、スラグの改質処理により、スラグのT.Fe濃度とMnO濃度の合計を5質量%以下、かつ、溶鋼の溶存酸素濃度を10〜50ppmに低下させた状態で、取鍋精錬工程(撹拌処理)を行い、その後、真空脱ガス工程(溶鋼の環流による撹拌処理)を行うので、例えば、粒径70μmを超える粗大なアルミナ介在物の浮上除去を促進できる。
このとき、溶鋼には小さなアルミナ介在物(例えば、50μm以下の大きさ)が生成するが、その生成量が抑制されているため、この溶鋼を、取鍋精錬工程で撹拌処理し、更に、真空脱ガス工程で環流させることで、生成した小さなアルミナ介在物(例えば、20μm以下の大きさ)を凝集させ合体させる(凝集合体)効果を促進できるものと考えられる(凝集合体後は、例えば、大きさが30〜50μm)。また、真空脱ガス工程での脱ガス処理後の溶鋼を所定時間静置することで、粒径が大きなアルミナ介在物(例えば、70μm超の大きさ)の浮上除去を促進でき、粒径が小さなアルミナ介在物(例えば、大きさが20μm以下)の凝集合体の促進に伴う個数減少を促進できるものと考えられる(凝集合体後は、例えば、大きさが30〜50μm)。
そして、この溶鋼を、受湯部と排湯部とに仕切る所定高さの堰が設けられたタンディッシュに注湯して連続鋳造するので、このタンディッシュにおいて、凝集合体させたアルミナ介在物(例えば、大きさが30〜50μm)の浮上除去効果が得られる。
従って、従来よりもアルミナ介在物の個数を低減でき、特に粒径が20μm以下クラスのアルミナ介在物の個数を低減できる。
本発明の一実施の形態に係る高清浄鋼の製造方法を適用するタンディッシュの説明図である。 同タンディッシュの堰の正面図である。 取鍋での静置後における溶鋼中のアルミナ介在物の粒径頻度分布を示すグラフである。 連続鋳造して得られた成品中のアルミナ介在物の粒径個数分布を示すグラフである。
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
まず、本発明の高清浄鋼の製造方法に想到した経緯について説明する。
(1)アルミナ介在物の生成と取鍋精錬処理に関する知見
アルミナ介在物(以下、単に介在物ともいう)は、スラグ中のFeO、MnOや、溶鋼の溶存酸素などと、脱酸材であるAlとが反応することで生成する。
このため、転炉からの出鋼時及び/又は出鋼後のスラグ及び/又は溶鋼に、金属アルミニウム等を含むフラックス(スラグ改質剤)を添加するスラグ改質処理(一次脱酸処理又は一次脱酸ともいう)を行い、その後に行う取鍋精錬工程の撹拌処理(即ち、取鍋精錬処理)前にスラグのFeOやMnOの濃度を低下させる、即ちスラグの酸化度を下げることは、Alの生成量を抑制するために有効である。
従って、スラグ改質後の溶鋼の再酸化を回避するため、スラグ酸化度としては、「(質量%T.Fe)+(質量%MnO)」を5質量%以下とする。なお、(質量%T.Fe)と(質量%MnO)はそれぞれ、スラグ中のFe濃度とMnO濃度であり、この(質量%T.Fe)は、スラグ中の全ての酸化鉄(例えば、FeOやFe)をFeに換算したFe濃度を示している。
しかしながら、上記したスラグ改質を実施しても、溶鋼中に溶存酸素(フリー酸素)が残存するため、Alの生成を完全に抑制することは不可能である。なお、生成当初のアルミナ介在物は、その粒径が小さく(20μm以下)、時間の経過によらずそのまま溶鋼内に残留する場合と、生成した介在物が時間経過と共に緩やかに凝集する場合とがある。
転炉吹錬等の一次精錬直後では、溶鋼の溶存酸素濃度(以下、溶鋼中溶存酸素濃度ともいう)は吹止炭素濃度にもよるが、一般に200〜800ppmと高く、この状態で金属アルミニウムの一括添加による脱酸処理を行うと、極めて多量の微細なアルミナが生成することとなる。この生成した微細なアルミナの一部は、前記したように、時間経過と共に凝集合体して粗大化し、浮上除去されるものもあるが、鋳造までの限られた時間内に、全ての介在物、特に50μm以下クラスの介在物を、完全に浮上除去させることは事実上不可能である。
以上のことから、一次精錬終了直後のスラグ酸化度と溶鋼中溶存酸素濃度が高い状態(スラグ酸化度:10質量%以上、溶鋼中溶存酸素濃度:200〜800ppm)において、出鋼時、あるいは、出鋼後かつ取鍋精錬工程前の取鍋に、溶鋼及び/又はスラグに生石灰を投入すると共に、金属Al及び/又は金属Alを含むフラックスを添加するスラグ改質処理を行い、当該処理時に生成したアルミナ系介在物を低融点のカルシウムアルミネート(CaO−Al)として浮上除去させる。更に、スラグ改質実施後の溶鋼中溶存酸素濃度を低下させた状態(10〜50ppm)で、取鍋精錬工程の撹拌処理や、真空脱ガス工程での溶鋼の環流による撹拌処理(即ち、真空脱ガス処理(脱ガス処理))を行うことで、溶鋼中に新たな微細アルミナが生成することを抑制できる。
上記したAl系介在物の浮上除去は、最終的にはスラグに吸着(吸収)されることとなるが、スラグ改質剤として金属Alや金属Alを含むフラックスを添加すると、アルミニウムによるスラグ中低級酸化物(FeO、MnO)の還元反応が起こり、スラグ中のAl成分の活量が高くなる。また、スラグ中のAl活量が高いと、スラグへのAlの吸収能が下がるため、浮上したAl粒子がスラグ内に吸着されず、溶鋼中に再懸濁する可能性が高くなる。
これを防止するために、上記した改質処理時にスラグ改質剤としての生石灰を投入し、スラグ中のAl成分の活量を下げることで、スラグへのAlの吸収能を確保することができるため、生石灰の添加は有効である。なお、介在物が微小になるほど(例えば、50μm以下)、溶鋼への再度の混入が発生する可能性が高くなることから、生石灰の添加は、本発明のように微小な介在物の低減を課題とする発明にとって有効である。
本発明者らは、全酸素濃度が低位に抑制され(T.[O]≦10ppm)、かつ、粒径20μm以下の微細介在物の含有が少ない、極めて清浄度の高い鋼材を製造するには、取鍋での撹拌処理を行った後に真空脱ガス処理を行い、更に10分以上の静置を組合せたことによる、介在物の凝集合体の促進と、凝集粗大化した介在物粒子のタンディッシュでの浮上促進が有効であることを、数々の実験等から知見した。
(2)溶鋼の取鍋精錬処理に関する知見
LF等に代表される取鍋を用いた溶鋼の精錬処理(溶鋼の撹拌処理)は、一般に取鍋底部よりArガスを溶鋼中に吹込み、ガス気泡の浮上効果を用いることで行われ、取鍋内の溶鋼の成分や温度の均一化、また、介在物の浮上除去に用いられている。
取鍋で溶鋼の撹拌処理を行うことにより、溶鋼内には上昇流と下降流が生じるため、比較的大きな粒子(50μm超)の一部は上昇流に伴って浮上除去され得るが、同時にスラグの巻き込み等が起こるため、スラグ系介在物粒子(概ね30〜50μm)の個数が増加し、取鍋精錬処理による実質的なT.[O]の低下は僅かである。
しかしながら、撹拌流動による微細な(≦20μm)Al粒子の衝突頻度が増加するため、介在物同士の凝集合体が促進され、取鍋精錬処理後の介在物粒径分布は増大傾向となる。具体的には、粒径20μm以下の微小介在物の個数が減少し、粒径30〜50μmの介在物の個数が増加することとなる。
従って、取鍋精錬処理後のT.[O]値の低下代は、さほど顕著ではないものの、溶鋼内の介在物粒子径分布(個数分布)のピークは、小径側から粗大径側に変動することとなる。
(3)真空脱ガス処理による介在物除去に関する知見
代表的な真空脱ガス処理装置としては、取鍋内の溶鋼を2本の浸漬管を通じて真空槽に吸い上げ、減圧雰囲気下で脱ガス処理を行い、上昇側と下降側の浸漬管を通じて取鍋と真空槽との間を循環させる、RH法が一般的に知られている。また、RH法以外の真空脱ガス法としては、取鍋底部からの不活性ガスの吹込みと、一本足大径浸漬管との組合せによる、溶鋼の減圧処理方法(REDA)が実用化されている。
RH法とREDAによる清浄化(介在物除去)は、真空槽内に吸い上げられた介在物の凝集合体と、凝集物の槽外排出(取鍋内浮上)とのバランスにより決まるものと考えられる。この真空脱ガス処理による介在物の凝集合体に関しては、介在物粒子が耐火物壁へ衝突することにより、壁面で介在物の凝集が促進されることや、溶鋼流動における乱流成分中での介在物粒子同士の衝突による凝集合体促進など、その現象について諸説唱えられている。
上記した凝集合体や浮上除去の詳細メカニズムに関しては、未だ明らかにされていない部分も多いが、溶鋼の環流量を増加することで介在物の除去が促進されることは、一般的によく知られている。また、真空脱ガス処理においては、スラグ巻き込みの影響を受けないため、取鍋精錬処理後に真空脱ガス処理を行うことで、T.[O]=20ppm程度の清浄鋼を溶製することは可能である。
しかしながら、真空脱ガス処理では、凝集合体が進んで介在物粒径がある程度まで粗大化(30〜50μm)すると、取鍋内の上昇流に巻き込まれて再度真空槽内に流入するという現象が生じるため、取鍋内と真空槽内を循環し続ける介在物粒子の存在が不可避となる。この取鍋内と真空槽内を循環し続ける30〜50μm径に粗大化した介在物粒子は、凝集し合体した直後では不安定であるため(崩壊して微粒化し易い傾向にあるため)、真空脱ガス処理を行った直後に連続鋳造を行った場合、タンディッシュ内で生じる溶鋼流動に起因して再分解し、浮上除去が困難になるなどの問題があった。
従って、T.[O]≦10ppmといった極めて高い清浄度が要求される鋼材を製造するためには、真空脱ガス処理以降において、凝集合体した介在物を除去する操作行うことが重要である。
(4)溶鋼の静置(静置処理)に関する知見
上記した真空脱ガス処理によって得られる凝集合体による浮上効果を更に高めるためには、真空脱ガス処理後の静置が有効である。
本発明者らは、前記した取鍋精錬処理(Arガス吹込みによる撹拌処理)に引き続いて真空脱ガス処理を施すことで、取鍋精錬時とは異なる介在物の衝突機会(頻度)の増加により、取鍋精錬処理のみでは合体機会が得られなかった微細粒子(≦20μm)の凝集合体が更に促進されることを知見した。
この真空脱ガス処理での凝集合体による粗大化により、介在物自体の浮力は大きくなるが、上記したように、凝集合体直後の介在物粒子自体は不安定な傾向にある。
このため、真空脱ガス処理後から連続鋳造開始までの間に10分以上、好ましくは20分以上の静置時間をとることで、静置時の介在物浮上(清浄化促進)は望めないものの、粗大化した介在物粒子の安定化と更なる凝集合体の促進により、その後のタンディッシュの段階において、介在物の浮上除去を著しく促進できる。
この静置処理により、粒径70μm以上の介在物は浮上除去を見込めるが、粒径30〜50μm程度の介在物では、顕著な浮上除去効果は認められにくいものの、凝集合体の促進効果は認められ、20μm以下の介在物の個数減少には効果がある。
ここで、静置とは、例えば、溶鋼へガス吹込みや合金材投入を行うことなく、取鍋内の溶鋼に何らかの処理を施さない状態を指す。なお、取鍋へ保温材を投入することは、溶鋼の処理ではないため、静置中に保温材を投入しても差し支えない。
(5)タンディッシュに関する知見
連続鋳造においては、連続鋳造速度に対応する量で溶鋼がタンディッシュに注湯されるため(例えば、8トン/分以下程度の量)、タンディッシュ内での溶鋼の流動速度が、取鍋のガス撹拌における溶鋼の撹拌流速よりも小さく、介在物の凝集合体の効果が望みにくい。
しかし、タンディッシュの内部に堰(下堰)を立設し、タンディッシュ内の溶鋼に上昇流を発生させると、タンディッシュ内の湯面に存在するスラグの撹拌効果を抑制した状態で、30〜50μm程度の粒子径を有する溶鋼中の介在物を浮上させ、これをスラグに捕捉させる効果が期待できる。
なお、タンディッシュ内の溶鋼流による剪断力で、30〜50μm程度の粒子径を有する介在物は崩壊し浮上除去が困難となる可能性があるが、上記した静置処理によって30〜50μm程度の介在物は安定化されているため、タンディッシュ内での浮上除去が促進される。
従って、タンディッシュの内部に、受湯部と排湯部を分割(独立して配置)する堰を立設する必要がある。
以上の知見に基づき、本発明者らは、スラグ改質等の各処理を施した溶鋼を静置する精錬の効果を、溶鋼注湯後のタンディッシュ内で発生する溶鋼流動の効果で補完する、高清浄鋼の製造方法に想到した。具体的には、精錬の効果、即ち、粒径20μm以下の微小介在物の個数減少に伴う、粒径30〜50μmクラスの介在物の個数増加と、粒径70μm以上の介在物の浮上除去の促進を、1)タンディッシュ内の溶鋼流動の効果、即ち、粒径が30〜50μm程度の介在物の浮上除去の促進で補完すること、並びに、2)真空脱ガス処理までの段階で20μm以下の微細なAlが凝集合体して成長した30〜50μm程度の介在物のタンディッシュ内での崩壊を静置処理による抑制で補完すること、により、鋼材中の全酸素濃度が低位に抑制され(T.[O]≦10ppm)、かつ、従来よりもアルミナ介在物の個数を低減でき、特に粒径が20μm以下クラスのアルミナ介在物の個数が低減可能となる。
以下、図1、図2を参照しながら、本発明の一実施の形態に係る高清浄鋼の製造方法について、詳しく説明する。
本実施の形態に係る高清浄鋼の製造方法は、大気圧下で吹酸脱炭する一次精錬を行った(転炉で処理した)溶鋼を、少なくとも出鋼工程、取鍋精錬工程、及び、真空脱ガス工程で順次処理して溶製した後、静置処理し、連続鋳造工程でタンディッシュ10に注湯して連続鋳造する方法である。
まず、一次精錬を行った溶鋼を、出鋼工程で、取鍋へ供給する。
転炉吹錬等の一次精錬終了直後の転炉内のスラグ酸化度と溶鋼の溶存酸素濃度は、高い状態(スラグ酸化度:10質量%以上、溶鋼中溶存酸素濃度:200〜800ppm)である。
そこで、出鋼工程での出鋼から取鍋精錬工程での撹拌処理を行う前までの間に、スラグ改質処理を行う。
具体的には、転炉内の溶鋼の出鋼時、あるいは、出鋼後であって取鍋精錬工程前の取鍋(溶鋼の出鋼の際)に、溶鋼及びスラグのいずれか一方又は双方に生石灰を投入すると共に、金属アルミニウム(単体)及び金属アルミニウムを含むフラックスのいずれか一方又は双方を添加する。
これにより、スラグのT.Fe濃度とMnO濃度の合計を5質量%以下、かつ、溶鋼中の溶存酸素濃度を10ppm以上50ppm以下の範囲とする。
なお、スラグのT.Fe濃度とMnO濃度の合計は、前記した知見から5質量%以下(好ましくは3質量%以下、更に好ましくは2質量%以下)であればよく、その下限値については特に規定していないが、現実的には、例えば、0.5質量%程度である。
以上のように、溶鋼中溶存酸素濃度とスラグ酸化度を低下させた状態の溶鋼に、取鍋精錬工程で撹拌処理を行うことにより、20μm以下クラスの介在物を、例えば、30〜50μmクラスの介在物に凝集合体させる。
更に、取鍋精錬工程後に引き続いて、真空脱ガス工程でRHやREDAなどの脱ガス処理を行うことにより、溶鋼の環流(循環)に伴って、微細介在物の凝集合体が促進される。
この凝集粗大化した介在物は不安定であり、タンディッシュ10で溶鋼流の剪断力により崩壊する可能性もある。このため、真空脱ガス処理後の静置処理により安定化させ、崩壊を抑制することにより、その後のタンディッシュ10での浮上を助長させる効果が大きくなる。
そこで、真空脱ガス処理の終了から連続鋳造工程で連続鋳造を開始するまでに、溶鋼を取鍋に入れた状態で、10分以上(好ましくは20分以上)静置する。
なお、溶鋼の静置時間は、前記した知見から10分以上(好ましくは20分以上)であればよく、その上限値については特に規定していないが、静置時間が長くなるに伴い、溶鋼の温度低下が大きくなり、新たなアルミナ介在物粒子が生成し易くなることから、現実的には、例えば、60分程度である。
これにより、上記した真空脱ガス処理による凝集合体による浮上効果を更に高めることができる。
続いて、真空脱ガス処理後に静置した溶鋼を、溶鋼鍋(上記した取鍋)11から、ロングノズル12を介してタンディッシュ10に注湯する(図1参照)。
タンディッシュ10には、その内部を、溶鋼鍋11からロングノズル12を介して溶鋼を受け入れる受湯部13と、溶鋼を連続鋳造する鋳型14に注入する排湯部15とに仕切る堰(下堰)16が設けられている。なお、排湯部15の底部には浸漬ノズル17が設けられ、排湯部15内の溶鋼を浸漬ノズル17を介して鋳型14に注入している。
堰16は、タンディッシュ10の底面18から浴面(湯面)に向かうように立設されたものであり、その高さを、溶鋼深さ(浴深)H(m)の0.3倍(0.3×H)以上0.8倍(0.8×H)以下にしたものである。なお、溶鋼深さH(m)とは、堰16を配置した部分のタンディッシュ10の底面18から浴面までの距離を意味する。
前記したように、タンディッシュ内で溶鋼の上昇流を有効に作用させるには、堰の高さを、溶鋼深さの0.3倍以上にする必要がある。一方、堰の高さが溶鋼深さの0.8倍を超える場合、上昇流がタンディッシュ内の湯面スラグを撹拌する可能性があり好ましくない。
従って、堰16の高さを、溶鋼深さH(m)の0.3倍(好ましくは、0.4倍)以上0.8倍(好ましくは、0.7倍)以下にした。
なお、堰は、タンディッシュ内の溶鋼の流れ方向に、間隔を有して複数設置することもできる。この場合、溶鋼の流れ方向に隣り合う堰の間に、溶鋼に下降流を形成するための上堰を設置して、溶鋼の流れを側面視して上下方向にジグザグ状にし、タンディッシュ内での溶鋼の滞留時間を長くすることもできる。
また、堰16の底部近傍には、使用後のタンディッシュ10内の残湯の排出を容易にするため、一般に貫通孔19を設けている(図2参照)。この貫通孔19の形状は、正面視して四角形であり、浴面の幅をWとすると、高さ方向の内幅W1が1/5×W、幅方向の内幅W2が1/5×Wである。なお、貫通孔の構成は、残湯の排出を容易にできる構成であれば、特に限定されるものではなく、例えば、高さ方向の内幅W1を1/5×W以下の範囲で、また、幅方向の内幅W2を1/5×W以下の範囲で、それぞれ調整できる。
この貫通孔19は、堰16に2個(1個又は複数個でもよい)形成されているが、この程度の貫通孔19であれば、前記した溶鋼に上昇流を発生させる作用効果は得られる。また、上記した貫通孔と開口面積が同等か、それ以下の貫通孔であれば、タンディッシュ内の溶鋼に上昇流を発生させることが可能であり、本発明の作用効果は得られるものと考えられる。
これにより、タンディッシュ10内の溶鋼に上昇流を発生させ、凝集合体した30〜50μm程度の粒子径を有するアルミナ介在物を浮上させて、これを湯面上のスラグに捕捉させる効果が得られる。
従って、得られた溶鋼を連続鋳造することで、従来よりもアルミナ介在物の個数を低減でき、特に粒径が20μm以下クラスのアルミナ介在物の個数を低減した鋼材(成品)を製造できる。特に、この鋼材は、介在物の含有量規制に対して最も要求の厳しい高炭素系の高清浄鋼を用いた製品においても、介在物に起因する製品不合(製品不良)を著しく低減できることが可能となる。なお、高炭素系の高清浄鋼とは、例えば、炭素含有量が0.1質量%以上の鋼材であり、上限については、高炭素系の高清浄鋼であれば特に限定されるものではないが、常用される鋼材であれば1.5質量%程度である。
次に、本発明の作用効果を確認するために行った実施例について説明する。
ここでは、以下の方法を基本として各条件を変更し、成品の清浄性の評価を行った。
350トンの転炉にて一次精錬を行い、出鋼後かつ取鍋精錬処理前の取鍋内の溶鋼及びスラグの双方に、生石灰を投入すると共に、金属アルミニウムを含むフラックスを添加することでスラグ改質処理を行い、溶鋼中の溶存酸素濃度とスラグ酸化度(T.Fe濃度とMnO濃度の合計値)を調整し、LFによる取鍋精錬処理を行った。なお、転炉から出鋼される溶鋼は、炭素濃度[%C]:0.2質量%、溶鋼中溶存酸素濃度[%O]:250ppm、であった。
更にその後、REDAによる真空脱ガス処理を実施した後、鋳造開始まで所定の時間静置し、この取鍋内の溶鋼を、浴深H(m)に対して0.2×H〜0.9×Hの高さの下堰を有するタンディッシュに注湯して、連続鋳造を実施した。
試験条件とその結果及び評価を、表1に示す。
Figure 0006686838
表1において、「スラグ改質の有無」の欄には、スラグ改質、即ち取鍋精錬(LF)処理前の生石灰の投入とフラックスの添加の有無を記載しており、この両方を行った場合を「有」とし、この両方を行わなかった場合を「無」とした。
また、「取鍋精錬(LF)前」の欄には、取鍋精錬(LF)処理前のスラグ酸化度((%T.Fe)+(%MnO))と溶鋼の溶存酸素濃度([O](ppm))を記載している。
そして、「真空脱ガス処理」の欄には、真空脱ガス処理の実施の有無を、「静置時間」は真空脱ガス処理後の取鍋での静置時間を記載している。なお、「静置後T.[O]」の欄には、静置した後の溶鋼のトータル酸素濃度(T.[O](ppm))を記載している。
また、タンディッシュでの処理条件として、浴深H(m)に対する下堰の高さ(浴深Hの倍数)も記載した。
更に、「成品」の欄のうち、「T.[O](ppm)」の欄には、連続鋳造を行った後の成品のトータル酸素濃度を記載し、「介在物個数」の欄には、代表位置から切り出したサンプル(25〜30mm角)を光学顕微鏡で調査した結果(20μm以下の塊状アルミナ介在物の検出個数)を記載している。
なお、「評価」は、代表的な清浄性の指標である成品のT.[O]値が10ppm以下、かつ、「介在物個数」の結果が0.5(個/cm)以下の場合を清浄性が良好(○)と判断し、この2つの条件を満たさない場合を清浄性が悪い(×)と判断した。
表1中の実施例1〜8は、取鍋精錬処理前に適正なスラグ改質を行うことで、スラグ酸化度と溶鋼の溶存酸素濃度を適正範囲内(スラグ酸化度:5質量%以下、溶鋼中溶存酸素濃度:10〜50ppm)とした溶鋼に、取鍋精錬工程にて撹拌処理、及び、その後の真空脱ガス工程にて脱ガス処理(環流による撹拌処理)を行い、更に適正範囲内の時間(10分以上)で静置した後、適正範囲内の高さ(0.3×H〜0.8×Hの範囲)の下堰を有するタンディッシュへ注湯して、連続鋳造した結果である。
この場合、スラグ改質によるアルミナ系介在物(カルシウムアルミネート)の浮上除去効果、取鍋精錬工程及び真空脱ガス工程の各処理による小さなアルミナ介在物の凝集合体効果、更には溶鋼の静置による大きなアルミナ介在物の形状安定化効果、及び、タンディッシュの下堰による溶鋼への上昇流付与効果が得られた。
その結果、表1に示すように、成品のトータル酸素濃度を低減できると共に、成品中に存在する20μm以下の塊状アルミナ介在物の個数を低減でき、成品の清浄性を良好にできた(評価:○)。
一方、比較例9は、実施例1の条件において、一次精錬後の取鍋精錬処理の開始前に、スラグ改質を施すことなく同様の処理を行った場合の結果である。
この場合、スラグ改質を施さなかったため、取鍋精錬処理以降(取鍋精錬処理と真空脱ガス処理)で溶鋼に添加する金属アルミニウム量を多くしなければならず、取鍋精錬実施以降でアルミナ介在物が多く生成し、溶鋼の取鍋精錬処理及び真空脱ガス処理による小さなアルミナ介在物の凝集合体効果が十分に得られなかった。
その結果、表1に示すように、成品中に存在するアルミナ介在物の個数が多くなり、成品の清浄性が悪くなった(評価:×)。
比較例10、11はそれぞれ、スラグ改質による取鍋精錬処理前のスラグ酸化度と溶鋼の溶存酸素濃度の値を、適正範囲外(比較例10のスラグ酸化度:8.5質量%、比較例11の溶鋼の溶存酸素濃度:93ppm)とした場合の結果である。
比較例10、11はともに、取鍋精錬処理前の酸素ポテンシャルを十分に低下させることができなかったため、取鍋精錬処理以降において多量のAlが生成し、微小介在物の凝集合体の効果が不十分となり、成品内に多くのアルミナ介在物が残存する結果となった。
その結果、表1に示すように、成品中に存在するアルミナ介在物の個数が多くなり、成品の清浄性が悪くなった(評価:×)。
比較例12は、真空脱ガス処理後の溶鋼の静置時間を、適正範囲外の時間(5分)とした場合の結果である。
この場合、静置時間が不足して、真空脱ガス処理中に凝集合体し粗大化した30〜50μm径の粒子が、不安定なままの状態でタンディッシュに流入した。これにより、タンディッシュ内の溶鋼流の剪断力によって当該粒径の粒子が崩壊し、再度20μm以下の微細粒子の個数が増加したため、表1に示すように、T.[O]>10ppmとなり、成品中に存在する微小アルミナ介在物の個数が多くなって、成品の清浄性が悪くなった(評価:×)。
比較例13は、真空脱ガス処理を実施しなかった場合の結果である。
この場合、真空脱ガス処理による粗大介在物(30〜50μm)の凝集合体粒子を得ることができなくなるため、20μm以下の微小Alの残存量が多くなり、成品の清浄性が悪くなった(評価:×)。
比較例14、15は、タンディッシュに設けられた下堰を、適正範囲外の高さ(比較例14:0.2×H、比較例15:0.9×H)とした場合の結果である。
この場合、比較例14においては、下堰の高さが低過ぎてタンディッシュ内で溶鋼の上昇流を有効に作用させることができず、また、比較例15においては、下堰の高さが高過ぎて上昇流がタンディッシュ内の湯面スラグを撹拌した。
その結果、表1に示すように、成品中に存在するアルミナ介在物の個数が多くなり、成品の清浄性が悪くなった(評価:×)。
従来法は、一次精錬後に、スラグ改質を施すことなく取鍋精錬処理と真空脱ガス処理を行うものの、静置を実質的に行うことなく、速やかにタンディッシュに注湯して連続鋳造した場合の結果である。
この場合、スラグ改質を施さなかったため、取鍋精錬処理以降にアルミナ介在物が多く生成し、また、溶鋼の撹拌処理や静置による効果も得られなかった。
その結果、表1に示すように、成品中に存在するアルミナ介在物の個数が多くなり、成品の清浄性が悪くなった(評価:×)。
ここで、上記した従来法と実施例5について、タンディッシュ注湯直前(実施例5は真空脱ガス処理し静置した後のタンディッシュ注湯前、従来法は真空脱ガス処理後のタンディッシュ注湯前)における溶鋼中のアルミナ介在物の粒径頻度分布を調査した結果を図3に、連続鋳造した後に得られた成品中のアルミナ介在物の粒径個数分布を調査した結果を図4に、それぞれ示す。ここで、図3の縦軸は、全てのアルミナ介在物(粒径範囲が20μm以下、20μm超30μm以下、30μm超50μm以下、及び、50μm超)の合計個数を100%としたときの各粒径範囲のアルミナ介在物の個数割合を示している。なお、実際には、5μm以下の極微小径の介在物も存在すると考えられるが、光学顕微鏡を用いての調査能力の限界上、5〜20μmの範囲で検出される粒径の介在物を、20μm以下の介在物として表記した。
図3に示すように、アルミナ介在物の粒径範囲が、20μm以下の個数割合は、実施例5が従来法より低くなっているが、30μm超50μm以下の個数割合は、実施例5が従来法より高くなっている。更に、従来法では僅かながら50μm超の粗大介在物が検出される場合があったが、実施例5においては50μm超の粗大介在物は全く検出されなかった。
即ち、20μm以下の個数割合の、実施例5の従来法に対する減少分が、30μm超50μm以下の個数割合の、実施例5の従来法に対する増加分に相当する。これは、実施例5が、スラグ改質を取鍋精錬処理前の実施とすることで、取鍋精錬処理以降の微細なアルミナの生成を抑制したこと、及び、取鍋精錬処理と真空脱ガス処理による20μm以下の微小介在物の凝集合体による粒径の粗大化(30〜50μm)が促進されためと考えられる。
そして、上記した溶鋼を、所定高さの堰を有するタンディッシュに注湯し、連続鋳造することで、実施例5については、タンディッシュの排湯部内の対流効果が得られ、図4に示すように、アルミナ介在物の粒径範囲が30μm超50μm以下の検出個数を従来法よりも低くできた。
なお、ここでは、出鋼後かつ取鍋精錬処理前の取鍋内の溶鋼及びスラグに、生石灰とフラックスを同時に添加した場合について説明したが、出鋼工程での溶鋼の出鋼から、取鍋精錬工程で溶鋼の撹拌処理を行う前までの間(具体的には、出鋼時、及び/又は、出鋼後かつ取鍋精錬工程前)に生石灰及びフラックス(金属アルミニウム単体でもよい)を添加すれば、添加の形態に影響されることなく、略同様の傾向が得られた。
従って、本発明の高清浄鋼の製造方法を用いることで、従来よりもアルミナ介在物の個数を低減でき、特に粒径が20μm以下クラスのアルミナ介在物の個数を低減できることを確認できた。
以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の高清浄鋼の製造方法を構成する場合も本発明の権利範囲に含まれる。
また、前記実施の形態においては、一次精錬を行った溶鋼を、出鋼工程(スラグの改質処理)、取鍋精錬工程、及び、真空脱ガス工程で順次処理して、10分以上の静置を行った後、連続鋳造工程で連続鋳造した場合について説明したが、連続鋳造工程前に、必要に応じて、上記各工程以外の工程を行ってもよい。
10:タンディッシュ、11:溶鋼鍋、12:ロングノズル、13:受湯部、14:鋳型、15:排湯部、16:堰、17:浸漬ノズル、18:底面、19:貫通孔

Claims (1)

  1. 大気圧下で吹酸脱炭する一次精錬を行った溶鋼を、少なくとも出鋼工程、取鍋精錬工程、及び、真空脱ガス工程で順次処理して溶製した後、連続鋳造工程でタンディッシュに注湯して連続鋳造する高清浄鋼の製造方法において、
    前記出鋼工程での溶鋼の出鋼から前記取鍋精錬工程で溶鋼の撹拌処理を行う前までの間に、溶鋼及びスラグのいずれか一方又は双方に生石灰を投入すると共に、金属アルミニウム及び金属アルミニウムを含むフラックスのいずれか一方又は双方を添加して、スラグを改質処理し、スラグのT.Fe濃度とMnO濃度の合計を5質量%以下、かつ、溶鋼の溶存酸素濃度を10ppm以上50ppm以下の範囲とした後、
    前記取鍋精錬工程で溶鋼の前記撹拌処理を行い、前記真空脱ガス工程で溶鋼を環流させて脱ガス処理し、該脱ガス処理から前記連続鋳造工程で連続鋳造を開始するまでに10分以上静置して、
    前記連続鋳造工程では、溶鋼を受け入れる受湯部と、該溶鋼を連続鋳造する鋳型に注入する排湯部とに仕切る堰が内部に設けられ、該堰の高さを溶鋼深さの0.3倍以上0.8倍以下とした前記タンディッシュに、前記脱ガス処理後に静置した溶鋼を注湯することを特徴とする高清浄鋼の製造方法。
JP2016203441A 2016-10-17 2016-10-17 高清浄鋼の製造方法 Active JP6686838B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016203441A JP6686838B2 (ja) 2016-10-17 2016-10-17 高清浄鋼の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016203441A JP6686838B2 (ja) 2016-10-17 2016-10-17 高清浄鋼の製造方法

Publications (2)

Publication Number Publication Date
JP2018066031A JP2018066031A (ja) 2018-04-26
JP6686838B2 true JP6686838B2 (ja) 2020-04-22

Family

ID=62086703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016203441A Active JP6686838B2 (ja) 2016-10-17 2016-10-17 高清浄鋼の製造方法

Country Status (1)

Country Link
JP (1) JP6686838B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7035872B2 (ja) * 2018-07-18 2022-03-15 日本製鉄株式会社 高清浄鋼の溶製方法
JP7035873B2 (ja) * 2018-07-18 2022-03-15 日本製鉄株式会社 高清浄鋼の溶製方法
CN113186458B (zh) * 2021-04-06 2023-05-05 甘肃酒钢集团宏兴钢铁股份有限公司 一种冷镦用中碳铝镇静钢及其冶炼方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128620A (ja) * 1992-10-19 1994-05-10 Nippon Steel Corp Ca添加方法
JP3464856B2 (ja) * 1995-10-31 2003-11-10 日新製鋼株式会社 高清浄度鋼連続鋳造用タンディッシュ
JP2001335824A (ja) * 2000-05-29 2001-12-04 Nippon Steel Corp 高清浄度鋼の製造方法
JP2010116611A (ja) * 2008-11-13 2010-05-27 Kobe Steel Ltd 大入熱時でのhaz靱性に優れた低硫厚板鋼板の製造方法
JP6428307B2 (ja) * 2015-01-27 2018-11-28 新日鐵住金株式会社 高清浄鋼の製造方法

Also Published As

Publication number Publication date
JP2018066031A (ja) 2018-04-26

Similar Documents

Publication Publication Date Title
JP6686837B2 (ja) 高清浄鋼の製造方法
JP6593233B2 (ja) 高清浄鋼の製造方法
JP7035872B2 (ja) 高清浄鋼の溶製方法
JP5082417B2 (ja) 極低硫低窒素高清浄度鋼の溶製方法
JP6686838B2 (ja) 高清浄鋼の製造方法
JP6428307B2 (ja) 高清浄鋼の製造方法
JP6443200B2 (ja) 高清浄鋼の製造方法
JP6838419B2 (ja) 高窒素低酸素鋼の溶製方法
JP7035873B2 (ja) 高清浄鋼の溶製方法
JP6547638B2 (ja) 高清浄鋼の製造方法
JP5332568B2 (ja) 溶鋼の脱窒素方法
KR100985308B1 (ko) 극저황 고청정 강의 제조 방법
JP2019214057A (ja) 連続鋳造方法
JP2013167009A (ja) 清浄性の高い鋼材の製造方法
JP3308084B2 (ja) 極低酸素鋼溶製方法
JP7035871B2 (ja) 高清浄鋼の溶製方法
JP6822304B2 (ja) 溶鋼の取鍋精錬方法
JP7035870B2 (ja) 高清浄鋼の溶製方法
JP6337681B2 (ja) 溶鋼の減圧精錬方法
JPH07224317A (ja) 高清浄度鋼の製造方法
JP2019014944A (ja) 鋼の溶製方法
JP2018127683A (ja) 溶鋼中の非金属介在物除去方法
JP6435983B2 (ja) 溶鋼の精錬処理方法
JP4062213B2 (ja) Rh脱ガス装置における溶鋼の成分調整方法
JP2006225727A (ja) 極低炭素鋼材の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200316

R151 Written notification of patent or utility model registration

Ref document number: 6686838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151